5 research outputs found

    Parallel computing for brain simulation

    Get PDF
    [Abstract] Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing.Galicia. Conseller铆a de Cultura, Educaci贸n e Ordenaci贸n Universitaria; GRC2014/049Galicia. Conseller铆a de Cultura, Educaci贸n e Ordenaci贸n Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    Modelos de procesamiento de la informaci贸n en el cerebro aplicados a Sistemas Conexionistas: Redes NeuroGliales Artificiales y Deep Learning

    Get PDF
    Programa Oficial de Doutoramento en Tecnolox铆as da Informaci贸n e as Comunicaci贸ns. 5032V01[Resumen] En el campo de la Inteligencia Artificial, los sistemas conexionistas se han inspirado en las neuronas ya que, seg煤n la visi贸n cl谩sica de la Neurociencia, eran las 煤nicas c茅lulas con capacidad para procesar la informaci贸n. Descubrimientos recientes de Neurociencia han demostrado que las c茅lulas gliales tienen un papel clave en el procesamiento de la informaci贸n en el cerebro. Bas谩ndose en estos descubrimientos se han desarrollado las Redes NeuroGliales Artificiales (RNGA) que cuentan con dos tipos de elementos de procesado, neuronas y astrocitos. En esta tesis se ha continuado con esta l铆nea de investigaci贸n multidisciplinar que combina la Neurociencia y la Inteligencia Artificial. Para ello, se ha desarrollado un nuevo comportamiento de los astrocitos que act煤an sobre la salida de las neuronas en las RNGA. Se ha realizado una comparaci贸n con las Redes de Neuronas Artificiales (RNA) en cinco problemas de clasificaci贸n y se ha demostrado que el nuevo comportamiento de los astrocitos mejora de manera significativa los resultados. Tras demostrar la capacidad de los astrocitos para procesar la informaci贸n, en esta tesis se ha desarrollado adem谩s una nueva metodolog铆a que permite por primera vez la creaci贸n de redes Deep Learning conteniendo miles de neuronas y astrocitos, denominadas Deep Neuron-Astrocyte Networks (DANAN). Tras probarlas en un problema de regresi贸n, las DANAN obtienen mejores resultados que las RNA. Esto permitir谩 evaluar comportamientos m谩s complejos de los astrocitos en las redes de Deep Learning, pudiendo incluso crearse redes de astrocitos en un futuro pr贸ximo.[Resumo] No campo da Intelixencia Artificial, os sistemas conexionistas inspir谩ronse nas neuronas xa que, segundo a visi贸n cl谩sica da Neuronciencia, eran as 煤nicas c茅lulas con capacidade para procesar a informaci贸n. Descubrimentos recentes de Neurociencia demostraron que as c茅lulas gliais te帽en un papel crave no procesamento da informaci贸n no cerebro. Base谩ndose nestes descubrimentos desenvolv茅ronse as Redes NeuroGliales Artificiais (RNGA) que contan con dous tipos de elementos de procesado, neuronas e astrocitos. Nesta tese continuouse con esta li帽a de investigaci贸n multidisciplinar que combina a Neurociencia e a Intelixencia Artificial. Para iso, desenvolveuse un novo comportamento dos astrocitos que act煤an sobre a sa铆da das neuronas nas RNGA. Realizouse unha comparaci贸n coas Redes de Neuronas Artificiais (RNA) en cinco problemas de clasificaci贸n e demostrouse que o novo comportamento dos astrocitos mellora de xeito significativo os resultados. Tras demostrar a capacidade dos astrocitos para procesar a informaci贸n, nesta tese desenvolveuse ademais unha nova metodolox铆a que permite por primeira vez a creaci贸n de redes Deep Learning contendo miles de neuronas e astrocitos, denominadas Deep Neuron-Astrocyte Networks (DANAN). Tras probalas nun problema de regresi贸n, as DANAN obte帽en mellores resultados cas RNA. Isto permitir谩 avaliar comportamentos m谩is complexos dos astrocitos nas redes de Deep Learning, podendo ata crearse redes de astrocitos nun futuro pr贸ximo.[Abstract] In the field of Artificial Intelligence, connectionist systems have been inspired by neurons and, according to the classical view of neuroscience, they were the only cells capable of processing information. The latest advances in Neuroscience have shown that glial cells have a key role in the processing of information in the brain. Based on these discoveries, Artificial NeuroGlial Networks (RNGA) have been developed, which have two types of processing elements, neurons and astrocytes. In this thesis, this line of multidisciplinary research that combines Neuroscience and Artificial Intelligence has been continued. For this goal, a new behavior of the astrocytes that act on the output of the neurons in the RNGA has been developed. A comparison has been made with the Artificial Neuron Networks (ANN) in five classification problems and it has been demonstrated that the new behavior of the astrocytes significantly improves the results. After prove the capacity of astrocytes for information processing, in this thesis has been developed a new methodology that allows for the first time the creation of Deep Learning networks containing thousands of neurons and astrocytes, called Deep Neuron-Astrocyte Networks (DANAN). After testing them in a regression problem, the DANAN obtain better results than ANN. This allows testing more complexes astrocyte behaviors in Deep Learning networks, and even creates astrocyte networks in the near future

    A new hybrid evolutionary mechanism based on unsupervised learning for Connectionist Systems

    No full text
    Recent studies have confirmed that the modulation of synaptic efficacy affects emergent behaviour of brain cells assemblies. We report the first results of adding up the behaviour of particular brain circuits to Artificial Neural Networks. A new hybrid learning method has emerged. In order to find the best solution to a given problem, this method combines the use of Genetic Algorithms with particular changes to connection weights based on this behaviour. We show this combination in feed-forward multilayer architectures initially created to solve classification problems and we illustrate the benefits obtained with this new method. 漏 2007 Elsevier B.V. All rights reserved.Peer Reviewe

    Procesamiento de informaci贸n mediante Redes NeuroGliales Artificiales en clasificaci贸n y predicci贸n

    Get PDF
    [Resumen]Recientes investigaciones evidencian que los astrocitos del sistema glial juegan un papel esencial en el procesamiento de la informaci贸n en el cerebro, existiendo comunicaci贸n bidireccional entre neuronas y astrocitos (Sinapsis Tripartita). Dado que los Sistemas Conexionistas (SS.CC.) solo consideran neuronas artificiales interconectadas, en esta tesis doctoral multidisciplinar se han investigado por primera vez las consecuencias de a帽adirles astrocitos artificiales. Para ello, se ha realizado un an谩lisis exhaustivo de la eficacia de nuevas Redes NeuroGliales Artificiales (RR.NG.AA.) versus Redes de Neuronas Artificiales multicapa cl谩sicas (RR.NN.AA.). Los resultados indican que los astrocitos: mejoran el rendimiento de RR.NN.AA., tanto cuando potencian como cuando deprimen las conexiones sin谩pticas; esta mejor铆a no puede atribuirse al incremento de elementos de procesado de la red, sino a las propiedades de los astrocitos; la eficacia de RR.NG.AA. con potenciaci贸n vs. RR.NN.AA., aumenta al incrementarse la complejidad de la red; el grado de mejora inducido por los astrocitos depende del problema tratado y de las propiedades intr铆nsecas de los astrocitos. Se puede concluir que los astrocitos artificiales permiten proponer a las RR.NG.AA. como un posible nuevo paradigma en SS.CC. Adem谩s, han permitido estudiar fen贸menos cerebrales a煤n no demostrados, colaborando con la Neurociencia en la comprensi贸n del sistema nervioso[Resumo]Recentes investigaci贸ns evidencian que os astrocitos do sistema glial xogan un papel esencial no procesamento da informaci贸n no cerebro, existindo comunicaci贸n bidireccional entre neuronas e astrocitos (Sinapse Tripartita). Dado que os Sistemas Conexionistas (SS.CC.) s贸 consideran neuronas artificiais interconectadas, nesta tese doutoral multidisciplinar investig谩ronse por primeira vez as consecuencias de engadirlles astrocitos artificiais. Para iso, realizouse unha an谩lise exhaustiva da eficacia de novas Redes NeuroGliais Artificiais (RR.NG.AA.) versus Redes de Neuronas Artificiais multicapa cl谩sicas (RR.NN.AA.). Os resultados indican que os astrocitos: melloran o rendemento de RR.NN.AA., tanto cando potencian coma cando deprimen as conexi贸ns sin谩pticas; esta mellor铆a non pode atribu铆rse ao incremento de elementos de procesado da rede, sen贸n 谩s propiedades dos astrocitos; a eficacia de RR.NG.AA. con potenciaci贸n vs. RR.NN.AA. aumenta ao incrementarse a complexidade da rede; o grao de mellora inducido polos astrocitos depende do problema tratado e das propiedades intr铆nsecas dos astrocitos. P贸dese conclu铆r que os astrocitos artificiais permiten propo帽er 谩s RR.NG.AA. como un posible novo paradigma en SS.CC. Ademais, permitiron estudar fen贸menos cerebrais a铆nda non demostrados, colaborando coa Neurociencia na comprensi贸n do sistema nervioso.[Abstract]Recent research shows that glial system astrocytes play an essential role in the information processing in the brain, as indicates the existence of bidirectional communication between astrocytes and neurons (Tripartite Synapse). Since Connectionist Systems (CS) only have into account interconnected artificial neurons, in this multidisciplinary thesis the consequences of adding artificial astrocytes to them have been investigated for the first time. For this, an exhaustive analysis of the performance of these new Artificial NeuroGlial Networks (ANGN) vs. classic multilayer ANN has been carried out. The results indicate that artificial astrocytes: improve the performance of the ANN both when they enhance and when they depress the synaptic connections; this improvement cannot be accounted for an increased number of processing elements on the network, but rather for the properties of astrocytes; the efficacy of ANGN鈥恜otentiation vs. ANN increases as the complexity of the network; relative network performance improvement by artificial astrocytes depends on the problem tested and the intrinsic properties of astrocytes. It can be concluded that artificial astrocytes allow ANGN to be proposed as a possible new paradigm in CS. Furthermore, they have allowed to study brain behaviours not yet proved, collaborating with Neuroscience in the understanding of the nervous syste
    corecore