452 research outputs found

    A Novel, Bio-Inspired, Soft Robot for Water Pipe Inspection

    Get PDF
    abstract: This thesis presents the design and testing of a soft robotic device for water utility pipeline inspection. The preliminary findings of this new approach to conventional methods of pipe inspection demonstrate that a soft inflatable robot can successfully traverse the interior space of a range of diameter pipes using pneumatic and without the need to adjust rigid, mechanical components. The robot utilizes inflatable soft actuators with an adjustable radius which, when pressurized, can provide a radial force, effectively anchoring the device in place. Additional soft inflatable actuators translate forces along the center axis of the device which creates forward locomotion when used in conjunction with the radial actuation. Furthermore, a bio-inspired control algorithm for locomotion allows the robot to maneuver through a pipe by mimicking the peristaltic gait of an inchworm. This thesis provides an examination and evaluation of the structure and behavior of the inflatable actuators through computational modeling of the material and design, as well as the experimental data of the forces and displacements generated by the actuators. The theoretical results are contrasted with/against experimental data utilizing a physical prototype of the soft robot. The design is anticipated to enable compliant robots to conform to the space offered to them and overcome occlusions from accumulated solids found in pipes. The intent of the device is to be used for inspecting existing pipelines owned and operated by Salt River Project, a Phoenix-area water and electricity utility provider.Dissertation/ThesisMasters Thesis Engineering 201

    Pneumatic motion control systems for modular robots

    Get PDF
    This thesis describes a research study in the design, implementation, evaluation and commercialisation of pneumatic motion control systems for modular robots. The research programme was conducted as part of a collaborative study, sponsored by the Science and Engineering Research Council, between Loughborough University and Martonair (UK) Limited. Microprocessor based motion control strategies have been used to produce low cost pneumatic servo-drives which can be used for 'point-to-point' positioning of payloads. Software based realtime control strategies have evolved which accomplish servo-controlled positioning while compensating for drive system non-linearities and time delays. The application of novel compensation techniques has resulted in a significant improvement in both the static and dynamic performance of the drive. A theoretical foundation is presented based on a linearised model of a pneumatic actuator, servo-valve, and load system. The thesis describes the design and evolution of microprocessor based hardware and software for motion control of pneumatic drives. A British Standards based test-facility has allowed control strategies to be evaluated with reference to standard performance criteria. It is demonstrated in this research study that the dynamic and static performance characteristics of a pneumatic motion control system can be dramatically improved by applying appropriate software based realtime control strategies. This makes the application of computer controlled pneumatic servos in manufacturing very attractive with cost performance ratios which match or better alternative drive technologies. The research study has led to commercial products (marketed by Martonair Ltd), in which realtime control algorithms implementing these control strategy designs are executed within a microprocessor based motion controller

    Variable stiffness robotic hand for stable grasp and flexible handling

    Get PDF
    Robotic grasping is a challenging area in the field of robotics. When interacting with an object, the dynamic properties of the object will play an important role where a gripper (as a system), which has been shown to be stable as per appropriate stability criteria, can become unstable when coupled to an object. However, including a sufficiently compliant element within the actuation system of the robotic hand can increase the stability of the grasp in the presence of uncertainties. This paper deals with an innovative robotic variable stiffness hand design, VSH1, for industrial applications. The main objective of this work is to realise an affordable, as well as durable, adaptable, and compliant gripper for industrial environments with a larger interval of stiffness variability than similar existing systems. The driving system for the proposed hand consists of two servo motors and one linear spring arranged in a relatively simple fashion. Having just a single spring in the actuation system helps us to achieve a very small hysteresis band and represents a means by which to rapidly control the stiffness. We prove, both mathematically and experimentally, that the proposed model is characterised by a broad range of stiffness. To control the grasp, a first-order sliding mode controller (SMC) is designed and presented. The experimental results provided will show how, despite the relatively simple implementation of our first prototype, the hand performs extremely well in terms of both stiffness variability and force controllability

    RRR-robot : design of an industrial-like test facility for nonlinear robot control

    Get PDF

    The Optimal Trajectory Modelling of Robot Manipulators

    Get PDF
    Greater robot capability can be achieved through the use of robot manipulator control systems. Crucial to the success of these control systems is the optimal trajectory modelling of the path traced by the end- effector. To create this optimal path the utilization of B-Spline curve functions will be investigated, and compared to Cubic Spline curve functions

    INTEGRATION OF ROBOTIC AND ELECTRO-PNEUMATIC SYSTEMS USING ADVANCED CONTROL AND COMMUNICATION SCHEMES

    Get PDF
    Modern industrial automation systems are designed by interconnecting various subsystems which work together to perform a process. The thesis project aims to integrate fragmented subsystems into a flexible and reconfigurable system through advanced communication protocols and perform a process to demonstrate the effectiveness of interconnected systems. The system consists of three six-axis robots, one electro-pneumatic robot, and two conveyors connected using EthernetIP communication and hardwired connections. The interconnected system works together to perform machining of a workpiece using advanced control methods of CAD to robot path generation, central control through a PLC, and process control through HMI. Standardized programming blocks and HMI interfaces were developed to make the system highly reconfigurable and flexible for any future projects. The knowledge gained from the project is used to create lab manuals to educate students about communication and control methods for systems integration

    Chess Robot

    Full text link
    ME450 Capstone Design and Manufacturing Experience: Winter 2021The Chess Robot is designed to be an autonomous robotic arm that is able to compete in a chess match against a human. The robot moves their own pieces and captures the opponent’s pieces in efforts to win a standard game of chess. Robotic arms that play chess have been created before, but are either industrial grade and expensive or very cheap/homemade and slow. This project aimed to create a functional chess robot that maximizes speed at a relatively low cost. It was also designed with potential for mass manufacturing in mind. With additional design and development, the skill of the robot should be easily changed, since the software is easily customized; thus, as the player improves, so will the robot. There will also be an opportunity to play chess against other humans through two intermediary robots or for one player to play while making use of an online chess platform. This feature, if fully developed, will enable chess instructors to play with children and not be limited by geographical proximity, further expanding the reach of chess education.Student Sponsor: UM Mechanical Engineering departmenthttp://deepblue.lib.umich.edu/bitstream/2027.42/167650/1/Team_5-Chess_Robot.pd

    Hydrogen Fuel Cell Gasket Handling and Sorting With Machine Vision Integrated Dual Arm Robot

    Get PDF
    Recently demonstrated robotic assembling technologies for fuel cell stacks used fuel cell components manually pre-arranged in stacks (presenters), all oriented in the same position. Identifying the original orientation of fuel cell components and loading them in stacks for a subsequent automated assembly process is a difficult, repetitive work cycle which if done manually, deceives the advantages offered by automated fabrication technologies of fuel cell components and by robotic assembly processes. We present an innovative robotic technology which enables the integration of automated fabrication processes of fuel cell components with robotic assembly of fuel cell stacks into a fully automated fuel cell manufacturing line. This task, which has not been addressed in the past uses a Yaskawa Motoman SDA5F dual arm robot with integrated machine vision system. The process is used to identify and grasp randomly placed, slightly asymmetric fuel cell components having a total alpha-plus-beta symmetry angle of 720o, to reorient them all in the same position and stack them in presenters for a subsequent robotic assembly process. The dual arm robot technology is selected for increased productivity and ease of gasket handling during reorientation. The initial position and orientation of the gaskets is identified by image analysis using a Cognex machine vision system with fixed camera. The process was demonstrated as part of a larger endeavor of bringing to readiness advanced manufacturing technologies for alternative energy systems, and responds the high priority needs identified by the U.S. Department of Energy for fuel cells manufacturing research and development

    Design and implement of robotic arm and control of moving via IoT with Arduino ESP32

    Get PDF
    Every day, the technologies are expanding and developed with extra things to them. A cloud computing (CC) and Internet of things (IoT) became deeply associated with technologies of the internet of future with one supply the other a way helping it for the successful. Arduino microcontroller is used to design robotic arm to pick and place the objects by the web page commands that can be used in many industrials. It can pick and place an object from source to destination and drive the screws in into its position safely. The robot arm is controlled using web page designed by (html) language which contain the dashboard that give the commands to move the servos in the desired angle to get the aimed direction accordingly. At the receiver end there are four servo motors which are made to be interfaced with the micro controller (Arduino) which is connected to the wireless network router. One of these is for the arm horizontally movement and two for arm knee, while the fourth is for catch tings or tight movement. Two ultra-sonic sensors are used for limiting the operation area of the robotic arm. Finally, Proteus program is used for the simulation the controlling of robot before the hardware installatio
    • …
    corecore