46 research outputs found

    The Design and Realization of a Sensitive Walking Platform

    Get PDF
    Legged locomotion provides robots with the capability of adapting to different terrain conditions. General complex terrain traversal methodologies solely rely on proprioception which readily leads to instability under dynamical situations. Biological legged locomotion utilizes somatosensory feedback to sense the real-time interaction of the feet with ground to enhance stability. Nevertheless, limited attention has been given to sensing the feet-terrain interaction in robotics. This project introduces a paradigm shift in robotic walking called sensitive walking realized through the development of a compliant bipedal platform. Sensitive walking extends upon the success of sensitive manipulation which utilizes tactile feedback to localize an object to grasp, determine an appropriate manipulation configuration, and constantly adapts to maintain grasp stability. Based on the same concepts of sensitive manipulation, sensitive walking utilizes podotactile feedback to enhance real-time walking stability by effectively adapting to variations in the terrain. Adapting legged robotic platforms to sensitive walking is not as simple as attaching any tactile sensor to the feet of a robot. The sensors and the limbs need to have specific characteristics that support the implementation of the algorithms and allow the biped to safely come in contact with the terrain and detect the interaction forces. The challenges in handling the synergy of hardware and sensor design, and fabrication in a podotactile-based sensitive walking robot are addressed. The bipedal platform provides contact compliance through 12 series elastic actuators and contains 190 highly flexible tactile sensors capable of sensing forces at any incident angle. Sensitive walking algorithms are provided to handle multi-legged locomotion challenges including stairs and irregular terrain

    Climbing and Walking Robots

    Get PDF
    Nowadays robotics is one of the most dynamic fields of scientific researches. The shift of robotics researches from manufacturing to services applications is clear. During the last decades interest in studying climbing and walking robots has been increased. This increasing interest has been in many areas that most important ones of them are: mechanics, electronics, medical engineering, cybernetics, controls, and computers. Today’s climbing and walking robots are a combination of manipulative, perceptive, communicative, and cognitive abilities and they are capable of performing many tasks in industrial and non- industrial environments. Surveillance, planetary exploration, emergence rescue operations, reconnaissance, petrochemical applications, construction, entertainment, personal services, intervention in severe environments, transportation, medical and etc are some applications from a very diverse application fields of climbing and walking robots. By great progress in this area of robotics it is anticipated that next generation climbing and walking robots will enhance lives and will change the way the human works, thinks and makes decisions. This book presents the state of the art achievments, recent developments, applications and future challenges of climbing and walking robots. These are presented in 24 chapters by authors throughtot the world The book serves as a reference especially for the researchers who are interested in mobile robots. It also is useful for industrial engineers and graduate students in advanced study

    An Overview of Legged Robots

    Get PDF
    The objective of this paper is to present the evolution and the state-of-theart in the area of legged locomotion systems. In a first phase different possibilities for mobile robots are discussed, namely the case of artificial legged locomotion systems, while emphasizing their advantages and limitations. In a second phase an historical overview of the evolution of these systems is presented, bearing in mind several particular cases often considered as milestones on the technological and scientific progress. After this historical timeline, some of the present day systems are examined and their performance is analyzed. In a third phase are pointed out the major areas for research and development that are presently being followed in the construction of legged robots. Finally, some of the problems still unsolved, that remain defying robotics research, are also addressed.N/

    Applying Improve Differential Evolution Algorithm for Solving Gait Generation Problem of Humanoid Robots

    Get PDF
    This chapter addresses an approach to generate 3D gait for humanoid robots. The proposed method considers gait generation matter as optimization problem with constraints. Firstly, trigonometric function is used to produce trial gait data for conducting simulation. By collecting the result, we build an approximation model to predict final status of the robot in locomotion, and construct optimization problem with constraints. In next step, we apply an improve differential evolution algorithm with Gauss distribution for solving optimization problem and achieve better gait data for the robot. This approach is validated using Kondo robot in a simulated dynamic environment. The 3D gait of the robot is compared to human in walk

    Bipedal humanoid robot control by fuzzy adjustment of the reference walking plane

    Get PDF
    The two-legged humanoid structure has advantages for an assistive robot in the human living and working environment. A bipedal humanoid robot can avoid typical obstacles at homes and offices, reach consoles and appliances designed for human use and can be carried in human transport vehicles. Also, it is speculated that the absorption of robots in the human shape into the human society can be easier than that of other artificial forms. However, the control of bipedal walk is a challenge. Walking performance on solely even floor is not satisfactory. The complications of obtaining a balanced walk are dramatically more pronounced on uneven surfaces like inclined planes, which are quite commonly encountered in human surroundings. The difficulties lie in a variety of tasks ranging from sensor and data fusion to the design of adaptation systems which respond to changing surface conditions. This thesis presents a study on bipedal walk on inclined planes with changing slopes. A Zero Moment Point (ZMP) based gait synthesis technique is employed. The pitch angle reference for the foot sole plane −as expressed in a coordinate frame attached at the robot body − is adjusted online by a fuzzy logic system to adapt to different walking surface slopes. Average ankle pitch torques and the average value of the body pitch angle, computed over a history of a predetermined number of sampling instants, are used as the inputs to this system. The proposed control method is tested via walking experiments with the 29 degreesof- freedom (DOF) human-sized full-body humanoid robot SURALP (Sabanci University Robotics Research Laboratory Platform). Experiments are performed on even floor and inclined planes with different slopes. The results indicate that the approach presented is successful in enabling the robot to stably enter, ascend and leave inclined planes with 15 percent (8.5 degrees) grade. The thesis starts with a terminology section on bipedal walking and introduces a number of successful humanoid robot projects. A survey of control techniques for the walk on uneven surfaces is presented. The design and construction of the experimental robotic platform SURALP is discussed with the mechanical, electronic, walking reference generation and control aspects. The fuzzy reference adjustment system proposed for the walk on inclined planes is detailed and experimental results are presented

    Stabilization of bipedal walking based on compliance control

    Get PDF
    The embodiment of physical compliance in humanoid robots, inspired by biology, improves the robustness of locomotion in unknown environments. The mechanical implementation using elastic materials demands a further combination together with controlled compliance to make the intrinsic compliance more effective. We hereby present an active compliance control to stabilize the humanoid robots for standing and walking tasks. Our actively controlled compliance is achieved via admittance control using closed-loop feedback of the six axis force/torque sensors in the feet. The modeling and theoretical formulation are presented, followed by the simulation study. Further, the control algorithms were validated on a real humanoid robot COMAN with inherent compliance. A series of experimental comparisons were studied, including standing balancing against impacts, straight walking, and omni-directional walking, to demonstrate the necessity and the effectiveness of applying controlled compliance on the basis of physical elasticity to enhance compliant foot-ground interaction for the successful locomotion. All data from simulations and experiments related with the proposed controller and the performance are presented, analyzed, and discussed

    Bio-inspired vertebral column, compliance and semi-passive dynamics in a lightweight robot

    Get PDF
    International audienceThis paper presents the humanoid robot Acroban. We study two main issues: 1) Compliance and semi-passive dynamics for locomotion of humanoid robots regarding robustness against unknown external perturbations; 2) The advantages of a bio-inspired multi-articulated vertebral column. We combine mechatronic compliance with structural compliance due to the use of flexible materials. And we explore how these capabilities allow to enforce morphological computation in the design of robust dynamic locomotion. We also investigate the use of compliance to design semi-passive motor primitives using the torso and the arms as a system of accumulation/release of potential/kinetic energy
    corecore