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Abstract

This paper proposes and evaluates MOM: a novel 1SA
paradigm targeted at multimedia applications. By fusing
conventional vector |1SA approaches together with more re-
cent SMD-like(Singlelnstruction Multiple Data) | SAs(such
as MMX), we have developed a new matrix oriented |SA
which efficiently deals with the small matrix structures typ-
ically found in multimedia applications. MOM exploits a
level of DLP not reachable by neither conventional vector
|SAsnor SIMD-likemedia | SA extensions. Our results show
that MOM provides a factor of 1.3x to 4x performance im-
provement when compared with two different multimedia
extensions (MMX and MDMX) on several kernels, which
trandatesinto up to a 50% of performance gain when mea-
suring full applications(20% in average). Furthermore, the
streaming nature of MOM provides additional advantages
for executing multimedia applications, such as a very low
fetch pressure or a high tolerance to memory latency, making
MOM an ideal candidate for the embedded domain.

1 Introduction
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initially the new data types did not include single precision
floating point numbers, more recently, the importance of
3D graphic applications has been recognized. As a conse-
guence, new instructions have been added to deal with float-
ing point SIMD parallelism (Motorola’altivec [5], AMD'’s
3DNow! [6] and INTEL's SSE [7]).

While all these multimedia extensions provide consider-
able performance improvements, intense research still re-
mains to be done. Future media processing (such as video-
conferencing, 3D animation, or MPEG-4 video and audio
streams) will require high computational demands. Addi-
tionally, the real-time constraints plus the multi-threaded
orientation of future standards (such as MPEG-4 [8]), leads
us to believe that further research on new ISAs or archi-
tecture paradigms for media processing is a matter of great
interest.

Recent works dealing with the DLP exploitationmodilti-
media applications can be divided into two different groups:
those evaluating the performance of conventional vector
ISAs on multimedia codes [9, 10], and those evaluating the
performance of current multimedia extensions [11, 12].

In this paper, we propose MOM. MOM stands fdatrix
Oriented Multimedia extension and is targeted at exploiting
a level of data-level parallelism not reachable by any conven-
tional SIMD paradigm. MOM merges in a single ISA the

While advances in microprocessor design over the pastntra-word parallelism capabilities of MMX together with
years were primari|y targeted at scientific and integer appii-the inter-word parallellsm eXpIOItatlon of traditional vector

cations, itis widely accepted thiatedia applicationswill be

architectures. We will show that most of the main multi-

taking on more and more Significance, becoming one of themedia kernels exhibit several levels of limited parallelism.

most significant computing workloads in the next years [1]. While MMX-like extensions are able to exploit parallelism
In reaction to this trend, major vendors of general-purposefrom only one single level, MOM is able to exploit paral-

microprocessors have included SIMD extensions to theirlelism from up to two levels of parallelism by means of its

instruction-set architectures to tackle these types of appli-matrix instructions.

cations. Examples are IntefdMX [2], SUN’s VIS[3] and

Mips MDMX[4]. Allthese ISA extensions offer new packed

data types, fixed-point arithmetic and, typically, 64-bitmulti- 2 Rationalefor a matrix | SA

media vector registers. The goal is to execute between 4 and

8 parallel fixed-point operations over small data. Although In this section we qualitatively argue why the MOM 2D

*This work has been supported by Direccio General de Recerca de Iapara"e"‘e’m exploitation is particularly well suited to multi-

Generalitat under grant 1998F1-00260, by the Ministry of Education of Media applications due to the limited parallelism found in
Spain under contract CICYT TIC98-05110C02-01and by the CEPBA.  any single parallel level (loop). Additionally, we will discuss




int distl(blkl, blk2, |ength)
unsi gned char *bl k1, *bl k2;

int |ength;
int i,j,s;
unsi gned char *a, *b;
s = 0; a = blkl; b = blk2;
for(j=0; j<16; j++) {
for(i=0; i<16; i++) {
s += abs(a[i]-b[i]);

}
a += |l ength;
b += l ength;

return s;

Figure 1. MPEG2 Motion Estimation, pixel dis-
tance function.

the basic characteristics of our implementation of a matrix

ISA.

2.1 Availabledatalevel parallelism

Figures 1 and 2 show a simplified fragment of code ex-

tracted from the motion estimation algorithm in a MPEG-2

int fullsearch(org, blk, length, i0, jO, wn)
unsi gned char *org, *blk;
int length, i0, jO, wn;
{
int 1, d, i, j, dmin, imn, jmn, k
for (1=1; I<=win; |++) {
i =i0-1;j =j0-1;
for (k=0; k<8*l; k++) {
d = dist1(org+i +l engt h*j, bl k, | ength);
if (d<dmn) {
dmin =d; imin=1i; jmn=j;
}
if (k<2*l) i ++;
else if (k<4*l) j++;
else if (k<6*l) i--;

el se j--s

Figure 2. MPEG2 Motion Estimation, full

search function.

data-level parallelism because we would be loading only
8-bits of useful data into 64-bit registers.

encoder. It has been chosen as a representative example of Several vector compilers use loop interchange techniques

what can be typically found in many multimedia applica-
tions.
The MPEG2motion estimation algorithm detects move-

in orderto increase the effective vector length by vectorizing
outer loops. Note that, in this case, this technique cannot
be applied in any of the outer levels of parallelism. First,

ment of objects along different video frames in order to be |00p interchange over logpvould not provide higher vector
able to express one single video frame as a function of thd€ngths. Second, while the third level of parallelism, located
others. The program scans the reference image so that ft function fullsearch, could be easily exploited as thread
can find which block of the reference image matches bettet€Vel parallelism (TLP), itis not possible to vectorize it due

with the block being compressed, by finding the minimal
sum of absolute differences between the pixels of the two
blocks (operation performed by the functidinst 1). Func-
tion f ul | sear ch just calls functiordi st 1 following a

to the lack of regularity (that is, no constant stride).

MM X-like Vectorization

spiral-like path across a window inside the reference image.On the other hand, a MMX-like compiler would detect par-
Analyzing the code shown in figures 1 and 2 we can allelism in the inner loop and would look for two necessary

see that there are up to three different levels of Data Levelconditions before triggering 'vectorization’: first, the data

Parallelism to be exploited. The firsttwo levels are the nestedsize of each element should allow packing multiple elements

loops; andi located in functiordi st 1. The third level is
infunctionf ul | sear ch where multiple independent (and,
therefore, parallelizable) calls to functidn st 1 are made.
How would the ISA extensions under consideration (MMX
and MOM) and a traditional vector compiler exploit this
parallelism?

Traditional Vectorization

A conventional vector compiler would detect DLP paral-
lelism over the inner loop in functiondi st 1 and would

vectorize it, generating 16-word length vector instructions.

This would result in everyow of matrices &’ and 'b’ (com-

posed of 16 8-bit elements) being loaded into 16 64-bit po-
Unfortunately, as graphically MMX-like ISAs do. Moreover, the MMX approach would

sitions of a vector register.

in a single multimedia register; second, all elements should
be arranged consecutively in memory (that is, using stride
one). Since both conditions are true for our example, the
MMX-like compiler would generate a multimedia instruc-
tion packing groups of 8 elements in eveo into a single
64-bit multimedia register (see figure 3 (b)). Then, all 8
elements in a multimedia register could be operated on in
parallel generating eight absolute differences as shown in
the figure.

Comparing to the traditional vectorization approach, we
can see that the MMX-approach is fairly competitive. The
vector machine would need at least eight pipes to match the
performance of the MMX-approach and would most likely
not be able to take advantage of specialized opcodes as the

shown in figure 3 (a), there would be a waste of potential achieve similar or better results with much less hardware.
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Figure 3. Comparison between (a) conventional vector, (b) MMX-like and (c) matrix oriented ISAs

MOM Vectorization

Clearly, themaximum parallelism expl oitableby thetwo pre-
vious approaches is restricted by the reduced vector length
of the inner loop. MOM overcomes this severe limitation
by observing that the two nested loops in di st 1 can be
simultaneously vectorized. MOM performs the 2D vector-
ization process in two steps. Firdt, it analyzesthe inner loop
and generates MM X-like code for it. Then, it analyzes the
outer loop (corresponding to the row index of the matri-
ces), and vectorizes this MM X-like code generating matrix
instructions (see figure 3 (c)).

Note that we allow any stride between two consecutive
rows of the matrix, and that is a key difference between
MOM and MM X-like extensions. It could be argued that
we could arbitrarily enlarge the multimedia register (as Al-
tivec does) to achieve a similar effect to what MOM does.
However, enlarging the register would not provide any ben-
efits because (@) the rows in the matrix are not layed out in
memory in consecutive locations and (b) the MM X scopeis
restricted to a single loop (corresponding to a single matrix
row). Therefore, in our example, using an arbitrarily large
register (alaAltivec) would only allow packing up to 16 8-
bit consecutive elements (that is, restricted to asingle matrix
row), while MOM is able to pack 128 8-bit elements (half
of the matrix), as seen in figure 3.

MOM can be viewed as a conventional vector |SA where
each of its computation operations are SIMD MMX-like
instructions. A MOM implementation executes as many
SIMD MM X-like computation operations per cycle as the
number of vector pipes of the MOM functional unit. The
interesting point is that a MOM register is holding 2D array
of data and MOM instructions are doing matrix operations
between them. Our claim isthat these matrix operations oc-

cur frequently enough in multimediaapplicationsto warrant
their implementation.

Accumulatorsand MOM

MMX-like ISAs tend to have problems handling reduction
operations. Reduction operationsnaturally arise indot prod-
ucts, for example, whereall theresultsfrom several products
must be added together. The problem appears if the product
is performed in parallel (using sub-word parallelism) since
the result does not fit into a normal register. Asan example,
figure 4 shows that trying to multiply four 16-bit quantities
yieldsaresult that only fitsin a 128-register. Since thesere-
sults must be added together before truncating the result (or,
otherwise, theloss of precision could become unacceptable),
MMX-like ISAs end up using data promotion to maintain
the required precision (i.e. promotion of datato larger data
sizes by using pack/unpack operations). Unfortunately, data
promotion causes a large instruction overhead and reduces
the potential sub-word level parallelism by afactor of two.
A very efficient way to deal with reduction operationsis
the technique introduced by MDMX (Mips). MDMX pro-
poses using packed accumulators which are wide registers
that successively accumulate the results produced by opera-
tionsdone with multimediavector registers (seefigure 4(a)).
The resultsfrom the accumulator are truncated, rounded and
conveniently clipped into a conventiona MDMX register.
Unfortunately, MDM X accumulators introduce artificial re-
currences due to the fact that any accumulator operation
needs its previous value as an input. For long latency op-
erations, this trandates into low IPC. By contrast, MOM
can take great advantage of the multimedia accumulators.
Since any MOM instruction over one accumulator serializes
severa operations (see figure 4(b)), we can pipeline the ac-
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Figure 4. Example of parallel dot product per-
formed with (a) MDMX, (b) MOM accumulators

cumulation in order to avoid the recurrence problem. This
techniqueisvery common in conventional vector machines:
the vector functional unit manages a number of partial ac-
cumulations equa to the latency of the functional unit; the
final result is obtained by adding together al these partial
accumulations.

2.2 MOM ISA Overview

The basis of the MOM Instruction Set Architecture heav-
ily borrows from the MDMX multimedia extension set.
Therefore, most of MOM instructions can be seen as vector
versions of MDMX ones. MOM is aload/store architecture
composed of vector memory instructionsand a set of com-
putation instructions that operate on MOM registers. Each
MOM register is composed of 16 SIMD vector elements of
64-bit each. The execution of every MOM instruction is
controlled by the Vector Length register (VL), which dic-
tates how many words (out of 16) of the MOM register will
be actually operated. Additionally, the \lector Stride regis-
ter dictates the distance in bytes between two consecutive
SIMD vector elements for any MOM memory instruction.
The MOM instruction set is divided into four categories
(see [13] for an in-depth description of MOM):

MOM packed arithmetic and logical operations.
Computation instructions always take as inputs two MOM
registers and generate a MOM register as output. These in-
structionsare straightforward matrix trandationsof MDMX
arithmetic and logical instructions.

MOM memory instructions. MOM supports memory
instructions of the form Momldg M Ri <-- Rj, Rk,
where M R; is one of the MOM logica registers, R; is
the base address where the load starts and Ry, is the vector
stride. The semantics of theinstructionare asfollows: start-
ing at address R;, load a 64-bit word into the first position
of MOM register . Then, add the stride register Ry, to the
base address, decrement the VL register and repeat the op-
eration until VL reaches 0. MOM storeinstructionswork in

asimilar fashion.

MOM matrix operations. MOM includes very power-
ful matrix instructionssuch as Matrix per vector or MPEG-2
Matrix sumof quadratic differences. These instructionstake
one or two MOM registers as inputs and one MOM accu-
mulator as the output. More noteworthy, however, is the
capability of doing a transpose on a MOM register. This
operation is especialy useful to switch vector dimensions
without using pack/unpack operations (as would be neces-
sary inan MMX-likeISA).

MOM auxiliary operations. These include a set of in-
structions to manage the VL register and the logical accu-
mulators (basically, to unload and restore val ues from them).

3 Methodology

We have studied six different programs from the Me-
diabench suite [14]: npeg2 encode, npeg2 decode,
j peg encode,j peg decode,gsm encode andgsm
decode. Note that these programs are representative ex-
ampl es of video, image and audio applications. From the six
programs, gsm decode had a very low vectorization per-
centage and therefore was dropped from this study. We have
used the meil6v2rec bit stream (four 352x480 frames) for
thenmpe g2 benchmarks, theimage penguin.ppm (1024x739)
for the j peg benchmarks, and the standard PCM file clin-
ton.pcmfor thegsm encode application

3.1 Emulation Librariesand Code Generation

We have developed three different emulation libraries
that contain all the multimediainstructionsfoundin MM X,
MDMX and MOM. It isimportant to note that the libraries
do not exactly model MM X and MDMX but, rather, a fair
approximation of each one. For instance, we have extended
all instruction setswith additional instructionssuch as vector
average or conditional move. Also it is very important to
stress that, in all cases, the baseline ISA is the Alpha ISA.
Thus, although we use the name MM X, it hasto be clear that
we are not modeling an x86 | SA withmultimediaextensions.
Rather, we have added the MM X opcodesto the Alphal SA.
The same argument appliesto MDM X and MOM.

The MMX emulation library contains 67 instructionsand
assumes an independent multimedia register file with 32
logical registers (as opposed to only 8 registers in the real
MMX). We have included enhanced reduction operations
and we have extended the ISA to alow up to three logical
source/destination registers instead than two. The MDMX
emulation library contains 88 instructions and assumes 32
logical multimediaregistersand 4 logical accumulators. We
have modeled most of the features of MDMX but the sub-
word selector field (which allowsto operate al the elements
of aMDMX register with one single element of some other



MDMX register). Finally, the MOM emulation library con-
tains 121 instructions and assumes 16 logical matrix regis-
ters (of 16 words each), 2 MOM accumulators and the VL
register.

To the best of our knowledge, there is no available com-
piler able to generate either MMX or MDMX (let alone
MOM). Therefore, weidentified those functionswith poten-
tial DLP and manually rewrote them using stylized subrou-
tinecallsto our emulationlibraries. Inorder tomaximize the
performance of MM X and MDM X, we used loop-unrolling
and software pipelining techniques. The correctness of the
output was verified to ensure no visually perceptible losses
in accuracy. Finally, we modified our Jinks simulator [10]
to be able to filter the input instruction stream provided by
ATOM [15] and correctly simulate theemulated instructions.

3.2 Modeed Architecture

Our modeled architecture closely followsaM I PSR10000
processor with the addition of amultimediaunit withitsown
register file. We have an additional register file for accumu-
lators for MDMX/MOM, while the MOM VL register is
renamed through the integer register pool.

Table 1 shows the processor configurations used in our
simulations. Weassume that simplefunctional unitsare only
able to perform logical/shift and add operations. Complex
functional unitsare able to perform multiplication and divi-
sion as well. Note that for the 8-way machine, the MOM
version does not have 4 multimedia functional units but 2
multimedia units of width 2 (that is, every functional unitis
composed of two parallel lanesand is able to perform 2 vec-
tor operations per cycle). We have assumed the same for the
memory ports. For the 8-way machine, each MOM memory
port is able to leverage two vector elements per cycle (but
only one element if we deal with scalar data).

We have done preliminary simulationsin order to deter-
mine the number of multimediaphysical registers necessary
to maintain processor performance (see table 2). Note that
the size of the MOM register file is 5 times the size of the
MMX register file. However, there are a lot of parameters
that influence the overall area of a register file (such as the
number of read and write ports, or the number of physica
registers). We have used the model described in[16] inorder
to estimate the area cost of each register file. Asit can be
seen intable 2, whilethe MOM matrix register file (plusthe
accumulator register file) is 5 times bigger that the MM X
multimediaregister file, the area costs are of the same order.
The reduction of complexity of vector register files, (due
basicaly to the fact that we can interleave the elements of
every vector register among several banks) has already been
highlightedin previousworks[17, 18].

I [ way-1] way-2 [ way-4 [ way-8 )

ROB size 8 16 32 64
L oad/Store queue 4 8 16 32
Bimodal predictor 512 2K 4K 16K
BTB entries 64 256 512 1024
INT simple/complex 0/1 171 2/1 2/2
FP simple/complex 0/1 11 2/1 2/2
MED simple/complex 0/1 1 2 4-(2x2)
memory ports 1 1 2 4-(2x2)
INT log/phregisters 32/40 | 32/48 | 32/64 32/96
FP log/phregisters 32/40 | 32/48 | 32/64 32/96

Table 1. Processor configurations.

[ [ MMX | MDMX | MOM |

MEDIA log/ph registers 32/64 32/52 16/20
ACCUMULATOR log/phreg. - 4/16 2/4
MEDIA rd/wr ports 6/3 6/3 2/1 (8-b)
ACCUMULATOR rd/wr ports - 42 211
Register File Size 05K 0.78K 26K
I Normalized Area Cost [ 1 [ 119 [ 087 |

Table 2. Multimedia register file configura-
tions for a 4-way machine.

4 Performance Evaluation

This section eval uates the performance of our matrix 1SA
with the set of benchmarks described in section 3. The
evaluationwill be decoupled intwo different steps: akernel-
level analysis and a complete program-level analysis.

4.1 Kernd-level analysis

We have selected the most time-consuming kernels
from our applications: i dct (an inverse discrete cosines
transform), noti onl and noti on2 (sum of absolute
differences and sum of quadratic differences agorithms
for the MPEG motion estimation), rgb2ycc (RBG
to YCC color space conversion), conpensati on and
addbl ock (MPEG2 motion compensation algorithms),
| t ppar anet ers (calculation of the parameters of the
GSM long term filter), and finally h2v2upsanpl e (im-
age zoom agorithm). We have simulated between 5 and
10 million graduated instructions for the plain superscalar
version and for each kernel.

Figure 5 shows the speed-up attained by the three multi-
media | SAs evaluated when compared with Alpha code, for
different wide machines. We have considered an idealized
memory system with no bandwidth constraints and a fixed
memory latency of one single cycle (that is, an equivalent
model of a perfect cache).

The results show that MM X and MDMX exhibit perfor-
mance gainsranging from 1.5x to 15x over apure superscalar
architecture, and that MDM X dlightly outperformsMMX for
most of the kernels (up to a 30% of improvement). MOM
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Figure 5. Speed-up of evaluated multimedia ISAs for different issue-rate machines (with respect to

1-way Alpha ISA performance).

clearly outperformsboth MM X and MDM X with additional
performance gains ranging from 1.3x to 4x. The only case
where MOM is not much more effective than MDMX isin
rgb2ycc. The reason is that vectorization happens along
the color space (Red, Green and Blue) dimension, yielding
avector length of only 3.

Asexpected, MOM achieves higher relative performance
for low-issue rates (for example, for i dct , 1-way MOM is
7 times faster than a 1-way Alpha, but 8-way MOM is only
about 4 timesfaster than the8-way Alpha). Thisisduetothe
fact that MOM greatly reduces thefetch pressure by packing
an order of magnitude more operations per instruction than
MMX or MDMX, makingit anideal candidatefor embedded
systems where high issue rates and out-of-order execution
are not even an option. The exception to thisisaddbl ock
where al three | SAs achieve higher relative performance as
we increase the fetch rate of the machine. The reason isthat
the original version of addbl ock uses a memory table to
perform the data saturation (limiting severely the potential
ILP), whereas the studied multimediaextensionsincludethe
saturation as a feature. As aresult, the pure Alpha version
becomes memory-bounded for wider processors.

Furthermore, we have done the same simulations again
but with 50 cycles of memory latency (tryingto approximate
the effects of streaming-like memory references). Results
obtained show that MOM exhibits a high tolerance to in-
creases of the memory latency, which is a very well-known
capability of vector instructions. When increasing the la-
tency from 1 to 50 cycles, MMX/MDMX observe slow-
downs ranging from 4x to 8x and common Alpha code ob-
serves slow-downs ranging from 3x to 9x. In sharp contrast,
MOM slow-downs only range from 2x to 4x.

Conv/MA VC/COL
H | Tos” [ owey || oy | oway |
L1 #ports 2 4 1 2
L1 #banks 4 8 1 2
L1 latency 1lcyc 2cyc 1lcyc 1lcyc
L2 #ports - - 1x2 x4
L2 #banks (1) (1) 2 2
L2 latency 6cyc 6cyc 8/10cyc | 8/10cyc

Table 3. Port configuration of the different
memory models: (Conv) Conventional cache,
(MA) Multi-Address Cache, (VC) Vector cache
and (COL) Collapsing buffer cache

4.2 Complete program-level analysis

Now we address the evaluation of our proposed ISA
implementation with complete programs and with realis-
tic memory systems. For this study, we will focus only on
the evaluation of MM X-likeand MOM, as MDMX exhibits
similar behavior to MM X.

421 CacheHierarchy

We have included in our processor simulator a highly de-
tailed memory hierarchy model, similar to the one found
in the Alpha 21364 [19] where both L1 and L2 cache lev-
els are located on-chip. The L1 cache is a 32 KB, direct
mapped, write-through cache with 32-byte lines. The L2
cache is a 1MB, 2-way associative, write-back cache with
128-byte lines. Both levels of cache have 8 MSHRs and a
8-depth coalescing write buffer with selective flush policy.
We have assumed that the L1 cache is not able to service
unaligned accesses. Therefore, we assume that each mem-
ory port decouples any unaligned access into two aligned
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Figure 6. The different cache models evalu-
ated: (a) Conventional/Multi-Address cache,
(b) the Vector Cache, and (c) The Collapsing
Buffer cache

accesses and then uses special logic to re-construct the de-
sired data. We have modeled a 128MB Direct Rambus main
memory system which containsa DRDRAM controller driv-
ing 8 Rambus chips and leveraging up to 3.2 GB/s with a
128-bit wide, bi-directional 200Mhz main bus. We have not
simulated the instruction cache since our benchmarks have
small instruction working sets.

In[10], we studied the design of cost-effective cache hi-
erarchiesto leverage high-bandwidthfor out-of-order vector
processors. |n the same way as conventional vector instruc-
tions, MOM memory patterns have the potential to allow
a smart exploitation of the spatial locality intrinsic in mul-
timedia codes. We have evaluated three different memory
models for the MOM processor: a multi-address cache, a
vector cache, and a vector cache with a collapsing buffer
(seefigure 6).

A multi-address cache is ssimply a conventional multi-
banked cache where a MOM memory access is decoupled
among all available memory ports. So, if we have two inde-
pendent memory ports, aMOM memory request will reserve
both ports so that thefirst will access the odd vector elements
while the other will access the even vector elements. This
model has the advantage of fully taking benefit from all the
port resources, even if we have only one single memory
request.

The vector cache was proposed in [10] and heavily bor-
rows from the ideasintroduced in [20]. Asit can be seenin
figure 6, the vector cache is targeted at accessing stride-one
vector requests by loading two whole cache lines (one per
interleaved bank) instead of individually loading the vec-
tor elements. Then, an interchange switch, a shifter, and
mask logic correctly align the data (allowing even byte-wise
alignments).

The collapsing buffer [20] is a more complex version of
the vector cache that is able to access several vector ele-
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Figure 7. Speed-up of evaluated multimedia
ISAs for different issue-rate machines

ments al ong two consecutive cache lines, even it they are not
consecutively allocated. Instead of the shift& mask logic,
the collapsing buffer logic groups the requested elements
together.

Notethat all MOM memory accessesbypassL 1 cacheand
go straight to the vector/collapsing buffer cache. We believe
that this approach (a) avoids jeopardizing the L1 cycle time,
(b) effectively decouples the vector working set from the
scalar working set and (c) isnot detrimental to performance
due to the latency tolerance properties of MOM memory
accesses. A coherence-protocol (based on an exclusive-bit
policy plusinclusionbetween L1 and L 2) has been included.
Table 3 shows the port configuration for the different cache
models.

4.2.2 Performanceresults

Figure 7 shows the performance results for the five evalu-
ated benchmarks and for all cache models described. Be-
cause of Amdahl’slaw, the speedups achieved when running
full applicationsare clearly smaller than those presented for
the kernels alone. MMX shows speedups over pure Alpha
code ranging from 1.1X to 3.1X while MOM delivers per-
formance achievements ranging from 1.5X to 4.3x (20% of
performance gain over MMX in average).

While looking at the performance of the different cache
models, we realize that for the 4-way processor, the Multi-



address cache outperforms both the vector and the collapsing
buffer caches. The reason isthat, in sharp contrast with nu-
merical applications, the set of benchmarks under study have
working sets that fit in L1 cache, and, therefore, thereis no
direct benefit from bypassing the vector workload to alarger
level of cache. On the other hand, for the 8-way machine,
we observe that both vector and collapsing buffer caches
achieve better performance than the multi-address cache.
Thisisdueto thefact that for more aggressive architectures,
wetake advantage of the potential spatial locality exploitable
by the vector/collapsing cache which delivers high effective
bandwidth. In sharp contrast, a conventional cache scheme
based on interleaved banks provides poor performance due
to bank collisions and increased complexity of the inter-
connection network. The only exception to this is npeg2
encode where the vector/collapsing caches present modest
performance due to the large values of the strides of most
MOM vector accesses. These large strides cause individual
wordsin a MOM access to lie in far apart cache lines and
neither the even-odd banking scheme of the vector cache nor
the collapsing buffer can capture and compress thisfar-apart
wordsinto a single memory access.

5 Summary

In this paper we have proposed a novel ISA paradigm
based on matrix SIMD instructions in order to leverage a
new level of performance improvement when comparing
with current multimediaextensions. Matrix ISAsare ableto
exploit alevel of DLP not reachable by neither conventional
vector ISAs nor current multimedia | SA extensions.

By fusing the sub-word level parallelism approach to-
gether with the sequential/streaming-like conventional vec-
tor approach, we have developed an ISA able to efficiently
deal with the small matrix structures typically found in sev-
era multimediakernels. A side benefit of our proposed 1SA
isthat it matches very well with having accumulators, which
provides us with both precision and parallelism.

We have eval uated five benchmarks from the Mediabench
suite and we have reported local performance improvements
ranging from 1.3x to 4x relative to MM X and MDMX mul-
timedia extensions. Thisimprovements trandate in up to a
50% of performance gain for complete programs and a 20%
of improvement in average. We have demonstrated that all
these performance gains have been achieved without adding
much extra hardware to aregular out-of-order core, since (a)
our proposed register fileisrelatively small and (b) we have
used the same number of functional unitsasany conventional
multimedia extension implementation.

Furthermore, MOM appears as a suitable alternative for
multimedia embedded systems as exhibits a high tolerance
to memory latency, a very low fetch pressure, and a high

potential to exploit spatial data locality with smart cost-
effective cache devices.
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