51 research outputs found

    Algorithmes pour la diagonalisation conjointe de tenseurs sans contrainte unitaire. Application à la séparation MIMO de sources de télécommunications numériques

    Get PDF
    This thesis develops joint diagonalization of matrices and third-order tensors methods for MIMO source separation in the field of digital telecommunications. After a state of the art, the motivations and the objectives are presented. Then the joint diagonalisation and the blind source separation issues are defined and a link between both fields is established. Thereafter, five Jacobi-like iterative algorithms based on an LU parameterization are developed. For each of them, we propose to derive the diagonalization matrix by optimizing an inverse criterion. Two ways are investigated : minimizing the criterion in a direct way or assuming that the elements from the considered set are almost diagonal. Regarding the parameters derivation, two strategies are implemented : one consists in estimating each parameter independently, the other consists in the independent derivation of couple of well-chosen parameters. Hence, we propose three algorithms for the joint diagonalization of symmetric complex matrices or hermitian ones. The first one relies on searching for the roots of the criterion derivative, the second one relies on a minor eigenvector research and the last one relies on a gradient descent method enhanced by computation of the optimal adaptation step. In the framework of joint diagonalization of symmetric, INDSCAL or non symmetric third-order tensors, we have developed two algorithms. For each of them, the parameters derivation is done by computing the roots of the considered criterion derivative. We also show the link between the joint diagonalization of a third-order tensor set and the canonical polyadic decomposition of a fourth-order tensor. We confront both methods through numerical simulations. The good behavior of the proposed algorithms is illustrated by means of computing simulations. Finally, they are applied to the source separation of digital telecommunication signals.Cette thèse développe des méthodes de diagonalisation conjointe de matrices et de tenseurs d’ordre trois, et son application à la séparation MIMO de sources de télécommunications numériques. Après un état, les motivations et objectifs de la thèse sont présentés. Les problèmes de la diagonalisation conjointe et de la séparation de sources sont définis et un lien entre ces deux domaines est établi. Par la suite, plusieurs algorithmes itératifs de type Jacobi reposant sur une paramétrisation LU sont développés. Pour chacun des algorithmes, on propose de déterminer les matrices permettant de diagonaliser l’ensemble considéré par l’optimisation d’un critère inverse. On envisage la minimisation du critère selon deux approches : la première, de manière directe, et la seconde, en supposant que les éléments de l’ensemble considéré sont quasiment diagonaux. En ce qui concerne l’estimation des différents paramètres du problème, deux stratégies sont mises en œuvre : l’une consistant à estimer tous les paramètres indépendamment et l’autre reposant sur l’estimation indépendante de couples de paramètres spécifiquement choisis. Ainsi, nous proposons trois algorithmes pour la diagonalisation conjointe de matrices complexes symétriques ou hermitiennes et deux algorithmes pour la diagonalisation conjointe d’ensembles de tenseurs symétriques ou non-symétriques ou admettant une décomposition INDSCAL. Nous montrons aussi le lien existant entre la diagonalisation conjointe de tenseurs d’ordre trois et la décomposition canonique polyadique d’un tenseur d’ordre quatre, puis nous comparons les algorithmes développés à différentes méthodes de la littérature. Le bon comportement des algorithmes proposés est illustré au moyen de simulations numériques. Puis, ils sont validés dans le cadre de la séparation de sources de télécommunications numériques

    Das Spektrum zeitverzögerter Differentialgleichungen: numerische Methoden, Stabilität und Störungstheorie

    Get PDF
    Three types of problems related to delay-differential equations (DDEs) are treated in this thesis. We first consider the problem of numerically computing the eigenvalues of a DDE. Here, we present an application of a projection method for nonlinear eigenvalue problems (NLEPs). We compare this projection method with other methods, suggested in the literature, and used in software packages. The projection method is computationally superior to all of the other tested method for the presented large-scale examples. We give interpretations of methods based on discretizations in terms of rational approximations. Some notes regarding a special case where the spectrum can be explicitly expressed with a formula containing a matrix version of the are Lambert W function are presented. We clarify its range of applicability, and, by counter-example, show that it does not hold in general. The second part of this thesis is related to exact stability conditions of the DDE. All those combinations of the delays such that there is a purely imaginary eigenvalue (called critical delays) are parameterized. In general, an evaluation of the parameterization map consists of solving a quadratic eigenvalue problem of squared dimension. We show how the computational cost for one evaluation of the map can be reduced by exploiting a relation to a Lyapunov equation. The third and last part of this thesis is about generalizations of perturbation results for NLEPs. A sensitivity formula for the movement of the eigenvalues extends to NLEPs. We introduce a fixed point form for the NLEP, and show that some methods in the literature can be interpreted as set-valued fixed point iterations for which asymptotic convergence can be established. We also show how the Bauer-Fike theorem can be generalized to the NLEP under special conditions.In dieser Arbeit werden drei verschiedene Problemklassen im Bezug zu delay-differential equations (DDEs) behandelt. Als erstes gehen wir auf die Berechnung der Eigenwerte von DDEs ein. In dieser Arbeit wenden wir eine Projektionsmethode für nichtlineare Eigenwertprobleme (NLEPe) an. Wir vergleichen diese mit anderen bereits bekannten Verfahren, wobei die hier vorgestellte Methode bedeutend bessere numerische Eigenschaften für die verwendeten Beispiele hat. Zusätzlich treffen wir Aussagen über Diskretisierungsmethoden zur rationalen Approximation. Desweiteren betrachten wir einen Spezialfall, bei welchem das Spektrum explizit mit Hilfe einer Matrix-Version der Lambert W-Funktion dargestellt werden kann. Für diese Formel bestimmen wir einen möglichen Anwendungsbereich. Im zweiten Teil der Arbeit werden exakte Stabilitätsbedingungen von DDEs betrachtet. Die Menge der Delays, für welche die DDE einen imaginären Eigenwert hat (sogenannte kritische Delays), wird parameterisiert. Im Allgemeinen ist zur Auswertung der Parametrisierungsabbildung das Lösen eines quadratischen Eigenwertproblems nötig, dessen Größe dem Quadrat der Dimension der DDE entspricht. Wir zeigen wie der Rechenaufwand durch Ausnutzung einer Lyapunov-Gleichung reduziert werden kann. Der letzte Teil dieser Arbeit befasst sich mit der Verallgemeinerung der Störungstheorie auf NLEPe. Unter anderem lässt sich eine Sensitivitätsformel auf NLEPe erweitern. Desweiteren wird eine Fixpunktform für NLEPe vorgestellt, und gezeigt dass einige Methoden aus der Literatur als mengenwertige Fixpunktiterationen dargestellt werden können, für welche wir asymptotische Konvergenz feststellen. Wir zeigen zusätzlich, dass das Bauer-Fike Theorem unter bestimmten Bedingungen auf NLEPe verallgemeinert werden kann

    System- and Data-Driven Methods and Algorithms

    Get PDF
    An increasing complexity of models used to predict real-world systems leads to the need for algorithms to replace complex models with far simpler ones, while preserving the accuracy of the predictions. This two-volume handbook covers methods as well as applications. This first volume focuses on real-time control theory, data assimilation, real-time visualization, high-dimensional state spaces and interaction of different reduction techniques

    Auditory group theory with applications to statistical basis methods for structured audio

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Program in Media Arts & Sciences, 1998.Includes bibliographical references (p. 161-172).Michael Anthony Casey.Ph.D

    Exploiting quaternions to support expressive interactive character motion

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2003.Includes bibliographical references (p. 261-266).A real-time motion engine for interactive synthetic characters, either virtual or physical, needs to allow expressivity and interactivity of motion in order to maintain the illusion of life. Canned animation examples from an animator or motion capture device are expressive, but not very interactive, often leading to repetition. Conversely, numerical procedural techniques such as Inverse Kinematics (IK) tend to be very interactive, but often appear "robotic" and require parameter tweaking by hand. We argue for the use of hybrid example-based learning techniques to incorporate expert knowledge of character motion in the form of animations into an interactive procedural engine. Example-based techniques require appropriate distance metrics, statistical analysis and synthesis primitives, along with the ability to blend examples; furthermore, many machine learning techniques are sensitive to the choice of representation. We show that a quaternion representation of the orientation of a joint affords us computational efficiency along with mathematical robustness, such as avoiding gimbal lock in the Euler angle representation. We show how to use quaternions and their exponential mappings to create distance metrics on character poses, perform simple statistical analysis of joint motion limits and blend multiple poses together. We demonstrate these joint primitives on three techniques which we consider useful for combining animation knowledge with procedural algorithms: 1) pose blending, 2) joint motion statistics and 3) expressive IK. We discuss several projects designed using these primitives and offer insights for programmers building real-time motion engines for expressive interactive characters.by Michael Patrick Johnson.Ph.D

    New Directions for Contact Integrators

    Get PDF
    Contact integrators are a family of geometric numerical schemes which guarantee the conservation of the contact structure. In this work we review the construction of both the variational and Hamiltonian versions of these methods. We illustrate some of the advantages of geometric integration in the dissipative setting by focusing on models inspired by recent studies in celestial mechanics and cosmology.Comment: To appear as Chapter 24 in GSI 2021, Springer LNCS 1282

    Faster variational quantum algorithms with quantum kernel-based surrogate models

    Get PDF
    We present a new optimization strategy for small-to-intermediate scale variational quantum algorithms (VQAs) on noisy near-term quantum processors which uses a Gaussian process surrogate model equipped with a classically-evaluated quantum kernel. VQAs are typically optimized using gradient-based approaches however these are difficult to implement on current noisy devices, requiring large numbers of objective function evaluations. Our approach shifts this computational burden onto the classical optimizer component of these hybrid algorithms, greatly reducing the number of quantum circuit evaluations required from the quantum processor. We focus on the variational quantum eigensolver (VQE) algorithm and demonstrate numerically that these surrogate models are particularly well suited to the algorithm's objective function. Next, we apply these models to both noiseless and noisy VQE simulations and show that they exhibit better performance than widely-used classical kernels in terms of final accuracy and convergence speed. Compared to the typically-used stochastic gradient-descent approach to VQAs, our quantum kernel-based approach is found to consistently achieve significantly higher accuracy while requiring less than an order of magnitude fewer quantum circuit executions. We analyze the performance of the quantum kernel-based models in terms of the kernels' induced feature spaces and explicitly construct their feature maps. Finally, we describe a scheme for approximating the best-performing quantum kernel using a classically-efficient tensor network representation of its input state and so provide a pathway for scaling this strategy to larger systems
    • …
    corecore