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A B S T R A C T

Greater  robot capabil ity can be achieved through the use of robot 

manipulator control systems. Crucia l  to the success of these control 

systems is the optimal t ra jectory modelling of the path traced by  the end- 

effector. To create this optimal path the utilization of B-Spl ine curve  

functions will be investigated, and compared to Cubic Spline curve  

funct ions .
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I. INTRODUCTION

Robots have advanced from manually controlled teleoperators to the 

computer-controlled manipulators seen in today's factories. Th is  level of 

control sophistication permits robots to be used in such applications as die 

cast ing, spot welding, arc  welding, investment casting, forging, press  

work,  spray  painting, plastic molding, foundry practice,  machine tool 

loading, heat treatment, deburr ing metal parts ,  palletizing, br ick  

manufacture,  glass manufacture,  and many more applications.  The use of 

robots in these applications has been made possible through advancements 

in the areas of kinematics, dynamics,  servoing, computer controls,  

modelling, and tra jectory  calculation.

Industrial  robots have two major components: the moving parts (the 

"arm", the "wrist" ,  and the "hand") and the control system.

T h e  arm is considered to be the f i r s t  three l inks of a robot and 

determines the location of the robot within the working area. The wrist  is 

made up of the next few l inks and describes the orientation of the robots 

end effector. The  hand, or end effector, is a device designed according  

to the task to be accomplished.

The  control system for a robot may range from simple mechanical 

stops to computerized controls.  The methodology employed allows the 

robot manipulator to trace  a limited path, follow a heuristic path defined 

only at discrete  points, or complete a continuous (smooth) path defined 

by the operator.

Conventional analog servos ,  sometimes called hardware servos ,  may 

be used to provide complete control of the robot manipulator. However,  

difficulties arise due to this  approach. Analog servos are susceptible to
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variations in kinematic configurations and to payload changes which may 

result in s tructural  resonances.  The limited sequence robots controlled 

by hardware servos are the least sophisticated. T h ey  are often referred  

to as "bang-bang" machines. The  end positions of the robot path are 

specified and the robot follows a non-controlled trajectory between points 

A and B. T h e ir  drive systems may be pneumatic, electrical ,  or 

hydraul ic .  These  robots are usually small and useful for die-cast ing,  

press loading, and plastics molding. These  robots are also tedious to 

program and modify.

An alternative to the use of hardware servos in robot manipulators is 

to design control systems using software servos .  The software servo  

permits a large degree of f lexibil ity in designing control systems, and may 

reduce the overall cost of designing control strategies.  Two possible 

strategies are shown in robots with point-to-point path control and 

continuous path control.

Point-to-point robots are usually led through a task by  an operator  

using a teach pendant.  As the task is being simulated or rehearsed, the 

programmer specifies discrete  points along the path to be followed. This  

method of programming the robot is relatively fast and easy .  Additional 

capabilities of this method permits random access to multiple control 

programs and subrout ines stored in a computer. An obstacle to the use 

of this methodology concerns the definition of discrete points along the 

manipulator tra jectory.  As modifications are made to the path of the 

robot, the operator must interact with the control system. It is often 

difficult for the operator to modify the programmed positions.

Robots with continuous path control are led through the task as with 

point-to-point robots. However the data points are collected by  the
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controller on a time basis ,  perhaps in the range of 60 to 80 Hz. Th is  

requires much more memory, many times using tape or disk storage.  

There  is no noticeable change in speed as with the point-to-point method, 

thus the name continuous path control.  The  speed of the manipulator is 

varied by the rate at which the data points are fed to the manipulator.  

Th is  capabil ity is useful in areas such as seam welding, spray  painting,  

polishing, and gr inding.

Each of these methods requires  taking the robot off the production 

line to teach it the next task via a teach pendant or limit switches.  Th is  

factor alone can lengtnen the Day-back time of the robot equipment. To 

alleviate this problem extensive work is being performed on the 

development of off-l ine programming languages. These languages will 

allow changes to tra jectory  control programs while permitting the robot to 

continue work on the production line. These  new or modified programs  

can be executed by  the robot controller when production loads dictate.

Off-l ine robot programming languages commercially available include:  

A L ,  developed by Stanford Univers ity  and Robot Technology,  In c . ;  AML, 

developed by IBM Corporation; HELP ,  developed by General Electr ic  

Corporation; MCL, developed by  McDonnell Douglas Corporation for the 

United States A ir  Force;  R A IL ,  developed by  Automatix, In c . ;  and VAL ,  

developed by Westinghouse-Unimation, Inc.  These  languages still have 

difficulties that prevent  widespread use at the present  time, but are 

promising alternatives for the future .

T h ree  areas to be addressed in developing software servos for any 

computer controlled robot manipulator are;

* Kinematic s . Given the position and orientation of the end effector  

in cartesian coordinates and orientational vectors ,  the robot controller
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will determine the corresponding manipulator joint positions. Th is  

information enables a program to transform an end effector tra jectory  

defined in cartesian space to a trajectory in joint space. Analytic
1 2solutions for this problem are discussed in several research papers .  '

• S ta t i c s . Given the payload or force exerted by the end effector of 

the manipulator, the controller will determine the corresponding force 

developed at the manipulator joint actuators.  The transformation from 

forces in cartesian space to forces in joint space is linear. The joint 

forces are the products of the force resolution matrix and the vector force
3

in cartesian space where the force resolution matrix is the transpose of

the Jacobian matrix. The determination of the Jacobian matrix of a
4 5manipulator can be found using techniques in the l iterature. '

• Dynamics . Given the position, velocity,  and acceleration of the 

end effector,  the controller will determine the corresponding forces or 

torques developed at the manipulator actuators,  based on Lagrangian
g

mechanics. The Hollerbach research d iscusses  a solution to the dynamics  

problem.

Robot manipulator control systems may utilize feedforward control to 

prevent  a deviation of the end effectors'  path from becoming so large as 

to negate effective corrective action. Using solutions from the three  

areas outlined above, a feedforward control system can be constructed.  

Feedforward systems can provide the robot controller with a method to 

determine the optimal tra jectory path to be traced by the end effector.  

Optimization of these events lies in the optimal trajectory planning of the 

end effector.

In this paper,  we develop a path for the end effector to follow, with 

the knowledge of the f ixture geometry to avoid possible collision and the
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knowledge of the operational motion. This  leads us to establish a 

sequence of crucial  control knot points in terms of three-dimensional  

cartesian parametric coordinates ( x ( t ) ,  y ( t ) ,  z ( t ) ) .  From these knots,  a 

trajectory for the robot may be generated. Th is  trajectory yields  

information about position, velocity,  and acceleration. It is necessary  to 

supply  instantaneous information about position, velocity,  and

acceleration of the end effector along the path for the feedforward control 

system, because the controller must know the exact position of all robot 

joints at all t imes.

Mathematically, the trajectory should be continuous tnrough the 

second derivative providing continuous position, velocity,  and

acceleration functions for the end effector path. We define the boundary  

conditions of the tra jectory,  specifying velocity and acceleration at the 

trajectory endpoints to be zero. The trajectory is generated by  using a 

B-spline function shaped by the sequence of control knot points.
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I I . REVIEW OF L I T E R A T U R E

This  thesis is part icu lar ly  indebted to the research of Ho and Cook 

Cook^ in the application of spline functions to robot trajectory generation.  

T h e ir  work descr ibes how cubic  spline functions may represent both the 

trajectory of the tool-tip of the manipulator hand in three-space and the 

trajectories of the manipulator joints in time. Mathematically, the cubic  

spline curve  is continuous through the second derivat ive providing  

continuous velocity and acceleration functions for the end-effector  

traveling along its t ra jectory path. The boundary conditions for liftoff 

and setdown of the end-effector are accommodated. T h e ir  approach offers  

flexibi l i ty,  computational eff ic iency, and a compact representation of the 

p a th .

Schoenberg introduced B-Spl ines  in his paper On Spline
g

Distributions and their Limits: The Polya Distributions.  Substantial

research in the area of B-Spl ines  has been conducted by  DeBoor,

Mansfield, Cox, and Riesenfield.  DeBoor and others have proposed a
9

recurs ive  definition of the B-Spl ine basis rather  than the divided

difference formulation formulation of the B-Spl ine basis suggested by  

Schoenberg. The recurs ive  evaluation of B-Spl ines  is well conditioned,  

efficient and needs no adjustments in the case of coincident knots. The  

condition of the B-Spl ine basis will increase exponentially with the order.  

Riesenfield contributed a comparison of B-Spl ine and Bezier curves  for 

graphics  applications in his doctoral d i s s e r t a t io n .^
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I I I .  R E S U L T S

A B-Spl ine curve  is a parametric B-Spline approximation to the  

polygon defined by  the Aj vert ices .  On the following pages the  

differentiation of the B-Spline function definition will be presented. Th is  

is s ignificant in the fact that the velocity and acceleration vectors must 

provide take-o ff  and set-down' values of zero. As the derivation  

suggests ,  B-Spl ines  can be used effectively to control the robot 

manipulator in its movements throughout three-space.

Figures  1 through 18 show a sample B-Spline generated tra jectory  

path. T h e y  show a profile in three-space of position, velocity,  and 

acceleration. Also shown is the position of the tool-tip along each axis at 

any point in the path.
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POSITION V E C T O R  

n
P(t) = I A. N. , (t) 

i = 0 1 ' ' K

where

n is the number of defining polygon vertices  minus one 

k is the order of the curve  

t is the parameter,  varying from 0 to t max 

Aj are the n + 1 defining polygon vert ices

Ni , k (t)  = ( ( t - x i IN i , k - 1( t ) )  7 ( x i * k - r x i )

( ( V k - t l N M , k - l ( t ) )  7 ‘ V k ' W

N- , (t)  = { 1 if x. <= t < i , l  i x i + l

{ 0 otherwise

x. are the elements of a knot vectori
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POSITION V E C T O R  - The j th Derivative :  

P ( j ) (t) = ( k - l ) . . . ( k - j ) Z A . (j) N. . .(t)I * f K J

where

A . ( 0 > = A.I I
A . (j) = ( A . ( j ' 1 ) -A. / ( x . . .-x.)  ; j > 0■ ■ 1 i+k-j i ' 'i-1

P ( 1 ) (t)  = ( k - 1 )Z A . (1) Nj k l (t)

where

A . (1) = (A .-A. , )  / ( x . , - - x .) i i i- l  i + k-1 i

P ( 2 ) (t) = ( k - 1 ) ( k - 2 ) Z A j (2) N. k _2(t)

where

A . ‘ 2 > = ( A . ( 1 > - A <’ >) / < * . . „  , - x . )i i i-1 i + k-2 i
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V E L O C I T Y  V E C T O R  - At t = 0: 

P ( 1 ) (t) = (k -1 )Z A j (1 )Nj k 1 (t)

where

A.i
(1) (A.-A. , )  / ( x . - .-x.)i i- l  i+k-j i

l im P( 1 ) (t)  = l im ( k-1 ) I A . ( 1 ) N. . . ( t )  
t+0 tr’-O 1 l , k "

l im P ( 1 ) (t)  = (k -1 )Z A . (1 ) lim N. . n(t) 
t>0 1 t+0 l ' k ‘ l

where

lim N. . , ( t )  = ( l im t - x . ) l im  N. . , ( t ) / ( x .  + . , -x )
t->0 ' K t->0 t+0 ' K i k i i

+ ( * j +k ' l im t ) l im  N. k _ 1( t ) / ( x j + k - x . +1)I K I , K I I K  I I

Note:

Nj j ( t )  = { 1 if x. <= t < x j + 1

{ 0 otherwise

Therefore ,  if knots of multiplicity k are chosen at the

beginning of the knot set, the velocity vector will equal zero.

l im P ( 1 ) (t) = (k -1 )ZA j l 1 ) ( ( 0 / ( x j k̂ _ 1- x j ) + ( 0 / ( x j + kx j + 1))  
t^O
lim P( 1 ) (t) = 0 
tr>0
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V E L O C I T Y  V E C T O R  - At t = t : ----------------------------- max

p ( 1 ) (t) = ( k - n i A ^ V  k l (t)

where
( 1 ) _= (A.-A.  , )  / ( x . . .-x.)  i i- l i+k-i r

l im P( 1 ) (t)  
1r>T

= l im (k -1 )X A .(1) 
t - T  '

Ni,k-1 (t) ; where T  = tmax

Ii m P ( 1 ) (t)  = (k -1 )X A .( 1 ) lim N. , , ( t )  
t->T 1 t ' T  l , k ‘ l

where

lim N. , , ( t )  = ( l im  t - x . ) l im  N. , 1
t * T  ' t * T  t ’T  , K ‘

Note:

N. , ( t )  = { 1 if x. <= t < x . . ni,1 i i+1

{ 0 otherwise

Therefore ,  if knots of multiplicity k are chosen at the end of 

the knot set ,  the velocity vector will equal zero.

l im P( 1 ) (t)  = (k -1 )X A j( 1 ) ( ( 0 / ( x j k _ r * j )  + ( ° / ( x .  + k x. + 1))  
t->T
l im P ( 1 ) (t)  = 0 
t +T
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A C C E L E R A T IO N  V E C T O R  - At t = 0:

P ( 2 ) (t) = ( k - 1 ) ( k - 2 ) l A . (2) N. k 2 (t)

where

A 2̂  ̂ = (A ^ - A  / (x -x )i a .^  j , l * j+k-2 x.)

l im P ( 2 ) (t)  = l im ( k - l ) ( k - 2 ) Z A . (2 )N. , - ( t )  
t^O t+0 1 l , k ' 2

l im P( 2 ) (t)  = ( k - 1 ) ( k - 2 ) Z A . ( 2 ) lim N. . ~(t) 
t+0 1 t * 0  l , k "Z

where

lim N. . 7(t) = ( l im  t - x . ) l im  N. . ~ ( t ) / ( x i + . 7 -x.)  t^O \ , k  z t _̂ 0 i , k -  K ~- i

* ‘ V k ' J i ™  t ) [ i2 ’ Ni .k - 2 l t ) / ( ’W V l )

Note:

Nj 1(t)  = { 1 if Xj <= t < x j+1

{ 0 otherwise

Therefore ,  if knots of multiplicity k are chosen at the 

beginning of the knot set, the acceleration vector will equal zero,  

l im P(2^(t) = (k -1 )X A ^ 2^((0/(x.  k _ •,-x j) + (0/( x j + k x j + 1))

l im P( 2 ) (t)  = 0 
T>0



13

A C C E L E R A T IO N  V E C T O R  - At t = tmax

P ( 2 ) (t) = ( k - 1 ) ( k - 2 ) Z A . (2) N. 2(t)

where
(2) ( 1 ) . *  H )A. - (A. -A. , ) / ( x . . .  „-x .)i i i- l  i + k-2 i

l im P( 2 ) (t)  = l im ( k - 1 ) ( k - 2 ) l A . ( 2 ) N. . ; T  = t vt^T \ Z  max

lim P( 2 ) (t) = ( k - 1 ) ( k - 2 ) Z A . ( 2 ) lim N. . _ ( t )  
t - T  ' t - T  I ,K-/

where

l im N. . ~(t) = ( l im  t - x . ) l im  N. . ? ( t ) / (x .  + , _ -x.)  
t>T ' z t - T  t - T  ' K z K -

* ' V k ' J j , ™  ‘ ’ I'.lfl Ni .k - 2 ( t ) / ( V k ’ V l )

Note:

N. 1(t) = { 1 if x. <= t < x. + 1i, 1 i i + 1

{ 0 otherwise

Therefore ,  if knots of multiplicity k are chosen at the end of

the knot set, the acceleration vector will equal zero.

l im P( 2 ) (t)  = ( k - 1 ) l A j( 2 ) ( (0/ (x .  k . 1- x j ) + ( 0 / ( x j + kx j + 1)) 
t - T
lim P(21(t) = 0 
t - T
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IV. D ISCUSSION

The term spline originated during the days before the advent of 

computer graphics . When draftsmen were required to draw non- 

conventional curves  of future workpieces they utilized a flexible wooden 

ru ler. This wooden ru ler, called a spline, would be weighted at points to 

trace the outline of the cu rve . The weights had a protrusion that fitted  

into a slot located on the spline. Th is  allowed the spline to rotate around 

the fixed weights while holding it in place. Using the theory of 

mechanical elasticity one can prove that the resulting curve  is a piecewise 

cubic polynomial. Th is  polynomial is considered continuous in the f ir s t  

and second derivatives. These conditions assure  that the curve has a 

continuous curvature and any discontinuities occur only in the th ird  

derivative. If one directs a mechanical motion along a spline, a 

continuous second derivative implies continuous accelerations and 

therefore no abrupt changes in force. These two properties make such 

cu rves  desirable in many applications.

A • C U B IC S P L IN ES

In general a mathematical spline is a piecewise polynomial of degree 

K. The continuity of derivatives of order K - 1 of the spline occur at the 

common joints between the segments. T h u s , for example, the cubic spline 

has second-order continuity at the joints of the segments. Piecewise 

splines of low degree are usually more useful for forming a curve through 

a series of points. The use of low-degree polynomials reduces the 

computational requirements and reduces numerical instabilities that arise  

with higher order c u rv e s .  Since low-degree polynomials cannot span an
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a rb it ra ry  series  of points, adjacent polynomial segments are needed. 

Based on these considerations and the analogy of the physical spline, a 

frequent technique is to use a series of cubic splines with each segment 

spanning only two points. Fu rth e r  the cubic spline is advantageous since 

it is the lowest degree space cu rve  which allows a point of inflection and 

has the ability to tw ist through space.

A summary of the positive aspects regarding cubic splines include: 

The take-off and set-down positions of the velocity and and acceleration 

cu rve s  can be set to zero. As one can plainly see, this is useful in the 

generation of velocity and acceleration curves  in robot trajectory paths. 

The user of such an algorithm can control the generated path to a much 

higher degree than some of the other path trajectory schemes. Also, the 

use of cubic splines allows an optimality in describing the shortest curve  

that passes through the control knots (as seen in Ho and Cook).

A negative aspect: Due to the global nature of the curve generated  

by the cubic spline method, the entire curve must be recalculated even 

when one only wishes to change a small portion of the robot path 

tra jectory . Another negative aspect: adjacent polynomial segments are 

required as points are added to the c u rv e .

As noted in Ho and Cook, cubic splines have been utilized in the 

creation of robot tra jectory paths. In that research it was determined 

that continuous trajectories could be calculated with respect to position, 

velocity and acceleration.

B . B - S P LIN ES

B-Sp lines are a choice alternative to the use of cubic splines in the 

generation of robot tra jectory  paths. T h e  B-Spline approach to tra jectory
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path generation is easy  to implement and computationally efficient. The  

shape of the curve  is easily  modified by the user who may add or delete 

knots. B-Splines allow the user to generate a tra jectory  path that does 

not have to be recalculated in totem. As one wishes to alter a small 

portion of the cu rve , only that portion of the cu rve  that is to be changed  

must be recalculated. Th is  is possible because B-Spline cu rves  are 

iocally defined, thus the computation depends on the degree of the curve  

and not the number of knots. Multiple vertices allow interpolation and 

cusps and B-Spline cu rves  are variation-diminishing. The  

differentiability is determined by the degree of the cu rve . Th is  allows 

one to specify the velocity and acceleration at the ends of the path.

Thus B-Spline cu rves  provide the user with the advantages of the 

cubic spline without the problems created by changing a portion of the 

cu rv e .  B-Sp line  cu rve s  also allow the user to create a trajectory by 

defining the vertices of an open polygon. To change the trajectory so 

that the c u rv e  will bend away from an object, the user may add an 

additional vertice  to the open polygon. The generated curve will then 

bend towards the new vertice  while avoiding a particu lar 'object'. Th is  

same objective (of bending away ) can be achieved by adding weight to a 

particu lar  vert ice  (g iv ing  the knot associated with the vertice a 

multiplicity of two or more).

Robot tra jectory  paths generated utilizing the B-Spline function 

definition are a useful way to provide control motion for the robot 

manipulator. Such c u rv e s  can be recalculated locally and efficiently. 

Also they provide a methodology for collision avoidance when an object 

may be found in the manipulator's work envelope. C u rv e s  generated by  

the B-Spline function definition will provide the control system of the 

robot with optimal control motions with a minimum of effort.
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V. CONCLUSION

Spline function curve fitting techniques to model trajectory paths 

prec ise ly  through controlling knot points have been demonstrated by Cook 

and Ho^. In this paper, a method of generating optimum trajectory models 

for for robot manipulators was developed through the use of B-spline  

cu rve  functions. These functions provide the robot controller with a 

computationally efficient (and easy to implement) method of generating  

paths for the end effector.

B-spline curves are locally defined which greatly reduces the 

computational cost since any changes to the curve will only have to be 

calculated for that part of the curve and not the entire curve . The local 

definition enhances the ability to quickly  modify a curve because 

adjusting the number and location of knots has a local effect on the 

cu rve , not a global effect on the entire cu rve . T h u s ,  B-spline curve  

generation techniques are ve ry  useful in the creation of optimum paths for 

the end effector of a robot manipulator.
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