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Abstract

This paper proposes and evaluates MOM: a novel ISA
paradigm targeted at multimedia applications. By fusing
conventional vector ISA approaches together with more re-
cent SIMD-like (Single Instruction Multiple Data) ISAs (such
as MMX), we have developed a new matrix oriented ISA
which efficiently deals with the small matrix structures typ-
ically found in multimedia applications. MOM exploits a
level of DLP not reachable by neither conventional vector
ISAs nor SIMD-like media ISA extensions. Our results show
that MOM provides a factor of 1.3x to 4x performance im-
provement when compared with two different multimedia
extensions (MMX and MDMX) on several kernels, which
translates into up to a 50% of performance gain when mea-
suring full applications (20% in average). Furthermore, the
streaming nature of MOM provides additional advantages
for executing multimedia applications, such as a very low
fetch pressure or a high tolerance to memory latency, making
MOM an ideal candidate for the embedded domain.

1 Introduction

While advances in microprocessor design over the past
years were primarily targeted at scientific and integer appli-
cations, it is widely accepted thatmedia applications will be
taking on more and more significance, becoming one of the
most significant computing workloads in the next years [1].

In reaction to this trend,major vendors of general-purpose
microprocessors have included SIMD extensions to their
instruction-set architectures to tackle these types of appli-
cations. Examples are Intel’sMMX [2], SUN’s VIS [3] and
MipsMDMX [4]. All these ISA extensions offer new packed
data types, fixed-point arithmetic and, typically, 64-bit multi-
media vector registers. The goal is to execute between 4 and
8 parallel fixed-point operations over small data. Although
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initially the new data types did not include single precision
floating point numbers, more recently, the importance of
3D graphic applications has been recognized. As a conse-
quence, new instructions have been added to deal with float-
ing point SIMD parallelism (Motorola’sAltivec [5], AMD’s
3DNow! [6] and INTEL’s SSE [7]).

While all these multimedia extensions provide consider-
able performance improvements, intense research still re-
mains to be done. Future media processing (such as video-
conferencing, 3D animation, or MPEG-4 video and audio
streams) will require high computational demands. Addi-
tionally, the real-time constraints plus the multi-threaded
orientation of future standards (such as MPEG-4 [8]), leads
us to believe that further research on new ISAs or archi-
tecture paradigms for media processing is a matter of great
interest.

Recent works dealing with the DLP exploitation ofmulti-
media applications can be divided into two different groups:
those evaluating the performance of conventional vector
ISAs on multimedia codes [9, 10], and those evaluating the
performance of current multimedia extensions [11, 12].

In this paper, we propose MOM. MOM stands forMatrix
Oriented Multimedia extension and is targeted at exploiting
a level of data-level parallelism not reachable by any conven-
tional SIMD paradigm. MOM merges in a single ISA the
intra-word parallelism capabilities of MMX together with
the inter-word parallelism exploitation of traditional vector
architectures. We will show that most of the main multi-
media kernels exhibit several levels of limited parallelism.
While MMX-like extensions are able to exploit parallelism
from only one single level, MOM is able to exploit paral-
lelism from up to two levels of parallelism by means of its
matrix instructions.

2 Rationale for a matrix ISA

In this section we qualitatively argue why the MOM 2D
parallelism exploitation is particularly well suited to multi-
media applications due to the limited parallelism found in
any single parallel level (loop). Additionally,we will discuss



int dist1(blk1, blk2, length)
unsigned char *blk1,*blk2;
int length;
{
int i,j,s;
unsigned char *a,*b;

s = 0; a = blk1; b = blk2;
for(j=0; j<16; j++) {

for(i=0; i<16; i++) {
s += abs(a[i]-b[i]);

}
a += length;
b += length;

}
return s;

}

Figure 1. MPEG2 Motion Estimation, pixel dis-
tance function.

the basic characteristics of our implementation of a matrix
ISA.

2.1 Available data level parallelism

Figures 1 and 2 show a simplified fragment of code ex-
tracted from the motion estimation algorithm in a MPEG-2
encoder. It has been chosen as a representative example of
what can be typically found in many multimedia applica-
tions.

The MPEG2motion estimation algorithm detects move-
ment of objects along different video frames in order to be
able to express one single video frame as a function of the
others. The program scans the reference image so that it
can find which block of the reference image matches better
with the block being compressed, by finding the minimal
sum of absolute differences between the pixels of the two
blocks (operation performed by the functiondist1). Func-
tion fullsearch just calls functiondist1 following a
spiral-like path across a window inside the reference image.

Analyzing the code shown in figures 1 and 2 we can
see that there are up to three different levels of Data Level
Parallelism to be exploited. The first two levels are the nested
loopsj andi located in functiondist1. The third level is
in functionfullsearchwhere multiple independent (and,
therefore, parallelizable) calls to functiondist1 are made.
How would the ISA extensions under consideration (MMX
and MOM) and a traditional vector compiler exploit this
parallelism?

Traditional Vectorization

A conventional vector compiler would detect DLP paral-
lelism over the inner loopi in functiondist1 and would
vectorize it, generating 16-word length vector instructions.
This would result in everyrow of matrices ’a’ and ’b’ (com-
posed of 16 8-bit elements) being loaded into 16 64-bit po-
sitions of a vector register. Unfortunately, as graphically
shown in figure 3 (a), there would be a waste of potential

int fullsearch(org, blk, length, i0, j0, win)
unsigned char *org, *blk;
int length, i0, j0, win;
{
int l, d, i, j, dmin, imin, jmin, k;
...

  for (l=1; l<=win; l++) {
    i = i0 - l; j = j0 - l;
    for (k=0; k<8*l; k++) {
        d = dist1(org+i+length*j,blk,length);

        if (d<dmin) {
          dmin = d; imin = i; jmin = j;
        }

      if      (k<2*l) i++;
      else if (k<4*l) j++;
      else if (k<6*l) i--;
      else            j--;
    }
  }
}

Figure 2. MPEG2 Motion Estimation, full
search function.

data-level parallelism because we would be loading only
8-bits of useful data into 64-bit registers.

Several vector compilers use loop interchange techniques
in order to increase the effective vector length by vectorizing
outer loops. Note that, in this case, this technique cannot
be applied in any of the outer levels of parallelism. First,
loop interchange over loopj would not provide higher vector
lengths. Second, while the third level of parallelism, located
at function fullsearch, could be easily exploited as thread
level parallelism (TLP), it is not possible to vectorize it due
to the lack of regularity (that is, no constant stride).

MMX-like Vectorization

On the other hand, a MMX-like compiler would detect par-
allelism in the inner loopi and would look for two necessary
conditions before triggering ’vectorization’: first, the data
size of each element should allow packing multiple elements
in a single multimedia register; second, all elements should
be arranged consecutively in memory (that is, using stride
one). Since both conditions are true for our example, the
MMX-like compiler would generate a multimedia instruc-
tion packing groups of 8 elements in everyrow into a single
64-bit multimedia register (see figure 3 (b)). Then, all 8
elements in a multimedia register could be operated on in
parallel generating eight absolute differences as shown in
the figure.

Comparing to the traditional vectorization approach, we
can see that the MMX-approach is fairly competitive. The
vector machine would need at least eight pipes to match the
performance of the MMX-approach and would most likely
not be able to take advantage of specialized opcodes as the
MMX-like ISAs do. Moreover, the MMX approach would
achieve similar or better results with much less hardware.
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Figure 3. Comparison between (a) conventional vector, (b) MMX-like and (c) matrix oriented ISAs

MOM Vectorization

Clearly, the maximum parallelism exploitable by the two pre-
vious approaches is restricted by the reduced vector length
of the inner loop. MOM overcomes this severe limitation
by observing that the two nested loops in dist1 can be
simultaneously vectorized. MOM performs the 2D vector-
ization process in two steps. First, it analyzes the inner loop
and generates MMX-like code for it. Then, it analyzes the
outer loop (corresponding to the row index of the matri-
ces), and vectorizes this MMX-like code generating matrix
instructions (see figure 3 (c)).

Note that we allow any stride between two consecutive
rows of the matrix, and that is a key difference between
MOM and MMX-like extensions. It could be argued that
we could arbitrarily enlarge the multimedia register (as Al-
tivec does) to achieve a similar effect to what MOM does.
However, enlarging the register would not provide any ben-
efits because (a) the rows in the matrix are not layed out in
memory in consecutive locations and (b) the MMX scope is
restricted to a single loop (corresponding to a single matrix
row). Therefore, in our example, using an arbitrarily large
register (a la Altivec) would only allow packing up to 16 8-
bit consecutive elements (that is, restricted to a single matrix
row), while MOM is able to pack 128 8-bit elements (half
of the matrix), as seen in figure 3.

MOM can be viewed as a conventional vector ISA where
each of its computation operations are SIMD MMX-like
instructions. A MOM implementation executes as many
SIMD MMX-like computation operations per cycle as the
number of vector pipes of the MOM functional unit. The
interesting point is that a MOM register is holding 2D array
of data and MOM instructions are doing matrix operations
between them. Our claim is that these matrix operations oc-

cur frequently enough in multimedia applications to warrant
their implementation.

Accumulators and MOM

MMX-like ISAs tend to have problems handling reduction
operations. Reduction operations naturally arise in dot prod-
ucts, for example, where all the results from several products
must be added together. The problem appears if the product
is performed in parallel (using sub-word parallelism) since
the result does not fit into a normal register. As an example,
figure 4 shows that trying to multiply four 16-bit quantities
yields a result that only fits in a 128-register. Since these re-
sults must be added together before truncating the result (or,
otherwise, the loss of precision could become unacceptable),
MMX-like ISAs end up using data promotion to maintain
the required precision (i.e. promotion of data to larger data
sizes by using pack/unpack operations). Unfortunately, data
promotion causes a large instruction overhead and reduces
the potential sub-word level parallelism by a factor of two.

A very efficient way to deal with reduction operations is
the technique introduced by MDMX (Mips). MDMX pro-
poses using packed accumulators which are wide registers
that successively accumulate the results produced by opera-
tions done with multimedia vector registers (see figure 4(a)).
The results from the accumulator are truncated, rounded and
conveniently clipped into a conventional MDMX register.
Unfortunately, MDMX accumulators introduce artificial re-
currences due to the fact that any accumulator operation
needs its previous value as an input. For long latency op-
erations, this translates into low IPC. By contrast, MOM
can take great advantage of the multimedia accumulators.
Since any MOM instruction over one accumulator serializes
several operations (see figure 4(b)), we can pipeline the ac-
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Figure 4. Example of parallel dot product per-
formed with (a) MDMX, (b) MOM accumulators

cumulation in order to avoid the recurrence problem. This
technique is very common in conventional vector machines:
the vector functional unit manages a number of partial ac-
cumulations equal to the latency of the functional unit; the
final result is obtained by adding together all these partial
accumulations.

2.2 MOM ISA Overview

The basis of the MOM Instruction Set Architecture heav-
ily borrows from the MDMX multimedia extension set.
Therefore, most of MOM instructions can be seen as vector
versions of MDMX ones. MOM is a load/store architecture
composed of vector memory instructions and a set of com-
putation instructions that operate on MOM registers. Each
MOM register is composed of 16 SIMD vector elements of
64-bit each. The execution of every MOM instruction is
controlled by the Vector Length register (VL), which dic-
tates how many words (out of 16) of the MOM register will
be actually operated. Additionally, the Vector Stride regis-
ter dictates the distance in bytes between two consecutive
SIMD vector elements for any MOM memory instruction.
The MOM instruction set is divided into four categories
(see [13] for an in-depth description of MOM):

MOM packed arithmetic and logical operations.
Computation instructions always take as inputs two MOM
registers and generate a MOM register as output. These in-
structions are straightforward matrix translations of MDMX
arithmetic and logical instructions.

MOM memory instructions. MOM supports memory
instructions of the form Momldq MRi <-- Rj; Rk,
where MRi is one of the MOM logical registers, Rj is
the base address where the load starts and Rk is the vector
stride. The semantics of the instruction are as follows: start-
ing at address Rj, load a 64-bit word into the first position
of MOM register i. Then, add the stride register Rk to the
base address, decrement the VL register and repeat the op-
eration until VL reaches 0. MOM store instructions work in

a similar fashion.
MOM matrix operations. MOM includes very power-

ful matrix instructions such as Matrix per vector or MPEG-2
Matrix sum of quadratic differences. These instructions take
one or two MOM registers as inputs and one MOM accu-
mulator as the output. More noteworthy, however, is the
capability of doing a transpose on a MOM register. This
operation is especially useful to switch vector dimensions
without using pack/unpack operations (as would be neces-
sary in an MMX-like ISA).

MOM auxiliary operations. These include a set of in-
structions to manage the VL register and the logical accu-
mulators (basically, to unload and restore values from them).

3 Methodology

We have studied six different programs from the Me-
diabench suite [14]: mpeg2 encode, mpeg2 decode,
jpeg encode, jpeg decode, gsm encode and gsm
decode. Note that these programs are representative ex-
amples of video, image and audio applications. From the six
programs, gsm decode had a very low vectorization per-
centage and therefore was dropped from this study. We have
used the mei16v2rec bit stream (four 352x480 frames) for
thempeg2 benchmarks, the image penguin.ppm (1024x739)
for the jpeg benchmarks, and the standard PCM file clin-
ton.pcm for the gsm encode application

3.1 Emulation Libraries and Code Generation

We have developed three different emulation libraries
that contain all the multimedia instructions found in MMX,
MDMX and MOM. It is important to note that the libraries
do not exactly model MMX and MDMX but, rather, a fair
approximation of each one. For instance, we have extended
all instructionsets with additional instructionssuch as vector
average or conditional move. Also it is very important to
stress that, in all cases, the baseline ISA is the Alpha ISA.
Thus, although we use the name MMX, it has to be clear that
we are not modeling an x86 ISA with multimedia extensions.
Rather, we have added the MMX opcodes to the Alpha ISA.
The same argument applies to MDMX and MOM.

The MMX emulation library contains 67 instructions and
assumes an independent multimedia register file with 32
logical registers (as opposed to only 8 registers in the real
MMX). We have included enhanced reduction operations
and we have extended the ISA to allow up to three logical
source/destination registers instead than two. The MDMX
emulation library contains 88 instructions and assumes 32
logical multimedia registers and 4 logical accumulators. We
have modeled most of the features of MDMX but the sub-
word selector field (which allows to operate all the elements
of a MDMX register with one single element of some other



MDMX register). Finally, the MOM emulation library con-
tains 121 instructions and assumes 16 logical matrix regis-
ters (of 16 words each), 2 MOM accumulators and the VL
register.

To the best of our knowledge, there is no available com-
piler able to generate either MMX or MDMX (let alone
MOM). Therefore, we identified those functions with poten-
tial DLP and manually rewrote them using stylized subrou-
tine calls to our emulation libraries. In order to maximize the
performance of MMX and MDMX, we used loop-unrolling
and software pipelining techniques. The correctness of the
output was verified to ensure no visually perceptible losses
in accuracy. Finally, we modified our Jinks simulator [10]
to be able to filter the input instruction stream provided by
ATOM [15] and correctly simulate the emulated instructions.

3.2 Modeled Architecture

Our modeled architecture closely follows a MIPS R10000
processor with the addition of a multimedia unit with its own
register file. We have an additional register file for accumu-
lators for MDMX/MOM, while the MOM VL register is
renamed through the integer register pool.

Table 1 shows the processor configurations used in our
simulations. We assume that simple functional units are only
able to perform logical/shift and add operations. Complex
functional units are able to perform multiplication and divi-
sion as well. Note that for the 8-way machine, the MOM
version does not have 4 multimedia functional units but 2
multimedia units of width 2 (that is, every functional unit is
composed of two parallel lanes and is able to perform 2 vec-
tor operations per cycle). We have assumed the same for the
memory ports. For the 8-way machine, each MOM memory
port is able to leverage two vector elements per cycle (but
only one element if we deal with scalar data).

We have done preliminary simulations in order to deter-
mine the number of multimedia physical registers necessary
to maintain processor performance (see table 2). Note that
the size of the MOM register file is 5 times the size of the
MMX register file. However, there are a lot of parameters
that influence the overall area of a register file (such as the
number of read and write ports, or the number of physical
registers). We have used the model described in [16] in order
to estimate the area cost of each register file. As it can be
seen in table 2, while the MOM matrix register file (plus the
accumulator register file) is 5 times bigger that the MMX
multimedia register file, the area costs are of the same order.
The reduction of complexity of vector register files, (due
basically to the fact that we can interleave the elements of
every vector register among several banks) has already been
highlighted in previous works [17, 18].

way-1 way-2 way-4 way-8

ROB size 8 16 32 64
Load/Store queue 4 8 16 32
Bimodal predictor 512 2K 4K 16K

BTB entries 64 256 512 1024
INT simple/complex 0/1 1/1 2/1 2/2
FP simple/complex 0/1 1/1 2/1 2/2

MED simple/complex 0/1 1/1 2 4 - (2x2)
memory ports 1 1 2 4 - (2x2)

INT log/ph registers 32/40 32/48 32/64 32/96
FP log/ph registers 32/40 32/48 32/64 32/96

Table 1. Processor configurations.

MMX MDMX MOM

MEDIA log/ph registers 32/64 32/52 16/20
ACCUMULATOR log/ph reg. - 4/16 2/4

MEDIA rd/wr ports 6/3 6/3 2/1 (8-b)
ACCUMULATOR rd/wr ports - 4/2 2/1

Register File Size 0.5 K 0.78 K 2.6 K

Normalized Area Cost 1 1.19 0.87

Table 2. Multimedia register file configura-
tions for a 4-way machine.

4 Performance Evaluation

This section evaluates the performance of our matrix ISA
with the set of benchmarks described in section 3. The
evaluation will be decoupled in two different steps: a kernel-
level analysis and a complete program-level analysis.

4.1 Kernel-level analysis

We have selected the most time-consuming kernels
from our applications: idct (an inverse discrete cosines
transform), motion1 and motion2 (sum of absolute
differences and sum of quadratic differences algorithms
for the MPEG motion estimation), rgb2ycc (RBG
to YCC color space conversion), compensation and
addblock (MPEG2 motion compensation algorithms),
ltpparameters (calculation of the parameters of the
GSM long term filter), and finally h2v2upsample (im-
age zoom algorithm). We have simulated between 5 and
10 million graduated instructions for the plain superscalar
version and for each kernel.

Figure 5 shows the speed-up attained by the three multi-
media ISAs evaluated when compared with Alpha code, for
different wide machines. We have considered an idealized
memory system with no bandwidth constraints and a fixed
memory latency of one single cycle (that is, an equivalent
model of a perfect cache).

The results show that MMX and MDMX exhibit perfor-
mance gains ranging from 1.5x to 15x over a pure superscalar
architecture, and that MDMX slightly outperforms MMX for
most of the kernels (up to a 30% of improvement). MOM
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Figure 5. Speed-up of evaluated multimedia ISAs for different issue-rate machines (with respect to
1-way Alpha ISA performance).

clearly outperforms both MMX and MDMX with additional
performance gains ranging from 1.3x to 4x. The only case
where MOM is not much more effective than MDMX is in
rgb2ycc. The reason is that vectorization happens along
the color space (Red, Green and Blue) dimension, yielding
a vector length of only 3.

As expected, MOM achieves higher relative performance
for low-issue rates (for example, for idct, 1-way MOM is
7 times faster than a 1-way Alpha, but 8-way MOM is only
about 4 times faster than the 8-way Alpha). This is due to the
fact that MOM greatly reduces the fetch pressure by packing
an order of magnitude more operations per instruction than
MMX or MDMX, making it an ideal candidate for embedded
systems where high issue rates and out-of-order execution
are not even an option. The exception to this is addblock
where all three ISAs achieve higher relative performance as
we increase the fetch rate of the machine. The reason is that
the original version of addblock uses a memory table to
perform the data saturation (limiting severely the potential
ILP), whereas the studied multimedia extensions include the
saturation as a feature. As a result, the pure Alpha version
becomes memory-bounded for wider processors.

Furthermore, we have done the same simulations again
but with 50 cycles of memory latency (trying to approximate
the effects of streaming-like memory references). Results
obtained show that MOM exhibits a high tolerance to in-
creases of the memory latency, which is a very well-known
capability of vector instructions. When increasing the la-
tency from 1 to 50 cycles, MMX/MDMX observe slow-
downs ranging from 4x to 8x and common Alpha code ob-
serves slow-downs ranging from 3x to 9x. In sharp contrast,
MOM slow-downs only range from 2x to 4x.

Conv/MA VC/COL
4-way 8-way 4-way 8-way

L1 #ports 2 4 1 2
L1 #banks 4 8 1 2
L1 latency 1 cyc 2 cyc 1 cyc 1 cyc
L2 #ports - - 1x2 1x4
L2 #banks (1) (1) (2) (2)
L2 latency 6 cyc 6 cyc 8/10 cyc 8/10 cyc

Table 3. Port configuration of the different
memory models: (Conv) Conventional cache,
(MA) Multi-Address Cache, (VC) Vector cache
and (COL) Collapsing buffer cache

4.2 Complete program-level analysis

Now we address the evaluation of our proposed ISA
implementation with complete programs and with realis-
tic memory systems. For this study, we will focus only on
the evaluation of MMX-like and MOM, as MDMX exhibits
similar behavior to MMX.

4.2.1 Cache Hierarchy

We have included in our processor simulator a highly de-
tailed memory hierarchy model, similar to the one found
in the Alpha 21364 [19] where both L1 and L2 cache lev-
els are located on-chip. The L1 cache is a 32 KB, direct
mapped, write-through cache with 32-byte lines. The L2
cache is a 1MB, 2-way associative, write-back cache with
128-byte lines. Both levels of cache have 8 MSHRs and a
8-depth coalescing write buffer with selective flush policy.
We have assumed that the L1 cache is not able to service
unaligned accesses. Therefore, we assume that each mem-
ory port decouples any unaligned access into two aligned
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accesses and then uses special logic to re-construct the de-
sired data. We have modeled a 128MB Direct Rambus main
memory system which contains a DRDRAM controller driv-
ing 8 Rambus chips and leveraging up to 3.2 GB/s with a
128-bit wide, bi-directional 200Mhz main bus. We have not
simulated the instruction cache since our benchmarks have
small instruction working sets.

In [10], we studied the design of cost-effective cache hi-
erarchies to leverage high-bandwidth for out-of-order vector
processors. In the same way as conventional vector instruc-
tions, MOM memory patterns have the potential to allow
a smart exploitation of the spatial locality intrinsic in mul-
timedia codes. We have evaluated three different memory
models for the MOM processor: a multi-address cache, a
vector cache, and a vector cache with a collapsing buffer
(see figure 6).

A multi-address cache is simply a conventional multi-
banked cache where a MOM memory access is decoupled
among all available memory ports. So, if we have two inde-
pendent memory ports, a MOM memory request will reserve
both ports so that the first will access the odd vector elements
while the other will access the even vector elements. This
model has the advantage of fully taking benefit from all the
port resources, even if we have only one single memory
request.

The vector cache was proposed in [10] and heavily bor-
rows from the ideas introduced in [20]. As it can be seen in
figure 6, the vector cache is targeted at accessing stride-one
vector requests by loading two whole cache lines (one per
interleaved bank) instead of individually loading the vec-
tor elements. Then, an interchange switch, a shifter, and
mask logic correctly align the data (allowing even byte-wise
alignments).

The collapsing buffer [20] is a more complex version of
the vector cache that is able to access several vector ele-
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Figure 7. Speed-up of evaluated multimedia
ISAs for different issue-rate machines

ments along two consecutive cache lines, even it they are not
consecutively allocated. Instead of the shift&mask logic,
the collapsing buffer logic groups the requested elements
together.

Note that all MOM memory accesses bypass L1 cache and
go straight to the vector/collapsing buffer cache. We believe
that this approach (a) avoids jeopardizing the L1 cycle time,
(b) effectively decouples the vector working set from the
scalar working set and (c) is not detrimental to performance
due to the latency tolerance properties of MOM memory
accesses. A coherence-protocol (based on an exclusive-bit
policy plus inclusion between L1 and L2) has been included.
Table 3 shows the port configuration for the different cache
models.

4.2.2 Performance results

Figure 7 shows the performance results for the five evalu-
ated benchmarks and for all cache models described. Be-
cause of Amdahl’s law, the speedups achieved when running
full applications are clearly smaller than those presented for
the kernels alone. MMX shows speedups over pure Alpha
code ranging from 1.1X to 3.1X while MOM delivers per-
formance achievements ranging from 1.5X to 4.3x (20% of
performance gain over MMX in average).

While looking at the performance of the different cache
models, we realize that for the 4-way processor, the Multi-



address cache outperforms both the vector and the collapsing
buffer caches. The reason is that, in sharp contrast with nu-
merical applications, the set of benchmarks under study have
working sets that fit in L1 cache, and, therefore, there is no
direct benefit from bypassing the vector workload to a larger
level of cache. On the other hand, for the 8-way machine,
we observe that both vector and collapsing buffer caches
achieve better performance than the multi-address cache.
This is due to the fact that for more aggressive architectures,
we take advantage of the potential spatial locality exploitable
by the vector/collapsing cache which delivers high effective
bandwidth. In sharp contrast, a conventional cache scheme
based on interleaved banks provides poor performance due
to bank collisions and increased complexity of the inter-
connection network. The only exception to this is mpeg2
encodewhere the vector/collapsing caches present modest
performance due to the large values of the strides of most
MOM vector accesses. These large strides cause individual
words in a MOM access to lie in far apart cache lines and
neither the even-odd banking scheme of the vector cache nor
the collapsing buffer can capture and compress this far-apart
words into a single memory access.

5 Summary

In this paper we have proposed a novel ISA paradigm
based on matrix SIMD instructions in order to leverage a
new level of performance improvement when comparing
with current multimedia extensions. Matrix ISAs are able to
exploit a level of DLP not reachable by neither conventional
vector ISAs nor current multimedia ISA extensions.

By fusing the sub-word level parallelism approach to-
gether with the sequential/streaming-like conventional vec-
tor approach, we have developed an ISA able to efficiently
deal with the small matrix structures typically found in sev-
eral multimedia kernels. A side benefit of our proposed ISA
is that it matches very well with having accumulators, which
provides us with both precision and parallelism.

We have evaluated five benchmarks from the Mediabench
suite and we have reported local performance improvements
ranging from 1.3x to 4x relative to MMX and MDMX mul-
timedia extensions. This improvements translate in up to a
50% of performance gain for complete programs and a 20%
of improvement in average. We have demonstrated that all
these performance gains have been achieved without adding
much extra hardware to a regular out-of-order core, since (a)
our proposed register file is relatively small and (b) we have
used the same number of functional units as any conventional
multimedia extension implementation.

Furthermore, MOM appears as a suitable alternative for
multimedia embedded systems as exhibits a high tolerance
to memory latency, a very low fetch pressure, and a high

potential to exploit spatial data locality with smart cost-
effective cache devices.
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