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ABSTRACT

Greater robot capability can be achieved through the use of robot
manipulator control systems. Crucial to the success of these control
systems is the optimal trajectory modelling of the path traced by the end-
effector. To create this optimal path the utilization of B-Spline curve
functions will be investigated, and compared to Cubic Spline curve

functions.
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I. INTRODUCTION

Robots have advanced from manually controlled teleoperators to the
computer-controlled manipulators seen in today's factories. This level of
control sophistication permits robots to be used in such applications as die
casting, spot welding, arc welding, investment casting, forging, press
work, spray painting, plastic molding, foundry practice, machine tool
loading, heat treatment, deburring metal parts, palletizing, brick
manufacture, glass manufacture, and many more applications. The use of
robots in these applications has been made possible through advancements
in the areas of kinematics, dynamics, servoing, computer controls,
modelling, and trajectory calculation.

Industrial robots have two major components: the moving parts (the

arm", the "wrist", and the "hand") and the control system.

The arm is considered to be the first three links of a robot and
determines the location of the robot within the working area. The wrist is
made up of the next few links and describes the orientation of the robots
end effector. The hand, or end effector, is a device designed according
to the task to be accomplished.

The control system for a robot may range from simple mechanical
stops to computerized controls. The methodology employed allows the
robot manipulator to trace a limited path, follow a heuristic path defined
only at discrete points, or complete a continuous (smooth) path defined
by the operator.

Conventional analog servos, sometimes called hardware servos, may
be used to provide complete control of the robot manipulator. However,

difficulties arise due to this approach. Analog servos are susceptible to



variations in kinematic configurations and to payload changes which may
result in structural resonances. The limited sequence robots controlled
by hardware servos are the least sophisticated. They are often referred
to as "bang-bang" machines. The end positions of the robot path are
specified and the robot follows a non-controlled trajectory between points
A and B. Their drive systems may be pneumatic, electrical, or
hydraulic. These robots are usually small and useful for die-casting,
press loading, and plastics molding. These robots are also tedious to
program and modify.

An alternative to the use of hardware servos in robot manipulators is
to design control systems using software servos. The software servo
permits a large degree of flexibility in designing control systems, and may
reduce the overall cost of designing control strategies. Two possible
strategies are shown in robots with point-to-point path control and
continuous path control.

Point-to-point robots are usually led through a task by an operator
using a teach pendant. As the task is being simulated or rehearsed, the
programmer specifies discrete points along the path to be followed. This
method of programming the robot is relatively fast and easy. Additional
capabilities of this method permits random access to multiple control
programs and subroutines stored in a computer. An obstacle to the use
of this methodology concerns the definition of discrete points along the
manipulator trajectory. As modifications are made to the path of the
robot, the operator must interact with the control system. It is often
difficult for the operator to modify the programmed positions.

Robots with continuous path control are led through the task as with

point-to-point robots. However the data points are collected by the



controller on a time basis, perhaps in the range of 60 to 80 Hz. This
requires much more memory, many times using tape or disk storage.
There is no noticeable change in speed as with the point-to-point method,
thus the name continuous path control. The speed of the manipulator is
varied by the rate at which the data points are fed to the manipulator.
This capability is useful in areas such as seam welding, spray painting,
polishing, and grinding.

Each of these methods requires taking the robot off the production
line to teach it the next task via a teach pendant or limit switches. This
factor alone can lengtnen the Day-back time of the robot equipment. To
alleviate this problem extensive work is being performed on the
development of off-line programming languages. These languages will
allow changes to trajectory control programs while permitting the robot to
continue work on the production line. These new or modified programs
can be executed by the robot controller when production loads dictate.

Off-line robot programming languages commercially available include:
AL, developed by Stanford University and Robot Technology, Inc.; AML,
developed by IBM Corporation; HELP, developed by General Electric
Corporation; MCL, developed by McDonnell Douglas Corporation for the
United States Air Force; RAIL, developed by Automatix, Inc.; and VAL,
developed by Westinghouse-Unimation, Inc. These languages still have
difficulties that prevent widespread use at the present time, but are
promising alternatives for the future.

Three areas to be addressed in developing software servos for any
computer controlled robot manipulator are;

* Kinematics. Given the position and orientation of the end effector

in cartesian coordinates and orientational vectors, the robot controller



will determine the corresponding manipulator joint positions. This
information enables a program to transform an end effector trajectory
defined in cartesian space to a trajectory in joint space. Analytic
solutions for this problem are discussed in several research papers. 1.2

e Statics. Given the payload or force exerted by the end effector of
the manipulator, the controller will determine the corresponding force
developed at the manipulator joint actuators. The transformation from
forces in cartesian space to forces in joint space is linear. The joint
forces are the products of the force resolution matrix and the vector force
in cartesian space3 where the force resolution matrix is the transpose of
the Jacobian matrix. The determination of the Jacobian matrix of a
manipulator can be found using techniques in the literature. '

e Dynamics. Given the position, velocity, and acceleration of the
end effector, the controller will determine the corresponding forces or
torques developed at the manipulator actuators, based on Lagrangian
mechanics. The Hollerbach researchg discusses a solution to the dynamics
problem.

Robot manipulator control systems may utilize feedforward control to
prevent a deviation of the end effectors' path from becoming so large as
to negate effective corrective action. Using solutions from the three
areas outlined above, a feedforward control system can be constructed.
Feedforward systems can provide the robot controller with a method to
determine the optimal trajectory path to be traced by the end effector.
Optimization of these events lies in the optimal trajectory planning of the
end effector.

In this paper, we develop a path for the end effector to follow, with

the knowledge of the fixture geometry to avoid possible collision and the



knowledge of the operational motion. This leads us to establish a
sequence of crucial control knot points in terms of three-dimensional
cartesian parametric coordinates (x(t), y(t), z(t)). From these knots, a
trajectory for the robot may be generated. This trajectory yields
information about position, velocity, and acceleration. It is necessary to
supply instantaneous information about position, velocity, and
acceleration of the end effector along the path for the feedforward control
system, because the controller must know the exact position of all robot
joints at all times.

Mathematically, the trajectory should be continuous tnrough the
second derivative providing continuous position, velocity, and
acceleration functions for the end effector path. We define the boundary
conditions of the trajectory, specifying velocity and acceleration at the
trajectory endpoints to be zero. The trajectory is generated by using a

B-spline function shaped by the sequence of control knot points.



Il. REVIEW OF LITERATURE

This thesis is particularly indebted to the research of Ho and Cook
Cook” in the application of spline functions to robot trajectory generation.
Their work describes how cubic spline functions may represent both the
trajectory of the tool-tip of the manipulator hand in three-space and the
trajectories of the manipulator joints in time. Mathematically, the cubic
spline curve is continuous through the second derivative providing
continuous velocity and acceleration functions for the end-effector
traveling along its trajectory path. The boundary conditions for liftoff
and setdown of the end-effector are accommodated. Their approach offers
flexibility, computational efficiency, and a compact representation of the
path.

Schoenberg introduced B-Splines in his paper On Spline
Distributions and their Limits: The Polya Distributions. J Substantial
research in the area of B-Splines has been conducted by DeBoor,
Mansfield, Cox, and Riesenfield. DeBoor and others have proposed a
recursive definition of the B-Spline basis rather than the divided
difference formulation formulation of the B-Spline basis suggested by
Schoenberg. The recursive evaluation of B-Splines is well conditioned,
efficient and needs no adjustments in the case of coincident knots. The
condition of the B-Spline basis will increase exponentially with the order.
Riesenfield contributed a comparison of B-Spline and Bezier curves for

graphics applications in his doctoral dissertation.”™



I1l. RESULTS

A B-Spline curve is a parametric B-Spline approximation to the
polygon defined by the Aj vertices. On the following pages the
differentiation of the B-Spline function definition will be presented. This
is significant in the fact that the velocity and acceleration vectors must
provide take-off and set-down' values of zero. As the derivation
suggests, B-Splines can be used effectively to control the robot
manipulator in its movements throughout three-space.

Figures 1 through 18 show a sample B-Spline generated trajectory
path. They show a profile in three-space of position, velocity, and
acceleration. Also shown is the position of the tool-tip along each axis at

any point in the path.



POSITION VECTOR

where

n is the number of defining polygon vertices minus one
k is the order of the curve
t is the parameter, varying from 0 to tmax

Aj are the n+1 defining polygon vertices

Ni, k(t) = ((t-xiINi,k-1(t)) 7 (xi*k-rxi)

((VKk-tINM,k-1(t)) 7 ‘V k "W

N-i,l’(t) ={1if X, <= t < X

{ 0 otherwise

x.i are the elements of a knot vector



POSITION VECTOR - The jth Derivative:

PN@® =(k-D...(k-1DZA.(G) N_. |

(t)

where
AI(0>:A'I
A.(J) = (A‘j'l)—A..-]1 / (Xi+k-j'_X'i)
P(1)(t) =(k-1)ZA.(1) Nj k I (1)
where
AL = (ArA D) L BG4y eX))

P(2)(t) = (k-1)(k-2)ZAj(2) N. k_2(t)

where

Ai‘2> = (Ai(l> _i'-afl. <> /<*

i4k-2 %))

v 1 >0



VELOCITY VECTOR - At t = O0:
P(1)(t) = (k-1)ZAj(1)Nj k 1 (t)

where

1
A a7 SIS

lim P(1)(t) =lim (k-1)IA.(1)N. . .(t)
t+0 tr:0 1 1,k"

lim P(1)(t) = (k-1)ZA.(1)lim N. . n(t)
0 1 t+0 I'k‘|I

where

lim N. . ,(t) =(lim  t-x.)lim N . () /(x. +

=0 K t>0 t+0 'K ik o0
+ T lim Hlim Ny k() /(X jk-x441)

Note:

Njj(t) ={ 1if x. <=t < xj+1

{ 0 otherwise
Therefore, if knots of multiplicity k are chosen
beginning of the knot set, the velocity vector will equal zero.

lim P(1)(t) = (k-1)ZAjI1)((0/(xj™_1-xj)+(0/(xj+kxj+1))
"0

lim P(1)(t) =0

=0

at the
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VELQCITY__VECTOR - At t = typay :
p(L)(t) = (k-niA~V k I(t)

where

(1) _
)= (ArAL D) 1 (X 7%

lim P(1)(t) =Ilim (k-1)XA.(1) Ni k-1 (t) ; where T =t

1>T t-T max
limP(1)() = (k-1)XA.(1)lim N. , ,(t)
t==>T 1 t'7T 1,k
where
lim N. , ,(t) =({im t-x.)Iim N. , 1
t*T ' t*T T K*
Note:

N'i,l’(t) ={ 1if x.i <t <x|.+?

{ 0 otherwise

Therefore, if knots of multiplicity k are chosen at the end of

the knot set, the velocity vector will equal zero.
lim P(1)(t) = (k-1)XAjJ(L)((O/(x]j k_r*j) +(°/(x. +kx. +1))
t>T

lim P(1)(t) =0
t+T
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ACCELERATION VECTOR - At t =0:

P(2)(t) = (k-1)(k-2)IA.(2) N. k2 (t)

where

Airenh= (A=A~ (¥jrk-27%)

Iim P(2)(t) =lim (k-1)(k-2)ZA.(2)N. , -(t)
tNO t+0 1 I k'2
Iim P(2)(t) = (k-1)(k-2)ZA.(2)lim N. . ~(t)
t+0 1 t*0 I,k"Z
where
1!/I\I’(51 N. . 7(t\),k=z(|ti’r8 t-x.)lim N'i,i< _-(t)/(xi+k~? —x.i)

* VK'Ji™ t)[i2° Ni.k-21t)/('W V 1)

Note:

Nj 1(t) ={ 1if Xj <t <xja

{ 0 otherwise
Therefore, if knots of multiplicity k are chosen at the
beginning of the knot set, the acceleration vector will equal zero,

lim P(27(t) = (K-1)XA”2/A((0/(x. Kk_*-x j) +0/( xj+kxj+1))

lim P(2)(t) =0
>0



ACCELERATION VECTOR - Att =t
max

P(2)(t) = (k-1)(k-2)ZA.(2) N.  2(t)

where

@ 1), H
AL - (A.i( )-71\.i_r )y 7/ (XX

lim P(2)(1) =lim (k-1)(k-2)IA.(2)N, T =t v

max

lim P(2)(t) = (k-1)(k-2)ZA.(2)lim N. . _(t)
t-T "t - T I,K-/

where

Iim N. . ~() =({im t-x.)lim N. . ?2(t)/(x.+ _ -X.)
t>T 'z t-T t-T ‘K z -

* OV K'Ij,™ CPIUfl NiLk-2(6)/(V K’V 1)

Note:

N'i, }(t) ={ 1if Xs <t <x|.ﬁ;l-11

{ 0 otherwise
Therefore, if knots of multiplicity k are chosen at the end of

the knot set, the acceleration vector will equal zero.
lim P(2)(t) = (k-12)IAj(2)((0/(x. k.1-xj)+O/(xjHkxj+1))
t-T

lim P(21(t) =0
t-T
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IV. DISCUSSION

The term spline originated during the days before the advent of
computer graphics. When draftsmen were required to draw non-
conventional curves of future workpieces they utilized a flexible wooden
ruler. This wooden ruler, called a spline, would be weighted at points to
trace the outline of the curve. The weights had a protrusion that fitted
into a slot located on the spline. This allowed the spline to rotate around
the fixed weights while holding it in place. Using the theory of
mechanical elasticity one can prove that the resulting curve is a piecewise
cubic polynomial. This polynomial is considered continuous in the first
and second derivatives. These conditions assure that the curve has a
continuous curvature and any discontinuities occur only in the third
derivative. If one directs a mechanical motion along a spline, a
continuous second derivative implies continuous accelerations and
therefore no abrupt changes in force. These two properties make such

curves desirable in many applications.

Ae CUBIC SPLINES

In general a mathematical spline is a piecewise polynomial of degree
K. The continuity of derivatives of order K - 1 of the spline occur at the
common joints between the segments. Thus, for example, the cubic spline
has second-order continuity at the joints of the segments. Piecewise
splines of low degree are usually more useful for forming a curve through
a series of points. The wuse of low-degree polynomials reduces the
computational requirements and reduces numerical instabilities that arise

with higher order curves. Since low-degree polynomials cannot span an
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arbitrary series of points, adjacent polynomial segments are needed.
Based on these considerations and the analogy of the physical spline, a
frequent technique is to use a series of cubic splines with each segment
spanning only two points. Further the cubic spline is advantageous since
it is the lowest degree space curve which allows a point of inflection and
has the ability to twist through space.

A summary of the positive aspects regarding cubic splines include:
The take-off and set-down positions of the velocity and and acceleration
curves can be set to zero. As one can plainly see, this is useful in the
generation of velocity and acceleration curves in robot trajectory paths.
The user of such an algorithm can control the generated path to a much
higher degree than some of the other path trajectory schemes. Also, the
use of cubic splines allows an optimality in describing the shortest curve
that passes through the control knots (as seen in Ho and Cook).

A negative aspect: Due to the global nature of the curve generated
by the cubic spline method, the entire curve must be recalculated even
when one only wishes to change a small portion of the robot path
trajectory. Another negative aspect: adjacent polynomial segments are

required as points are added to the curve.

As noted in Ho and Cook, cubic splines have been utilized in the
creation of robot trajectory paths. In that research it was determined

that continuous trajectories could be calculated with respect to position,

velocity and acceleration.

B. B-SPLINES

B-Splines are a choice alternative to the use of cubic splines in the

generation of robot trajectory paths. The B-Spline approach to trajectory
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path generation is easy to implement and computationally efficient. The
shape of the curve is easily modified by the user who may add or delete
knots. B-Splines allow the user to generate a trajectory path that does
not have to be recalculated in totem. As one wishes to alter a small
portion of the curve, only that portion of the curve that is to be changed
must be recalculated. This is possible because B-Spline curves are
iocally defined, thus the computation depends on the degree of the curve
and not the number of knots. Multiple vertices allow interpolation and
cusps and B-Spline curves are variation-diminishing. The
differentiability is determined by the degree of the curve. This allows
one to specify the velocity and acceleration at the ends of the path.

Thus B-Spline curves provide the user with the advantages of the
cubic spline without the problems created by changing a portion of the
curve. B-Spline curves also allow the user to create a trajectory by
defining the vertices of an open polygon. To change the trajectory so
that the curve will bend away from an object, the user may add an
additional vertice to the open polygon. The generated curve will then
bend towards the new vertice while avoiding a particular 'object'. This
same objective (of bending away ) can be achieved by adding weight to a
particular vertice (giving the knot associated with the vertice a
multiplicity of two or more).

Robot trajectory paths generated utilizing the B-Spline function
definition are a wuseful way to provide control motion for the robot
manipulator. Such curves can be recalculated locally and efficiently.
Also they provide a methodology for collision avoidance when an object
may be found in the manipulator's work envelope. Curves generated by
the B-Spline function definition will provide the control system of the

robot with optimal control motions with a minimum of effort.
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V. CONCLUSION

Spline function curve fitting techniques to model trajectory paths
precisely through controlling knot points have been demonstrated by Cook
and Ho”™. In this paper, a method of generating optimum trajectory models
for for robot manipulators was developed through the use of B-spline
curve functions. These functions provide the robot controller with a
computationally efficient (and easy to implement) method of generating
paths for the end effector.

B-spline curves are locally defined which greatly reduces the
computational cost since any changes to the curve will only have to be
calculated for that part of the curve and not the entire curve. The local
definition enhances the ability to quickly modify a curve because
adjusting the number and location of knots has a local effect on the
curve, not a global effect on the entire curve. Thus, B-spline curve
generation techniques are very useful in the creation of optimum paths for

the end effector of a robot manipulator.
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