10,583 research outputs found

    Exploiting a new level of DLP in multimedia applications

    Get PDF
    This paper proposes and evaluates MOM: a novel ISA paradigm targeted at multimedia applications. By fusing conventional vector ISA approaches together with more recent SIMD-like (Single Instruction Multiple Data) ISAs (such as MMX), we have developed a new matrix oriented ISA which efficiently deals with the small matrix structures typically found in multimedia applications. MOM exploits a level of DLP not reachable by neither conventional vector ISAs nor SIMD-like media ISA extensions. Our results show that MOM provides a factor of 1.3x to 4x performance improvement when compared with two different multimedia extensions (MMX and MDMX) on several kernels, which translates into up to a 50% of performance gain when measuring full applications (20% in average). Furthermore, the streaming nature of MOM provides additional advantages for executing multimedia applications, such as a very low fetch pressure or a high tolerance to memory latency, making MOM an ideal candidate for the embedded domain.Peer ReviewedPostprint (published version

    A Survey on Compiler Autotuning using Machine Learning

    Full text link
    Since the mid-1990s, researchers have been trying to use machine-learning based approaches to solve a number of different compiler optimization problems. These techniques primarily enhance the quality of the obtained results and, more importantly, make it feasible to tackle two main compiler optimization problems: optimization selection (choosing which optimizations to apply) and phase-ordering (choosing the order of applying optimizations). The compiler optimization space continues to grow due to the advancement of applications, increasing number of compiler optimizations, and new target architectures. Generic optimization passes in compilers cannot fully leverage newly introduced optimizations and, therefore, cannot keep up with the pace of increasing options. This survey summarizes and classifies the recent advances in using machine learning for the compiler optimization field, particularly on the two major problems of (1) selecting the best optimizations and (2) the phase-ordering of optimizations. The survey highlights the approaches taken so far, the obtained results, the fine-grain classification among different approaches and finally, the influential papers of the field.Comment: version 5.0 (updated on September 2018)- Preprint Version For our Accepted Journal @ ACM CSUR 2018 (42 pages) - This survey will be updated quarterly here (Send me your new published papers to be added in the subsequent version) History: Received November 2016; Revised August 2017; Revised February 2018; Accepted March 2018

    JANUS: an FPGA-based System for High Performance Scientific Computing

    Get PDF
    This paper describes JANUS, a modular massively parallel and reconfigurable FPGA-based computing system. Each JANUS module has a computational core and a host. The computational core is a 4x4 array of FPGA-based processing elements with nearest-neighbor data links. Processors are also directly connected to an I/O node attached to the JANUS host, a conventional PC. JANUS is tailored for, but not limited to, the requirements of a class of hard scientific applications characterized by regular code structure, unconventional data manipulation instructions and not too large data-base size. We discuss the architecture of this configurable machine, and focus on its use on Monte Carlo simulations of statistical mechanics. On this class of application JANUS achieves impressive performances: in some cases one JANUS processing element outperfoms high-end PCs by a factor ~ 1000. We also discuss the role of JANUS on other classes of scientific applications.Comment: 11 pages, 6 figures. Improved version, largely rewritten, submitted to Computing in Science & Engineerin

    Factoring out ordered sections to expose thread-level parallelism

    Get PDF
    With the rise of multi-core processors, researchers are taking a new look at extending the applicability auto-parallelization techniques. In this paper, we identify a dependence pattern on which autoparallelization currently fails. This dependence pattern occurs for ordered sections, i.e. code fragments in a loop that must be executed atomically and in original program order. We discuss why these ordered sections prohibit current auto-parallelizers from working and we present a technique to deal with them. We experimentally demonstrate the efficacy of the technique, yielding significant overall program speedups
    • …
    corecore