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Abstract. In this study, we aimed to adopt a comprehensive approach to categorize and assess the severity of Parkinson's disease by leveraging techniques 

from both machine learning and deep learning. We thoroughly evaluated the effectiveness of various models, including XGBoost, Random Forest, 
Multi-Layer Perceptron (MLP), and Recurrent Neural Network (RNN), utilizing classification metrics. We generated detailed reports to facilitate 

a comprehensive comparative analysis of these models. Notably, XGBoost demonstrated the highest precision at 97.4%. Additionally, we took a step 

further by developing a Gated Recurrent Unit (GRU) model with the purpose of combining predictions from alternative models. We assessed its ability 
to predict the severity of the ailment. To quantify the precision levels of the models in disease classification, we calculated severity percentages. 

Furthermore, we created a Receiver Operating Characteristic (ROC) curve for the GRU model, simplifying the evaluation of its capability to distinguish 

among various severity levels. This comprehensive approach contributes to a more accurate and detailed understanding of Parkinson's disease severity 
assessment. 
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KOMPLEKSOWE METODY UCZENIA MASZYNOWEGO I UCZENIA GŁĘBOKIEGO 

DO KLASYFIKACJI CHOROBY PARKINSONA I OCENY JEJ NASILENIA  

Streszczenie. W tym badaniu naszym celem było przyjęcie kompleksowego podejścia do kategoryzacji i oceny ciężkości choroby Parkinsona poprzez 

wykorzystanie technik zarówno uczenia maszynowego, jak i głębokiego uczenia. Dokładnie oceniliśmy skuteczność różnych modeli, w tym XGBoost, 

Random Forest, Multi-Layer Perceptron (MLP) i Recurrent Neural Network (RNN), wykorzystując wskaźniki klasyfikacji. Wygenerowaliśmy szczegółowe 
raporty, aby ułatwić kompleksową analizę porównawczą tych modeli. Warto zauważyć, że XGBoost wykazał najwyższą precyzję na poziomie 97,4%. 

Ponadto poszliśmy o krok dalej, opracowując model Gated Recurrent Unit (GRU) w celu połączenia przewidywań z alternatywnych modeli. Oceniliśmy 

jego zdolność do przewidywania nasilenia dolegliwości. Aby określić ilościowo poziomy dokładności modeli w klasyfikacji chorób, obliczyliśmy wartości 
procentowe nasilenia. Ponadto stworzyliśmy krzywą charakterystyki operacyjnej odbiornika (ROC) dla modelu GRU, upraszczając ocenę jego zdolności 

do rozróżniania różnych poziomów nasilenia. To kompleksowe podejście przyczynia się do dokładniejszego i bardziej szczegółowego zrozumienia oceny 

ciężkości choroby Parkinsona. 

Słowa kluczowe: choroba Parkinsona, ocena ciężkości, uczenie maszynowe, XGBoost, Gated Recurrent Unit (GRU), analiza porównawcza 

Introduction 

Parkinson's disease (PD) is a progressive neurological 

condition that deteriorates as it progresses, primarily because 

of the untimely demise of dopaminergic neurons in the substantia 

nigra area [17]. Individuals are affected in their fundamental 

physiological systems, including respiration, balance, movement, 

and heart function [22]. In the early stages, their ability to speak 

fluently is hindered. Early detection of PD leads to extended 

patient lifespans, and accurate diagnosis requires robust health 

informatics tools. These solutions are created to assist healthcare 

professionals [7, 13] in assessing PD severity by utilizing 

diverse sensors. Symptoms of PD are linked to disturbances 

in dopaminergic pathways, where there is a deficiency of dopa-

minergic neurons, it results in a combination of motor and non-

motor symptoms. Motor manifestations consist of trembling, 

rigidity, reduced mobility, and gait difficulties. On the other hand, 

non-motor symptoms encompass mood disorders, hallucinations, 

and incidents, urinary and reproductive issues, as well as sleep 

disturbances [5]. These symptoms emerge when approximately 

60% of dopaminergic neurons remain, and they correlate with 

the effects of aging, ultimately diminishing quality of life [3]. 

This research supports healthcare professionals in assessing 

the severity of Parkinson's disease by employing various sensors. 

The approach involves utilizing diverse speech signal processing 

methods to capture vital attributes associated with Parkinson's 

disease. Subsequently, these attributes undergo analysis through 

machine learning algorithms, providing both dependable PD 

detection and an evaluation of disease severity. This information 

can facilitate early intervention and treatment strategies. 

Recent years have witnessed a surge in the utilization of deep 

learning methods in medical research, showcasing their capacity 

to unravel intricate patterns from intricate data. This advancement 

enhances disease diagnosis accuracy and dependability. 

In this context, our research investigates the effectiveness of deep 

learning models. This entails utilizing contemporary neural 

network structures like MLP and RNN, in combination 

with established machine learning methods such as XGBoost 

and Random Forest, to improve the classification and severity 

evaluation of Parkinson's disease (PD). 

Our research aims to bridge the gap between clinical expertise 

and computational prowess, presenting an encompassing 

framework. This framework not only precisely categorizes PD 

but also quantifies its severity. We tap into a well-curated dataset 

containing an array of patient features, executing a multifaceted 

strategy encompassing data pre-processing, exploratory analysis, 

model selection, regularization methods, and dimensionality 

reduction. By evaluating diverse models based on crucial metrics 

like precision, recall, and F1-score, we seek to comprehend 

the strengths and limitations of each approach concerning 

PD classification. Additionally, our study incorporates a GRU 

model to compute severity assessment percentages, enhancing 

the comprehensiveness of our analysis. 

In this section, we will explore ongoing efforts in the classi-

fication of Parkinson's disease (PD). Using machine learning 

techniques and explore recent advancements in deep learning 

methods for the same purpose. Additionally, we will investigate 

the utilization of speech recordings not only for PD classification 

but also for evaluating disease severity. This entails using 

advanced computational models to categorize individuals based 

on PD presence and quantify the severity, offering crucial insights 

for personalized medical approaches. 
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The authors in [10] they established an advanced deep 

learning framework created to forecast Parkinson's disease using 

a dataset containing 42 voice recordings that have been subjected 

to pre-processing. Their study showcased improved accuracy 

compared to previous results. Nevertheless, it's noteworthy that 

the 81% accuracy achieved in 2018 is still regarded as relatively 

modest Within the scope of predicting Parkinson's disease. 

The researchers Attained a 75% accuracy level and an 80% F1 

score. In a research conducted by [20] they employed a 13-layer 

deep Convolutional Neural Network (CNN) model to detect 

Parkinson's disease from voice signals. Their experimentation 

involved a dataset comprising 20 patients. Despite achieving 

an 88% accuracy rate, their model made 361 incorrect predictions 

during the process. 

In [21], introduced a novel classification approach 

for distinguishing between individuals with Parkinson's disease 

(PD) and those without, Utilizing dysphonia as a key factor, 

the researchers gathered data from 31 individuals, including 

23 with PD and 8 healthy participants, who produced 195 

sustained vowel sounds. Their method involved three crucial 

stages: feature computation, data preprocessing, feature selection, 

and the utilization of a linear kernel for classification. 

Impressively, the model achieved an accuracy of 91.4%. 

In study [2], a novel deep learning framework, based 

on LSTM, is introduced to assess Parkinson's disease severity 

through gait pattern analysis. LSTM is utilized to capture temporal 

patterns in the data, eliminating the necessity for manual feature 

engineering and addressing the challenge of vanishing gradients. 

Furthermore, performance is enhanced through the incorporation 

of dropout, L2 regularization, and the application of the Adam 

optimizer. The results demonstrate outstanding performance with 

98.6% accuracy in binary classification and 96.6% in multi-class 

classification, surpassing similar methods by 3.4%. 

In [19] employed deep learning (DL) algorithms to detect 

Parkinson's disease (PD) and compared optimized and non-

optimized methods. They found that K-fold cross-validation 

improved the accuracy of their approach. Another research [24] 

used artificial neural networks for PD detection. 

In their study [23], researchers use machine learning 

algorithms on speech data to detect Parkinson's Disorder (PD) 

at an early stage, aiming to enable timely treatment and minimize 

its impact. They employ various models, including, Random 

Forest, Decision Tree , Naive Bayes, XGBoost, K Nearest 

Neighbor, and Support Vector Machine, along with Principal 

Component Analysis to reduce features. Their ensemble 

of the best-performing models achieves a 91% accuracy, 

improving disease recognition. 

Our study investigates the application of advanced machine 

learning techniques, including XGBoost, Random Forest, 

MLP, and RNN, to enhance the classification and assessment 

of Parkinson's disease severity. Our dataset is meticulously 

curated, with features extracted from patient data. Our metho-

dology encompasses a comprehensive data pre-processing phase 

that includes tasks such as data loading, managing missing values, 

and data normalization. Subsequently, we conduct exploratory 

data analysis, utilizing visual aids like histograms and box plots 

to gain insights into feature distribution and variability. These 

models undergo training and evaluation using performance 

metrics such as precision, recall, and F1-score. We enhance 

the effectiveness and ability to generalize of neural network 

models by integrating regularization methods such as L1 and L2. 

Additionally, we utilize Principal Component Analysis (PCA) 

to simplify the intricacies of the dataset. The incorporation 

of GRU models enhances both the classification and severity 

assessment of PD. The integration of advanced ML methods 

provides insights into disease characterization. Notably, 

the analysis of severity percentages demonstrates the models' 

proficiency in evaluating severity. Remarkably, Random Forest 

achieves a severity analysis of 89.74%, with XGBoost closely

following at 87.18%. These percentages bear clinical significance 

for well-informed medical decisions, emphasizing the importance 

of these models in Parkinson's disease analysis. 

The results showcase promising achievements across 

all models, with XGBoost exhibiting an impressive precision 

of 97.4%. Random Forest, MLP, and RNN also demonstrate 

competitive precision rates. However, a more comprehensive 

analysis uncovers potential intricacies in accurately identifying 

negative instances. These insights underscore the significance 

of refining models to improve the detection of PD absence. 

Each model's performance is assessed using classification metrics, 

and detailed reports are generated to support in-depth 

comparisons. 

The organization of this paper revolves around five distinct 

sections, ensuring a cohesive presentation of the content. Section 2 

outlines the methodology employed in this study. Moving 

on to Section 3, we showcase the obtained results and engage 

in pertinent discussions. The conclusive insights drawn from 

this research are encapsulated in Section 4. 

1. Methodology 

1.1. Dataset 

In this investigation, we make use of the dataset originally 

formulated by [15] with the principal objective of diagnosing 

PD by analyzing speech signals obtained from patients. 

The research encompasses voice samples collected from a total 

of 31 participants, among whom 23 exhibit Parkinson's disease 

while 8 are considered to be in a healthy condition. Within 

this dataset, there are 195 voice recordings, each characterized 

by 23 distinct attributes. The process of determining whether 

a particular voice recording pertains to an individual afflicted 

by Parkinson's disease or an individual in good health involves 

an assessment of 22 specific voice traits across the 195 biomedical 

voice recordings. This differentiation relies on the "status" 

column, where a value of 1 indicates the presence of Parkinson's 

disease and 0 indicates a healthy state. Further details concerning 

these 22 acoustic attributes can be found in table 1. 

Fig. 1 depicts a histogram representing the acoustic properties 

of the dataset under analysis. Each chart shows the frequency 

of occurrences (on the y-axis) for different values (on the x-axis) 

associated with a particular attribute. 

Table 1. Dataset description 

Voice measure Description  

MDVP; Fo (Hz) Average Vocal Fundamental Frequency 

MDVP; Fhi (Hz Maximum Vocal Fundamental Frequency 

MDVP; Flo (Hz) Minimum Vocal Fundamental Frequency 

MDVP; Jitter (%) Fundamental frequency perturbation (%) 

MDVP; Jitter (Abs) Absolute jitter in microseconds 

MDVP; RAP Relative Amplitude Perturbation 

MDVP; PPQ Five-point Period Perturbation Quotient 

Jitter; DDP Difference of differences between Cycles and 

period 

MDVP; Shimmer Shimmer Local amplitude perturbation 

MDVP; Shimmer (dB) Local amplitude perturbation (decibels) 

Shimmer; APQ3 3-point Amplitude Perturbation Quotient 

MDVP; APQ 11-point Amplitude Perturbation Quotient 

Shimmer; APQ5 5-point Amplitude Perturbation Quotient 

Shimmer; DDA Average absolute difference between the 

amplitudes of consecutive periods 

HNR, NHR Harmonics-to-Noise Ratio, Noise-to-

Harmonics Ratio 

Status Healthy (0) and Parkinson’s disease (1) 

RPDE Recurrence Period Density Entropy 

DFA Detrended fluctuation analysis 

spread1, spread2, PPE The fundamental frequency variation, pitch 

period entropy 
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Fig. 1. Acoustic features histogram illustration 

1.2. Feature extraction and advanced modeling 

techniques 

This data analysis workflow commences by addressing 

missing data within the dataset. This process involves the removal 

of rows containing missing values and ensuring data conforms 

to the correct format by converting columns to numerical types 

while eliminating irrelevant columns. Following this, the dataset 

is partitioned into features (X) and the target variable (y). 

Subsequently, it is further divided into training and testing subsets. 

The data undergoes standardization using the "StandardScaler", 

and dimensionality reduction is executed through Principal 

Component Analysis (PCA). 

Algorithm: Comprehensive Framework for PD Detection and Severity Assessment 

Input: PD Dataset 

Output: Disease Classification (PD or Healthy) and Severity Percentage 

 

Commencement: 

  1. Load the PD dataset from a CSV file using Pandas. 

  2. Retrieve pertinent characteristics and transform them into an appropriate data 

format. 

  3. Preprocess the data: 

     - Eliminate missing values through data cleansing. 

     - Scale or standardize the features to the same range. 

  4. Split the dataset into training and testing subsets. 

  5. Perform PCA for dimensionality reduction: 

     - Apply PCA to reduce feature dimensionality. 

Training Phase: 

  6. Train a deep learning model: 

     - Create a neural network with specified architecture. 

     - Choose optimizer, activation functions, and regularization techniques. 

     - Train the model on the training data using fit (). 

 

Testing Phase: 

  7. Evaluate model performance on unseen test data: 

     - Use the trained model to predict disease classification. 

     - Compute metrics such as accuracy, precision, recall, and F1-score. 

     - Create visual representations of the confusion matrix and ROC curve. 

  8. Calculate disease severity percentage using the trained model: 

     - Utilize the trained model (GRU) to predict severity. 

     - Apply the model to XGBoost, RandomForest, MLP, and RNN classifiers. 

     - Calculate the percentage of severity based on different classifiers' predictions. 

 

Conclusion. 

   

 

When exploring models, a variety of neural network 

architectures are considered, commencing with a Sequential model 

that incorporates "Dense" and "Dropout" layers. This modeling 

approach utilizes the "Adam" optimizer and employs "sigmoid" 

activation for binary classification. Additionally, advanced 

ensemble techniques such as Random Forest are explored. 

Furthermore, weight initialization in neural networks is fine-

tuned, and advanced regularization methods, including L1 and L2 

regularization, are applied to mitigate overfitting. 

This comprehensive approach covers data pre-processing, 

feature extraction, model experimentation, and advanced 

techniques to ensure the development of robust and high-

performing machine learning models. 

The algorithm presents a thorough methodology crafted 

for the identification and evaluation of Parkinson's disease using 

voice signals. It commences by taking a Parkinson's disease 

dataset as input and systematically progresses through several 

stages. Initially, it divides the data, conducts sampling for training 

purposes, and then proceeds to train the model. During the training 

phase, a deep learning model is developed. Ultimately, 

the algorithm concludes by meticulously assessing the model's 

performance on unseen test data, providing valuable insights into 

its efficacy and suitability. 

1.3. Data division 

A traditional technique for splitting data entails a random 

division into two separate segments: one designated for training 

and the other for testing. The training subset is utilized to educate 

the model, while the test subset is employed to gauge 

its effectiveness. Typically, 80% of the data is assigned 

for training, leaving the remaining 20% for assessment. 

This methodology aligns well with your dataset. 

1.4. Algorithms 

XGBoost 
XGBoost uses a convex loss function to quantify 

the difference between predicted and desired outcomes. 

This, combined with a penalty element to manage model 

complexity, seeks to minimize a regulated objective function 

involving L1 and L2 regularization. These functions essentially 

relate to regression trees. The iterative training process involves 
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integrating new trees that forecast residuals from prior trees. These 

additions are merged with existing trees to produce the final 

prediction. The term "gradient boosting" stems from employing 

gradient descent to minimize loss while incorporating new 

models [14]. Fig. 2 [11] shows the diagrammatic representation 

of XGBoost Algorithm. 

 

Fig. 2. Diagrammatic representation of XGBoost Algorithm  

Random forest 
A highly popular supervised machine learning algorithm 

adept at handling regression and classification tasks. It's based 

on ensemble learning, merging multiple classifiers to address 

complex challenges and bolster model performance. The "Random 

Forest" method employs multiple decision trees on diverse dataset 

subsets, combining their outcomes to boost dataset accuracy. 

Unlike relying on a single tree, it considers predictions from 

each tree to make its own based on majority consensus. 

Incorporating more trees heightens accuracy while guarding 

against overfitting [12]. 

MLP 
The Multi-layer Perceptron, often referred to as MLP, 

represents a neural network architecture featuring densely 

connected layers that can adjust input dimensions to match 

desired output dimensions. It encompasses multiple layers 

of interconnected neurons, where the output of one neuron can 

serve as the input for another. An MLP typically comprises 

an input layer with one neuron for each input, an output layer with 

one neuron for each output, and it can include any number 

of hidden layers with varying node counts [6, 9]. In a standard 

MLP diagram, inputs are fed into the input layer, processed 

through the hidden layers, and ultimately yield outputs. All nodes 

shown in Fig. 3 within the MLP employ a sigmoid activation 

function to convert input values into a range spanning from 

0 to 1 [4]. The sigmoid formula for this transformation 

is as follows: α(x) = 1 / (1 + exp(-x)).  

 

Fig. 3. A schematic diagram of a Multi-Layer Perceptron (MLP)  

RNN 
The network layers within an RNN establish cycles, which 

essentially involve utilizing the output of one layer as input 

for the next layer. Recurrent neural networks are commonly 

designed for tasks such as image description, automated 

translation, or processing natural language, as they assist 

in comprehending temporal or sequential data. RNNs 

find applications in tasks like automatic sleep apnea detection 

from nighttime ECG data [18] 16 and in the automated processing 

of speech [8]. 

 

Fig. 4. The architecture of a recurrent network 

2. Performance metrics 

Performance metrics, as discussed [1], serve as essential tools 

for evaluating the effectiveness and precision of diverse models. 

These models rely on metrics such as accuracy, precision, recall, 

and the F1 score to make predictions based on provided data. 

In the assessment of these metrics, we consider four key 

components [16]: 

 True Negatives (TN): in this context, we focus on correctly 

identifying negative cases. 

 True Positives (TP): these represent instances where positive 

cases are correctly identified. 

 False Positives (FP): conversely, false positives occur when 

the model incorrectly predicts a positive result for cases that 

are truly negative. 

 False Negatives (FN): these arise when the model incorrectly 

predicts a negative outcome for cases that are actually 

positive. 

 

Accuracy: 

 Accuracy = (TP+TN) / (TP+TN+FP+FN) 

Precision:  

 Precision = TP / (TP+FP) 

Recall: 

 Recall = TP / (TP+FN) 

F1 score:  

 F1Score = (2×precision×recall) / (precision + recall) 

Specificity:  

 Specificity = TN / (TN+FP) 

3. Results and discussion 

3.1. Comparative analysis of machine learning 

models for classification performance 

The role of performance comparison among models 

is to provide an objective and quantitative evaluation of their 

ability to minimize the classification task. Precision, measured 

individually for each model, helps quantify the accuracy 

of their positive predictions. In this specific case, we observe 

that XGBoost displays the highest precision, suggesting 

its capacity to minimize false positives. In comparison, 

the Random Forest exhibits slightly lower precision, indicating 

its ability to predict certain positive instances with slight 

uncertainty. MLP and RNN demonstrate similar precision 

performance, implying their capacity to maintain a good balance 

between true positives and false positives. This comparison sheds 

light on the respective strengths and weaknesses of the models, 

guiding the selection of the one that aligns best with the task's 

objectives and constraints. 

The comparative analysis of machine learning model 

performances, as illustrated in table 2 for XGBoost, reveals 

significant differences. XGBoost stands out with the highest 

overall precision (0.974), showcasing its effectiveness in making 

accurate positive predictions. However, it is noteworthy that this 

high precision is not consistently maintained for the minority 

class, as highlighted in the table. While XGBoost excels in overall 

accuracy (97%), addressing concerns about its performance 

on the minority class could further enhance its effectiveness 

in diverse scenarios. 
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Table 2. Classification Report for XGBoost Model Performance 

 precision recall F1-score support 

0 1.00 0.86 0.92 7 

1 0.97 1.00 0.98 32 

accuracy   0.97 39 

macro avg 0.98 0.93 0.95 39 

weighted avg 0.98 0.97 0.97 39 

Table 3. Classification Report for Random Forest Model Performance 

 precision recall F1-score support 

0 0.80 0.57 0.67 7 

1 0.91 0.97 0.94 32 

accuracy   0.90 39 

macro avg 0.86 0.77 0.80 39 

weighted avg 0.89 0.90 0.89 39 

Table 4. Classification Report for MLP Model Performance 

 precision recall F1-score support 

0 1.00 0.57 0.73 7 

1 0.97 1.00 0.96 32 

accuracy   0.92 39 

macro avg 0.96 0.79 0.84 39 

weighted avg 0.93 0.92 0.91 39 

Table 5. Classification Report for RNN Model Performance 

 precision recall F1-score support 

0 0.83 0.71 0.77 7 

1 0.94 0.97 0.95 32 

accuracy   0.92 39 

macro avg 0.89 0.84 0.86 39 

weighted avg 0.92 0.92 0.92 39 

 

Turning to table 3, the Random Forest model exhibits slightly 

lower precision (0.897), indicating some challenges in maintaining 

precision, particularly for the minority class. This suggests 

that although Random Forest achieves an accuracy of 90%, further 

optimization may be beneficial for improving precision across 

both classes. 

Meanwhile, as evident in tables 4 and 5, MLP and RNN 

demonstrate similar performances (0.923), with MLP showcasing 

a better balance between precision and recall. This balance 

is particularly crucial in scenarios where equal importance 

is placed on identifying both positive and negative instances. 

These findings emphasize the versatility of MLP in achieving 

a harmonious trade-off between precision and recall. 

These insights underscore the need for a nuanced evaluation 

when determining the best-performing model. While XGBoost 

may excel in certain aspects, considering the broader context 

of precision, recall, and class-specific performance becomes 

imperative for making informed decisions. Additionally, exploring 

model-specific strengths and weaknesses, as outlined in the tables, 

allows for a more comprehensive understanding of how each 

model can be fine-tuned to achieve the best possible outcomes 

in diverse real-world applications. 

In Fig. 5, the confusion matrices for different models offer 

a detailed look into the performance of the classification models. 

XGBoost exhibited a robust predictive ability, with only 

one misclassification out of 32 instances, showcasing 

its proficiency in accurately distinguishing between cases 

categorized as healthy (0) and unhealthy (1). The confusion 

matrices for MLP, RNN, and Random Forest models also 

displayed competitive outcomes, accurately predicting 

the majority of instances. However, a notable pattern emerged 

as these models encountered challenges in preventing 

false positives for the healthy class (0), as evident from 

the misclassifications. 

These matrices provide a comprehensive understanding 

of the strengths and limitations of each model, streamlining 

their evaluation and selection for the classification task at hand, 

encompassing both healthy and unhealthy categories. By visually 

illustrating the actual and predicted class labels, the confusion 

matrices offer insights into the models' competence in correctly 

identifying instances from both classes. This information is crucial 

for informed decision-making about the appropriateness 

of each model for the classification task, aiding in the selection 

of the most suitable approach for the precise categorization 

of both healthy and unhealthy cases. The nuanced insights gained 

from the confusion matrices contribute to a more thorough 

assessment of each model's performance and guide the optimi-

zation process for enhancing their overall effectiveness 

in real-world applications. 

  

Fig. 5. Confusion Matrices for Different Models 

3.2. Comparative Analysis of Machine Learning 

Models Using GRU for Disease Severity 

The severity analysis percentages provide valuable 

insights into how effectively each machine learning model 

assesses the severity of the disease. Among the models examined, 

the XGBoost model achieved a severity analysis percentage 

of 87.18%, indicating its ability to accurately distinguish between 

severe and non-severe cases. The Random Forest model showed 

slightly better performance, with a severity analysis percentage 

of 89.74%. This suggests that the Random Forest model 

demonstrated a higher capability in correctly assessing the severity 

levels. 

 

Fig. 6. Severity Distribution for Each Model 

Additionally, in Fig. 6, the MLP and RNN models both 

exhibited a severity analysis percentage of 87.18%, aligning 

closely with XGBoost. This demonstrates that these models are 

consistent in their ability to analyze the severity levels, although 

they may face certain challenges, possibly in handling particular 

instances or class imbalances. 

Regarding the GRU model, the provided code lacks its 

outcomes and severity analysis percentage. To comprehensively 

discuss its effectiveness, having the actual percentage calculated 

similarly to other models is crucial. Without this essential 

information, evaluating the GRU model's performance relative 

to others is challenging. 

In summary, severity analysis percentages provide insight into 

each model's ability to evaluate disease severity. Notably, 

the Random Forest model stands out with the highest percentage. 

XGBoost, MLP, and RNN models consistently demonstrate 

their capabilities. To thoroughly evaluate the GRU model's 

efficiency, having its severity analysis percentage is essential 

for a comprehensive comparison. 
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Fig. 7. Receiver Operating Characteristic (ROC) Curve for GRU Model 

In Fig. 7, the achieved AUC of 0.86 for the GRU model 

demonstrates its effective performance in binary classification 

tasks. This robust performance signifies the model's reliability 

in distinguishing between positive and negative class samples, 

particularly in fields like healthcare, finance, and natural language 

processing. However, it's crucial to recognize that this perfor-

mance should not be viewed in isolation. Future research 

endeavors should focus on enhancing model robustness, 

investigating the impact of class imbalances, and optimizing 

hyperparameters to maximize its utility in specific applications. 

In essence, this study contributes to advancing our understanding 

of GRU models in binary classification and paves the way 

for promising developments across various scientific and techno-

logical domains. 

4. Conclusion 

Our study harnessed advanced machine learning and deep 

learning techniques to classify Parkinson's disease and gauge 

its severity. Approaches like XGBoost, Random Forest, MLP, 

and RNN boosted disease categorization accuracy. Our work 

involved curated datasets, thorough preprocessing, and explo-

ratory analysis to reveal crucial feature insights. Remarkably, 

our models achieved high precision, particularly XGBoost 

at 97.4%. However, challenges in identifying negative cases 

highlighted the need for model refinement. Furthermore, 

we introduced a GRU model for severity prediction, expanding 

our research horizon. By merging machine and deep learning, 

we contribute to disease diagnosis and prognosis advancement, 

facilitating potential personalized medical interventions. 

The findings emphasize computational methods' importance 

for timely interventions by healthcare professionals, ultimately 

enhancing the well-being of individuals grappling with this 

debilitating condition. In terms of future prospects, leveraging 

larger datasets and innovative approaches will likely enhance 

accuracy and personalized healthcare not only for Parkinson's 

disease but also for other neurological disorders. 
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