943 research outputs found

    A Secure Healthcare 5.0 System Based on Blockchain Technology Entangled with Federated Learning Technique

    Full text link
    In recent years, the global Internet of Medical Things (IoMT) industry has evolved at a tremendous speed. Security and privacy are key concerns on the IoMT, owing to the huge scale and deployment of IoMT networks. Machine learning (ML) and blockchain (BC) technologies have significantly enhanced the capabilities and facilities of healthcare 5.0, spawning a new area known as "Smart Healthcare." By identifying concerns early, a smart healthcare system can help avoid long-term damage. This will enhance the quality of life for patients while reducing their stress and healthcare costs. The IoMT enables a range of functionalities in the field of information technology, one of which is smart and interactive health care. However, combining medical data into a single storage location to train a powerful machine learning model raises concerns about privacy, ownership, and compliance with greater concentration. Federated learning (FL) overcomes the preceding difficulties by utilizing a centralized aggregate server to disseminate a global learning model. Simultaneously, the local participant keeps control of patient information, assuring data confidentiality and security. This article conducts a comprehensive analysis of the findings on blockchain technology entangled with federated learning in healthcare. 5.0. The purpose of this study is to construct a secure health monitoring system in healthcare 5.0 by utilizing a blockchain technology and Intrusion Detection System (IDS) to detect any malicious activity in a healthcare network and enables physicians to monitor patients through medical sensors and take necessary measures periodically by predicting diseases.Comment: 20 pages, 6 tables, 3 figure

    Parkinson's Disease Detection through Vocal Biomarkers and Advanced Machine Learning Algorithms

    Full text link
    Parkinson's disease (PD) is a prevalent neurodegenerative disorder known for its impact on motor neurons, causing symptoms like tremors, stiffness, and gait difficulties. This study explores the potential of vocal feature alterations in PD patients as a means of early disease prediction. This research aims to predict the onset of Parkinson's disease. Utilizing a variety of advanced machine-learning algorithms, including XGBoost, LightGBM, Bagging, AdaBoost, and Support Vector Machine, among others, the study evaluates the predictive performance of these models using metrics such as accuracy, area under the curve (AUC), sensitivity, and specificity. The findings of this comprehensive analysis highlight LightGBM as the most effective model, achieving an impressive accuracy rate of 96% alongside a matching AUC of 96%. LightGBM exhibited a remarkable sensitivity of 100% and specificity of 94.43%, surpassing other machine learning algorithms in accuracy and AUC scores. Given the complexities of Parkinson's disease and its challenges in early diagnosis, this study underscores the significance of leveraging vocal biomarkers coupled with advanced machine-learning techniques for precise and timely PD detection

    Enhancing Feature Selection Accuracy using Butterfly and Lion Optimization Algorithm with Specific Reference to Psychiatric Disorder Detection & Diagnosis

    Get PDF
    As the complexity of medical computing increases the use of intelligent methods based on methods of soft computing also increases. During current decade this intelligent computing involves various meta-heuristic algorithms for Optimization. Many new meta-heuristic algorithms are proposed in last few years. The dimension of this data has also wide. Feature selection processes play an important role in these types of wide data. In intelligent computation feature selection is important phase after the pre-processing phase. The success of any model depends on how better optimization algorithms is used. Sometime single optimization algorithms are not enough in order to produce better result. In this paper meta-heuristic algorithm like butterfly optimization algorithm and enhanced lion optimization algorithm are used to show better accuracy in feature selection. The study focuses on nature based integrated meta-heuristic algorithm like Butterfly Optimization and lion-based optimization. Also, in this paper various other Optimization algorithms are analyzed. The study shows how integrated methods are useful to enhance the accuracy of any computing model to solve Complex problems. Here experimental result has shown by proposing and hybrid model for two major psychiatric disorders one is known as autism spectrum and second one is Parkinson's disease

    FSCSCOOT: Functional Calculus Competitive Swarm Coot Optimization-based CNN transfer learning for Parkinson’s disease classification

    Get PDF
    Parkinson's disease (PD) is a neurological disorder of the central nervous system that causes difficulty in movement, often including tremors and rigidity. Early detection of PD can prevent symptoms up to a certain age and increase life expectancy. For this purpose, we have used brain images from magnetic resonance imaging (MRI) technique. Generally dementia can be either classified as Alzheimer’s or Parkinson’s or sometimes may be due to tumor in brain. Therefore, effectual methods such as Competitive Swarm Coot Optimization_ Convolutional Neural Network (CSCOOT_CNN) with transfer learning and Fractional CSCOOT_ deep neuro-fuzzy network (FCSCOOT_DNFN are newly introduced for classification of brain diseases. At first, input images are acquired from particular datasets, and then input images are given to the pre-processing stage.  In a pre-processing module, median filter is utilized for the elimination of noises. Afterward, pre-processed image is then subjected to feature extraction in which CNN features are extracted. In the level of classification, the images are classified into Parkinson by DNFN that is trained utilizing the introduced FCSCOOT algorithm. Furthermore, the FCSCOOT algorithm is newly designed by combination of Fractional Calculus (FC) with CSCOOT algorithm

    An Intelligent Hybrid Optimization with Deep Learning model-based Schizophrenia Identification from Structural MRI

    Get PDF
    One of the fatal diseases that claim women while they are pregnant or nursing is schizophrenia. Despite several developments and symptoms, it can be challenging to discern between benign and malignant conditions. The main and most popular imaging method to predict Schizophrenia is MR Images. Furthermore, a few earlier models had a definite accuracy when diagnosing the condition. Stable MRI criteria must also be implemented immediately. Compared to other imaging technologies, the MRI imaging method is the simplest, safest, and most common for predicting Schizophrenia. The following factors are mostly involved in the subprocess for the initial MRI image. Before calculating the length between the sample point and the cluster center, the initial cluster center of the sample is identified. Classification is done according to how far the sample point is from the cluster center. The picture is then generated once the new cluster center has been derived using the classification history and verified to match the cluster convergence condition. A grey wolf optimization-based convolutional neural network approach is offered to get beyond the limitations and find schizophrenia, whether its hazardous or not. Many MRI images or datasets are analyzed in a short time, and the results show a more accurate or higher rate of schizophrenia recognition

    Improving Accuracy of Integrated Neuro-Fuzzy Classifier with FCM based Clustering for Diagnosis of Psychiatric Disorder

    Get PDF
    Parkinson’s disease (PD) is a progressive neurodegenerative disorder. Autism spectrum disorder (ASD) is a neurodevelopment disorder. Clinical decision-making process is complex. Due to complex nature of disease sign and its symptoms clinical decision making may lead to misclassification. To deal with such complex medical problems methods or approaches of soft computing play an important role. This paper will focus on presenting an integrated Neuro-fuzzy model. This integrated model has the learning strength of neural network and knowledge representation ability of fuzzy logic. Modified Adaptive Neuro –Fuzzy inference system (M-ANFIS) is used here for classification and predication. Here Fuzzy C-mean (FCM) Clustering is used first to make classes of data before presenting in to ANFIS. This FCM based class will reduce the classifier computational overhead. Precision error and recall, F-measure and accuracy matrices are used to compare the experimental results with other classic methods

    KOMPLEKSOWE METODY UCZENIA MASZYNOWEGO I UCZENIA GŁĘBOKIEGO DO KLASYFIKACJI CHOROBY PARKINSONA I OCENY JEJ NASILENIA

    Get PDF
    In this study, we aimed to adopt a comprehensive approach to categorize and assess the severity of Parkinson's disease by leveraging techniques from both machine learning and deep learning. We thoroughly evaluated the effectiveness of various models, including XGBoost, Random Forest, Multi-Layer Perceptron (MLP), and Recurrent Neural Network (RNN), utilizing classification metrics. We generated detailed reports to facilitate a comprehensive comparative analysis of these models. Notably, XGBoost demonstrated the highest precision at 97.4%. Additionally, we took a step further by developing a Gated Recurrent Unit (GRU) model with the purpose of combining predictions from alternative models. We assessed its ability to predict the severity of the ailment. To quantify the precision levels of the models in disease classification, we calculated severity percentages. Furthermore, we created a Receiver Operating Characteristic (ROC) curve for the GRU model, simplifying the evaluation of its capability to distinguish among various severity levels. This comprehensive approach contributes to a more accurate and detailed understanding of Parkinson's disease severity assessment.W tym badaniu naszym celem było przyjęcie kompleksowego podejścia do kategoryzacji i oceny ciężkości choroby Parkinsona poprzez wykorzystanie technik zarówno uczenia maszynowego, jak i głębokiego uczenia. Dokładnie oceniliśmy skuteczność różnych modeli, w tym XGBoost, Random Forest, Multi-Layer Perceptron (MLP) i Recurrent Neural Network (RNN), wykorzystując wskaźniki klasyfikacji. Wygenerowaliśmy szczegółowe raporty, aby ułatwić kompleksową analizę porównawczą tych modeli. Warto zauważyć, że XGBoost wykazał najwyższą precyzję na poziomie 97,4%. Ponadto poszliśmy o krok dalej, opracowując model Gated Recurrent Unit (GRU) w celu połączenia przewidywań z alternatywnych modeli. Oceniliśmy jego zdolność do przewidywania nasilenia dolegliwości. Aby określić ilościowo poziomy dokładności modeli w klasyfikacji chorób, obliczyliśmy wartości procentowe nasilenia. Ponadto stworzyliśmy krzywą charakterystyki operacyjnej odbiornika (ROC) dla modelu GRU, upraszczając ocenę jego zdolności do rozróżniania różnych poziomów nasilenia. To kompleksowe podejście przyczynia się do dokładniejszego i bardziej szczegółowego zrozumienia oceny ciężkości choroby Parkinsona

    Efficient diagnosis system for Parkinson's disease using deep belief network

    Full text link
    In this paper, a deep belief network (DBN) has been adopted as an efficient technique to diagnosis the Parkinson's disease (PD). This diagnosis has been established based on the speech signal of the patients. Through the distinguishing and analyzing of the speech signal, the DBN has the ability to diagnose Parkinson's disease. To realize the diagnosis of Parkinson's disease by using DBN, the proposed system has been trained and tested with voices from a number of patients and healthy people. A feature extraction process has been prepared to be inputted to the deep belief network (DBN) which is used to create a template matching of the voices. In this paper, DBN is used to classify the Parkinson's disease which composes two stacked Restricted Boltzmann Machines (RBMs) and one output layer. Two stages of learning need to be applied to optimize the networks' parameters. The first stage is unsupervised learning which uses RBMs to overcome the problem that can cause because of the random value of the initial weights. Secondly, backpropagation algorithm is used as a supervised learning for the fine tuning. To illustrate the effectiveness of the proposed system, the experimental results are compared with different approaches and related works. The overall testing accuracy of the proposed system is 94% which is better than all of the compared methods. In short, the DBN is an effective method to diagnosis Parkinson's disease by using the speech signal

    Diagnosis of Parkinson's Disease Based on Voice Signals Using SHAP and Hard Voting Ensemble Method

    Full text link
    Background and Objective: Parkinson's disease (PD) is the second most common progressive neurological condition after Alzheimer's, characterized by motor and non-motor symptoms. Developing a method to diagnose the condition in its beginning phases is essential because of the significant number of individuals afflicting with this illness. PD is typically identified using motor symptoms or other Neuroimaging techniques, such as DATSCAN and SPECT. These methods are expensive, time-consuming, and unavailable to the general public; furthermore, they are not very accurate. These constraints encouraged us to develop a novel technique using SHAP and Hard Voting Ensemble Method based on voice signals. Methods: In this article, we used Pearson Correlation Coefficients to understand the relationship between input features and the output, and finally, input features with high correlation were selected. These selected features were classified by the Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machine (LightGBM), Gradient Boosting, and Bagging. Moreover, the Hard Voting Ensemble Method was determined based on the performance of the four classifiers. At the final stage, we proposed Shapley Additive exPlanations (SHAP) to rank the features according to their significance in diagnosing Parkinson's disease. Results and Conclusion: The proposed method achieved 85.42% accuracy, 84.94% F1-score, 86.77% precision, 87.62% specificity, and 83.20% sensitivity. The study's findings demonstrated that the proposed method outperformed state-of-the-art approaches and can assist physicians in diagnosing Parkinson's cases
    corecore