
Exploiting Quaternions to Support Expressive Interactive

Character Motion

by

Michael Patrick Johnson

B.S., Computer Science, Massachusetts Institute of Technology, 1993.
M.S., Media Arts and Sciences, Massachusetts Institute of Technology,

1995.

Submitted to the Program in Media Arts and Sciences
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

February 2003

@ Massachusetts Institute of Technology 2003. All rights reserved.

A uthor ;A

Program in Media Arts and Sciences
. October 20, 2002

Certified by c........................ g
Bruce M. Bl1umbe

Asahi Broadcasting Corporation Career Development Associate Professor
of Media Arts and Sciences

Thesis Supervisor

Accepted by ~
Andrew B. Lippman

Chairman, Departmental Committee on Graduate Students

MASSACHUSETTS INSTITUTE
OF TECHNOLOGY

IROTCHMAY 1 3 2003

LIBRARIES

7

Exploiting Quaternions to Support Expressive Interactive Character
Motion

by
Michael Patrick Johnson

Submitted to the Program in Media Arts and Sciences
on October 20, 2002, in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

Abstract

A real-time motion engine for interactive synthetic characters, either virtual or physical,
needs to allow expressivity and interactivity of motion in order to maintain the illusion of
life. Canned animation examples from an animator or motion capture device are expres-
sive, but not very interactive, often leading to repetition. Conversely, numerical procedural
techniques such as Inverse Kinematics (IK) tend to be very interactive, but often appear
"robotic" and require parameter tweaking by hand. We argue for the use of hybrid example-
based learning techniques to incorporate expert knowledge of character motion in the form
of animations into an interactive procedural engine.

Example-based techniques require appropriate distance metrics, statistical analysis and
synthesis primitives, along with the ability to blend examples; furthermore, many machine
learning techniques are sensitive to the choice of representation. We show that a quaternion
representation of the orientation of a joint affords us computational efficiency along with
mathematical robustness, such as avoiding gimbal lock in the Euler angle representation.
We show how to use quaternions and their exponential mappings to create distance metrics
on character poses, perform simple statistical analysis of joint motion limits and blend
multiple poses together.

We demonstrate these joint primitives on three techniques which we consider useful
for combining animation knowledge with procedural algorithms: 1) pose blending, 2) joint
motion statistics and 3) expressive IK. We discuss several projects designed using these
primitives and offer insights for programmers building real-time motion engines for ex-
pressive interactive characters.

Thesis Supervisor: Bruce M. Blumberg
Title: Asahi Broadcasting Corporation Career Development Associate Professor of Media
Arts and Sciences

4

Doctoral Dissertation Committee

Thesis Supervisor:
Bruce M. Blumberg

Asahi Broadcasting Corporation Career Development
Associate Professor of Media Arts and Sciences

Program in Media Arts and Sciences, The Media Lab
Massachusetts Institute of Technology

Thesis Reader:
Cynthia Breazeal

LG Career Development Assistant Professor of Media Arts and Sciences
Program in Media Arts and Sciences, The Media Lab

Massachusetts Institute of Technology

Thesis Reader:
Andrew J. Hanson

Professor of Computer Science
Department of Computer Science

Indiana University

6

To my parents,
for their belief love and support throughout my 13 years at MIT

8

Acknowledgements

This thesis would not have been possible without the help of many friends, colleagues and
mentors over my thirteen years at MIT.

I cannot thank Bruce Blumberg enough for being friend, office-mate, mentor, advisor
and idea sounding-board for the last seven years. He taught me much of what I know about
character animation and animal behavior, and let me investigate my more bizarre ideas like
filling stuffed animals with sensors and sticking lasers into gloves. He also knew when to
tether me back down to the practical when I got too far into the theoretical clouds. It has
been a great pleasure working with him; I look forward to many more years of friendship
and intellectual stimulation.

Next, I'd like to thank my two committee members, Cynthia Breazeal and Andrew
Hanson for their patience and support and making this thesis much better than it could
have been. Cynthia has been instrumental in my thinking through of expressive inverse
kinematics and the special problems associated with physical characters. Andy has been
wonderfully patient and helpful as I boned up on continuous group theory, as well as a great
source of inspiration for visualizing quaternions and seeking intuitive, visual understand-
ings of the underlying mathematics. It's been an honor to work with both of you.

There are so many people I have had the pleasure of working with at the Media Lab
since 1990 that I cannot possible name them all. In particular, I'd like to thank my close
friends: Chris Wren, who I met as a UROP when I got to the Lab in 1990 and who has
been a friend, room-mate, colleague and all-around great guy to know; Andy Wilson, for
many stimulating discussions on interface and animation, as well as help on the statistical
portion of this thesis and some fun collaborations; Bill Tomlinson, who has been a great
friend and idea source since we first watched the Chicago Bulls and both said "Hey, Kukoc
looks like Steve Buscemi!" at the same time; Jed Wahl for hardcore gaming nights and
enlightening discussions of them; Thad Starner and Trevor Darrell, who taught me how
to be hard-core and have fun doing it; The Autonomous Agents Crew, in particular Brad
Rhodes, Lenny Foner, Alan Wexelblat, Nelson Minar, and Agnieszka Meyro, for friend-
ship, great discussions and making my first years here a pleasure; Amy Bruckman, for
great discussions of interactive narrative and being one of the few who never hesitated to
tell me when I was being a moron, but in the sweetest way; Ali Azarbayejani, for being
one of the smartest guys I know and the best person to hang at SIGGRAPH with; Tony
Jebara for many conversations on calculus of manifolds; Michael Boyle Johnson ("Wave")
for not forcing me to be called "Particle" when I got to the Lab, for many great conversa-
tions on character animation and for teaching me how to get into SIGGRAPH parties; Bill
Butera, Yuri Ivanov, Brygg Ullmer, John Underkoffler, Wendy Plesniak, Ravi Pappu and
Ari Benbasat for keeping me going when it was looking grim and being great to hang out

with.
I'd also like to thank my other mentors since I got to MIT, in particular: Dave Koons,

for my first UROP position at the Media Lab where I discovered gimbal lock on a VPL

Dataglove; my undergrad advisor and UROP supervisor Marc Raibert for introducing me

to computer graphics, physically-based modeling, robotics and for explaining gimbal lock;
my Bachelor's advisor Chris Atkeson for getting me into motor learning and showing me
that science can involve toys; My UROP supervisor Andrew Moore for teaching me genetic
algorithms and reinforcement learning, my first publication and making me a scientist;
my Master's advisor Pattie Maes for her wisdom, brilliance, advice, and friendship; Neil
Gershenfeld for teaching me much of the physics and advanced numerical techniques I
know; Aaron Bobick, Joe Paradiso and Hiroshi Ishii for taking an interest in my work and
making me think differntly.

None of this work would have been possible without the phantasmagoric menagerie
of Synthetic Characters grad students since the beginning Beaver Days: Matt Berlin, Rob
Burke, Marc Downie, Scott Eaton, Matt Grimes, Michal Hlavac, Damian Isla, Yuri Ivanov,
Chris Kline, Ben Resner, Ken Russell, Bill Tomlinson, and Song-Yee Yoon. Also, I'd like to
thank the undergrads and animators that made this possible: Jed Wahl, Adolf Wong, Geoff
Beatty, and Jesse Gray. Special thanks to Marc Downie for introducing me to Geometric
Algebra and being a mathematical sounding board. Also thanks to our assistant Aileen
Kawabe for helping me tie up all the logistic loose ends and being very cool to hang out
with on late night projects.

Many other friends outside the lab have been great sources of conversation, inspiration
and motivation: The Thirsty Magic gaming crew, especially Brian & Jen, Jeff & Dierdre,
James and Derek; my long-time friend and roommate Jin Choi for all the late-night gaming
nights and support; my friends at the CBC.

Very special thanks go to Linda Peterson, the Guardian Angel and Den Mother of the
Media Lab graduate students, who went beyond the call of duty to keep me on track all the
way through from the beginning of my Media Lab Experience, from my Master's through
my General Exams and finally to the end of my Phd.

Finally, I would like to especially thank my mom, dad and two brothers, who have been
extremely supportive and loving throughout my many years at MIT. I could not have done
it without you.

Contents

I Imaginary

1 Introduction
1.1 Principles and Thesis Statement
1.2 Scope .
1.3 Related Work Areas and Contributions

1.3.1 Real-time Motion Engines
1.3.2 Multi-target pose interpolation
1.3.3 Example-Based Function Approximation .
1.3.4 Orientation Statistics
1.3.5 Posture Statistics
1.3.6 Real-time Inverse Kinematics

1.4 Thesis Roadmap
1.5 Sum m ary .

2 Approach: Example-Based Procedural Animation
2.1 Interactivity, Expressivity and the Illusion of Life

27
. 30
. 32
. 32
. 32
. 33
. 34
. 34
. 35
. 35
. 35
. 37

39
. 39

2.2 Exploiting an Animator's Knowledge of Expressive Character Motion
2.2.1 Pose Blending: Multi-Target Interpolation/Extrapolation . . .
2.2.2 Statistical Analysis and Synthesis of Joint Motion
2.2.3 Expressive Inverse Kinematics

2.3 Sum m ary .

41
42
44
45
46

3 Rotation, Orientation and Quaternion Background 49
3.1 Rotation, Orientation and Euler's Theorem 50

3.1.1 Rotation versus Orientation . 50
3.1.2 Euler's Theorem and Distance Metrics 50
3.1.3 Summary . 52

3.2 Representing Rotations . 52
3.2.1 Coordinate Matrix . 53
3.2.2 Axis-Angle . 55
3.2.3 Euler Angles . 57
3.2.4 Representation Summary . 62

3.3 Quaternions . 62
3.3.1 Quaternion Hypercomplex Algebra 63
3.3.2 Polar Form and Powers . 67

3.3.3 Topological Structure of Unit Quaternions: Hypersphere S3 69
3.3.4 Exponential Map and Tangent Space 69
3.3.5 Basic Quaternion Calculus and Angular Velocity 72
3.3.6 Interpolation, Slerp and Splines 73
3.3.7 Advantages . 74
3.3.8 Disadvantages . 75
3.3.9 Recommended, Related and Other reading 76

3.4 Quaternion Algebra and Geometry Summary 77

4 Statistical Kinematic Joint Models 81
4.1 Motivation for Statistical Kinematic Model 82
4.2 Motivation for a Quaternion Representation of Character Joints 84

4.2.1 Properties . 84
4.2.2 Special Orthogonal Matrices SO(3) 86
4.2.3 Euler Angles . 87
4.2.4 Quaternions . 89

4.3 Summary of Statistical Kinematic Model Motivation 90

II Real 92

5 Quaternions for Skeletal Animation 93
5.1 Articulated Skeletal Model . 94

5.1.1 Simplifying Assumptions . 95
5.1.2 Skeletal Tree Structure . 95
5.1.3 Root Joints are Special . 96

5.2 Bones, Joints, and Coordinate Frames . 96
5.2.1 Coordinate Frame Terminology 96
5.2.2 Joints and Bone Transformations with Quaternions 97
5.2.3 Open Kinematic Chains and Compound Transformations 99

5.3 Postures, Posture Distance, Motions and Animations 101
5.3.1 Postures . 101
5.3.2 Posture Distance Metric . 102
5.3.3 Motions . 102
5.3.4 Animations . 103

5.4 Summary . 103

6 QuTEM: Statistical Analysis and Synthesis of Joint Motion 105
6.1 QuTEM . 106

6.1.1 Motivation . 106
6.1.2 QuTEM Definition . 108
6.1.3 QuTEM as a Wrapped Gaussian Density 108
6.1.4 Scaled Mode Tangents (SMT), Ellipsoids, and Mahalanobis Distance 111

6.2 QuTEM Parameter Estimation . 112
6.2.1 Estimation of the Mean from Data 114

6.2.2 Hemispherization
6.2.3 Estimation of Unit Quaternion Covariances
6.2.4 Estimating Constraint Radius
6.2.5 Summary of QuTEM Parameter Estimation

6.3 QuTEM Sampling
6.3.1 QuTEM Sampling Algorithm
6.3.2 Singular Data Woes
6.3.3 Summary of Synthesis

6.4 QuTEM Summary

. 118

. 119

. 122

. 122

. 122

. 123

. 123

. 124

. 124

7 Multi-variate Unit Quaternion Interpolation
7.1 Problem Description .

7.1.1 Interpolation and Extrapolation
7.1.2 Vector Space vs. Spherical Interpolation

7.2 Slime: Fixed Tangent Space Quaternion Interpolation
7.2.1 Motivation: Extension of slerp
7.2.2 Slime Algorithm Definition
7.2.3 Slime Properties .
7.2.4 Summary of Slime

7.3 Sasquatch: Moving Tangent Space Quaternion Interpolation .
7.3.1
7.3.2
7.3.3
7.3.4
7.3.5
7.3.6
7.3.7
7.3.8
7.3.9

Spherical Springs Physical Analogy
Spherical Metric
Setting Up the System
Solving the System for Steady State
Sasquatch Algorithm
Interpolation and Extrapolation . .
Convergence Results
Interpolation Visualization
Summary of Sasquatch

7.4 QuRBF's: Quatemion-Valued Radial Basis Functions
7.4.1 Scalar RBF
7.4.2 Vector-Valued RBF
7.4.3 Quatemion-Valued RBF's with Slime . .

7.4.4 Quaternion-Valued RBF's with Sasquatch
7.4.5 Quatemion Inputs

7.5 Summary of Weighted Quaternion Blending

8 Eigenpostures: Principal Component Analysis of Joint Motion Data
8.1 Motivation for Posture Subspace Analysis
8.2 Principal Component Analysis Overview

8.2.1 Mathematical Description
8.2.2 Standard PCA Algorithm Summary

8.3 PCA on Posture .
8.3.1 Eigenposture Algorithm
8.3.2 Projection and Reconstruction

127
127

. . . 128
. . . 129
. . . 129
. . . 129
. . . 130

. . . 130

. . . 136

. . . 137

. . . 138

. . . 139

. . . 139

. . . 141
141
143

. . . 143

. . . 143

. . . 144

. . . 144

. . . 146

. . . 147

. . . 147

. . . 148

. . . 150

. . . 150

153
. . . . 153

. . . . 154

. . . . 154

. . . . 155

. . . . 156

. . . . 156

. . . . 156

.

.

.

.

8.4 Initial Eigenposture Results . 157
8.5 Summary of Eigenpostures....... 157

9 (Toward) Expressive Inverse Kinematics 161
9.1 Approach . 162
9.2 Joint Constraints with the QuTEM . 163

9.2.1 Approach . 163
9.2.2 Goals . 163
9.2.3 Constraint Satisfaction Operator 165
9.2.4 Constraint Projection Operator . 165
9.2.5 Singular Densities . 166
9.2.6 Empirical Results . 167

9.3 Equilibrium Points with the QuTEM . 167
9.4 QuCCD: Quaternion Cyclic Coordinate Descent 169

9.4.1 CCD IK Paradigm . 169
9.4.2 Unconstrained QuCCD Algorithm 172
9.4.3 QuCCD with Constraints . 174

9.5 Mixing Pose Blending and IK . 174
9.6 Adding Expressivity with Subspace Models 175
9.7 Summary of Expressive IK . 175

10 Experimental Results and Application Examples 177
10.1 QuTEM Analysis Results . 177
10.2 Synthesis of New Motion from the QuTEM 180
10.3 Sasquatch Experiments . 181

10.3.1 Monte-Carlo Convergence Trials 181
10.3.2 Reduction to slerp . 182
10.3.3 Attractor Trajectories . 183

10.4 Slime Results . 185
10.4.1 Swamped! . 185
10.4.2 (void*) . 187
10.4.3 Rufus . 190
10.4.4 Duncan the Highland Terrier . 191
10.4.5 Sheep|Dog: Trial by Eire . 192
10.4.6 a-Wolf . 192
10.4.7 Slime Results Summary . 194

10.5 Expressive IK Results . 194
10.6 Results Summary . 195

11 Related Work 197
11.1 Animation Engines . 197

11.1.1 Perlin . 197
11.1.2 Blumberg . 198
11.1.3 R ose . 198
11.1.4 Grassia . 199

11.1.5 Downie: Pose Graph
11.2 Multi-dimensional Quaternion and Pose Blending

11.2.1 Grassia: Nested Slerps
11.2.2 Buss and Filmore: Spherical Weighted Averages
11.2.3 Lee: Orientation Filters

11.3 Joint Rotation Statistical Synthesis
11.3.1 Brand: Style Machines

11.3.2 Pullen and Bregler
11.3.3 Lee: Hierarchical Analysis and Synthesis

11.4 Quaternion Joint Limits
11.4.1 G rassia .
11.4.2 Lee .
11.4.3 Wilhelms and Van Gelder
11.4.4 Herda, Urtason, Fua and Hanson

11.5 Expressive IK .
11.5.1 Blow: Quatemion CCD IK with Joint Limits . .
11.5.2
11.5.3
11.5.4
11.5.5
11.5.6

. 199

. 200

. 200

. 201

. 202

. 202

. 202

. 202

. 203

. 203

. 203

. 203

. 204
. 204
. 204
. 205

Lee: Quaternion IK with Constraints Using Conjugate Gradient .

Grassia: Quaternion IK for Motion Transformation

Hecker: Advanced CCD Extensions

Fod, Mataric and Jenkins: Eigen-movements

D'Souza, Vijayakumar, Schaal and Atkeson: Locally Weighted
Projection Regression for Learning Inverse Kinematics

205
206
206
206

207

11.6 Summary and Recommended Reading . 208

12 Discussion, Future Work and Conclusions
12.1 Discussion .

12.1.1 Pose Metrics
12.1.2 Multi-variate Unit Quatemion Blending

12.1.3 Quaternion Statistics
12.2 Future Work

12.2.1 Dynamics
12.2.2 Joint Limits
12.2.3 QuCCD
12.2.4 Orientation Statistics
12.2.5 Posture Statistics
12.2.6 Expressive IK
12.2.7 Translational Joints

12.3 Conclusions
12.4 Summary of Contributions

A Hermitian, Skew-Hermitian and Unitary Matrices

209
. 209
. 209
. 210
. 211
. 212
. 212
. 212
. 212
. 213
. 213
. 213
. 213
. 214

. 217

219

B Multi-variate (Vector) Gaussian Distributions 221
B.1 Definitions......... 221
B.2 Isoprobability Contours and Ellipsoids.......... 222
B.3 Mahalanobis distance......... 223
B.4 Sampling a Multi-Variate Gaussian Density.. 225
B.5 Recommended Reading.. 226

C Quaternion Numerical Calculus 227
C.1 Solving Quaternion ODE's.. 227
C.2 Embedding Euler Integration with Renormalization 228
C.3 Intrinsic Euler Integration............ 228

D Quaternions: Group Theory, Algebra, Topology, Lie Algebra 233
D .1 Vector Space . 233
D.2 The Rotation Group in R. 234
D.3 Quaternion Theory . 235

D.3.1 Hypercomplex Representation . 235
D.3.2 Vector Space Interpretation of Quaternions 240
D.3.3 Quaternion Curves . 249

D .4 SU (2) . 253
D.4.1 Isomorphism . 253
D.4.2 Pauli Spin Matrices . 254

D.5 Lie Groups and Lie Algebras . 257
D.6 Recommended Reading . 259

List of Tables

3.1 Quaternion Algebra Summary . 78
3.2 Quatemion Algebra Summary II . 79
3.3 Quatemion Algebra Summary III. 80

18

List of Figures

1-1 Virtual and Physical Expressive Interactive Characters. The virtual charac-
ters, developed by Blumberg's Synthetic Characters Group, are (clockwise
from top left): Dobie the learning dog (SIGGRAPH 2002), the Raccoon
from Swamped! (SIGGRAPH 1998), shy Elliot from (void*) (SIGGRAPH
1999), Duncan and sheep from Sheep|Dog (Media Lab Europe Opening,
2000), and two wolf pups from a-Wolf [90] (SIGGRAPH 2001). On the
right are some physical robots which were designed to be expressive. They
are (clockwise from top left): Breazeal's Kismet [13], Leonardo from Stan
Winston Studios (www.stanwinston.com) with skin and without, and the
(unskinned) Public Anenome (SIGGRAPH 2002) by Breazeal's Robotic
Life G roup. 28

1-2 The bones (colored solid) which are animated underly the mesh (grey trans-
parent) skin. Each bone rotates with respect to its parent by a 3D rotation,
making a hierarchical skeletal model with the pelvis at the root 29

2-1 Canned animation clips (motion capture or hand-animated) offer maximal
expressivity since they can be fine-tuned, but minimal interactivity since
they are specific. Procedural methods (such as Inverse Kinematics) are
usually maximally interactive since they offer an algorithmic, general solu-
tion, but tend to be very hard to make expressive. Example-based methods
based on a hybrid of the two techniques offer the best of both worlds. . . . 40

2-2 Blend of two animations, sampled at the same time t but at different hap-
piness values from -0.1 to 1.1. The examples (red boxes) are the original
animations. The frames in between the examples interpolate the posture
according to the level of happiness. The frames outside the interval [0, 1]
extrapolate the examples, making caricatures of the original walks. 42

2-3 Extrapolation and Interpolation. The circles on the axes represent example
animations of a happy, normal, and angry verb. The triangular filled region
(convex hull) of the examples is the interpolation space. A point outside
this space, such as the dark point specifying an angry and happy verb is an
example of extrapolation. By extrapolating well, we can obviate the need

for the animator to increase the size of the interpolation space with a new
example at this point. As the number of axes increase, this gives us an
exponential decrease in necessary examples. 43

3-1 A moving body coordinate system B can represent the orientation of the
body with respect to a known world coordinate system W. We ignore
translational effects for simplicity.. 51

3-2 Euler's theorem states that the angular displacement of any rigid body can
be described as a rotation about some fixed axis (i) by some angle 0 51

3-3 Euler angle illustration: pretend your fingers when held as shown are three
moving orthogonal axes. Any orientation in space can be specified by a
yaw around the thumb followed by a pitch around the middle finger then a
roll around the index finger. 59

3-4 A gimbal consists of three concentric hoops connected by single degree
of freedom pivot joints (each pivot is a physical realization of an Euler
angle) which attach adjacent hoops orthogonally (the outermost black hoop
here is considered the "earth" and is fixed in space and cannot rotate.).
The left image depicts the gimbal in its "zero" position, with the teapot
(colored red to show that it is fixed to the red hoops's coordinate frame
and cannot rotate independently of it) in an "unrotated" position, with the
three hoop pivots orthogonal and corresponding to axes (red is :k, green
is y and blue is z). The middle image illustrates an arbitary rotation of
the teapot and the associated gimbal configuration. The right image shows
the inherent problem with three hoop gimbals and any associated Euler
angle representation - gimbal lock. Here the teapot's nose is pointing
straight up, and two hoops have aligned, removing a degree of freedom.
In this configuration, it is impossible to find a smooth, continuous change
of the gimbal which will result in a rotation around the teapot's local "up"
direction, here shown as a superimposed purple axis. Any attempt to rotate
around the purple axis is impossible from this configuration - the gimbal
is said to be locked since it has lost a degreem of freedom. A real gimbal
with a gyro instead of a teapot would shake itself to pieces if it tried to rotate
around this locked axis - a very real phenomenon in early navigational
systems using Euler angles and real gimbals............ 61

3-5 While walking from his work at Dunsink Observatory to his home in Dublin,
Hamilton realized that he needed a third imaginary unit and was so excited
that he scratched the quaternion algebra equations onto a rock on the bridge
over a canal near the Royal Irish Academy [6]. (Photo credit: Rob Burke
2002) 64

3-6 A depiction of the exponential map. Points in the tangent space are mapped
onto the sphere by the exponential mapping and vice versa by the logarith-
m ic m ap, its inverse. 71

3-7 A depiction of slerp. The two examples are interpolated at constant angu-
lar velocity as the parameter changes with constant speed. The exponential
portion of slerp can be interpreted with the exponential mapping with re-
spect to one example. In this view, a constant speed line in the tangent
space will map to a constant angular velocity curve on the sphere. 74

5-1 The bones (colored solid) which are animated underly the mesh (grey trans-
parent) skin. Each bone rotates with respect to its parent by a 3D rotation,
making a hierarchical skeletal model with the pelvis at the root 94

5-2 An articulated figure can be considered as a tree with joints as edges con-
necting limbs (nodes). The black circle shows the root of the tree, although
any point in the structure could be chosen. 95

5-3 The link transform from a parent bone's coordinate system in a kinematic
chain (Br) to its child (Bi) depicted in 2D. The coordinate system Li (and
associated grey bone) show the zero rotation (basis) configurarion. The
quaternion Qi is the angular displacement from the basis and thus speci-
fies the current orientation of the child bone with respect to the parent's
coordinate system . 98

6-1 A sktech of a bimodal distribution on S3 which exhibits antipodal sym-
metry. Such distributions are valid distributions over SO(3) through the
double-covering. 107

6-2 An abstract depiction of the QuTEM. The mean is the tangent space point,
the ellipse depicts the p Mahalanobis distance constaint surface, and the
axes depict the principal axes of the density and their relative variances
(covariance). 109

6-3 The QuTEM models a spherical distribution by estimating a zero-mean
Gaussian density in the tangent space to the unit quaternion mean. 110

6-4 A sketch of a spherical density on S3 constrained to be zero beyond a cer-
tain distance from the mean. 111

6-5 A three-dimensional visualization of the SMT transformation which turns
ellipses on the hypersphere into ellipsoids in the tangent space at the center
of the ellipse. The left image (a) shows the original spherical ellipse with
its center; the right upper (b) shows the ellipse in the tangent space by using
the exponential map at the center point (notice the center maps to the origin
in the tangent space); the bottom right image (c) shows the result when the
space is rescaled by the axis lengths on the ellipse to form a circle in a
warped tangent space. Notice all true objects are one dimension higher. . . 113

6-6 Points sampled randomly on an ellipsoid around the origin in R3 (left) and
3D projection plot of the exponential mapped points (right, created by ig-
noring the i component of the quaternion). Notice the points, although are
on the boundary of an ellipsoid on the left, appear to map inside the ellipse
on the sphere. This artifact results from the projection, which ignores the z
direction. By viewing the sphere along the direction directly pointed at the
center, however, we see that the shape is elliptical, as it should be. 114

6-7 Our data is antipodally symnmetric, and therefore we might arbitrarily get
the sample tQi. We would like all data on the same local hemisphere of
S3 for simplicity. This hemisphere will be defined by the choice of the sign
on M. To hemispherize data, we simply flip the data to lie on the same
hemisphere as the mean choice Ml using a dot product as a test. 118

7-1 An abstract depiction of the unit quaternion blending building block. The
algorithm should take N unit quaternion examples Qi with associated weights
ai and perform a weighted sum of them. These answer is then usually writ-
ten to a joint controller. 128

7-2 The slime algorithm maps examples (green spheres) into tangent descrip-
tions (yellow vectors) with respect to a chosen reference quaternion (yellow
sphere) by describing the examples in terms of geodesic curves (red great
circles) that pass through the reference and the example. The yellow vec-
tors live in a linear space since they correspond to angular velocities of the
curves, and therefore can be blended linearly... 132

7-3 The slime algorithm linearly blends the tangent vector description (yel-
low vectors) of the geodesics (red great circles) of the examples (green
spheres). As an example, the orange vector is an arbitrary weighted blend
of the three example vectors. This blend is actually specifying a particular
different geodesic through the reference point - the orange great circle.
By integrating this blended angular velocity forward unit time from the
reference (using the exponential), we get the blended quaternion (orange
sphere). 133

7-4 Choice of the reference quaternion (yellow sphere) affects the interpola-
tion of examples (green spheres) since quaternions are represented as one
parameter subgroups (red great arc circles through the examples and ref-
erence) through the reference quaternion. As the choice approaches the
"average" of the examples, the curves (examples) become more separated
from each other and therefore the interpolation becomes better. 135

7-5 The system of Aristotelian springs with constants ki connected between the
example points (nails), pi, and the free point (yellow), q. All nails must be
on the same local hemisphere. 138

7-6 An orthogonal projection of the system from above the free point, q. Note
that this is not the exponential mapping since orthographic projection does
not preserve the spring lengths with respect to the spherical distance metric. 139

7-7 A 3D orientation field specified as a radial basis function around the ex-
amples (corner locations boxed in red). The weight of each example is
inversely proportional to its distance from the sample point in the field as
described in text. The center image clearly has equal weights on all exam-
ples, and is therefore the centroid of the four examples with respect to the
spherical m etric . 145

7-8 A Sasquatch RBF of a parameterized walk cycle with two input dimen-
sions, happiness and turning radius. All images are sampled at the start of
the walk cycle and the RBF is sampled evenly in all directions. The image
was created with six examples, four on the corners and two for normal-left
and normal-right.. 151

8-1 Training set RMS reconstruction error (radians) versus number of basis
eigenvectors. 158

8-2 First ten principal components from 5800 frames of a 53 joint dog. 158

9-1 An abtsract visualization of finding whether the query point Q on the unit
quaternion sphere is inside the constraint ellipse boundary or not and the
nearest projected valid point, Q'.. 164

9-2 A visualization of the SMT(Q sphere which divides out variance differ-
ences along the principal directions x, y and i. The mode, M is mapped

to the origin, and the constraint boundary p away from the mean is the sur-
face of the sphere (which is radius p). Therefore, we can perform very fast,
simple sphere-point checks and projections on properly mapped data. . . . 166

9-3 Several screenshots of random sampled dog postures on the constraint bound-
ary. The shots were created by creating a uniform rotation for each joint in
the dog, then projecting to the nearest point on the constraint surface. Most
sampled configurations are reasonable, though in some the "joint-local"
nature of these constraints becomes obvious by a body interpenetration.
We do not handle these posture constraints yet, but feel the Eigenpostures
might be useful here. 168

9-4 The geometry of a CCD local update step on a three link kinematic chain.
The algorithm calculates the vector from the current joint being updated
(here 2) to both the effector's current Cartesian position (c) and the goal's
position (d), expressed in the local coordinate system of the joint (B 2).
These vectors can be used to calculate the local angular displacement of
joint 2 (A2) which minimizes the error ||c - dI| between the goal and effec-
tor. Joint 2's orientation is then updated by rotating it in the displacement's
direction by some percentage, which is expressed as a weight (ai). This
completes a single CCD sub-step on Joint 2. The algorithm would then
proceed to Joint 3 and perform the same set of operations again on the up-
dated chain. This continues cyclically down the chain until convergence or
a stopping criterion is met. 170

9-5 The CCD algorithm after updating Joint 2 with a full weight of 1.0. The ro-
tation update (A2) must be applied in the parent's coordinate system since
the orientation of the joint is specified as an update. 171

10-1 The dog in "mean pose" where all of his joints have been set to their mode. 178

10-2 Plots of the mode-tangent descriptions learned from animation data for sev-
eral joints on a dog model. The scatterplot is the transformed quaternion
data and the ellipsoid shows the Mahalanobis distance 1.0 isocontour of the
estimated density from the data. 179

10-3 TEM plot of just the elbow joint of our dog. Notice the structure contains
more than one degree of freedom, although it tends to lie in a particular

direction. 180

10-4 Convergence statistics for a 5 point system using intrinsic integration over
100 random trials. Here, e = 1.Oe - 12. The middle curve is the mean and
those bracketing it are one standard deviation. 183

10-5 An illustration of the stable attractor which is the steady state solution to
Sasquatch. Here we choose 50 random initial points not too close to each
other then integrate the system with dt = .01 and plot the resultant trajec-
tories. Here we choose two examples, whose attractor (steady state) is the
identity quaternion, 1. Since the data live in S3 , we project out the z com-
ponent for this plot. 184

10-6 A plot of the trajectories for the atttractor taken as the log at the attractor
location (the identity), which is the tangent space R3. The attractor in the
log is located at the origin. 185

10-7 The Swamped! project, shown at SIGGRAPH 1998. The interactor directs
the chicken character using natural gestures of the plush toy (sympathetic
interface). The raccoon is autonomous and uses an early slime-based RBF
system based on Rose's Verbs and Adverbs work. 186

10-8 The raccoon character is autonomous. He can blend between several emo-
tional states based on his interactions with the chicken. These states are
expressed through the motion with pose-blending..... 187

10-9 Elliot the shy nerd starts off dancing very inhibited. Over time, his dance
styles becomes more open as he enjoys himself. 188

10-1OEddy the Dude shows off the range of motion of his hip joints with his split
move. 189

10-1 1Blend of two animations, sampled at the same time t but at different blend
weights, from -0.1 to 1.1. The examples (red boxes) are the original ani-
mations, so the algorithm can extrapolate as well as interpolate. 189

10-12Rufus, a simple articulated robot dog head with a camera in its eye. Ru-
fus was the first example of using out pose-blending slime algorithm on a
physical robot . 190

10-1 3Duncan and the Shepherd. This project was one of the first to begin to look
at clicker training the animal. Both the shepherd and dog used an early
slim e-based blend. 191

10-14Sheep--Dog used an acoustic pattern recognition system to direct the dog
to herd sheep into a pen using traditional dog-training lingo.. 192

10-15A shot of the a-Wolf installation . 193
10-16A blend along one of the emotional adverb axes. Picture credit to Bill

Tom linson.. 193
10-17The insides of the "Public Anenome" robot by the Robotic Life Group at

the MIT Media Lab that was shown at SIGGRAPH 2002. 195
10-18The Anenome with its skin on. 196

Part I

Imaginary

26

Chapter 1

Introduction

This dissertation will describe a set of building blocks I have found useful in the design
and implementation of expressive interactive motion engines for both virtual and physical
characters such as those illustrated in Figure 1-1. These building blocks are based on a
quaternion representation of joint orientation and rotation for an articulated figure model
like that depicted in Figure 1-2.

I will show the reader how to use quaternions to solve some of the common problems
in a real-time motion engine that usually are intended to be "solved" by an Euler angle
parameterization. The problems I will address are:

Multi-target pose blending : Morphing between multiple example poses of a character

Real-time Inverse Kinematics (IK) : What's the nearest posture will put my hand there?

Statistical joint modelling : How does this joint tend to move?

Fast, learnable joint limits : Where does this joint not move?

Pose sub-space analysis : How do these joints tend to vary together?

Expressive IK : What is a posture which will put my hand there without looking like a
robot?

I will also show that quaternions are an appropriate choice from a computational point
of view. I will also show why any of the Euler angle parameterizations is almost always the
wrong choice of representation from both group-theoretic and computational arguments.
Instead, I will argue that the use of the logarithmic mapping of a quaternion into a 3-vector
Ofn is preferable, maintaining many of the desirable properties of an Euler angle decomposi-
tion (minimal parameter, "linear") while avoiding most of the undesirable properties, such
as the infamous gimbal lock. I will show how to use the exponential mapping (which is

related to the theory of Lie groups and Lie algebras) to "locally linearize" pose data so that
it can be analyzed with standard, powerful analysis methods such as Principal Component
Analysis (PCA).

In particular, the set of building blocks I will introduce are:

Figure 1-1: Virtual and Physical Expressive Interactive Characters. The virtual charac-
ters, developed by Blumberg's Synthetic Characters Group, are (clockwise from top left):
Dobie the learning dog (SIGGRAPH 2002), the Raccoon from Swamped! (SIGGRAPH
1998), shy Elliot from (void*) (SIGGRAPH 1999), Duncan and sheep from Sheep|Dog
(Media Lab Europe Opening, 2000), and two wolf pups from a-Wolf [90] (SIGGRAPH
2001). On the right are some physical robots which were designed to be expressive. They
are (clockwise from top left): Breazeal's Kismet [13], Leonardo from Stan Winston Stu-
dios (www.stanwinston.com) with skin and without, and the (unskinned) Public Anenome
(SIGGRAPH 2002) by Breazeal's Robotic Life Group.

Figure 1-2: The bones (colored solid) which are animated underly the mesh (grey transpar-
ent) skin. Each bone rotates with respect to its parent by a 3D rotation, making a hierarchi-
cal skeletal model with the pelvis at the root.

Pose distance metrics Appropriate group-theoretic distance metrics on poses for use in
any algorithm which requires domain-specific metrics, like most example-based learn-
ing methods we focus on.

slime and sasquatch Two new algorithms for computing a weighted blend of n unit quater-
nions representing rotations in 3D. These are useful for multi-target animation inter-
polation. Also, most example-based function approximation methods require robust
blending primitives of some sort to blend exemplars.

QuTEM joint model A statistical model of individual joint motion learnable from exam-
ple data and consisting of: 1) mean joint coordinate frame, 2) principal axes of joint
variation and variances associated with these and 3) hard joint limits described as an
isoprobability contour.

Eigenpostures A statistical model of posture (coupled joint motion, or multiple quater-
nions) which best models the variations in animation data and can serve as an "ex-
pressive" basis for a character's motion in algorithms or as the starting point for
character-based animation compression algorithms.

Fast, Learnable Quaternion Joint Limits How to estimate a convex joint constraint bound-
ary to represent fast, hard joint limits on a quaternion joint representation.

Quaternion Cyclic Coordinate Descent (QuCCD) A fast quaternion version of the re-
cent real-time heuristic Cyclic Coordinate Descent (CCD) IK algorithm which can
incorporate joint limits.

I will then show how we use these primitives in tackling three main areas of expressive
interactive character motion:

Multi-Target Pose Blending Blending n poses together simultaneously. Pose blending
can be used to blend n animations in real-time or blend examplars in powerful and
well-known non-parametric function approximation algorithms like k-nearest neigh-
bor, k-means clustering, and locally-weighted regression.

Statistical Joint Analysis and Synthesis How to learn a model of the ranges of motion
on each joint from a corpus an animation data, how to use these to make pose metrics
invariant to these ranges, how to generate new poses (and simple animations) which
respect the joint variances and limits, and how to use the model to compute fast,
simple joint motion limits.

Expressive Inverse Kinematics How to implement a fast heuristic IK algorithm called
Cyclic Coordinate Descent (CCD) with quaternions and quaternion joint limits. Also,
we sketch several simple ways to use all of our building blocks together to make an
IK solver produce less "robotic" looking solutions. For example, we discuss using a
learned posture subspace model to constrain a procedural IK solution space and give
initial results at coupling pose-blending and CCD.

The rest of this chapter will proceed as follows:

Section 1.1 lists the design principles we took in this research and presents our thesis state-
ment.

Section 1.2 defines the scope and audience of the thesis.

Section 1.3 gives a capsule description of related work areas and summarizes our contri-
butions to each.

Section 1.4 gives a roadmap through the rest of the thesis with capsule descriptions of each
chapter.

Section 1.5 summarizes this chapter and the contributions of our research.

In this work, I followed a set of design principles, summarized in the next section.

1.1 Principles and Thesis Statement

The following set of principles were followed throughout this work:

Interactive/Real-Time Interactive characters means real-time. Much of the work in mo-
tion editing and "interactive" methods in the computer graphics community are fo-
cused on "interactive design tools for animators." In other words, they are allowed
to produce incorrect results, but should be easily tweakable by an animator in "real-
time" (about 5hz) to get around these and make a perfect production animation, like

a film. Ultimately, the animator will coerce any tool into making the animation he or
she desires, and most algorithms are focused at making these easier for the animator.
We are not talking about these tools. By "interactive" or "real-time," we mean an
engine that takes commands from the "brain" of an interactive character and must
respond in-character, right away, with no glitches and with no input from an anima-
tor except for the use of animation examples created off-line. In general, we have
milliseconds to decide the next animation frame. In a production animation tool, the
animator has minutes or hours for this. This principal also quickly eliminates the
ability to use most of the recently popular motion transformation algorithms which
use expensive optimization techniques.

Example-Based This work started from the simple assertion that "Animators know best
how a character should move and are best able to express this by creating canned
animation examples, not programming." Therefore, all the algorithms we developed
had to be learnable from animation data or exploit it in some way, such as blending
or synthesis from a learned statistical model.

Let the Animator Work Naturally Most character engines will enforce a particular ar-
ticulated figure structure (usually Euler angles) on the animator for them to animate,
even if the axes are not simple to animate. We try to avoid these forced models.
Rather, we want the animator to work naturally and then we can use analysis and
synthesis methods to coerce these into the real-time data structure we need.

Quaternion-based Although I motivate the use of quaternions after the fact, it is (ar-
guably) well-known that they are the best computational representation of orientation
for rigid bodies without mathematical problems, as we will see in Chapter 3. Unfor-
tunately, the use of quaternions in articulated figure animation is fairly recent. The
standard representation of a character's posture is usually a vector of Euler angles,
which entails the use of rotation matrices for performing coordinate transformations,
a very common operation for interactive character algorithms which we describe in
Chapter 5. Most useful character animation algorithms were therefore based on these
less desirable (as we argue in Chapter 4) representations. The few quaternion algo-
rithms were treated as a black box. Instead, we chose to follow a principled approach
and extend the toolbox of standard figure animation techniques which we described
above to work with a quaternion representation.

Based on these principles, we summarize our thesis statement:

Thesis Statement: By exploiting a unit quaternion representation of joint
rotation, we can create computational building blocks for the design of ex-
pressive interactive character algorithms which afford us:

" Maximally leveraging an animator's skills

* Computational efficiency in space and time

" Mathematical robustness

1.2 Scope

This dissertation covers real-time example-based expressive motion for interactive charac-
ters. We will limit ourselves to just kinematics (motion without regard for dynamics) '.
Furthermore, we will restrict the work to rigid articulated skeletal models with only rota-
tional joints and not mesh deformation techniques.

The intended audience is a senior programmer or engineer given the task of writing a
fast, expressive animation engine for interactive characters that needs to incorporate canned
animation clips for expressivity, such as in a videogame. For this reason, we try to focus
on geometric intuition and insight rather than group theory, while explaining the deeper
mathematical reasons for using quaternions rather than the more standard Euler angles for
real-time articulated figures. When we approached the problem, there were only few people
(for example, Hanson [36, 34, 37]) who focused on intuitive approaches to quaternions for
designing new algorithms rather than using them as a "black box."

In particular, the audience should be sick of the practical problems associated with
using Euler angles in interactive applications and tired of the lack of intuitive algorithms
and design approaches for creating new quaternion algorithms or extending known ones,
which the initial motivation for this thesis.

1.3 Related Work Areas and Contributions

This dissertation covers several broad areas of related work. These are:

" Real-time articulated figure animation engines

" Multi-target pose interpolation

" Example-based function approximation methods

" Orientation statistics

" Posture Statistics

" Real-time Inverse Kinematics

We offer new contributions to each area, discussed in turn.

1.3.1 Real-time Motion Engines

Traditionally, most real-time motion engines use an Euler angle or homogenous matrix
representation of rotation. This is due to the fact that many useful algorithms for real-time
motor control, such as Inverse Kinematics, came out of the robotics community where Eu-
ler angles are manifested physically as servos. Also, most interpolation algorithms assume
that the examples are vectors that form a vector space in order to decompose (factor) the

Recent work by Matt Grimes in the Synthetic Characters Group has begun to look at extending these
ideas to dynamics control.

problem into smaller scalar sub-problems. This leads many designers to use Euler angles
since they seem to offer a linear, factored representation that can be used in these algo-
rithms. Unfortunately, rotations do not form a vector space, as we will see, which often
leads to strange, hard to understand behavior or "hacks" to try to patch the problems. This
quickly eliminates any perceived advantage of using Euler angles.

Instead, we argue for the use of a quaternion representation motion and show how to
solve many of the common problems in interactive character animation that usually lead
to an Euler angle parameterization or to inefficient conversions from quaternions to Euler
angles and back. We discuss these in the next several sections.

Also, we try to provide a comprehensive introduction to quaternions with a focus on
computation and intuition. We also collect together many of the ideas which are spread
throughout the literature in several fields and give pointers to useful recommended reading.

1.3.2 Multi-target pose interpolation

Multi-target pose blending is an extension of the classic multi-target mesh interpolation
algorithms used to morph between several examples of a polygon mesh that span a space
of geometry. The standard technique, since it operates on mesh vertices (which are true
vectors), cannot be used for rotations without modification since they are not. The stan-
dard methods for multi-target pose interpolation either use an Euler angle model so that
Euclidean methods such as RBF's may be applied (e.g. Rose [44]) or use nested slerp
constructions (e.g. Grassia [30], which scale poorly and which cannot be used simply as a
black box to blend N examples with specific weights. Shoemake's classic slerp quaternion
interpolator handles interpolation of rotation by using quaternions, but can only blend be-
tween two examples with one parameter between them. To solve these problems, we offer
two new primitives for pose blending, which we introduce now.

The first, Spherical Linear Interpolation of Multiple Examples (slime) is a fast unit
quaternion blending primitive which approximately satisfies the rotation group metric, but
is not rotationally-invariant since it transforms the unit quaternions to a fixed tangent space
to perform the blend within. On the other hand, a fixed tangent space offers us the ad-
vantage of speed since we may preprocess quaternions and end up with an algorithm that
scales linearly with examples and uses few trigonometric calls. A poor choice of tangent
space, however, can cause similar (though mathematically and computationally much bet-
ter behaved) problems to Euler angles since it is a singular representation. To solve this, we
show that the mean across all data of a joint's orientation is a good choice of fixed blending
space since it places the singularity as far from the data as possible, unlike an Euler angle
representation, which often places it right in the middle of the data unless complicated pre-
processing steps are taken. Also, due to the singularity and the fact that the space is fixed,
slime is not appropriate for blending bodies that are allowed to rotate freely. This is not
a major disadvantage in practice, however, since almost all physically-plausible character
joints cannot spin all the way around any axis like Regan's head in The Exorcist.

The second, sasquatch, is an iterative extension to slime which uses a moving tangent

space to handle joints that revolve all the way around, such as the root node that lets a

character move around in a virtual world. Also, sasquatch affords us rotational-invariance,
respects the rotation group metric, offers linear scaling in examples, linear convergence

(one floating point digit per iteration), good parametric behavior and a way to perform
pseudo-linear blends on the sphere for more than two examples. In this way, it extends the
slerp building block to more than two quaternions, as we intended, which maintaining all
of its desirable properties.

1.3.3 Example-Based Function Approximation

The use of example data in a procedural context is the domain of example-based learning or
function approximation. We do not offer any new algorithms in this field, but instead offer a
set of domain-specific primitives (pose metrics and synthesis primitives) which are required
by these methods. Most such methods are very sensitive to the choice of representation
of the data and require domain-specificity for good results. Example-based methods are
appropriate here since we want a simple way to encode animation examples in the system,
while also allowing for real-time on-line incremental learning on this representation.

1.3.4 Orientation Statistics

Orientation statistics is the statistics of orientations of objects in space (see the recent [57]
for a comprehensive overview). Often orientation statistics are calculated on a matrix rep-
resentation of orientation which leads to complicated mathematics. Instead, we can use the
unit quaternion representation to simplify the mathematics significantly. This fact seems
little known in the literature on orientation statistics as most methods seek to be work for
arbitrary dimension, resorting to manifold-tangent methods, differential geometry, or ex-
terior calculus 2. These methods are all too complicated, inefficient and unnecessary for
the quaternion group and its simple spherical topology. Furthermore, the existence of an
algebra on the sphere allows us to simplify estimation of parameters.

One way to use a unit quaternion representation is to estimate a Gaussian probability
density function in R4 conditioned to live on the unit sphere. This result is called the
Bingham distribution [7] 3. Although the principal axis estimates are the same on the
sphere and in the embedding space (eigenvectors of the sample covariance matrix), the
Bingham variances are much harder to estimate. Also, due to the fact that the Bingham
variance parameters are not estimated in the rotation group itself means that the parameters
do not have a direct physical interpretation in terms of joint angles.

As an alternative to the Bingham distribution and matrix distribution approaches, we
offer the QuTEM model which can estimate orientation statistics of joints from data. It
uses the Lie group structure of the quaternions (in particular the exponential mapping and
Lie algebra, described in Chapter 3 and Appendix D) and the well-known Gaussian esti-
mation and sampling methods. The covariances 4 it estimates have physical meaning (units

2An exception we found recently is [64] which relates the statistics of SO(3), SO(4) and quaternions.
3Although they seem fairly uncommon in the literature, recently they have been gaining in use (see, for

example, Matt Antone's excellent thesis on using them for camera pose recovery from examples [1])
4We feel that our QuTEM distribution is mathematically closely related to the Bingham distribution since

both end up solving an eigenvector problem on the sample covariance matrix, but have not worked through
the mathematical details at this time. We predict that the principal axes of motion and the mean will extremely
related, if not identical, and that the variances will be related by a monotonic function.

are in radians) and can be used as a smooth joint limit constraint manifold for IK. Also, the
quaternion mean is a useful primitive for finding a good tangent space in which to linearize
data for statistical analyis of pose as well as a good choice of tangent space for perform-
ing fast pose blending, as discussed above. Finally, we can use these structure to create
dimensionless pose metrics using the standard Mahalanobis distance.

1.3.5 Posture Statistics

Finally, we offer a sketch of using the powerful subspace analysis algorithms such as Prin-
cipal Component Analysis (PCA) which have had great success in analyzing image data in
the computer vision community to characterize and model the intrinsic degrees of freedom
in example animation data. These methods usually assume a Euclidean space and naive
use of quaternion data with them can lead to problematic, non-intuitive results. Instead,
we show how the exponential mapping and quaternion mean primitives can be used to lin-
earize the data in an invertible way, allowing us to use PCA without resorting to Euler
angles, which is the standard approach to the statistical analysis of posture.

1.3.6 Real-time Inverse Kinematics

Inverse kinematics is often the most expensive primitive in any engine. Most engines use an
Euler angle representation of rotation, following the robotics community where numerical
IK algorithms originated, in order to use linear algebra techniques. Standard Euler angle IK
algorithms, since they use a matrix description, scale quadratically in the number of joints,
which can be computationally infeasible. As an alternative, we offer a fast quaternion
version of the Cyclic Coordinate Descent (CCD) algorithm Euler angle algorithm which
has shown recent popularity in the videogame industry since it avoids matrices by using
heuristics and therefore is much faster.

Furthermore, we show how to learn fast quaternion joint limits from data and augment
our quaternion CCD algorithm to respect these limits. The standard approach to joint limits
is to clamp Euler angles inside a certain interval. At the time we began this research, there
did not exist any way to do joint limits on quaternions without converting to an Euler angle
representation and back. Furthermore, we show how to learn these limits from example
data rather than forcing an animator to specify them by hand, which is the case for all the
recent quaternion limits except for the excellent recent work of Herda, Urtason, Fua and
Hanson [39, 40].

1.4 Thesis Roadmap

This dissertation is divided into two parts - Imaginary and Real. Part I, Imaginary, argues

for example-based methods, gives background information and motivates the use of quater-

nions for modeling joints. Part II, Real, then shows how we actually exploit quaternions in

addressing the problems we introduced in this chapter.
Part I, Imaginary, proceeds as follows:

Chapter 1 introduced the three main areas of expressive charcter motion we will address.

Chapter 2 motivates the use of example-based methods coupled with procedural algo-
rithms for leveraging the skill of an animator in a real-time expressive interactive
character engine.

Chapter 3 introduces and discusses mathematical background in rotations. It presents sev-
eral commonly used parameterizations of rotation - rotation matrices, axis-angle,
Euler angles. It then introduces quaternions, our choice of representation, from an
algebraic and geometric viewpoint, providing required background for the rest of the
dissertation.

Chapter 4 offers a set of criteria for the representation of a statistical model of joint ro-
tation. It then evaluates three of these parameterizations - rotation matrices, Euler
angles and quaternions - against these criteria, arguing that quaternions offer both
mathematical robustness and computational efficiency.

Part II proceeds as follows:

Chapter 5 presents the commonly-used rigid bone-joint skeletal model of articulated fig-
ure animation and introduces terminology and notation used throughout the remain-
der of the document. It shows how quaternions can be used to model joints and
defines the form of the example animation data.

Chapter 6 defines the QuTEM statistical joint model, shows how to estimate a QuTEM
from examples and shows how to sample new joint orientations from the model.

Chapter 7 describes the problem of multi-variate unit quaternion weighted interpolation
for pose-blending. It presents our two new algorithms - slime and sasquatch-
for pseudo-linear weighted unit quaternion blends. It then describes how these can
be used to extend a Euclidean example-based non-linear interpolation function -

Radial Basis Functions (RBFs) - to work with quaternion inputs and outputs.

Chapter 8 presents the problem of posture subspace analysis. It then presents our Eigen-
postures algorithm, which extends a Euclidean subspace analysis algorithm - Prin-
cipal Component Analysis (PCA) - to quaternion joint data.

Chapter 9 introduces the difficult problem of Expressive Inverse Kinematics (Expressive
IK). We show how to implement hard joint limits with the QuTEM. We then describe
QuCCD, our quaternion extension to the fast CCD IK algorithm. We also describe
how to use the QuTEM as a joint equilibrium point. Finally, we offer initial ideas of
how pose-blending, the QuTEM, the QuCCD algorithm and Eigenpostures could be
coupled to approach the problem of Expressive IK.

Chapter 10 presents results on applying some of the building blocks to animation data.
We visualize QuTEM models learned on animation data and show how new poses can
be synthesized. We then describe several experiments on the sasquatch algorithm to
demonstrate its behavior and choose parameters. Finally, we describe the projects

which have used the slime algorithm for pose-blending and discuss the issues that
motivated the building blocks chronologically.

Chapter 11 discusses influential and related work in the areas we covered in this research.

Chapter 12 presents conclusions and directions for future.

We also offer several appendices for required background:

Appendix A gives a cursory description of complex matrices which we use in portions of
the document.

Appendix B gives a quick introduction to multi-variate Gaussian probability densities and
terminology.

Appendix C describes quaternion differential equations and how we solve them.

Appendix D offers a more formal mathematical treatment of the algebra, group theory, and
topology of quaternions to serve as a reference or introduction for the mathematically-
inclined.

1.5 Summary

The chapter presented the following problems of real-time expressive interactive character
animation we will discuss in this dissertation:

" Appropriate pose metrics

" Multi-target pose blending

" Statistical joint modelling

" Pose sub-space analysis

" Joint limits learned from data

" Real-time Inverse Kinematics

" Expressive IK

We also introduced the new set of computational and mathematical building blocks we
found useful for solving these problems and which we will serve as the main contributions
in this thesis:

Appropriate pose distance metrics : domain-specific primitives for use in example-based
methods

slime and sasquatch : two new multi-variate weighted unit quaternion blending primi-
tives

QuTEM model : statistical analysis of quaternion-represented joint motion

Eigenpostures : posture subspace analysis using a quaternion extension to PCA

Fast, learnable quaternion joint limits : How to use the QuTEM to learn fast, hard limits
on joint motion from a corpus of animation data

QuCCD : a fast quaternion version of the CCD IK algorithm that incorporates quaternion
joint limits

Expressive IK : a description of the problem of Expressive IK, an initial evaluation of
several ways to approach it using our building blocks in conjunction

The next chapter will motivate the use of exampled-based methods coupled with nu-
merical, procedural algorithms for leveraging the skill of an animator in the design of ex-
pressive character engines.

Chapter 2

Approach: Example-Based Procedural
Animation

This chapter will argue for the use of example-based procedural algorithms which com-
bine the expressivity of motion of a hand-animated animation such as those found in an
animated feature film like Pixar's Toy Story with the infinite variability and interactivity
of a numerical algorithm such as an Inverse Kinematics 1 (IK) algorithm. Figure 2-1 de-
picts the structure of our argument abstractly. We will argue that canned animation clips
are easy to make expressive since an animator can tweak them iteratively until they are,
but not very interactive since they are fixed in advance and therefore are only appropriate
in the specific context for which they were created. We will then argue that a numerical,
algorithmic approach such as IK offers much more interactivity since it can handle contin-
uously changing goals, such as tracking a flittering butterfly with its head and eyes. On the
other hand, we will argue that these algorithms, which are typically hand-programmed, are
very hard to make expressive since parameters and heuristics must be tweaked by hand.
This is an unnatural way for an animator to work. We then argue for the use of example-
based algorithms which offer the best of both worlds, allowing for procedural control to
handle interactivity while incorporating expert knowledge of expressive movement from
animation clips.

2.1 Interactivity, Expressivity and the Illusion of Life

In their book on the Disney approach to hand-drawn animation The Illusion of Life [84],
Thomas and Johnston define the illusion of life as follows:

It is the change in shape that shows what the character is
thinking. It is the thinking that gives the illusion of life.

In the case of an autonomous virtual 3D character, the change in shape is defined by its

motion and the thinking by the Artificial Intelligence engine driving the character's motion.

'Recall that 1K can be described as the problem of finding the joint angles of a character that will place

some part of its body, such as a dog's paw, on some specified location in the world, such as on that cat's tail.

Interactivity
Figure 2-1: Canned animation clips (motion capture or hand-animated) offer maximal ex-
pressivity since they can be fine-tuned, but minimal interactivity since they are specific.
Procedural methods (such as Inverse Kinematics) are usually maximally interactive since
they offer an algorithmic, general solution, but tend to be very hard to make expressive.
Example-based methods based on a hybrid of the two techniques offer the best of both
worlds.

Therefore, in order to create and maintain the illusion of life, the character must think; in
order to convey thought, the character must move expressively to show its internal mental
state to a viewer at all times. Any time the motion loses this expressivity of motion, the
illusion of life can be lost. Likewise, if the character does not appear to respond properly
to the continuously changing demands of interactivity will also appear lifeless.

Loss of expressivity in motion could be due to a glitch in the motion such as a velocity
discontinuity. It could also be due to an obvious repetitive motion such as a hand-animated
walk cycle or karate chop commonly seen in videogames. Even though the animation is
hand-crafted to be very expressive, if it does not vary over time in response to changes in the
world due to interactions with other creatures or a human participant, it will appear dull and
lifeless no matter how great the animation clip is. Also, since a character's emotional state
can change continuously, canned animations cannot express this since they were designed
for discrete emotional states. For example, if a character is somewhat depressed and a
friend slowly cheers him up but there are only clips for happy and despondent, this subtle
mental state which changes continuously due to interaction cannot be expressed. Thus,
a canned animation clips can be said to be very expressive for the specific mental state
and context for which it was created, but not very interactive. Figure 2-1 depicts this
graphically.

Likewise, if a character needs to respond to a sudden change in mental state, such as
being surprised, the motion must respond appropriately and immediately to maintain the
interactivity of motion as well. For example, say the character motor engine simply plays

a canned animation clip from an animator to reach for a doorknob when the brain tells it
to. The animation was created with a certain doorknob height and character's mental state
implicit in it. If the character then encounters a hobbit-hole door half as high, it needs
to reach for the doorknob in the appropriate lower location or it will not appear interac-
tive. To solve this problem, reaching and tracking for virtual characters is usually done
with a general procedural algorithm such as Inverse Kinematics (IK) to handle the infinite
variability required for maintaining interactivity. Since IK algorithms came out of the clas-
sical robotics community where the expressivity of motion does not matter, only where the
robot's end-effector ends up, these algorithms often will be ascribed as having "robotic"
motion by a human viewer. To deal with this, the programmer must tweak parameters or
enter heuristics by hand, which is laborious and usually the result is still not very expres-
sive. Therefore, procedural, numerical algorithms tend to offer maximal interactivity, but
minimal expressivity, as is shown in Figure 2-1.

In order to create a strong illusion of life in a virtual character, we would like to
maximize both the expressivity and the interactivity of the motion. Some sort of hybrid
example-based procedural algorithm which allows the incorporation of expert knowledge
in the form of animation clips should be able to offer the best of both worlds, as depicted in
Figure 2-1. A hybrid should offer the continuous variability needed to maintain interactiv-
ity while simultaneously incorporating expert knowledge of motion in the form of canned
animation examples, either from motion capture or an animation package. We argue that:

Leveraging the animator's knowledge of expressive character motion in the
form of canned example clips into the infinite variability of a numerical

procedural algorithm should maximize both interactivity and expressivity in
order to maintain the illusion of life of a character.

So how can we leverage an animator's knowledge of expressive animation that is im-
plicitly contained in animation examples?

2.2 Exploiting an Animator's Knowledge of Expressive Char-
acter Motion

The last section argued for using example-based procedural algorithms for leveraging an
animator's knowledge implicit in animation examples. This section will describe three
ways which we will exploit animation knowledge from expressive examples:

Pose Blending : Multi-target interpolation and extrapolation of clips

Statistical Analysis and Synthesis of Joint Motion : Modeling how a joint tends to move,
estimating joint limits implicit in clips and generating new motions to test whether
they are valid

Figure 2-2: Blend of two animations, sampled at the same time t but at different happi-
ness values from -0.1 to 1.1. The examples (red boxes) are the original animations. The
frames in between the examples interpolate the posture according to the level of happiness.
The frames outside the interval [0, 1] extrapolate the examples, making caricatures of the
original walks.

Expressive Inverse Kinematics (IK) : Augmenting a numerical "robotic" looking IK
solver with a model of body knowledge to find more "natural" and expressive so-
lutions.

2.2.1 Pose Blending: Multi-Target Interpolation/Extrapolation

Animation clips give examples of how a character should move in a specific context. Con-
sider Figure 2-2. The character is shown frozen at the top of a jump. The two boxed frames
are from a hand-animated jumping animation of the character in a happy mood (1.0) and
a sad mood (0.0). These two examples define constraints on the motion of the charac-
ter by specifying how it should move when it needs to jump and is happy or sad. If we
assume that the space of motion (motion-space) is smooth and continuous between these
examples, we can use an interpolation, or weighted blending algorithm to try and estimate
poses for a jump and values of happiness between 0 and 1. Figure 2-2 shows samples of
frames interpolated by performing a weighted average of the two examples using the value
of happiness as a weight. Interpolation algorithms are thus a way to proceduralize exam-
ples directly. They assume that a weighted average of expressive examples should also be
expressive and recognizable. After Rose [44], we call the content of the animation (here a
jump) a verb and the style (here happiness) an adverb.

Some interpolation algorithms are also capable of extrapolation, or estimating the na-
ture of the motion outside of the convex hull formed by the examples (see Figure 2-3). In
Figure 2-2, the frames sampled at -0.1 and 1.1 2 are examples of extrapolation. They pro-
duce plausible looking exaggerations of the examples in order to "caricature" the motion.
Thus, a good pose-blending algorithm should allow for extrapolation in order to leverage
the animator's talent, which is one of our design principles espoused in the Introduction.

2"Our knobs go to ll." - Spinal Tap

- I _.. - "21- - A-MA-4ft - - - - ___ _ - - . . -

Cl)

CL
O.

Anger
Figure 2-3: Extrapolation and Interpolation. The circles on the axes represent example
animations of a happy, normal, and angry verb. The triangular filled region (convex hull)
of the examples is the interpolation space. A point outside this space, such as the dark point
specifying an angry and happy verb is an example of extrapolation. By extrapolating well,
we can obviate the need for the animator to increase the size of the interpolation space with
a new example at this point. As the number of axes increase, this gives us an exponential
decrease in necessary examples.

Furthermore, our character will have more than just one degree of stylistic freedom. For
example, in a-Wolf (see Section 10.4.6) a wolf pup had three axes of variability in its walk
cycles: turning left/right, happiness, and how old the pup was (the pups grow up slowly to
be adults). This implies the need for a multi-target interpolation algorithm that can blend
more than N animation examples according to some continuous adverb that can be used to
calculate weights on examples.

To summarize:

Leveraging the animator by proceduralizing expressive motion examples with
multi-variate interpolation implies the need for appropriate and robust

pose-blending primitives.

2.2.2 Statistical Analysis and Synthesis of Joint Motion

Clearly, if we keep extrapolating the character's happiness value in Figure 2-2, the charac-
ter's joints will begin to exhibit unnatural behavior since they will break the implicit joint
motion limits on the joint. The character's joints should be unable to move further due to
the limits on joint mobility to maintain the illusion of life. Unfortunately, an interpola-
tion algorithm has no notion of these constraints and will blithely spin the character's arms
backwards.

Joint Motion Limits

This implies the need for a way to enforce joint range limits on the possible mobility of the
joint. Then if the interpolated solution tries to break a constraint, we can explicitly force
it to remain at the limit. For example, an elbow should not rotate backwards unless the
character is preparing for a trip to the hospital or is skilled in yoga. Ideally, we want to
leverage the knowledge inherent in the animation clips rather than forcing the programmer
to specify them by hand. How can we find these?

Notice that the joint limits are implicit in the animation in terms of the space where
there are no examples nearby. Lack of examples implies either that:

" The region is a valid subset of motion space for that character where no examples
have been seen yet.

" The region is not a valid subset of motion space since it violates some constraint on
natural motion of the character.

We hypothesize that we can estimate the joint motion limits by learning a statistical
model of the motion over all examples we have seen for the character. If we had such a
model, we could then use an isocontour of probability as a constraint boundary! In other
words, we can find a region that contains as much of the data (or all of it) as possible. If we
find that a posture of the character has too low a likelihood, then we can assume that the

joint should not go there and use this to constrain motion. Since we can estimate it from
data, we can then learn the model from the corpus of all animation examples in order to
leverage the animator best.

Most statistical analysis methods will assume a metric on the data being analyzed. In
this case, we will need a distance metric between two joint orientations of the character.
The metrics need to be appropriate to the problem domain to be useful. Therefore:

Statistical joint analysis implies the need for appropriate distance metrics on
joint orientations.

Posture Constraints

Unfortunately, joint constraints are not enough. A posture could also be invalid if it would
cause an interpenetration of the body with itself. Again, these constraints are also implicit
in the animation in terms of where the data is not. Whereas joint limits are local, posture
constraints imply the need for analysis of the coupled motion of joints. If we could find a
statistical model of the space of postures, we hypothesize that we should be able to use the
model to constain posture to the subspace of examples which we have seen.

As above, metric are needed:

Statistical analysis of posture will imply the need for appropriate distance
metrics between two postures of a character.

2.2.3 Expressive Inverse Kinematics

The essential problem of Inverse Kinematics (IK) is to find a pose of a character's body
that results in a particular body part (or parts) ending up at a certain position in the world.
Inverse Kinematics shows up in two main roles: animation tools and real-time charac-
ter engines. In the former case, the animator uses the IK algorithm to help iteratively
make keyframes more naturally in situations where constraints are required. In the case of
videogame engines, IK is often a procedure applied to some joints in order to procedurally
track moving objects with the character's head or (often) weapon. The former can run at
"interactive" rates for the animator, like around 5hz. An IK engine for a real-time app needs
to run at more like 100hz. Also, production IK tools allow a visual feedback iterative ap-

proach for the animator, while a character motor system requires fast and correct placement

of the body parts on the fly without any chance for later correction.
Inverse kinematics techniques came out of mechanical engineering and robotics, where

often robots were designed to have analytically solvable solutions. Also, these robots were

designed to solve engineering and manufacturing tasks, so the content of the motion was

all that mattered - it doesn't matter how you get the torch to the part to weld, just make
sure it doesn't hit anything and gets there. Thus, robots have "robotic" motion.

Systems that cannot be solved analytically require a numerical, iterative solution, which
makes it a computational expensive operation in general when there are many characters.
These numerical solutions usually encode some simple notion of body knowledge (such as
where joints tend to be and a stiffness) and sometimes some kind of joint limit.

In general, a given IK problem will have multiple (potentially infinite) solutions. To
a traditional robotic system, the closest solution is usually all that is required. For an
interactive, expressive character like a human, however, some of these solutions will appear
more "natural". For example, people's postures are subject to the force of gravity, therefore
a lower energy posture is preferable and will look more natural. We argue that the exact
manner that a character exploits its redundant kinematic degrees of freedom is a major part
of the expressiveness of the character's motion. Therefore, an example-based statistical
model of the motion subspace of a character should capture this expressive knowledge to
some degree.

Therefore, we argue for an expressive IK system which consists of combining a "robotic"
content solution with a model of body knowledge that lets us "project" the robotic solu-
tion onto the subspace of our character's actual motion. Such a system must handle the
following issues:

" Speed

" Joint limits

" Expressive

We argue that we can leverage the procedural power of the numerical methods that
exist by augmenting the iterations with a model of body motion knowledge gleaned from
an animator's examples. Explicitly, we will argue for the following approach to solving
expressive IK:

Augment the procedural power of numerical search with the expressive
power of expert body knowledge.

2.3 Summary

To summarize, this chapter argued that:

" Canned animation examples (clips) are maximally expressive, but minimally inter-
active

" Numerical, procedural algorithms are maximally interactive, but minimally expres-
sive.

We then stated the main hypothesis of our thesis:

Leveraging the animator's knowledge of expressive character motion in the
form of canned example clips into the infinite variability of a numerical

procedural algorithm should maximize both interactivity and expressivity in
order to maintain the illusion of life of a character.

We then motivated three ways which we chose to explore the use of example-based
procedural methods to leverage the animator:

Pose Blending : Multi-target interpolation and extrapolation of clips

Statistical Analysis and Synthesis of Joint Motion : Modeling how a joint tends to move,
estimating joint limits implicit in clips and generating new motions to test whether
they are valid

Expressive Inverse Kinematics (IK) : Augmenting a numerical "robotic" looking 1K
solver with a model of body knowledge to find more "natural" and expressive so-
lutions.

We showed that these methods entailed the need for:

" Appropriate metrics on joint orientation

" Appropriate metrics on postures

" Appropriate pose-blending algorithms that extrapolate well.

48

Chapter 3

Rotation, Orientation and Quaternion
Background

This chapter will introduce the theory and issues of mathematically modeling the familiar
notion of spatial rotations and rigid body orientations in our physical world (three spatial
dimensions). Even though the concept is familiar physically, there are many ways to rep-
resent rotation mathematically and computationally, each with its own pros and cons. To
appreciate these issues, an understanding of rotation is required. We will describe spatial
rotation from first principles by introducing Euler's theorem of rotation. We will then de-
scribe four rotation representations popular in character animation in some detail in order
to illustrate the mathematical issues that arise in using them. These are:

" Coordinate Matrix

" Axis-Angle

" Euler Angles

" Quaternions

We will briefly introduce the first three representations and compare them from a math-
ematical and computational point of view. In particular, we will focus on the important
issues of interpolation, distance metrics, computational speed and mathematical robustness
which we motivated in the previous chapter.

We will then focus on a mathematical and geometric introduction of quaternions, which
are the basic mathematical representation which we use throughout our work, along with a
similar discussion.

We will end the chapter with a multi-page table summarizing the useful formulas
for quaternions from an algebraic and geometric viewpoint to serve as a reference. The

mathematically-inclined reader can also find a more group theoretic reference on quater-

nions in Appendix D.

3.1 Rotation, Orientation and Euler's Theorem

Rotation of solid rigid bodies (for example, a rock) is intuitive. We grab objects all day and
rotate them in different ways as we use them without thinking about it. How do we model
this phenemenon mathematically and computationally? It turns out that this problem is
far from intuitive. This section will introduce the basic principles of rotation of 3-space.
We will explain the relationship between rotations and orientations of rigid bodies. This
section will focus on basic concepts and fundamental issues with understanding rotation
and orientation and not on any particular representations.

3.1.1 Rotation versus Orientation

The astute reader may have noticed our distinction between rotations and orientations. The
difference is subtle and should be made clear.

A rotation is the action that transforms one vector into another vector. By definition,
a rotation 1) preserves the magnitude of a vector and 2) preserves the handedness of the
space (in vector algebra terms, it preserves the direction of the cross products between basis
vectors). In most of this document, we will be assuming rotations in 3-space. Occasionally,
we will discuss rotations of 4-space and will be explicit. Rotations in 3-space have 3
degrees of freedom, so we will need at least three numbers to define them.

An orientation, on the other hand, is the attitude of a rigid body in space. The terms are
often and easily conflated because orientations are usually represented as a rotation with
respect to a fixed, known coordinate frame (also called an inertialframe or basis). Fig-
ure 3-1 depicts a rigid body with an attached body (local) coordinate system [B] which is
measured with respect to some fixed world coordinate system [W) with primes denoting
the moving frame. Often the term angular displacement is used to make the distinction
between rotation and orientation clear in the case of rigid bodies, since displacement im-
plies action. For our purposes, we will ignore the translational component and focus on the
rotation component.

3.1.2 Euler's Theorem and Distance Metrics

The fundamental principle of rigid body orientation is Euler's theorem (Figure 3-2). Euler's
theorem can be stated as follows:

Euler's Theorem: Every displacement (or orientation with respect to a fixed
frame) of a rigid body can be described as a rotation by some angle 0 around

around some fixed axis n.

Intuitively, Euler's theorem just says that if we grab a rock at some orientation in space
and we want to rotate it to some other orientation, there always exists afixed axis that we
can rotate around in order to get to that orientation, and the magnitude of the rotation is the
angle. In other words, the axis us tells us which way to rotate the object and the angle tells
us how far.

[W]

Figure 3-1: A moving body coordinate system B can represent the orientation of the body
with respect to a known world coordinate system W. We ignore translational effects for
simplicity.

Figure 3-2: Euler's theorem states that the angular displacement of any rigid body can be
described as a rotation about some fixed axis (nt) by some angle 6

A useful property of Euler's theorem is that the angle directly gives us an intuitive
notion of a distance metric on rotations and therefore orientations! In fact, this angle is
the natural group metric for rotations. Therefore, if we want the distance between two
orientations, we can directly use the angle of the rotation between the two orientations. We
will see that this angle is easier to calculate in some representations than others and will be
one motivation for a quaternion approach.

Finally, we note that Euler's theorem implies that spatial rotations have three degrees of
freedom - two to specify the axis (since it is normalized, we can use spherical coordinates)
and one for the angle. Therefore, the minimum number of parameters to describe a rotation
is three.

Composition and Non-Commutivity

Two rotations can be composed together by applying one rotation first and then the next.
Euler's theorem assures us that the rotation created by this composition has its own axis
and angle decomposition, though getting to this from the factors is dependent on repre-
sentation. Unfortunately, 3D rotations do not (in general) commute under composition. In
other words, if one rotates around some axis and angle to get a new orientation then rotates
by a second angle and axis from that new orientation the resulting orientation will in gen-
eral be different than if we applied the rotations in the reverse order. This is not the case
for 2D rotations, where the angles can be added in any order.

To visualize non-commutivity intuitively, take your right hand and make coordinate
axes like those in Figure 3-3. Point your thumb up and index finger forward. If you rotate by
90 degrees around your thumb (positive angles being counter-clockwise), then 90 degrees
around your middle finger's new position, your index finger will be pointing down. If
instead you rotate by 90 around your middle finger followed by 90 around the new thumb
position, your index finger will point left!

Non-commutivity is a fundamental property of 3D rotations and will be important in
some of our later discussions.

3.1.3 Summary

This section introduced some terminology and explained Euler's theorem. We described
how Euler's theorem immediately gives us a natural distance metric on rotations and there-
fore between two orientations. The next section will introduce mathematical and computa-
tional representations and parameterizations of rotation.

3.2 Representing Rotations

Since we will describe a joint as an orientation with one, two or three rotational degrees of
freedom, we need a way to represent this fact computationally. In general, there are four
main ways that rotations are represented in practice:

. Coordinate Matrix

e Axis-Angle

" Euler Angles

" Quaternions

Ideally, we would like our choice of representation to have several important properties:

Efficiency The representation should take up minimal space in memory and be efficient
in time for the tasks required. We want to minimize conversions to and from other
representations since this is essentially "wasted" computation if we can get around
it with the right choice of representation. Also, if our representation has its own
algebra, we can perform rotation compositions within the representation.

Robustness The representation should be robust. Some representations, such as the Euler
angles as we shall see, contain discontinuities that must be handled. We would like
our representation to avoid these issues. Also, some representations are redundant in
that several (or an infinite number, at times) elements can represent the same rotation.
This can cause problems if not handled properly.

Ease of Use and Visualization Ideally, we want our representation to be simple and easy
to visualize. As we saw above, we would like the representation to model the action
of Euler's theorem as simply as possible in order to simplify metrics, visualization
and understanding.

The first three representations will be introduced in this section. We will treat quater-
nions, on which this research is based, in the following section for clarity.

3.2.1 Coordinate Matrix

The group of rotations of Euclidean 3-space (R3) is usually denoted as SO(3), which stands
for the group of special orthogonal 3 by 3 matrices. Recall that an orthogonal matrix
consists of orthogonal column vectors which are of unit magnitude - in other words, the
columns form an orthonormal basis for the rotated space as measured in the unrotated
space's coordinate system (frame). Of the orthogonal matrices, called 0(3), there are two
subsets: those with det = +1 and det = -1, where det is the matrix determinant. The
subset with negative determinant are reflections since they change the handedness of space.
The subset of 0(3) with det = +1 are called the special orthogonal matrices. A rotation
matrix R E SO(3) will transform a column vector x E R3 to a new column vector

y = Rx

by rotating it and preserving its magnitude.
A coordinate matrix can be trivially produced if a basis for the rotated space with respect

to the old one is known - it is just the matrix with the basis in the columns of the matrix.
Explicitly,

R [Jncw Ynew inewj

will rotate a vector in the unrotated basis space into one in the new space defined by the
vectors in the columns. In Figure 3-1, the body axes define the body's orientation with
respect to the world and would serve as our basis. Note that this definition of the matrix
assumes we are using column vectors. Some graphics libraries and texts (for example, [86])
use row vectors, which means the basis in in the rows.

Composition

The composition of rotations is simply the familiar multiplication of the corresponding
matrices:

R2R1 = R21

where R1 will be applied to the column vector first. Note that the order of rotations must
be read from right to left, since we are using column vectors.

As we mentioned above, rotations do not commute. Therefore, a matrix representation
of rigid body rotation will be non-commutative as well.

Mathematically speaking,

R1R2 : R2R1 .

This fact is important and can be easy to forget, but has far-reaching implications.

Euler's theorem and Metric

The axis of rotation of a matrix is the eigenvector with unity eigenvalue, which Euler's
theorem decrees must exist. Recall that an eigenvector of a transformation is scaled by the
transformation. In the case of rotation it is the set of points that do not move under rotation,
which is the definition of an axis of rotation.

The other two eigenvectors will be complex and have complex eigenvalues elio. They
define a plane orthogonal to the axis of rotation. Although we can get to the angle (or
metric) through the eigenvalues, we can also rotate an arbitrary unit vector in the plane of
rotation by the matrix and then find the resulting angle between the original and resulting
vectors using a dot product and arccos.

Advantages

Mathematically, the matrix representation seems almost perfect since we used it, in a sense,
to define rotations - SO(3) is exactly the mathematical group we want to represent. Ma-
trices in SO(3) map 1-to-i onto angular displacements of rigid bodies. We will see that
other representations do not have this 1-to-I property, including the quaternions.

Matrices are usually familiar since linear algebra is taught early in most college cur-
ricula. Many algorithms are based on a matrix representation, so there is a lot of history
which can be drawn on as well.

Disadvantages

Unfortunately, the matrix representation has several computational problems. First, it takes
nine parameters to represent a structure with only three inherent degrees of freedom. This
means there are six constraints on the matrices that need to be enforced to remove the extra
degrees of freedom: the orthonormality of the columns and the determinant being positive.
If memory is at a premium, this is an inefficient representation.

Additionally, when many rotations are concatenated numerically, roundoff error will
cause the matrix to drift away from special orthogonal, which introduces shearing and
scaling effects which are undesirable. We can use the standard Gram-Schmidt algorithm
(see, for example, Strang [81]) to "renormalize" the matrix, but this can be computationally
expensive if we need to do it often.

Interpolating between matrices in SO(3) is tricky due to the multiple constraints. The
familiar convex sum interpolator used to interpolate within vector spaces:

aR 1 + (1 - a)R 2 (3.1)

does not work on SO(3) since in general the interpolated matrices will violate the con-
straints. Mathematically speaking, SO(3) is not a vector space (although we use them
as affine transformations of vector spaces). A vector space requires linear superpositions
of elements to be closed under the space (see Appendix D for a more formal definition).
Therefore, we cannot use the many familiar and well-understood vector space algorithms
directly on rotations. This fact is one of the most important to remember in our research,
so we repeat it:

The group of rotations of 3-dimensional Euclidean space, known as SO(3),
does not form a vector space.

This is the crux of most people's problem with designing algorithms for rotations, as we
will see. Instead of a vector space, rotations form a Lie group, which we introduce briefly
in Appendix D along with references for the interested and mathematically-inclined reader.

Numerical integration of a rotation matrix differential equation, which is similar to the
interpolation problem, also causes normalization problems due to numerical error.

Finally, matrices are hard to visualize in terms of the action they perform since the axis
is an eigenvector, and not directly accessible in the representation.

3.2.2 Axis-Angle

One way to parameterize SO(3) is by using Euler's theorem directly and representing a

rotation as the pair (i, 0). This is called an axis-angle representation and most graphics

libraries offer conversions between matrices and axis-angle.

Composition

It is not simple to compose rotations in this notation without converting in and out of some
other representation such as a coordinate matrix and creating the formula in that manner.
This can be computationally expensive.

Euler's Theorem and Metric

A nice feature of axis-angle is that it directly represents Euler's theorem. Therefore, we
can immediately use the angle portion of a rotation between two orientations as the met-
ric. However, the lack of a simple composition rule makes this metric computationally
expensive since we need to convert to and from a matrix.

Advantages

The main advantage of the axis-angle representation is that it is as close to Euler's theorem
as we can get. It directly represents the action of rotation. This makes it quite appealing
from an intuitive point of view.

Disadvantages

Renormalization does not immediately seem to be a problem since we can normalize the
axis if it drifts from unity magnitude. This method does not address what happens when
numerical error creeps into the angle portion, however. Essentially, it is ignored.

Another issue is that an infinite number of angle choices (multiples of 27r) represent the
same rotation. To avoid confusion, the convention that the axis is a unit magnitude vector
and the angle is in the interval [-7r, r] is often chosen. Even with this convention, two
axis-angle pairs still refer to the same rotation. Specifically, (-i, -6) refers to the same
rotation as (fn, 0).

Looking more carefully, there is also a nasty redundancy in the fact that a zero rotation
around any axis is the same exact rotation, the identity! In other words, the representation
of the identity element of SO(3) is not unique - in fact there is an uncountably infinite
number of them - which can cause serious problems in algorithms as rotations approach
the identity element. Often special case conditions are used near the identity to get around
this, like defining a zero rotation around the xc axis to be the identity rotation when the angle
approaches zero, but this can introduce discontinuities, exactly what we are attempting to
avoid.

Axis-angle may seem safe and simple for doing interpolation naively using a linear
interpolation (the convex sum in Equation 3.1) between the four components of the repre-
sentation. This approach, like the matrix version, is problematic. First, and most obvious,
the components of the representation are not in the same units, so applying the same scale
to them is suspicious at best! Almost certainly, one will not get the shortest path interpola-
tion between the two points (the interpolated axis-angles can be converted to SO (3) and a
natural distance metric there can be used to prove this). Second, one needs to deal with the

wrap-around of the angle if one wants semi-unique representatives for the rotation (it could
also just be allowed to range over all of R, but this can be problematic computationally due
to numerical overflow).

If we choose to keep the angle in a fixed range, the interpolation cannot be continuous
- at some point it needs to "jump" through the boundary from -pi to pi or from 0 to
27r. These discontinuities wreak havoc on most interpolation and numerical integration
schemes that are unaware of them.

3.2.3 Euler Angles

A common way to represent a rotation in an animation system is to factor it into three
sequential rotations around the principal orthogonal axes (ic, y, i) and represent the rotation
as the triple (01, 02, 03), with each angle being around some particular axis. This is based
on the fact that the rotation has three degrees of freedom, so three angles should specify
any rotation.

Each of these matrices has a simple form:

1 0 0
X = 0 cos6, -sin 0.,

-0 sin 0, cos0,

Cos OY 0 sin 6,
Y= 0 1 0

-sin6,Y 0 Cos6,Y

cos 0z - sin z 0
Z = sin 02 cos 02 0

0 0 1_

Note that the matrices will be transposed if a row vector basis is used.
Any product of three of these matrices such that no two consecutive matrices have the

same axis is usually called an Euler angle set in the robotics ([18]) and graphics ([77],[86])
communities 1 There are twelve possible products: X-Y-Z, X-Y-X, Y-Z-X, Y-Z-Y, Z-X-
Y, Z-X-Z, X-Z-Y, X-Z-X, Y-X-Z, Y-X-Y, Z-Y-X, Z-Y-Z. These are usually read in the
order the rotations are applied, and not the order of matrix multiplication, which can be
confusing.

Consider the factorization Z-Y-X, which means we rotate around Z then Y then X.
There are in fact two ways to think about this, which leads to confusion:

" Fixed axis

" Moving axis

'This is actually a misnomer which can lead to confusion. Euler angles were invented by physicists to

solve certain problems such as the precessing gyroscope. In general, physicists refer to either Z-X-Z or Z-Y-

Z as Euler angles by convention. The aerospace, graphics, and robotics communities borrowed these from

physicists, but along the way the name has become used for any of the twelve factorizations (see, for example,

Shoemake [77] or Watt and Watt [86].

A fixed axis viewpoint states that you rotate the object around the world z, then the
world y, then the world :i.

A moving axis viewpoint states that you rotate around the local (body) axes: first around
the local i, then the newly rotated y, which we denote y', then around the newly rotated i,
which is denoted i". Figure 3-3 shows how to think about moving axis intuitively. If you
imagine local coordinate axes on your fingers, then you would rotate around your thumb (i)
first, then around the new position of your middle finger (y'), then around the new position
of your index finger (i").

Usually only the moving axis formulation is called an Euler angle set, and the other a
fixed angle set, after Craig [18]. Surprisingly, the two viewpoints turn out to only reverse
the order of matrix multiplication of the three factors! Specifically,

Moving axis Z-Y-X = Fixed axis X-Y-Z

To prove this, consider the action of the rotations on an arbitrary frame, B. In order to
rotate Z-Y-X in world space, we first rotate around the i axis, call the rotation R 1, to get a
new frame, B'. In order to next apply the second rotation around the world y, we need to
use a change of basis operator to specify the rotation in the original frame, B. The resulting
rotation we need to apply to B' to rotate around y in B is thus:

R2 = ZYZ-'
Read from right-to-left, we "undo" the Z rotation to get back into the world frame, then
apply the Y rotation there, then "redo" the Z rotation. But this clearly has the effect of
reversing the order of the multiplications, since

R 2R1 = ZYZ-'Z

and the two right hand factors will cancel to leave

R 2R1 = ZY

This composite rotation takes B into B".
Finally, to apply the rotation around : in world space, the required rotation is:

R3 = ZYXY-'Z-'

which when applied to our other two rotations gives us

R3R2R 1 = ZYX

due to similar cancellation. But this is the same result that we would get if we rotated
around i first, then the local y, then the local z! Therefore, moving axis Z-Y-X is the same
as fixed axis X-Y-Z.

Intuitively, in order to perform a rotation in world space we need to "reach in" and
multiply it on the right.

Figure 3-3: Euler angle illustration: pretend your fingers when held as shown are three
moving orthogonal axes. Any orientation in space can be specified by a yaw around the
thumb followed by a pitch around the middle finger then a roll around the index finger.

Euler's Theorem and Metrics

Euler angles are quite far removed from Euler's theorem, ironically. Although in the case
of 2D rotations they are the same, in 3D this is not the case. In order to find the equivalent
axis-angle of an Euler set, and therefore the natural metric between two orientations, we
need to:

1. Create the three factor matrices from the angle.

2. Multiply the three matrices together.

3. Extract the axis-angle from the resulting matrix.

Computationally, this is too expensive. Usually the standard Euclidean vector distance
metric is used as if the Euler angle triple were a vector (it is not, as we discuss below).
In other words, given two Euler angle triples arranged in a vector, 01 and 02, the standard
metric used is:

d = 101 -0211
This "metric" ignores the coupling between the components of the Euler angles, and is

therefore appropriate only for nearby orientations. This metric will also be badly behaved
whenever one of the angles jumps through a discontinuity, such as from 27r to 0, since the
components actually live on circles (S') and not in a vector space, which the Euclidean
metric assumes.

Advantages

One main advantage of using Euler angles is that people can understand them quickly and
can specify an orientation with them fairly well except in certain cases, as we describe
below. They also have a long history in physics and can make certain integrals over the
space of rotation easier to do.

The main reason they seem to still show up in animation packages like 3D Studio Max
is that they allow the animator to view and tweak animation using function curves, which
are 2D plots of each angle over time.

Euler angles are minimal - only three parameters, so seem to be efficient. As we show
below, however, there is a distinct advantage to using four parameters instead of three.

Finally, the fact that the angles are used directly implies that no normalization needs to
be done on the angles (although to make the triple unique ranges must be specified, as we
see below).

Disadvantages

The principal disadvantage of Euler angles is that mathematically there is an inherent sin-
gularity in any minimal (3 parameter) parameterization of SO(3). Clearly, there is not a
singularity in the rotation group since we can rotate a free body in space physically without
bumping into any singularities! This singularity results from the loss of a degree of freedom
in the representation itself, called a coordinate singularity (see [60] for a clear description
of coordinate singularities versus singularities in the geometric structure itself).

As a concrete example, consider the following set of rotations: rotate ir/2 around z,
then 7r/2 around y. Your x axis has aligned with the original i axis! (In the hand notation,
your index finger is now pointing in the same direction that your thumb started in). Any
orientation that can be gotten by adding a roll in this new configuration could have been
produced by initially rotating around the i axis instead! Mathematically, the extra degree
of freedom has collapsed.

Gimbal Lock This coordinate singularity is commonly referred to as gimbal lock for
historical reasons. A gimbal is a physical device consisting of concentric hoops with pivots
connecting adjacent hoops, allowing them to rotate within each other (see Figure 3-4). A
gimbal with three rings attached orthogonally as in the figure is in fact a physical realization
of a moving Z-Y-X Euler angle description.2 Gimbals are often used to hold gyroscopes
in attitude sensors in the aeronautical industry. Since gyros want to stay fixed in space, a
gimbal connected to an airplane body or satellite can allow a gyro to actually stay fixed in
space - the gimbal will move around it in order to keep the gyro at that orientation. The
Euler angle values can then be read trivially off the pivots with simple electronics like shaft
encoders.

Figure 3-4 shows a locked gimbal on the right - here the teapot cannot be rotated
around its local "up" direction. Even worse, as one approaches gimbal lock, the singularity
usually causes numerical ill-conditioning, often evidenced physically by the gimbal wig-

2The author did not really understand gimbal lock until he played with a real one and locked it up himself.

Figure 3-4: A gimbal consists of three concentric hoops connected by single degree of
freedom pivot joints (each pivot is a physical realization of an Euler angle) which attach
adjacent hoops orthogonally (the outermost black hoop here is considered the "earth" and is
fixed in space and cannot rotate.). The left image depicts the gimbal in its "zero" position,
with the teapot (colored red to show that it is fixed to the red hoops's coordinate frame
and cannot rotate independently of it) in an "unrotated" position, with the three hoop pivots
orthogonal and corresponding to axes (red is k, green is yr and blue is i). The middle image
illustrates an arbitary rotation of the teapot and the associated gimbal configuration. The
right image shows the inherent problem with three hoop gimbals and any associated Euler
angle representation - gimbal lock. Here the teapot's nose is pointing straight up, and two
hoops have aligned, removing a degree of freedom. In this configuration, it is impossible
to find a smooth, continuous change of the gimbal which will result in a rotation around
the teapot's local "up" direction, here shown as a superimposed purple axis. Any attempt
to rotate around the purple axis is impossible from this configuration - the gimbal is said
to be locked since it has lost a degreem of freedom. A real gimbal with a gyro instead of a
teapot would shake itself to pieces if it tried to rotate around this locked axis - a very real
phenomenon in early navigational systems using Euler angles and real gimbals.

gling madly around as it operates near the singularity 3. Gimbal lock is why the aerospace
industry was one of the first to switch to using quaternions to represent orientation - satel-
lites, rockets and airplanes are not happy when their navigational gyro gimbals lock up and
are likely to crash 4

Gimbal lock will occur somewhere in any fixed choice of axes. The only way around it
is to add a fourth gimbal ring and actively drive the other rings away from lock, but this is
ad hoc and adds complexity. We will show below that quaternions add a fourth parameter
in a principled manner.

Interpolation Gimbal lock wreaks havoc on any interpolation scheme or numerical inte-
grator which tries to smoothly interpolate through the singularity. Usually it is evidenced by
extremely poor numerical performance, or the system jittering (most early computer graph-
ics cameras or airplane simulations using Euler angles spin wildly when pointed straight

3Personal communication with Robert Nicholls, Lincoln Labs, MIT.
4 For an interesting report on this problem in the early Apollo program, see [42] which describes how

the inertial navigation system for the Apollo Lunar Excursion Module suffered from gimbal lock. The pilots
were taught to steer away from the singularity, as was dramatized in the movie Apollo 13.

up). This is the case for numerical integration as well. Furthermore, if one interpolates
Euler angles using the standard convex sum, the resulting path when viewed in SO(3) will
not take the shortest path between the endpoints as it does in a vector space, which is usu-
ally what we want (see Watt and Watt [86] for some nice pictures of some of the paths that
can occur). Also, extrapolation will be poor for the same reasons.

Factorization of SO(3) The essential mathematical problem with an Euler angle formu-
lation is that it tries to do a global factorization of the rotation group SO(3) into a subset of
R x R x R, or R3 (subset due to the angle interval constraints). Mathematically, however,
SO(3) is a minimal group and cannot be factored! In other words, any such factorization
of SO(3) into "smaller chunks" will have problems somewhere - there is simply no way
around this.

Hanson [36] describes the factorization problem from a synthesis point of view, which
is simpler to understand and important in its own right, so we stress it:

If you rotate something around k and then around y, there will always be a
component of i rotation in the result.

This property can be proven to oneself (and can also be used to prove that SO(3) is un-
factorable) by multiplying an k and a y rotation matrix together and then extracting the
axis-angle description from the resulting matrix (by finding the eigenvector with eigen-
value 1, for example) - the axis will have a z component, meaning that there is some z
rotation in the result, even though we thought we added none. Hence, the components of a
factorization are coupled and cannot change independently without causing problems. If it
were a valid factorization, they would not be coupled and would transform independently.

3.2.4 Representation Summary
This section discussed several representations of rotation and the issues involved with com-
putational use of these representations. The next section will introduce the quaternion rep-
resentation of rotation which we use extensively in our research.

3.3 Quaternions

Quatemions were discovered on October 16, 1843 by the great Irish mathematician Sir
William Rowan Hamilton as he was walking along the canals by the Royal Irish Academy
in Dublin, Ireland with his wife. For many years, he had been searching for a way to
multiply and divide "triples" of real numbers (what we call a 3-vector today) by extending
the complex numbers, which allow the division of doubles (sets of two reals), into three
dimensions. On that day, he realized "in a flash of insight" that he needed three imaginary
units and one real instead of a real and two imaginary units. So excited was he by the

discovery that he carved the fundamental quaternion algebra equations into a rock with his
knife [6]. Today, the spot is commemorated by a plaque shown in Figure 3-5.

This section will introduce Hamilton's quaternions, the representation of rotation we
use in this research, from an algebraic and geometric point of view, with an emphasis on
intuition. A more formal mathematical treatment can be also found in Appendix D. The
section will proceed as follows:

Section 3.3.1 will introduce quaternions as an extension of complex numbers and give the
basic formulae for the quaternion algebra.

Section 3.3.2 will describe the polar form of quaternions and describe how they can be
used to model 3D rotations.

Section 3.3.3 will describe the topological space of the unit quaternion group, the hyper-
sphere in four dimensions, denoted S3 (since it has three intrinsic degrees of free-
dom). This topology will allow us to use spherical geometry in order to design algo-
rithms.

Section 3.3.4 will describe the exponential mapping of the quaternion group and its rela-
tion to tangent spaces on the hypersphere. The exponential map and its inverse the
logarithmic mapping will be important tools in designing our algorithms.

Section 3.3.5 will give a brief introduction to quaternion calculus as we will use it in this

document.

Section 3.3.6 introduces the basic building block used in quaternion spline interpolation,
slerp (spherical linear interpolation).

Section 3.3.9 will give the interested reader pointers to recommended reading for other
approaches to quaternions. It will also give a summary of the other guises the quater-
nion group goes by in other fields.

3.3.1 Quaternion Hypercomplex Algebra

As Hamilton originally discovered, the quaternions are an extension of the complex num-

bers into four dimensions 5, with a real part and three distinct imaginary parts. Higher

dimensional complex numbers such as quaternions are called hypercomplex. Many prop-

erties of quaternions can be discovered by extending the familiar theorems of complex

analysis [70] by simple analogy to quaternions.

5There does not exist a three-dimensional version of complex numbers, which was the main stumbling

block for Hamilton - even dimensions are required.

Figure 3-5: While walking from his work at Dunsink Observatory to his home in Dublin,
Hamilton realized that he needed a third imaginary unit and was so excited that he scratched
the quaternion algebra equations onto a rock on the bridge over a canal near the Royal Irish
Academy [6]. (Photo credit: Rob Burke 2002)

Definition

Mathematically, a quatemion can be written in the form

Q=w+xi+yj+zk

where w, x, y, z E R and i, j, k are each distinct imaginary numbers such that

2 2 =k 2 =ijk=-1

and pairs multiply similarly to a cross product in a right-handed manner:

ij - -ji - k

jk = -kj =i

ki = -ik= j

Hamilton called the pure real term a scalar and the collective imaginary portion a vec-
tor [33], which is where the current terminology originated. The collection of the four real
coefficients (w, x y, z) he termed a quaternion. We will denote the group of quatemions
as H, such that Q E H denotes a quaternion with arbitrary magnitude.

A more modem and shorthand notation for a quatemion which mirrors more closely

the traditional complex number notation is to define it 6 as the formal sum of a real scalar
and real 3-vector:

Q w+v

where v E R3 . Expanding this out by components gives

W + V = W + Xi + yj + zk

and the 1, j and k here can be thought of as an imaginary basis for the vector portion of
the sum:

0 + 01iO+0j+Ok

A 0+0i+1j+0k

-A 0 + 0i+0j'+ 1k

Hamilton called a quaternion with zero real part a pure quaternion since it is purely
imaginary. A vector x E R3 can be represented as the pure quaternion 0 + x, which will be
useful below. Similarly, the reals are the set of pure scalar quaternions.

Basic Operations

The conjugate of a quatemion, denoted by a star (*) superscript, simply negates the imagi-

nary part as with a normal complex number:

Q= w - v

The magnitude of a quatemion is simply the product of a quaternion with its conjugate,

as with complex numbers:

1Q12 =QQ* (3.2)
Q*Q (3.3)

w2 + v -v (3.4)

A quaternion with unit magnitude is called a unit quaternion. We will make extensive

use of them in this document and describe them in more detail below.

Addition

Quaternions can be added and subtracted commutatively in the standard way by performing

the operation component-wise. It will be important later to note that if we add two unit

quatermions, we will not get another unit quaternion, so addition is only closed over the

entire quatemion group.

6The symbol - is means "defined as equal"

Multiplication

Multiplication of quaternions follows by simply doing a normal Cartesian product of the
two quaternions as if they were polynomials of the terms i, j, k and then performing re-
ductions of the higher order products of imaginary terms (i 2 , 1J, etc.) using Hamilton's
set of algebraic rules above. This manipulation gives an explicit quaternion multiplication
formula useful for computation:

QIQ2 = ((wiw 2 - X1X2 - YiY2 - ziz2)+

(yiz 2 - y2zi + wix 2 + w 2 xi)i+

(x 2zi - XIz 2 + wiy 2 + w 2 yi)j+

(Xiy 2 - X 2yi + wiz 2 + 'W2 zi)k)

A simple corollary of this definition is that a pure unit quaternion (having zero scalar
part and a unit magnitude vector part) squares to -1 under the quaternion multiplication!
Explicitly,

(0 +)2 = (0 + 9)(O +9) -1V 9 R3

This property makes the correspondence to the complex numbers obvious, but with the
imaginary component being a vector rather than a scalar.

The quaternion product can also be written in terms of vector algebra notation as:

PQ = (wiw 2 - vI - V2 , vI x v 2 + wiv 2 + w2 v 1)

People familiar with the vector algebra will notice that the cross product term implies im-
mediately that the quaternion multiplication is not commutative, as we expect. We see that
the quaternion product contains both the dot (scalar) and cross (vector) products separately
in the quatemion. Although neither the dot or cross product is invertible by itself, their sum
is invertible!

The quaternion with unity scalar is clearly the multiplicative identity element since
multiplying it has no effect on a quaternion.

Inverse (Division)

The inverse of a quaternion is defined as

1

just as with complex numbers. All quaternions except the zero quaternion have a unique
inverse.

Unit Quaternions

Quaternions with unit magnitude form a subgroup of the full quaternion group. In the next
sectio,n we will see that the unit quaternions are all that are required to represent rotation,

although we need the full quaternion group in order to define rotations and derivatives. The
make the notation clear, we will denote a unit quaternion as Q C H. The "hat" implies unit
magnitude.

A useful property of unit quaternions is that their inverse is simply the conjugate.

Q-1 = Q*

3.3.2 Polar Form and Powers

Again in correspondence with the complex numbers, a quaternion q E H permits the polar
representation

9 0Q = re2 = r[cos- +fsin -12 2

where n is a pure quaternion. Here, r is the magnitude, 0 is called the angle of the quater-
nion, and n is called the axis. It is useful to write the angle as rather than 0, as we shall
see shortly when we show how to use quaternions to rotate vectors. The exponential must
be taken as the formal power series:

0 6 (19n)2 (9fn)3 (0fn) 4 (9fn) 5

e2 =1+-ni+ + + + +
2 2! 3! 4! 5!

for the formula to make sense (as with matrix exponentials) and reducing terms with the
fact that 12 = -1. We will make extensive use of the exponential form of quaternions and
describe this is more detail below.

DeMoivre's power theorem also carries to the quaternions:

t it! 0 0

Q =re2 = rt[cos(t-) + fisin(t-)]2 2

One must be careful using the exponential form of quaternions since the product is not
commutative. Therefore, standard rules of exponentials learned from high school do not
apply! This can be a potential source of errors in derivations.

An intuitive way to think about exponentiation of a unit quaternion is that it calculates a
point that it is the fraction t along the great circle from the identity (1) to the quaternion Q.
This can be found by using the trigonometric form of deMoivre's formula as well. Since n
is orthogonal to this great circle, if t is varied with constant speed, we will move along this
great circle at constant angular speed as well. This is the basis for fundamental quaternion
interpolator, slerp, described below.

Rotations of 3-Vectors

A quaternion can be used to represent a rotation of normal Euclidean 3-space, R3 . Recall
that we can interpret a vector as a pure imaginary quaternion. Consider the following
quadratic product:

y = QxQ

with both x, y E R3 interpreted as pure quatemions and Q E H. It can be proven that this
triple product will always produce a pure quatemion for any unit quaternion q and any pure
quatemion x. Most importantly, y will be the vector x rotated by 0 radians around the axis
nl! (The interested reader should see Appendix D for a more formal treatment of this.)

Notice that the actual rotation is by 0 and not 0, which is why we introduced the half-
angle in the first place. An intuitive way to think about this half-angle is that since the
quaternion is multipled by the vector twice, the angle is "applied" twice, so only half is
needed for each side of the multiplication 7 The half-angle also means that we need to
rotate a quatemion by multiples of 47r to get it back to where it started, not 27 like normal
rotations.

Since the inverse divides by the magnitude, the subgroup of unit quaternions is enough
to represent rotations. For this document, we will only use unit quatemions to represent
rotations. This reduces the rotation formula to the fundamental formula for quaternion
rotation:

y = R(O, n) = QxQ*

where R(O, ii) is the rotation matrix that rotates by 0 around n.

Double covering

An important property of the rotation formula is that both Q and its negation -Q will
produce the same rotation. This is an important fact to be remembered in algorithm design
as we will see later, so we make it clear:

Both a unit quaternion Q and its negative -Q represent the same rotation of a
vector. This is called a dual-valued or double-covering representation.

Useful Rotation Formulae

Quaternions allow us to find the shortest rotation between two orientations (Euler's the-
orem) trivially. If P and Q represent two orientations, then the product P*Q gives us a
quatemion that will rotate P into Q. Thus, we can intuitively think about multiplying one
quatemion by the conjugate of the other as "subtraction," though remembering that it is not
commutative.

Similarly, the shortest rotation that takes one unit vector x into another y is simply
found by the vector product (,*y)i/ 2 . In fact, any unit quaternion can be written as the
product of two unit vectors in this way.

This product is actually the foundation for the deeper theory of Clifford or geometric
algebras ([17, 41, 32]) of which quaternions are one example.

7Hanson also provides a mathematical description of why this half-angle creeps into the formula [36] -
it results from a square root in the frame equations.

Composition of Rotations

The composition of two rotations each represented as a unit quaternion is simply the prod-
uct of the two quaternions. In other words, if we want a quaternion which represents first
a rotation Qi followed by a rotation Q2, we need the quaternion Q2Q1. Notice that the
composition order happens from right to left, as is the case with rotation matrices acting
on column vectors. Indeed, it often helps to avoid problems with forgetting about non-
commutivity to in fact think of quaternions as matrices, since most readers are already
familiar with the non-commutivity of matrix multiplication.

Summary of Quaternion Algebra

In the last section, we learned that:

" Quatemions extend complex numbers to four dimensions with many formula carry-
ing over through analogy.

" Quatemions allow us to divide vectors as well as multiply them (unlike dot and
cross).

" Unit quaternions allow us to simply represent rotations of vectors.

" Both a unit quatemion and its negative represent the same rotation.

3.3.3 Topological Structure of Unit Quaternions: Hypersphere S3

Unit quaternions (H) are often represented computationally as unit vectors in R4 . This
representation is the surface of a hypersphere in 4 dimensions! This sphere is also known
as S3 , since the surface has three degrees of internal freedom, though it is embedded in
a four-dimensional space. When taking this geometric point of view, the negative of a
quaternion is called its antipode. The fact that both a quaternion and its antipode refer to
the same rotation is called antipodal symmetry.

Thinking of the unit quaternions as living on a hypersphere is the most useful property
of the quaternions as it allows for the use of visualization and geometric reasoning fro
algorithm design and lets us not consider quaternions as a "black box." Many calculations
that would be difficult to do analytically in the quaternion algebra are potentially much
simpler using geometric reasoning and hyperspherical trigonometry. Algorithm design can
also use this geometric property as a starting point, using construction schemes on the
sphere rather than the algebra directly. We shall use this fact throughout this document.

3.3.4 Exponential Map and Tangent Space

We introduced the exponential above in the polar form. This section will describe the

exponential mapping and its inverse the logarithmic mapping in more detail since we will

use it throughout our work, as do several other graphics researchers recently [52, 29, 54,

55]. The exponential and logarithmic maps will let us map vectors into unit quaternions
and vice versa. We will see that this is related to the tangent space to the hypersphere and

that the log map can be used to locally linearize the quaternions in an analytic and invertible
way.

Definition

Any unit quaternion can be written as the exponential of a pure vector:

0 -

Q ex= e

Likewise, we can define the logarithm of a quaternion as the inverse of the exponential:

In 0 = In 0lnQ = neC2 2-n
2

By restricting the magnitude of the vector (0) to the range [0, ir], we can get an almost
unique mapping from the solid ball of radius 7r to a unit quaternion. In this case the origin
will map to the identity element. Each point inside the ball represents a unique rotation.
Notice, however, that antipodalpoints on the surface of the ball are identical rotations since
a rotation around any axis by -r, no matter what the sign of the axis, is the same rotation.
This representation can be used directly, though care must be taken at the surface of the
ball since it introduces a discontinuity (see [29] for more details on this). We expect this to
be the case since, as we mentioned above, any three parameter representation (which the
log vector is) must have a singularity somewhere.

Computationally, the most robust way to implement the quaternion exponential map-
ping is using the equation:

Vector(q)

sinc(O)

where

= arccos(Scalar(q))
2

and Scalar(q) is the scalar component of the quaternion, Vector(q) is the vector part, and
sine is the "sink" function sin(x)/x whose limit at x = 0 exists 8 This equation also makes
the mapping very clear - the log is taken by dividing the vector part through by a (scalar)
sinc function and zeroing the scalar part. It is simple to check if we use the polar form of
the quaternion (cos + i sin 0):

n 2i

Expanding sine = sin(x)/x gives

W 0 ofnsin (0)

sin)

8Care must be taken in an implementation to avoid divide by zero. We use a lookup table interpolation
near x = 0 and perform the division explicitly beyond this range.

Figure 3-6: A depiction of the exponential map. Points in the tangent space are mapped
onto the sphere by the exponential mapping and vice versa by the logarithmic map, its
inverse.

and reduces to the desired

w = -n.
2

This gives us a simple way to convert from axis-angle to unit quaternions and back,
which as we saw above is important for metrics based on Euler's theorem.

Tangent Space to S3 : TS 3

A powerful way of thinking about this mapping is that w lives in the 3-dimensional tangent
space at the identity of the quaternion hypersphere. This tangent space is denoted tan 1S3 .
Lack of a subscript will implicitly mean the tangent space is at the identity. Figure 3-6
depicts the mapping. Put succintly:

In order to map a unit quaternion Q into the tangent space at some other location on the
sphere P, we simply rotate the sphere to align P with the identity and then take the log:

Ing(Q) = ln(P*Q)

Most of our algorithms will use this basic formula, so we box it to make it clear. The
subscript denotes that we are taking the log at a different point than the identity.

Furthermore, this is also an invertible mapping, giving us:

0 -2exp,(fn) Pe i

The tangent space is R3 and is in fact a vector space. Therefore, the exponential and
log maps can serve as a local "linearization" (approximation) of the unit quaternion group,
mapping unit quatemions into tangent vectors. These maps are also extremely related to the
quaternion calculus and basic quaternion interpolator (slerp), described below. We discuss
their relation to Lie algebras in Appendix D.

Tangent space mappings will allow us to more easily visualize and design interactive
manipulation algorithms, such as Hanson's "Rolling Ball" algorithms for manipulating
quaternions [34, 37, 36].

Properties

The exponential map has a few properties which we will leverage. First, it preserves the
spherical distance from any point on the sphere to the identity. In other words, the mag-
nitude of the log vector will be the same as the spherical distance from the identity to the
mapped quaternion. This allows us to construct a simple metric between quaternions:

dist(P, 21) = I||n(*Q |

Notice that this gives the natural metric between two quaternions (0) directly!
Second, it preserves the angle made between two quaternions and the identity. In other

words, if the identity is thought of as the north pole of the Earth, two lines of constant
longitude emanating from the north pole will logmap to two vectors that have the same
angle between them as the longitude lines make at the north pole.

Intuitively, these properties imply that a spherical circle centered around the tangent
point on the sphere will map to a sphere (S 2) in the tangent space. Likewise, ellipses map
to ellipsoids. Squares, however, will become distorted. These effects are exactly what we
see when we look down on the north pole of a globe as well.

Finally, we note that since the logmap is effectively a local linearization, it is best near
the center of the map.

3.3.5 Basic Quaternion Calculus and Angular Velocity

This section will introduce the basic quaternion calculus formula which we will use in the
design and understanding of some of our algorithms and explain its relation to the familiar
instantaneous angular velocity in mechanics.

The time derivative of a unit quaternion Q(t) is:

d W(t)(t)Q(t) = Q -Q(t)w'(t) =dt 2 2

where w E R is the angular velocity of the quaternion with respect to the basis frame
(identity element) and w' c R3 is the local angular velocity in the frame at Q. (We will not
prove this here, but see [52, 53, 19].) Notice that angular velocity is a true vector quantity.

There are several points to mention. First, the factor of 1 handles the fact that the
quaternion curve will move half as fast as the corresponding SO(3) curve due to the half
angle in the rotation formula. Second, since the derivative is expressed in the quaternion
algebra, it is a quaternion, although not unit itself.

Intuitively, a derivative at a point is a tangent vector at that point. Since our derivative
is of a unit quaternion Q(t), it must be tangent to S 3 at Q. Since angular velocity is a
pure vector in the quaternion algebra, it must have no component in the identity direction.
Therefore, it is orthogonal to the real axis and can be thought to live in the tangent space
at the identity (real axis). By then multiplying by the location Q, we effectively "rotate"
the local angular velocity to the tangent space at Q so that the derivative is expressed in the
inertial basis.

Another way to look at the derivative is to consider a fixed unit quaternion Qo exponen-
tiated by time:

Q(t) =QO
which can be expressed as

t _ t ln Qo

and the derivative in time is then

Q(t)=Q(t)lnQo

which is the differential equation for a constant angular velocity curve that passes through
the identity at t = 0 and Qo at t = 1.

Finally, we discuss numerical integration of quaternion ordinary differential equations
(ODE) in Appendix C.

3.3.6 Interpolation, Slerp and Splines

Several interpolation techniques currently exist for doing interpolation on a sphere. An
advantage of the quaternion representation is that these interpolation techniques, unlike the
ones were saw above, are smooth and continuous over the entire sphere and do not exhibit
anomalous singularities (gimbal lock).

The most important of these spherical interpolation techniques, introduced to the graph-
ics community by Shoemake [73], is slerp, which is short for spherical linear interpolation.
It can be defined in the quaternion algebra as:

slerp(Q1 , Q2, t) = Qi(di)

Slerp is the hyperspherical version of the familiar convex sum in a vector space (often called

lerp) and interpolates at constant angular velocity along the shortest path (a great circle)

from p to q as t ranges from 0 to 1 at constant parametric speed. Slerp can be thought of

Figure 3-7: A depiction of slerp. The two examples are interpolated at constant angular
velocity as the parameter changes with constant speed. The exponential portion of slerp
can be interpreted with the exponential mapping with respect to one example. In this view,
a constant speed line in the tangent space will map to a constant angular velocity curve on
the sphere.

as "walking along the equator at constant speed." Figure 3-7 depicts slerp. As the tangent
point is moved at constant speed in the tangent space, its mapping on the sphere moves at
constant angular speed.

Care must be taken in the use of slerp due to the antipodal symmetry of unit quaternions
when representing rotations in SO(3). Since both Q and -Q refer to the same rotation,
we need to find the shortest path in SO(3). To handle this, the simple heuristic that both
quaternions must be on the same side of the sphere is used. If it were on the other side, the
geodesic path would appear to "take the long way around" to get to the other orientation.

Given that we have a spherical analogue of the lerp geodesic, a spline construction
scheme can be used to generate Catmull-Rom, Cubic Hermite, and other splines on S'.
The interested reader should see Schlag's Graphics Gem [72] for more information. A
useful source is [52] who show a general construction scheme for analytic spline using the
exponential map. Our work is similar to this, except we will be performing multi-variate
interpolation rather than just temporal.

3.3.7 Advantages

So what do we get for accepting this unfamiliar object? Nothing short of the grail: lack of a
singularity in the representation. This property follows from a theorem in topology which is
amusingly called the Hairy Ball Theorem [73] (our discussion closely follows Shoemake's
description in the reference). It states that it is only possible to create a continuous tangent

vector field (which can be thought of as "hair") on a sphere of odd surface dimension
(though possibly embedded in an even dimensional space).

This theorem is obvious for a one-dimensional sphere, or circle (S'). The "hair" can
clearly be "combed" in one direction around the circle without discontinuities. It is also
possible on S3 , where the quatemions live. Surprisingly, however, it is not possible on a
sphere of two-dimensions (S2), which are the spheres we are familiar with as balls and
balloons and directions in space. Put simply, you cannot comb the hairs on a tennis ball
without getting a cowlick or "bald spot" somewhere on the surface. In other words, there
must be a discontinuity in hair direction or a spot where the tangent must vanish entirely to
zero (at a whorl, say). But on a hypertennis ball (four-dimensional), it would be possible to
comb it without such a problem.

This theorem implies that no matter how a point is moving continuously around the
sphere (in our case representing a smooth change in the orientation of an object in R3),
there is no spot where we will get "stuck" on a singularity trying to move in a direction
we cannot (over a cowlick or whorl) as in a minimal three-coordinate representation. Put
succintly:

Quaternions do not suffer from gimbal lock or coordinate singularities.

Another added advantage for numerical calculations is that quatemion multiplication
uses fewer multiplies than matrix multiplication, making it more computationally efficient
for composition. Another bonus is that numerical drift away from unit magnitude is easily
removed by renormalizing the quaternion in the obvious manner of dividing by the mag-
nitude. Some researchers instead use the entire quatemion group (of any magnitude) and
perform the normalization only when calculating a rotation triple product on a vector [26].

The full group is useful in designing algorithms as well. For example, Shoemake sug-
gests taking the square root of a quatemion as:

- 1 (1 + Q)

|1i +Q|
which uses the addition operator of the full quaternion group rather than by the more obvi-
ous application of the exponential form (we describe the natural log of a quaternion below):

3.3.8 Disadvantages

The main disadvantage is that quaternions use mathematics that is less familiar to most

people, so they require a little extra work to understand and work with. The worst draw-

back is that since quaternions live on a sphere, one cannot use the Euclidean vector space
interpolation methods such as B-splines without modification. These techniques need to

terminology field usual denotation
quaternion computer graphics subgroup of SO(4)
Euler parameters mech/aero engineering subgroup of SO(4)
spin group quantum physics SU(2)

be reformulated to work on a sphere. Some of these methods have been extended already
(see, for example,[52, 4, 67, 26, 73, 19].

It is important to remember that this is not just a drawback of quaternions, but is in fact
inherent in the nature of the rotation group itself, as described above. Since we are forced
to deal with this fact anyway, quaternions allow us to use spherical geometric reasoning in
algorithm construction and visualization.

3.3.9 Recommended, Related and Other reading

Quaternions masquerade under many different names in the literature as different fields re-
discovered the need for them. For example, the quaternions are isomorphic to the special
unitary 2 by 2 complex matrices, SU(2), which is a spin group in quantum physics. A lot
of intuition about quaternions can therefore be gained by learning about SU(2). Artin's
Algebra [2] gives a great introduction to SU(2) and the relation of the algebra to S 3. Me-
chanical and aerospace engineering often use the term Euler parameters for quaternions,
which is unfortunate since they are very different from the Euler angles. Many fields use
the fact that a subgroup of SO(4) can model the quaternion algebra linearly. Table 3.3.9
summarizes some of the quaternion aliases to help the reader in a keyword search.

Many books exist which are helpful in learning about the classical groups, such as the
rotation group SO(3), as well as the mathematics which is useful for handling quaternions.

A great reference book which the author wishes he had five years ago is the recent
book by Gallier [23] which covers affine spaces, homogenous coordinates, Lie group and
algebras and many other geometric ideas with an eye toward computational issues rather
than pure mathematics.

There are many useful articles in the Graphics Gems series on useful techniques for
quaternions, from random rotations to 2D input devices, to theory: [56, 28, 74, 72, 34, 27,
61, 75, 35, 76, 77, 78, 37].

McCarthy's introduction to kinematics is also useful for understanding clifford alge-
bras, Plucker coordinates, and other structures which are useful in kinematics [59].

Kuipers has a great introductory book on quaternions [53]. Dam's tech report [19]
contains a clear presentation of rotation representation and derives some of the properties
of slerp and the cubic Hermite (squad), as well as introducing a new interpolation scheme
(spring). They also correct a bug in Shoemake's derivation of squad.

For the more mathematically inclined, a recent book explores the calculus of quaternion
and Clifford algebras with an eye towards application (such as a quaternionic neural net
solution), but it is not for uninitiated! [32]. Sattinger and Weaver's classic introduction to
Lie groups was one of the more useful to the author for understanding representations of

rotation though it is mostly of use to quantum physicists [71]. Weyl [88] is also a classic
on group theory. A great introduction to SU(2) and the exponential mapping can be found
in [2].

For those unfamiliar with tensor and vector calculus, [91] is a useful start. Saff [70] is
a reasonable introduction to complex analysis in general, but not quaternions. Bartels et al
[5] is a great source for spline construction and interpolation theory. Finally, Nikravesh [62]
offers an useful discussion of using quaternions in a numerical simulation of rigid body
dynamics, including issues with integrating quaternion matrix equations.

A good book for learning differential geometry is Burke's [14]. Gravitation, a big black
tome, has useful sections on the spinor representation of rotation as well as some great
visualization tools and insights into the nature of curved spaces, tensor calculus, differential
geometry, and the rotation group.

Finally, Geometric Algebra is a superset of the quaternions which is becoming popu-
lar in many fields as it pulls together the representation of physical groups into a unified
framework to promote sharing of ideas. Many excellent papers on quaternion techniques
ranging from quaternion wavelets to quaternion neural nets and applications ranging from
quantum, Kalman filters, computer vision, robotics, and optics can be found in [17]. The
SIGGRAPH community recently began looking at them in a course as well [68].

3.4 Quaternion Algebra and Geometry Summary

We summarize the main formulas and their geometric interpretation in terms of spheres
and great circles in the following tables. The graphics are meant to show how quaternion
operations are very related to geometric operations on spheres in the same way that unit
complex numbers amount to operations on a unit circle. In some of the images, the axis
coming out of the page is fi, showing that we are taking an orthogonal projection of the
one-parameter subgroup orthogonal to ii. In others, we explicitly show the real axis along
the horizontal (with the group identity, 1) and the entire vector imaginary portion collapsed
abstractly into the vertical axis as if it were a complex number 9.

91n fact, it actually is. The Clifford algebra pseudoscalar I times a vector acts much like the complex unit

i times a scalar (see [17])

Sqrt (geometric)

Conjugate

w + xi + yj +zk = w + x

Q w - x = e 2

Table 3.1: Quaternion Algebra Summary

Logmap

Table 3.2: Quatemion Algebra Summary I

Rotation Difference

Vector Difference

Derivative

Table 3.3: Quatemion Algebra Summary III

= Qoet1n(Q*oQJ)

Chapter 4

Statistical Kinematic Joint Models

The last chapter introduced the mathematical issues with representing orientations and ro-
tations, which are the essential components to modeling character joint motion. It introduce
several representations, focusing on the quaternion, which we saw had a lot of nice proerties
in terms of efficiency, interpolation and metrics.

This chapter will motivate an abstract statistical kinematic joint model consisting of the
following parts:

" Joint equilibrium (center) point

" Joint motion limits around the center

e Joint motion probabilistic model around the center.

We then give a set of properties we would like the joint model to possess based on our
overall problem of learning a motion manifold from examples. These are:

" Scale-Invariance

" Convexity

" Constraints

" Singularity-Free

" Intuitive

" Fast and Efficient

" Common currency

" Able to Interpolate

We then compare the following choices of representation against these properties:

* Special Orthogonal Matrices (SO(3))

* Euler angles (S' x S' x SI).

* Quaternions (S3)

We conclude that the best representation of a joint uses a quaternion representation as
follows:

" Use a quaternion for representing the current rotation of the joint with respect to the
bone it is connected to.

" Use a quaternion statistical model learned over the entire corpus of animation to
model joint motion probabilistic behavior and limits.

The rest of the chapter will proceed as follows:

Section 4.1 motivates the need for a statistical model of joint motion.

Section 4.2 motivates the use of quaternions as the representation of orientation of a joint
for a statistical model by comparing it against Euler angles and SO(3) matrices ac-
cording to a set of desirable criteria for a statistical model.

Section 4.3 summarizes the argument for the use of a quaternion representation of joints.

4.1 Motivation for Statistical Kinematic Model

Consider the rotation of your wrist. It tends to move around some average center point,
approximately where it lines up with your forearm. It can rotate left-right over a small range
and up/down over a wider range. It can roll (twist) around the axis of the forearm as well.
The twist degree of freedom is often considered to be at the wrist itself in computational
skeletal models, giving the wrist three degrees of freedom, even though clearly through the
action of the tendons is occurring along the forearm. Other models place the twist degree
of freedom at the elbow, which most people consider to be one degree of freedom, giving
the wrist and the elbow each 2 DOF to model the 4 DOF of the wrist to upper arm chain.
Clearly, all of these models are abstract descriptions of what is actually going on in the
underlying muscles and tendons. Actual organic joints can be quite complex, exhibiting
disturbing phenomena such as hysteresis, or path memory. We will ignore a lot of these
lower level effects and focus on the common observable rotations and how they move
bones.

On the other hand, we cannot entirely ignore this issue. A very interesting thing we
noticed is that in switching from a rigid mesh for virtual characters (in which joint rotations
rotate fixed chunks of geometry connected to the bones) to a skinning approach (where a
seamless mesh deforms in a weighted manner according the the bone location) can change
how an animator chooses to make this decision! Consider the wrist example again: as the
wrist twists, the skin of the forearm twists. To an animator, this means the bone inside is
twisting, which happens at the elbow. If they apply twist at the wrist instead, the forearm
won't move as easily. We were surprised by early statistical analyses which showed that

elbows were 2 DOF! Therefore, by allowing a model that can find inherent degrees of
freedom of the joint we can avoid imposing artistic limits on the animator by forcing a
certain rotation structure up front that the animator must adhere to. Instead we argue for
letting the animator do what is most natural and then having us extract the proper data later,
as we argued for earlier.

Another interesting thing to notice about organic joints is that since they have tendons
connecting them to the bones, they in general cannot spin around in any direction by a full
360 degrees like Regan's head in The Exorcist or a robotic joint. Consider your wrist again.
Wiggle it around randomly in all directions. 1 Not only does it have a central location, but
the edge of the constraint boundary (joint limit in any direction) is fairly smooth over most
of the range, meaning that the boundary is close to convex.

So what can we gather from this simple empirical study? We will argue that to model
an organic joint like a wrist, the minimal set of statistics we will need are:

Mean, Center, Average, Equilibrium The center of the joint as a coordinate frame. This
can be thought of as some average "minimal energy" location over all possible mus-
cle equilibria points when considered as springs.

Convex Joint Limits The joint will tend to have a limited amount of rotation away from
the center of the joint. This boundary seems to be fairly convex, lacking "corners"
where we get stuck 2

Variances around the mean Joint limits and variances are clearly very related, and we
will use the same structure for them. Again, we might need a more complicated mix-
ture model to handle joints in certain cases. Since kernel-based mixture models are
based on sums of these second order statistics models (which serve as local kernels),
having a clear single second-order statistical kernel model is required first.

In summary, we will use the following simplifying assumptions in our statistical model:

" Joint data is local is fairly local in the rotation group and therefore single joint statis-
tics can be modeled with a mean and variances about the mean.

" Joint limits can be expressed in terms of limits in the principal variance directions
and form a convex constraint surface.

* Joints do not spin all the way around in any direction ', therefore the joint will live
in a closed subspace of the rotation group.

The next section will discuss joint properties in a little more detail and argue that quater-
nions are the best way to model this kind of joint data.

'Schaal at USC calls this "motor babbling". In yoga class we call it "vibration." The effect is the same:

to force the joint into all its configurations. I imagine this is what a baby is doing when it wiggles randomly.
2These do exist, however. The shoulder joint exhibits hysteresis, or path memory, or posture. It is possible

to take a certain path into a configuration where one can't get back out in certain directions. Thus, real joints

do exhibit singularities in certain places. Since we are worried about modeling expressive motion as quickly

as possible, we will ignore these strange cases which rarely happen on average. In modeling a human being

performing yoga, we will need to have a better statistical model.
3Excluding the special top level "root node" discussed in the next chapter which lets the character's center

of mass rotate and tumble arbitrarily in space.

4.2 Motivation for a Quaternion Representation of Char-
acter Joints

Why use a quatemion statistical model rather than something else for modeling the statisti-
cal kinematics of organic joints? We argue that an appropriate joint model which leverages
animator knowledge through analysis and synthesis of examples should have the following
properties:

" Scale-Invariance

" Simple, Fast, Convex Range Constraints

" Singularity-Free

" Intuitive

" Fast and Efficient

" Common currency

" Able to interpolate

Furthermore, there are three clear representation altenatives out there now:

" Special Orthogonal Matrices

" Euler angles

" Quaternions

First, we will describe the properties we feel the joint representation needs. Then we
will address these properties for each of these representations.

4.2.1 Properties

Scale invariance First, the model should ideally allow scale-invariance. This means that
in a distance metric between two joint rotations, we would like to have the distance in
dimensionless units. For example, a wrist joint rotates further in certain directions than
others. We would like to consider the relative distance of the joint rotation with respect to
its full range, for example as a percentage, or weight, of rotation in each direction. Scale-
invariance is often required by statistical algorithms.

Joint Range Limits A model should allow for hard joint limits. Extrapolation techniques
or inverse kinematics techniques that will go beyond the example data will need a way to be
constrained to avoid unnatural poses, such as an elbow going backwards. Hard constraints
are often at odds with convexity, although if we use a density with ellipsoidal isocontours
we can choose a particular contour (standard deviation) as a hard constraint surface. This
choice allows us the benefits of a hard surface while not losing the convex continuous
gradient of the underlying density. These constraints should be easy to learn from data.
Since we want to model arbitrary organic characters, we cannot make assumptions from
biometric data - we need to collect our own. Having to tweak the joint constraints on a
model by hand is not an effective way to leverage an animator's skills. Additionally, since
constraint checks often occur inside intensive iterations, they need to be as fast as possible.
Finally, we would like the limit model to be convex, or form a smooth boundary. This will
be advantageous for many optimization techniques that can get "stuck" on the corners of a
non-convex constraint boundary.

Singularity-free A model should not have coordinate singularities. A coordinate singu-
larity is where the representation goes to zero (or infinity) due to some mathematical reason
which has nothing to do with the thing modeled (joint rotation). For example, a gimbal (see
Figure 3-4) can be used physically to describe rotations. Unfortunately, there will always
exist some configuration where the gimbal gets stuck due to a coordinate singularity (loss
of a degree of freedom) as we saw in Chapter 3. Clearly, rotations themselves do not lock
up - tumbling rocks don't suddenly lock up at some orientation. In fact, lack of singu-
larity will be the best reason to choose quaternions. Often naive users of Euler angles will
assume that "glitches" in interpolation and integration of Euler angles are bugs in their
code, whereas in fact they are an inherent mathematical flaw which needs to be addressed
properly.

Intuitive Ideally, we would like our representation to be as intuitive as possible. Since
we are representing something about which people have a lifetime of intuition - rotation
of joints - we would like our representation to be as close to the geometry as possible,
with nothing extra. The proper representation will allow an intuitive understanding of
and increased ability to design appropriate and efficient algorithms for handling rotation
computationally.

Efficiency Since we our modeling interactive characters, we need to make the calcula-
tion of motion as fast and small as possible without sacrificing mathematical robustness
or simplicity. Euler's theorem gives us a target for complexity: 3 parameters is a minimal
representation. Since speed is much more important for maintaing the illusion of life in a
character, time efficiency will be chosen over space when required.

Common Currency Related to efficiency, we would like a unified common currency
for describing rotations to avoid the numerical problems and computational overhead with

converting between representations in algorithms. Also, this will let us blend the result

of different algorithms in the same manner irregardless of how the individual algorithms

calculate their answers. Since we need a common currency, we should try to get the best
one from a mathematical and computational point of view.

Interpolation/Extrapolation Finally, we would like the representation to allow for sim-
ple, very fast interpolation. Ideally, it should allow for extrapolation as well, which will let
us leverage the animator better by requiring less examples from him to "patch up" problems
caused by the representation.

Next, we compare the following common choices of representation with respect to these
properties:

" Special Orthogonal Matrices SO(3)

" Euler angles

" Quaternions

4.2.2 Special Orthogonal Matrices SO (3)

We discussed coordinate matrices for SO(3) in the previous chapter. Recall that a coor-
dinate matrix's columns form a basis for the rotated joint with respect to the frame it is
measured with respect to.

Scale-Invariance Metrics on coordinate matrices are well-known (see [59]). These treat
the matrix as a large vector, however, which makes it harder to see how the matrix
metric relates to the the rotation. However, much of statistics is based in the linear al-
gebra so much is known about finding principal axes using singular value techniques
(see, for example, Therrien [83]).

Constraints Joint constraints are not obvious in SO(3). Since it is not a vector space, we
cannot factor the space into orthogonal components and constrain in each direction
independently. We need to consider the entire representation simultaneously, cou-
pling and all. How to do this is not clear since there are already constraints in the
matrix to keep it special orthogonal. In practice, joint constraints are usually encoded
as ranges on an Euler parameterization of the matrix.

Singularity-Free SO (3) is singularity free. Only three degrees of freedom are needed to
specify a rotation. A 3x3 has 9 entries with 6 constraints to maintain orthogonality
and positive determinant.

Intuitive Matrices are familiar, but I would not call them immediately intuitive. They
look at how coordinates change under the action of a rotation, rather than on the
geometric, coordinate-free invariants of the motion. On the other hand, we can think
of them as being a coordinate frame in terms of three orthogonal axes in the columns.
For this reason, matrices can be intuitive for entering or extracting a rotation directly
in terms of the effect of the rotation on each basis element.

Efficiency Matrices are often quite fast because they are usually implemented in hardware.
In software, it is clear that we can do better since there is much redundancy in the
representation due to the six constraints. This redundancy gets effectively squared
when we compose rotations through matrix multiplication. Also, numerical roundoff
issues require us to renormalize the matrices to avoid shearing effects, which involves
invoking Gram-Schmidt or some other matrix renormalizer like polar decomposition.
Clearly, a representation which had fewer redundancies and constraints would be
more computationally efficient.

Common currency Since SO(3) is in fact the group we are seeking to represent, a co-
ordinate matrix is a natural common currency. Matrices are the most popular com-
mon currency in many graphics systems. Spectral methods allow us to extract the
translational and rotational parts of the matrix if needed, so we can convert to other
representations, although these methods involve eigenvector calculatons which can
be expensive.

Interpolation It is not clear how to blend n matrices in SO(3) into a weighted average
that is still in SO(3). Adding them with the weights linearly then renormalizing in
general will not work since they are not a vector space, as we saw. The 6 constraints
make interpolation quite tricky, though integration is well-known for SO(3).

To summarize, matrices are common, familiar, well-understood and intuitive in some
situations. Mathematically, they are in some sense the group we want to represent com-
putationally since they map one-to-one onto rotations of rigid bodies. Unfortunately, the
redundancies in the representation make it computationally sub-optimal as well as difficult
to use in geometric algorithms, since multiple coupled constraints needed to be handled
simultaneously.

4.2.3 Euler Angles

Euler angles allow a triple of three real numbers to represent a rotation, so they are minimal
in the sense of having the minimal degrees of freedom. To be used in practice computa-
tionally, however, they must be turned into SO(3) matrices, making them susceptible to all
the arguments for and against SO (3).

Scale-Invariance Since Euler angles "factor" the 3 rotational degrees of freedom into or-
thogonal axis directions, it is fairly easy to divide out by the ranges in each direction.
However, this naive approach, while seeming to imply scale-invariance, will not be
since it ignores the coupling of the components and the underlying natural metric on
rotations. In other words, if we arrange Euler angles into a vector in R3 and use the
standard Euclidean metric on them, we will get very ill-behaved metric properties
globally, though locally they appear reasonable.

Constraints Hard joint limits on Euler angles have been around for a long time and are
commonly used in kinematic and physics engines. Even for algorithms that represent
rotations differently, say with an SO(3) matrix or quaternion, rotation constraints

are often added by converting to an Euler angle set, applying the constraints, then
mappng back into a matrix. This is a terrible idea for several reasons. First, there is
computational overhead in the trigonometric calls and matrix multiplies. Secondly,
extracting Euler angles from a rotation matrix is in general ill-posed numerically. Fi-
nally, the constraint boundary formed by three clamped Euler angles will not be con-
vex when mapped into the rotation group. To avoid these "corners," expensive non-
linear programming methods often get used to add constraints to 1K algorithms [3].
Unfortunately, cosntraining Euler angles to create joint limits is standard practice.

Singularity-Free The mapping from Euler angles into rotation matrices in SO(3) has a
singularity as we saw in the last chapter. Gimbal lock is illustrated is Figure 3-4.
There is no way around this.

Intuitive Euler angles have been around so long since they are intuitive to explain to an-
imators and programmers. There is no free lunch here, however. The first time the
animator encounters gimbal lock when trying to specify an orientation all intuition is
gone. Furthermore, since there are 12 different choices of Euler set and many wildly
varying conventions 4 it often takes a lot of trial and error to figure out which set data
came from unless this information is provided. The main reason Euler angles are not
intuitive is that they try to ignore the coupling between the axes in a global way (by
choosing fixed axes), which is not possible.

Efficiency Euler angles are maximally efficient in space since there are three parameters.
Unfortunately, since there is no simple formula for composing two rotations repre-
sented as an Euler angle set (no algebra), we need to convert to matrices, multiply
them out, then extract the angles again if we want to compose several rotations. This
is computationally inefficient. Furthermore, the singularity issues with Euler angles
often require extra computation to look for singular states and avoid them. Avoiding
them entirely in the representation seems like a much better idea.

Common currency Euler angles are a very poor choice of common currency due to the
fact that there are 12 sets and they contain an inherent singularity which others may
or may not handle properly.

Interpolation Often interpolation is done naively with Euler angles since they appear to be
vectors. As we have noted, the singularities cause problems if an interpolation passes
near it. Also, linear interpolations between two Euler angle vectors can produce
wildly varying curves in the actual rotation group.

To summarize, although Euler angles naively appear to be memory-efficient, intuitive,
and allow us to use standard vector space linear algebra techniques, they suffer from theo-
retical issues that outweigh any potential advantage. Furthermore, they suffer from compu-
tational issues both from these singularities and from the fact that they are converted into
matrices anyway, eliminating much of the potential speed benefits. Therefore, Euler angles
are a poor choice of representation.

4Almost every book I picked up disagreed on the conventions and some on the definitions for what an
Euler angle set was.

4.2.4 Quaternions

Strangely, quaternions pre-date these other representations, but lost out historically. Re-
cently, they are coming back with increased popularity in many fields under the field of
Geometric (Clifford) algebra. We argue that quaternions are an optimal trade-off of com-
putational efficiency, mathematical elegance, and ultimately for correct intuition about ro-
tation groups, though at first they are very nonintuitive since they are so unfamiliar.

Scale-Invariance Quaternions are very close to the inherent group metric between rota-
tions, which we want to represent. In fact, geodesics (great circles) on the quaternion
hypersphere are the shortest paths between rotations (in SO(3)). Therefore, our met-
rics have the best chance of being scale-invariant. The big problem is that in general
rotation ranges (and therefore the effective scale) are not as easy to think about as in
a vector space due to the coupling between the quaternion components. Statistical
methods for scale-invariance on curved manifolds are of recent research interest, but
much of the existing theoretical statistics work for manifolds is very opaque and too
general for our problem.

Constraints Unfortunately, there was no clear way to do joint range constraints on a
quaternion representation in the literature when we began this work. Most appli-
cations convert the quaternions to a matrix, then to an Euler set, then back again,
which is horribly inefficient. Therefore, it was an open question for us to model joint
ranges and also 1 and 2 DOF joints with a quaternion. Since then, several similar
approaches have appeared, which we discuss in Chapter 11. As for constraints on the
representation, our quaternions must stay unitary. Since they are easily represented as
unit vectors in R4, we can simply divide by their magnitude to renormalize numerical
drift. This is much easier than renormalizing a rotation matrix with 6 constraints to
satisfy, rather than one. Quaternions live on a hypersphere, which is a convex space.
It we choose our statistical model and cosntraint surface to be a smooth contour on
this surface, we will have a convex constraint model. This geometric isomorphism
between S3 and the quaternions will therefore be a useful visualization tool for us.

Singularity-Free By far the main advantage of quaternions is that they represent rota-
tions in a singularity-free manner. Integration and interpolation can proceed on the
unit quaternion sphere without fear of gimbal lock or degrees of freedom vanish-
ing. Therefore, we can avoid extra machinery for looking for and handling these
problems.

Intuitive Quaternions are not that intuitive to most people when they see them. One reason
it that quaternions are an example of spherical geometry, which is non-Euclidean and
therefore probably not taught in a standard engineering curriculum. Furthermore, it
is 4-dimensional, making it much harder to visualize for many people. On the other
hand, quaternions are very close to Euler's theorem, allowing us to view the action of
a quaternion by looking at the logarithm, as we saw in the last chapter. Since the log is
in R3 , this gives us a visualization tool for visualizing quaternions [36]. Quaternions
are also non-intuitive due to the half-angle that appears - they represent rotation as

0, not 0. This is due to the antipodal equivalence of quatemions for representing
real rotations - the quatemion Q and -Q refer to the exact same rotation of R3.
Therefore, the sign of the quatemion does not matter. Computationally, we need to
handle this symmetry. This is one of the biggest issues with errors in quaternion
algorithms.

Efficiency Quaternions represent rotations with four numbers, which is only one more than
is required. Since the extra parameter gives us freedom from singularities, however,
the extra floating point number is well worth it. Also, quatemion multiplication has
less multiplies than matrix multiplication, so composition of rotations is efficient.

Common currency Quatemions are useful as a common currency for rotation for all the
above reasons except intuition, which is becoming less of an issue every year. They
are a better common currency than a matrix from an efficiency standpoint. The main
reason they are the best choice of common currency is that there is an algebra, so
we need not convert to other representations until we need to render. This is a major
advantage.

Interpolation As we saw in Chapter 3, quaternions offer us a simple interpolator, slerp,
which can be used to construct spline families through geometric construction [72].
The lack of singularities means our interpolator will easier to implement. Finally,
the existence of one-parameter subgroups (great circles) that can be parameterized
by the exponential map will be useful for good extrapolation behavior, as we will see
in Chapter 7.

Due to the geometric significance, efficiency, and robustness of the quatemion repre-
sentation, we chose to use it as our joint model. This led to several outstanding problems we
needed to address which we had not seen in the interactive computer graphics or robotics
literature previously. These were:

" Weighted blend of n unit quaternion examples.

" Joint limits with quaternions

" Statistical probability densities for quaternion data

" Inverse kinematics with joint limits and quaternion representation

In the past few years since we began this work, interest in this area has been growing
and several researchers have begun to look at these issues as well. We cover these in
Chapter 11.

4.3 Summary of Statistical Kinematic Model Motivation

In this chapter, we argued for a quaternion representation for our statistical example-based
model for joints. We argued that quaternions were the best chocie for a statistical model
representation for the following reasons:

* Minimal singularity-free representation

" Computationally efficient

" Potentially more intuitive (closer to geometry) that any other method.

The first two ideas seem fairly clear after our discussion. The latter we hope to argue for
and demonstrate in this work.

This concludes Part One: Imaginary of this dissertation. The Part Two: Real portion
of this thesis will show how to use these abstract concepts and ideas to actually look at
real data and characters. We hope to validate the arguments we made in Part One through
examples.

The next chapter will introduce the skeletal articulated figure model common to most
animation packages and engines and show how to implement it with quaternions. We will
show how to use quaternions to model the pose of a character as a tuple of n quaternions,
one for each joint, and various operations such as distance metrics on pose.

Part II

Real

Chapter 5

Quaternions for Skeletal Animation

As we demonstrated in the last two chapters, quaternions are an efficient and non-singular
representation for rotations in three-dimensional space. So how do we use them for mod-
eling a character's joints?

This chapter will introduce the standard articulated skeletal model for rigid-body char-
acter animation, using quaternions as the representation for rotation of joints. We will also
introduce terminology, concepts and formal notation that will be used throughout the rest
of this document for describing the kinematic configuration of a synthetic character.

Specifically, the reader will learn the following in this chapter:

" Joint-Bone Skeletal Model

" The Quaternion Joint Model

" Forward Kinematic Equations with Quaternions

" Postures, Posture Metrics and Animations

The chapter will proceed as follows:

Section 5.1 introduces the articulated skeletal model which consists of a tree structure of
bones connected by joints. We also discuss simplifying assumptions we make.

Section 5.2 introduces coordinate frame terminology and notation. It then presents the
concept of open kinematic chains through a skeleton and the forward kinematic cal-
culations. We show how coordinate frames along a kinematic chain can be computed
efficiently in terms of quaternions and vectors rather than using the traditional 4x4
homogenous matrix representation.

Section 5.3 will introduce postures (tuples of unit quaternions) for representing the joint

rotational degrees of freedom of a figure and how to perform metrics on postures in
the quaternion algebra. It will also define the concept of motion (time-derivative of

posture) and describe the form that example data describing motion (animation) that

we assume.

Section 5.4 summarizes the main points of the chapter.

A

Figure 5-1: The bones (colored solid) which are animated underly the mesh (grey transpar-
ent) skin. Each bone rotates with respect to its parent by a 3D rotation, making a hierarchi-
cal skeletal model with the pelvis at the root.

5.1 Articulated Skeletal Model

Rigid skeletal models of characters are standard these days in animation packages and
videogame engines. A skeletal model consists of a hierarchy of rigid bones (or links) which
are connected together by joints (see Figure 1-2). Bones are rigid bodies in the sense that
they cannot bend or change length, so can be described with just a single parameter -
length. Joints connect bones together and allow them to move with respect to (which we
will shorten to w.r.t.) each other, either rotationally or translationally. Joints have an attach-
ment point on the bone to which they connect and between one and three rotational degrees
of freedom (DOFs) and one to three translational degrees of freedom. The orientation of a
joint will be described as an angular displacement with respect to the bone it is attached to.
If we allow translational DOFs in the joint, we get a general spatial displacement. Under
this definition, we see that bones describe coordinate frames (rotation plus translation) and
joints rigid transformations between them, which we discuss further below.

Using displacements implies that if just an elbow is rotated, all the bones below it in
the tree (hands, fingers, lower arm) rotate with respect to the elbow's parent bone (upper
arm) as well. 1

'Although this definition might seem obvious to someone familiar with an interactive animation program,
some physics systems represent bones as floating rigid bodies defined with respect to the world coordinate
system and consider the joints as constraints on the relative motion of the bones. The definition of rotations
as relative rather than absolute simplifies the kinematic mathematics while also allowing familiar behavior
for designers used to working with keyframe animation systems.

Figure 5-2: An articulated figure can be considered as a tree with joints as edges connect-
ing limbs (nodes). The black circle shows the root of the tree, although any point in the
structure could be chosen.

5.1.1 Simplifying Assumptions

We make several simplifying assumptions. First, we will restrict our model to only rota-
tional joints and not discuss translational, or prismatic, joints which are often modeled in
robotic simulations. This assumption is reasonable for most situations in character anima-
tion. Also, translational effects are the easier of the two, being a standard vector space.

Furthermore, some simulations also model different types of rotational joints, such as
revolute joints (1 DOF), universal joints (2 DOF) and ball-and-socket joints (3 DOF). Other
systems force 3 DOF joints to be created from three hinge joints with zero length bones
between them, which is essentially just an Euler angle set. This is often done to use linear
algebra techniques as if the joint angles formed a vector.

Instead, we will consider all rotational joints to be full ball-and-socket joints (3 DOF).
This restriction lets us model the rotation of all joints with a single unit quatemion for
simplicity. Note that a 1 DOF joint will be a quaternion with a fixed axis. We will see later
how to find the inherent joint DOFs from example animation data automatically and how
to constrain the quaternion rotation to these degrees of freedom.

5.1.2 Skeletal Tree Structure

A valid skeleton is considered as a tree in the graph theory sense, with the joints considered
as edges and the bones as nodes (see Figure 5-2). This might seem a little weird at first,

since normally we think of bones having length and joints not. Since bones can have more
than one joint attached to them, but not vice versa, we see that bones must be nodes.

A tree must have a single root node, usually placed at the pelvis. Since it has no joints

above it, a character can only move around an environment if we attach it so some fixed
inertial coordinate system called the world by a full six degree of freedom rigid body joint.
As mentioned above, all of the other internaljoints have only rotational degrees of freedom.
For this document, we will also ignore the root joint translation since it is a more familiar
Euclidean space and can be factored out.

Also, a unique acyclic path can be found between any two bones in the tree consisting
of all the bones and joints along the way. Clearly, the collection of joint displacements
along a path define a compound transformation between the bone coordinate systems. We
now formalize these notions.

5.1.3 Root Joints are Special

The root joint needs to be handled specially. Internal joints, since they are relative rotations
from their parent, can have animations played out on them directly and will look correct as
long as the animations were defined with respect to the same basis posture of the character
(Figure 1-2 shows the dog's basis). The root joint, however, defines the orientation of the
character in the world frame, which is an arbitrary choice. For this reason, we cannot play
a root animation directly on the character, since the orientation will be defined by where
the animator chose to start and end the animation.

For example, a walk cycle turning to the left may start from the orientation at the iden-
tity, and end up going 90 degrees to the left. To deal with this, the root joint orientation
must be handled differentially. In other words, we will need to find the derivative of the
motion and integrate it forward from the current orientation rather than just set the orien-
tation absolutely from the animation data. In general, we will only be discussing internal
joints for this document. We will make points about handling the root node as needed.

5.2 Bones, Joints, and Coordinate Frames

This section will introduce our notation for describing coordinate systems and vectors de-
fined in different coordinate bases. It will then show how the joint parameters (the quater-
nion representing orientation and the attachment point to the parent) represent the transform
between two bones.

5.2.1 Coordinate Frame Terminology

A bone can be used to define a coordinate frame, denoted B, which describes the orienta-
tion and translation of one frame with respect to another frame. For this section, we will
usually denote a coordinate frame as a familiar 4 x 4 homogenous matrix which relates the
coordinates in one frame to those in the basis of another by acting on homogenous column
vectors. We denote the transformation (equivalently, spatial displacement) that describes
one coordinate frame B with respect to another coordinate frame A as AD. We will denote
a vector x defined in a coordinate frame B as Bx. A point x in B (BX) can be described in
the basis of A by matrix multiplication:

Ax = ADBX.

This formula reveals the choice of notation (which follows Craig [18]): the superscript
which describes the basis can be though of syntactically "cancelling out" with the subscript
defining the relative frame, leaving only the superscript which describes the basis of the
new point. This syntactic sugar is useful for avoiding errors in transformation equations.

A displacement can be factored into a rotational component and a translational compo-
nent:

A D = A T A R

which describes the orientation of B in the frame A as a rotation matrix and the origin as a
translation matrix made from the origin's coordinates in the reference frame. Thus, a frame
can also be described as the pair (AR, AOB) where OR is a 3 x 3 rotation matrix and ^OB
is the origin of B written in the basis of A. In this notation, we can write the coordinate
transform as

AX = AR BX + AOB

Compound Transforms and Intermediate Frames

If two frames A and C are related by an intermediate coordinate frame B, then a vector
cx can be expressed in coordinate frame A by the compound transformation

Ax = AD BD cx

where again the frame scripts cancel between transformations as well. This equation is
important since we can often use an intermediate coordinate system to relate two arbitrary
frames as long as we know each frame's displacement relative to the intermediate one.

Since displacements form a group, we can write also factor the compound transforma-
tion in terms of the pair representation (R, AOc) as

(^R,Aoc) = (AR BR, AR BOC ± AOB) (5.1)

which can be checked by simple algebra. Clearly this also extends to arbitrary products of
connected intermediate transforms, which we will use below.

Since quaternions represent rotations and R is a rotation matrix in SO(3) (homogenous
coordinates are not needed in the pair notation), we can equivalently describe a coordinate
frame as a unit quaternion and a vector. We now show how we can use this fact to model

joints and bone transformations with quaternions.

5.2.2 Joints and Bone Transformations with Quaternions

Definition 1 A joint is represented as the pair (Q, a) where Q is the current orientation

defined with respect to the parent and a is the joint's attachment point defined in the parent

coordinate system.

Figure 5-3: The link transform from a parent bone's coordinate system in a kinematic chain
(Bp) to its child (Bi) depicted in 2D. The coordinate system Li (and associated grey bone)
show the zero rotation (basis) configurarion. The quaternion Qi is the angular displacement
from the basis and thus specifies the current orientation of the child bone with respect to
the parent's coordinate system.

Figure 5-3 depicts the attachment of two bones in a tree such as that shown in Figure 5-
2 by a joint. For simplicity of presentation, we have assumed that the attachment point
of a bone to its parent is coincident with its origin. If the origin of the bone is located
somewhere else, then we must know the attachment point's location in both frames and
perform extra translations between the attachment point and bone origins (see Craig [18]
or McCarthy [59] for details).

Let Pa, be the attachment point of the child bone Bc in the coordinate system of its
parent bone Bp and POc be the unit quaternion defining the child's orientation with respect
to the parent. The transform PD that takes a child point cx into its description in the parent
frame Px is the displacement

PD = PT PR

which can be written as

Px = T R cx = PR cx + Pac

where PT is the translation matrix created from Pac and PR is the rotation matrix made
from the unit quaternion Qcp. This equation can be thought of as taking a point in the child
frame and rotating it into a frame with the same orientation of the parent but located at the
attachment point and then translating to make the frame coincident with the parent.

In our model of a joint as the pair Pac and PQc, this equation can be interpreted simply
in the quaternion algebra as

PX = PQc X P*C* (5.2)

The inverse transformation that takes a point in parent coordinates into child coordinates

D = (PT PR)-

which can be written as

PR-1 JT1R TP

or equivalently

CD = cR T.

Recall that the inverse of a rotation is its transpose

CR = RT
p C

and that the inverse of a translation created from a vector a is simply the translation created
from -a. Simple algebra shows that we can write the inverse of the joint transformation as

e cDPx = [R T Px - PR TPac (5.3)

where syntactic cancellation assures us that we can subtract the vectors. We can factor the
rotation out to get

'R (Px - Pac)

which gives us the inverse transform equation

C = cR T (Px - Pac) (5.4)

which lets us immediately write

CX - c (X - Pac) Pc (5.5)

strictly in the quaternion algebra.

Computational Issues This formulation takes us less memory and is good for rotating a
small number of vectors as will often be the case in an inverse kinematics algorithm (such as
ours in Chapter 9). If a large number of vectors must be transformed, however, converting
the quaternion to a 3 x 3 rotation matrix and using Equations 5.3 and 5.4 should probably be
used if space is not an issue since there will be less total multiplies. Homogenous matrices
are most often only used to simplify the linear algebra or when other effects are needed,
such as scale.

5.2.3 Open Kinematic Chains and Compound Transformations

A path through a skeletal tree defines a kinematic chain between the bones at the end-
points [59]. The first bone in the chain, B 1, is called the base and the last one, B" is called
the end. An open chain does not have any cycles in it, while a closed chain does. We
will restrict ourselves to open chains since a tree structure will not have any cycles in it by
definition. Since we know all the parent-child transforms for each joint in the chain, we

can create a compound transform relating the endpoint bones by composing all the joint
transformations down the chain.

Let Bi denote the ith bone coordinate frame in a kinematic chain and (Qi, ai) be the
joint parameters connecting it to its parent bone frame Bi_1. Let -'D be the transform from
child coordinates to parent coordinates created from the joint parameters as above. Then
the transformation relating a bone B to a bone Bk, fD, can be found be composing the
transformations along the chain between k and J:

D = kD D . . i2D -D (5.6)

This transformation is often written using the base of the chain, B 1 , as an intermediate
frame:

D = D'D

or

kD = 11D_ 'D . (5.7)

Forward Kinematics

The transformation from the base of a kinematic chain to the end of the chain 1D is called
the forward kinematics equation of the chain. Since the joint attachment points as fixed,
the forward kinematics are only a function of the joint orientations along the chain with the
attachment locations specifying the length of the boines. These can be considered implicit
fixed parameters of the function so we can write:

'x=f(Q)

where Q is the ordered set of joint orientations along the chain 2

The inverse kinematics problem tries to find the posture that achieves a certain end
effector (point in the last bone) location in the world:

C = fQ (xgoal

We will describe our solution to this problem in Section 9.4.

Quaternion Forward Kinematics

If we use the factored notation (k R, koj) for the compound transform along a chain, we can
find kD efficiently by recursively going down the chain and composing the joint transform
as we go using Equation 5.1 to calculate the compound frame transform (1'R, 1oi) and using
the efficient inverse formula

(jR, loi)" = (RT , - RT loi) .

This equation can be written in the quaternion algebra as

2We use the underbar to denote an ordered set, or tuple, of quaternion values.

100

(Q, lo) = (1Qi*, -lQi* 1oiQi) (5.8)

for efficiency. Since D and ID share many intermediate frames 'D, it is computationally
efficient to cache both the forward and inverse transforms at each bone in the chain to avoid
redundant computation.

These quaternion operations can be used to efficiently compute the coordinates of a
point Jx in any bone frame Bj along the chain with respect to any other bone in the frame
Bk from the joint parameters as each joint. We will use these these operations in Chapter 9.

5.3 Postures, Posture Distance, Motions and Animations

Since the translational parameters of the joint transform are fixed by the geometry of the
figure, we often will not need them and instead will focus on the rotational degrees of
freedom. It will be useful to collect these into a single data structure. We will call the
collection of all the rotational degrees of freedom of the skeletal model a posture.

5.3.1 Postures

Definition 2 The posture of a character denoted _P is represented as a tuple of unit
quaternions Pi containing the rotational degrees of freedom of the skeleton from a depth-
first left-right traversal of the tree.

We will refer to the ith quaternion in the posture, Pi as the ith joint. The root joint which
connects the character to the world will be denoted as Qo and will only be used in certain
situations.

A skeletal model has a distinguished identity posture or basis posture in which the
character is considered to have zero rotation on all the joints, or the identity quaternion, 1.
Although the actual resulting kinematic configuration of the character in this posture can be
arbitrary depending on the character modeler's choices, often the modeler is asked to use
a particular configuration of the skeleton as reference point for animations. In the case of
humanoid characters, the coordinate system of the bone geometry (and therefore the joints
that link to them) is usually chosen such that the identity posture is the configuration of the
character with arms stretched out to the side, palms down, and legs straight and slightly
apart. In the case of our dog character, the reference posture is similar, but with all the dogs
legs on the ground and head looking straight ahead (see Figure 5-1).

Posture Algebra and Calculus

The algebra and basic calculus of postures follows immediately due to the quaternion prod-
uct group representation. All quaternion operations can be performed component-wise in-

dependently on the posture quaternions.

101

5.3.2 Posture Distance Metric

We can perform a weighted Euclidean norm component-wise:

dist(A,) will ln(4*) 1)

where the mi are scalar weights on the components which allow us to weight the contribu-
tion from each component quaternion.

One thing to note is that the metric is dependent on n, the dimension of the quatuple.
For this reason, it is often desirable to use a metric with weights that sum to unity. The
Root Mean Square (RMS) metric is simply obtained with wi = y.

This metric can also we found using the power operator:

distw(A, B) (||ln((A*ib)wt)H2

since the scalar power wi gets pulled down by the log.
Several important points must be made here. First, this metric is valid over the entire

quaternion sphere. This means that it does not take into account antipodal symmetry. Sim-
ilar to the use of slerp, each of the joint quaternions must be pre-processed so that they live
on the same local hemisphere of S3 . For two samples this is a trivial check. We describe
how to do this for n samples in Chapter 7.

Second, this metric uses the intrinsic metric on the sphere. In other words, it is as if you
were a person living on the sphere who could only make measurements along the surface.
This will give us the angle between orientations of joints which Euler's theorem specifies
must exist. Therefore, this is a natural metric.

Finally, it should be noted that the chord-length between two hemisphere-local unit
quaternions is a good approximation of this metric when the arguments are nearby on the
sphere, but we prefer to use the geodesic metric since the units are in radians and this will
make specifying weights more meaningful.

5.3.3 Motions

When a character moves, its pose changes over time. This trajectory of poses is usually
called a motion:

Definition 3 A motion (or posture trajectory) is a continuous trajectory ofposes param-
eterized by a single time parameter t.

In general, we also want our motions to have some other subjective qualities, such as
smoothness, which can be handled in many ways, e.g. cubic splines. We can also take
derivatives of a motion in the standard manner by component-wise differentiation, and de-
note this with the standard overdot, p. The space of all motions is called motion-space.

102

5.3.4 Animations

An animation refers to a particular, known trajectory of postures, such as that created by
a motion capture device or by a commercial package. An animation is represented com-
putationally as a list of postures and the corresponding time which the pose occurs in the
animation. These postures are usually called keyframes, or samples. The associated times
are often called keytimes. To formalize this slightly, we define a keyframe animation as
the ordered set of poses and associated keytimes. Note that angular velocity information is
contained within implicitly within the interframe displacements.

For simplicity, samples will be considered uniformly sampled, or having the same du-
ration of time separating samples. For uniformly sampled animations, the keyframe anima-
tion will be represented by an ordered set of postures along with the sample rate, At. For
this case, the keytimes are integral multiples of At:

t = i At

so we can simply refer to keyframe poses by an index.

5.4 Summary

This chapter described the terminology and computational structures involved in skeletal
animation technology, and how we can use quaternions to model the poses of a character.
We define a quatuple and introduce distance metrics on them which we will use throughout
this thesis.

The reader should have learned:

" The joint-bone skeletal model for articulated figure animation

* Coordinate and kinematic frames on xthe hierarchy efficiently in terms of quaternions

" Representation of posture as a tuple of quaternions

e A basic metric on postures

" How animation data is represented as an ordered set of uniformly sampled postures
and a time increment At between them

The next chapter will show how to learn a statistical model of joint motion from a
corpus or animations and how to generate new poses according to this model.

103

104

Chapter 6

QuTEM: Statistical Analysis and
Synthesis of Joint Motion

This chapter will describe a simple statistical model of the motion of individual joints
whose orientations are modeled as unit quaternions. The model is called the QuTEM
(Quaternion Tangent Ellipsoid at the Mean) and contains the following data:

" Mean unit quaternion

" Covariance about the mean (principal motion axes and associated variances)

" Constraint boundary (finite support radius)

We will see that the QuTEM will be a Gaussian distribution in the tangent space at the
mean value.

In this chapter, the reader will learn:

" How to find the mean orientation from unit quaternion data concentrated around one
of the modes on S3 .

" How to use the choice of mean representative to flip all data efficiently to a hemi-
sphere of S3 to deal with antipodal symmetry.

" How to find principal axes and associated variances around the mean representative
and estimate inherent joint degrees of freedom.

" How to calculate the Mahalanobis distance of some query unit quaternion to the mean
representative.

" How to find a maximal isoprobability contour to model data on a local convex subset
of the sphere (finite support, or constraint, radius).

" How to sample new points from the distributions.

This chapter will focus on definitions, algorithms and discussion. Results from experi-
ments on real data can be found in Section 10.1.

The rest of the chapter will proceed as follows:

105

Section 6.1 describes the QuTEM model of joint motion statistics and how it can be used
as a proportional probability density function.

Section 6.2 presents estimation algorithms for each of the parameters.

Section 6.3 shows how to sample new quaternions using the QuTEM density.

Section 6.4 summarizes the uses of the QuTEM and discusses several outstanding prob-
lems.

6.1 QuTEM

This section will describe the QuTEM model of joint motion, estimation of parameters
(mean, covariance, support radius), and sampling new joint orientations from the distribu-
tion.

6.1.1 Motivation

As we saw in Chapter 4, we desire a model of joint motion which has smooth isoprobability
contours so that we can use the model for joint constraints. Also, the model should be easily
learnable from data and allow us scale-invariant (with respect to motion ranges) metrics.

Gaussian (also called normal) probability density functions (p.d.f.'s) are the standard
workhorse of probabilistic analysis (see Appendix B for a quick overview, or [8] or [83]
for a more in-depth treatment). Since the maximum likelihood estimation (MLE) of param-
eters and sampling from a Gaussian is straightforward and well-known, and also since the
isoprobability contours of a Gaussian are ellipsoids, we chose to use a Gaussian distribution
to model the motion of a joint.

There are two basic ways to use a Gaussian distribution to model unit quaternion data:

* Embedding Approach (R4)

* Wrapping Approach (TgrS3)

In the embedding approach, a Gaussian is estimated in R4 , the space in which the
unit quaternion manifold (S3) is embedded, and conditioned to live on the sphere. This
approach leads to the Bingham distribution, which is described in [7, 57, 47, 50, 51, 58]
and used recently by several computer vision researchers [1, 16]. Maximum likelihood
estimation of the variances leads to handling confluent hypergeometric functions of matrix
argument, which is tricky.

Instead, we chose to use the wrapping approach (see [57]) where a distribution on
tangent vectors at the mean is wrapped onto the sphere to make a spherical distribution.
This choice was made for simplicity, since the estimation of parameters is simpler, which
is desirable.

Notice that for unit quaternion data representing rotations (SO(3)) the distribution will
exhibit antipodal symmetry. Since we assume our data is locally-concentrated on the sphere
(since joints tend to live in around some equilibrium point), the distribution will be bimodal,

106

Figure 6-1: A sktech of a bimodal distribution on S3 which exhibits antipodal symmetry.
Such distributions are valid distributions over SO(3) through the double-covering.

having a maximum on opposite sides of the sphere at the modes ± M (see Figure 6-1) To
handle this, we choose to model only one hemisphere of the distribution (a single choice
of sign for M) and flip any quaternion to be on this hemisphere before the distribution is
used.

Finally, we note that tangent vectors to S3 are easily described in terms of the loga-
rithmic map, as we saw in Chapter 3. Since the exponential map preserves distances and
angles from the center of the map, hyperellipses around the map center on S3 will map to
3D ellipsoids in the tangent space (R3). Furthermore, a point on a particular isocontour
of the distribution on the sphere will map to a point the same distance from the origin in
the tangent space. For this reason, we can use the exponential and logarithmic maps in a
straightforward manner to pre-process our data analytically without losing information.

To summarize the main idea of the approach:

Wrap a zero-mean Gaussian in R3 onto a hemisphere of S3 using the
exponential map at one of the modes.

To summarize the assumptions we make:

107

* Data will form a fairly concentrated bimodal distribution on the sphere exhibiting
antipodal symmetry since data can be considered to be compact around some equi-
librium point of the joint.

* Antipodal symmetry will be handled by modeling one hemisphere of S3 and flipping
data to that side before using the model.

" For the purposes of this document, we will not need normalized densities (densities
that integrate to unity over S3), but will instead look at proportional densities.

6.1.2 QuTEM Definition

Definition 4 The Quaternion Tangent Ellipsoid at the Mean (QuTEM) model is
defined as the tuple (, R,v, p) where l C H is the mean representative, R e lt
is the principal axes rotation, v E R3 is the variance vector, and p c R is the
constraint distance.

In the model, l is the choice of the mean representative. This defines the hemisphere
of S3 we model, since the other side is the same due to symmetry. To use the density, query
quaternions need to be flipped to the hemisphere defined by M1, as we show below. R is
the rotation of the tangent space that aligns the principal axes of the data with the basis
axes and v is the 3-vector of variances associated with these axes. These parameters model
the covariance about the mean. Finally, p is the Mahalanobis distance (standard deviation
value, see Appendix B) from the mean beyond which the density is defined to be zero.
This allows the model to handle the fact that organic joints will have constraints that do not
allow them to range over the entire S3 .

Figure 6-2 gives an abstract depiction of the QuTEM model in one lower dimension.

6.1.3 QuTEM as a Wrapped Gaussian Density

This section shows how to calculate the proportional probability density value of a partic-
ular query unit quaternion Q from the QuTEM model (A, R, v, p).

The QuTEM is a zero-mean Gaussian vector density in the tangent space at one of the
quaternion modes wrapped onto a hemisphere of S3 using the exponential mapping (see
Figure 6-3). Recall that the density function for a Gaussian distributed random vector is:

N(x; m, K) = (2)/ 21KI e m- "

where x is the random vector, m is the mean vector, and K is the covariance matrix of the
data (see Appendix B for a quick review of multi-variate Gaussian densities or a reference
such as [8, 65]). Note that here K is assumed to be positive semi-definite (all eigenvalues
real and greater than or equal to zero). The pseudo-inverse (see, for example, Strang [81])

108

Figure 6-2: An abstract depiction of the QuTEM. The mean is the tangent space point,
the ellipse depicts the p Mahalanobis distance constaint surface, and the axes depict the
principal axes of the density and their relative variances (covariance).

must be used if K is singular, which will happen if the data has less than three rotational
degrees of freedom.

Given the exponential mapping of unit quaternions which lets us map to a tangent vector
at some point on S', we can define our unit quaternion density directly in terms of the vector
Gaussian distribution. Let R E SO(3) denote the rotation matrix associated with the unit
quaternion R. Let V be the diagonal matrix created from the vector of variances v. Then
we define the covariance matrix (K) for a zero-mean normal distribution in terms of the
matrix representation as:

K = RVRT

and its inverse

K-' = R TV-'R

where the pseudo-inverse is used if V is singular.
Since we are assuming only measurements on the sphere, we cannot directly "subtract

off the mean" as in the vector Gaussian density. Instead, we need to use the logarithmic
mapping at the mode representative M to perform this.

Let q = ln(M*Q) be the mode-tangent vector of Q at k. The QuTEM density is then
just a vector Gaussian density on the mode-tangent vector q:

p(Q; , , v, p) = ce-

where c is a normalization parameter to make the density integrate to unity over S3 . For
the purposes of this document, we will not need to find this term and assume it to be unity.

109

Figure 6-3: The QuTEM models a spherical distribution by estimating a zero-mean Gaus-
sian density in the tangent space to the unit quaternion mean.

Note that this makes the density not integrate to unity over S3 , but in practice often only
proportional densities are needed so this is not a severe limitation.

We can expand the density out in terms of quaternion algebra as:

p(Q; M, R, v, p) = ce-(1 *1*AIQ) 2"1 **'*4Q)) (6.1)

where V- denotes the inverse (or pseudoinverse 1 if V is singular) of the diagonal matrix
of the variances made from the vector v.

Finally, we address the extra parameter, p. Since we are modeling data which we have
assumed does not range over the entire sphere, we need to force the density to zero out-
side of some constraint region. Since we argued previously for using a smooth constraint
boundary, we decided to choose a particular isodensity contour of the tangent space Gaus-
sian distribution beyond which the density is zero. In other words, this amounts to finding
a standard deviation value away from the mean (Mahalanobis distance) beyond which we
define the density to be zero. Figure 6-4 depicts what the distribution will look like when
wrapped to a hemisphere of S3 . Since joints tend live on the constraint boundary some
portion of the time, this is a reasonable model.

Since the quadratic in the exponent of the Gaussian distribution is the Mahalanobis
distance squared, we can factor the formula into a simple test to see if we are outside the
valid density region or not. In our notation, this gives the constraint equation:

'Recall that the pseudoinverse, which is related to the Singular Value Decomposition, ignores variations
in singular directions (see, for example, Strang [81]) and can be created from the diagonal matrix with the
simple rule that - -+ 0 for each singular variance in the pseudoinverse.0

110

Figure 6-4: A sketch of a spherical density on S3 constrained to be zero beyond a certain
distance from the mean.

p(Q) = 0 if |IV-1/ 21n(*M*QN)|| > p

and otherwise is the same as Equation 6.1.

6.1.4 Scaled Mode Tangents (SMT), Ellipsoids, and Mahalanobis Dis-
tance

We will find it useful for the remainder of the discussion and for intuition to collect the
multiple stage quaternion transformation used in the definition of the density into a single
transformation from a unit quaternion into its "Scaled Mode Tangent" description (which
we shorten to SMT) with respect to the QuTEM. Formally, mixing notation a little for
convenience,

s = SMT(Q; M, R, v) V- 1 /2 UT ln(M*Q) (6.2)

or entirely in the quaternion algebra:

SMT(Q) = Scale(-, ,* ln(M*Q)R)

where we have collected the non-uniform scale of the vector portion of the quaternion into a
function of the three scales factors (one for each component respectively) and the vector in
R3 . The SMT transformation converts a unit quaternion into a unit-variance tangent vector

at the mode representative. This implies that the magnitude of the SMT of a unit quaternion
is its Mahalanobis distance from the mean. Therefore, we the constraint boundary defined
by p can be described in terms of the maximal allowable magnitude for the Mahalanobis
distance beyond which the density is forced to zero.

The SMT transformation is invertible. A scaled mode tangent vector of a quaternion
can be converted back into a unit quaternion by undoing each stage of the transformation
- scaling the space back into an ellipsoid, rotating back into the original basis from the
principal axes basis, exponentiating the vector onto the sphere and multiplying by the mode
to place it at the correct location. We will use this extensively in the section on constraint
projection (Section 9.2).

Geometrically, the SMT transformation maps all the points on a spherical ellipse around
some center point on the sphere, call it l, into a sphere in the tangent space at l. Fig-
ure 6-5 shows the transformation's steps applied to a spherical ellipse on S2 , the familiar
sphere embedded in R3 . An ellipse on the sphere around some point (shown as the red
point on the sphere) is mapped into an ellipse in the 2-dimensional tangent space with the
point as the origin.

Plotting the mapping for full degree of freedom quaternions is trickier. Figure 6-6
shows the exponential mapping image of points sampled randomly on an ellipsoidal surface
(a particular choice of Mahalanobis distance) in R3. In order to depict the hypersphere, we
have ignored the z component of the quaternion, which effectively projects it onto the z = 0
hyperplane. This allows us to view the image of the map in three-dimensions, but at a cost
- the ellipsoidal boundary maps into a hyperspherical ellipse, but when we projection plot

it onto a unit sphere in R3, it will not lie on the sphere (since it really lies on the sphere in
RV) and points will appear to be inside the ellipse. We can, however, see that the mapping
still preserves ellipses by viewing it directly over the center of the mapping.

Note that

dqmahala(Q) =SMT(Q; fl, R, v)| (6.3)

This form is the most efficient for implementations, and we shall see in Chapter 9 that
we can use the SMT transformation to model joint constraints as a simple point-sphere
boundary test.

This form simplifies the density as well:

I(Q c (dqmahala (Q)) 2

p(Q) = c e -ita"^1

6.2 QuTEM Parameter Estimation

This section describes how to estimate each of the QuTEM parameters from example ani-
mation data.

112

0.8

0.6

0.4,

0.2

01

-0.2

-0.4,

-0.6 t

-0.8

-1

-0.5

0

0.5 0.5
0

10.5

a

aos

1

C

Figure 6-5: A three-dimensional visualization of the SMT transformation which turns el-
lipses on the hypersphere into ellipsoids in the tangent space at the center of the ellipse.
The left image (a) shows the original spherical ellipse with its center; the right upper (b)
shows the ellipse in the tangent space by using the exponential map at the center point (no-
tice the center maps to the origin in the tangent space); the bottom right image (c) shows
the result when the space is rescaled by the axis lengths on the ellipse to form a circle in a
warped tangent space. Notice all true objects are one dimension higher.

113

0480.6- -I

0.4-

0.05
02

-0.
03-

4.2.-04
0220.2-0.24

-0. -

-02 3 0 0 -1

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 04 0.6 0.8 1

Figure 6-6: Points sampled randomly on an ellipsoid around the origin in R3 (left) and 3D
projection plot of the exponential mapped points (right, created by ignoring the i compo-
nent of the quaternion). Notice the points, although are on the boundary of an ellipsoid on
the left, appear to map inside the ellipse on the sphere. This artifact results from the pro-
jection, which ignores the z direction. By viewing the sphere along the direction directly
pointed at the center, however, we see that the shape is elliptical, as it should be.

6.2.1 Estimation of the Mean from Data

We have defined the QuTEM object in terms of parameters, but our ultimate goal is to learn
the QuTEM from data. The first of these we will need is the mode (maximum density
value, which we will also call mean throughout the remainder of the document since they
are the same in the case of a Gaussian.). This section shows how to estimate the mode
representative M from a set of unit quaternion data. We will show that the solution is
simply an eigenvector of the sample covariance matrix of the quaternion data represented
as unit column vectors in R4. To motivate the approach, we shall introduce the problem in
terms of the Euclidean analogue of finding the mean of vector data.

Approach

The mean of Euclidean vector data is usually found with the familiar average over their
coordinate values:

N

X = x
i=1

For unit quaternion data, this formula does not in general work for two reasons. First, it
ignores antipodal symmetry. This means that a datapoint could be either Q or -Q. Clearly,
the weighted Euclidean sum will not work here, since the mean we get will depend on the
sign of the data, which we do not desire. Also consider the case with two data points, Q and

114

-Q. Their coordinate mean will be zero, which is not on the sphere. Second, the formula
does not respect the unit quaternion group. We could renormalize the result to lie on the
sphere, but consider again two anitpodal samples. Since their mean is zero, we cannot
renormalize them.

Instead, we will estimate the mode of unit quaternion data by finding the unit quaternion
that minimizes squared distances between it and all the data points. This seems appropriate
since it can be shown that the Euclidean mean coordinate formula above is the point that
minimized the sum of squared Euclidean distances between it and the samples.

Recall that the intrinsic metric for two unit quaternions is:

dist(Qi, Q3) = |1 ln(Q*iQ)l|
S

3

Recall that this distance metric covers the entire hypersphere and does have the antipodal
symmetry for a metric on rotations. To handle this, we need to take the minimum of this
metric over the choice of relative signs of the quaternions to get the metric for SO (3):

dist(P, Q) 2 min dist(, A) .
IS

31 A=Q ,-^Q S3

Note that the same distance function can also be written using the embedding space and
linear algebra notations with absolute value:

dist(4i, 4j) = 2 arccos(I4 -4j|

where (.) denotes the dot product of the quaternions as unit vectors in R'. Since the dot
product of two unit vectors is the cosine of the angle between them, the absolute value
ignores the sign before returning the angle.

Therefore, the estimation of the mode representative quaternion as amounts to a quadratic
nonlinear minimization problem:

N

Q = arg min dist(P, Qi) 2
P- IS31

In other words, the quaternion Q which minimizes the sum of squared distances between
itself and all the data (taking into account antipodal symmetry), is defined as the mean of a
set of unit quaternion data representing spatial rotations. So how do we solve for Q?

Finding the Mean

Unfortunately, the distance function contains non-linear elements, both with the inverse
cosine required for the quaternion log and the absolute value function that makes or dis-
tances orientations. This makes analytic minimization tricky. To simplify the problem, we
use the fact that the function we are minimizing is quadratic (and monotonic). For this
reason, we can replace this minimization with the minimization of a monotonic function
of the distance and get the same answer. Since our distance is just 0, the shortest arclength
between the quaternions, we can replace 0 with 1 - cos(O), which is monotonic over the in-
terval [0, ir/2], as is required. Minimizing 0 is clearly equivalent to minimizing 1 - cos(O).

115

We can simplify this even further by noticing that minimizing 1 - cos(O) is the same as
maximizing cos(O) over the interval, since we just invert a monotonic function. But cos(O)
is just the dot product of two unit vectors! Also, the absolute value can be removed by
noticing that the square of the cosine is monotonic as well. These simplifications lead us to
the equivalent but simpler problem:

N

Q = arg rnaxZ(A- Qi)2
AES 3

This formula make intuitive sense as well - we want to maximize the directional match
between the unit quaternions, which the dot product does. The square means that we will
ignore the sign of the dot product - both cos(O) and -cos() contribute the same amount
to the error function, exactly as desired.

We can solve this equation for Q by performing a constrained minimization on the sum
of squared distances (see for example Strang [80]). In other words, we need to find the
quaternion that minimizes the function subject to the constrait that it be unit magnitude.
We handle this by adding a Lagrange multiplier (A) and implicit constraint equation. This
gives us the final minimization equation which we need to solve for P:

N

E(P) = (P . Qi) 2 + A((P -p) 2 -1)
i=1

where the extra term with the Lagrange multiplier A is the constraint term that keeps the
magnitude of the quaternion unit and can be thought of a causing extra "energy" to be
added to the system for points off the sphere.

For simplicity, in the rest of this derivation we will use the linear algebra of the embed-
ding space (R4) rather than the quaternion algebra. This gives us the vector equation:

N

E(p) = (p'qi) 2 + A(p T p - 1).
i=1

Rewriting the square using symmetry of the vector magnitude we get

N

E(p) = [(Tqi)(q p)] + A(p'p - 1)

from which we can factor out the p terms since they do not depend on the sum:

N

E(p) = p'(qTqi)p + A(pTp_ 1)
i=1

In this form, we notice that the summation can be rewritten as simply the outer product
matrix of the data vectors. Specifically, if we create a data matrix Q whose columns are
the quaternion examples, we get a 4 x N matrix of data. The outer product of this matrix
with itself is the summation we require:

116

E(p) = pTQQ Tp + A4p Tp - 1

This is the ultimate formula we need to solve. A necessary condition to be a minimum
is that the derivative of E(p) with respect to the argument (p) must be zero. Specifically,

E(p) = 2QQ Tp + 2Ap = 0
Op

We recognize this as a familiar eigenvector problem:

Ax = Ax

where A is the outer product of the data matrix QQT. Notice that A is 4x4, so the problem
is computationally easy to solve. In order to maximize the original function and get the
mean, we need the eigenvector with the maximum eigenvalue, since that will maximize
the directional match function when plugged in and not the other eigenvectors 2. We use
a Singular Value Decomposition (SVD) of the A matrix in order to find the eigenvector
associated with the largest eigenvalue, call it p. Since either ±p is a solution (SVD will
return an arbitrary one), we choose the one nearer the identity and use P as the estimate for
the mode representative of our QuTEM, denoted M.

Algorithm and Summary

To summarize, the mean (mode) of unit quaternion-represented orientation data for R3 is
the maximal eigenvector of the standard 4x4 scatter matrix formed by the outer product
of the data matrix. Since the objective function is symmetric its solution has two possible
eigenvector solutions ±p.

The algorithm is summarized as follows:

1. Let 4i be the column vector representation of the unit quaternion sample Qi.

2. Let the 4xN matrix Q be the data matrix with column i being the 4-vector 4i
for the ith sample.

3. Let S = QQT

4. Let ei be an eigenvector of S with real eigenvalue ai.

5. Choose one of the two eigenvectors ±&, associated with the maximal eigen-
value a, as the estimate of the mean, Mf.

2This analytic result has also shown up in different guise in the computer vision community, where Horn

does a similar calculation in a stereogrammetry problem [43].

117

Figure 6-7: Our data is antipodally symnmetric, and therefore we might arbitrarily get the
sample ±Qi. We would like all data on the same local hemisphere of Sa for simplicity.
This hemisphere will be defined by the choice of the sign on M. To hemispherize data,
we simply flip the data to lie on the same hemisphere as the mean choice M using a dot
product as a test.

6.2.2 Hemispherization

This section will describe how to handle the antipodal symmetry (double-covering) of
SO(3) with S3 . There are many times we need all unit quaternion data on a local hemi-
sphere of S3 , for example if we want to use the simple geodesic distance metric or locally
linearize the data.

We noted above that the QuTEM density will have antipodal symmetry due to the
double-covering of unit quaternions to rotations in SO(3). Since we choose to handle this
by assuming that the density is valid only in the hypersphere associated with the mode rep-
resentative M, we need a way to map our data (and any query points) onto this hemisphere
if it is not before applying the density formulas or SMT transformation.

Figure 6-7 shows how we want to choose the sign of each unit quaternion datapoint so
that the processed data are in a local hemisphere of 33. Note that we cannot just choose a
global hemisphere, such as the one nearest the identity, as should be clear in the illustration.
As the data is rotated closer to the identity, parts of it would pass through the hemisphere
boundary orthogonal to the identity, but not others.

118

Algorithm

Hemispherizing N unit quatemions which represent orientations of R3 can be done using
the same calculation as the mean. Since by construction the mean representative was cal-
culated by minimizing distances from it to the data, if we flip all data to be on the same
side as the choice of mean f, they will all lie on a local hemisphere of S3 defined by Ml.

Formally, let 4i be the column vector representation of the ith unit quaternion sample
Qj. Let the 4xN matrix Q be the data matrix with column i being the 4-vector 4i for the
ith sample. Then the algorithm is:

1. Find the mean representative of the example data, call it l.

2. For each example Qi:

(a) If M - Qj < 0 then Qj <- -Q.

After this operation, the unit quatemions live on the same local hemisphere.

Hemispherize Discussion and Summary

In general, most researchers simply "flip the signs until it converges." In other words, pair-
wise distances between quaternions are compared using dot products and the sign on one
example changed if the dot product is negative (other side of the sphere). Since the process
needs to be restarted each time a flip is done, this can be expensive if there is a lot of data.
Ultimately, there are 2 N choices of sign to be tested.

For small amounts of data, this is often fine, but to process a lot of data, we suggest
using our method of finding the mean first. Solving for the mean involves an outer product
of a 4xN matrix. Creating the outer product matrix takes O(n 2) operations since it is a
matrix multiplication. Finding the eigenvector takes constant time (0(1)) since it is a fixed
size 4x4 symmetric matrix. Testing the sign of each datum with the mean takes O(n)
operations. Therefore, our hemispherize operator takes O(n 2) to compute whereas the
naive brute force approach takes 0(2").

Finally, it is important to note that since the choice of mode representative is contained
in our QuTEM model, we can simply flip a new query unit quatemion to the same hemi-
sphere as the mean using a simple dot product calculation.

6.2.3 Estimation of Unit Quaternion Covariances

Now that we can find the mean of unit quatemion data representing orientations, we need
to look at its covariance around the mean, or second moment of the distribution. The
covariance describes the principal axes and associated variances of the data. In the QuTEM,
we saw that the parameters R and v encode the covariance for the density. This section
describes how we estimate these parameters by transforming the data to the tangent space
at the mean and applying standard Gaussian vector estimation to the "linearized" data.

The approach in this section is straightforward:

119

" Transform the data into the tangent space at the mean using the exponential map.

" Apply standard Maximum Likelihood Estimation techniques to estimate a zero-mean
Gaussian density on the transformed data.

Estimation of Spherical Variances

In terms of unit quaternion algebra, the Euclidean operation of "subtracting off the mean"
il from a sample Qi translates to the unitary operation of rotating the sample so that the
identity aligns with the mean:

P, = M*Qi

Next, we apply the logarithmic map to the mean-aligned data:

wi = 2 ln(Qj)

Recall that the exponential mapping (and inverse) preserves the distance and direction
from the center of the map and maps into the tangent space at the center. This means that
the transformed data wi will live in the tangent space at the mean and can be thought of
as zero-mean Euclidean data with units in terms of the intrinsic group metric (0). This
transformation leaves us a standard Euclidean estimation problem for a Gaussian density.

To solve this, first we create the column data matrix W from the transformed exam-
ples wi, which is a 3xN matrix. We then create the 3x3 sample covariance matrix in the
standard manner using the outer product of the data:

1
K = -WW T .

N - i

The (real) eigenvectors of this resulting 3x3 symmetric positive semi-definite matrix,
call them ui, correspond to the principal axes of an ellipsoid in 3-space, and therefore form
an orthonormal basis aligned with the principal axes of the density. The corresponding
eigenvalues are the associated variances in the eigenvector direction. We write this in the
linear algebra as:

K=UAU T

with U C SO(3) containing the column eigenvectors and A is a diagonal matrix with the
eigenvalues Ai on the diagonal corresponding to the angular variance for the eigenvector
ui.

We can align the principal axes with the coordinate basis axes by simplying rotating
them by the eigenvector basis matrix:

xi <- Uwi

As we saw before, however, a rotation of a 3-vector is simply a unit quaternion quadratic
product, so the orthogonal matrix U rotation can be converted into quaternion algebra as

xi = UwiU* .

120

If we write the entire set of resulting transformations in the quaternion algebra we get a
transformation from a quaternion to a principal-axis aligned 3-vector which can be thought
of as living in the tangent space at the mode. Therefore, this is an example of a mode-
tangent decomposition. Let's be explicit about this transformation. It is:

xi = Uln(M*Q)U*

which can also be written as

xi = ln(UM*QU*)

since changing the basis of the vector does not change an invariant subspace (eigenvector)
of a transformation.

Notice that these are exactly the parameters of the QuTEM we were seeking. The
parameter for the tangent space rotation from the mean-aligned data, denoted R in the
QuTEM, is simply the tangent space rotation to principal axes, U. This unit quaternion is
found from the estimated SO(3) eigenvector matrix in the standard manner. The vector
of variances associated with these axes, called v in the QuTEM, is formed from the the
eigenvalues of the sample covariance matrix.

Handling Singularities in the Analysis

The sample covariance matrix is only guaranteed to be positive semi-definite, which im-
plies that its eigenvalues A ;> 0. Eigenvalues of zero correspond to directions with zero
variance. Therefore, if the data has less than 3 DOF then the singular directions will have
eigenvalues of zero. Data gotten from a 1 DOF joint such as an elbow will have only one
non-zero eigenvalue since it can only move around a fixed axis. Therefore, the eigenvalues
of the sample covariance of the transformed data at the mean give us a direct, intuitive and
computational way to automatically discover the underlying degrees of freedom of the data.
We can leverage this in algorithms by making sure they respect these degrees of freedom.
For example, if we model 1 DOF hinge joints as quaternions with fixed axis then we can
use special case scalar solutions (like an Euler angle) instead of the full quaternion to solve
the problem correctly.

The eigenvalues of the embedded covariance in R4 do not directly have this property, as
we mentioned above, being related by a Bessel function, which is why we sought to avoid
them.

Summary of Covariance Estimation Algorithm

To summarize the estimation process for the parameters, we use the following algorithm:

121

1. Let Ml be the quatemion mean of the data Qi.

2. Hemispherize the examples Qj using Al.

3. Let Pi <- f*Qi.

4. Let wi <- ln(Pi).

5. Construct the data matrix W with wi as the ith column of W.

6. Let K +- NI WWT.

7. Perform an eigenvector decomposition (SVD) of K into U and a 3-vector y

of the eigenvalues (diagonal).

8. Convert U into its equivalent unit quaternion representation a.

9. Store the values U and v as the parameters of the QuTEM R and v.

6.2.4 Estimating Constraint Radius

Estimating a QuTEM support radius using this formulation is simple. The constraint radius
is simply the maximum Mahalanobis distance (measured as standard deviations from the
mean) of the hemispherized samples in the unconstrained model:

p = max dist (QfM)
i Mahalanobis

In other words, the standard deviation of the furthest example is used as the constraint.
The density is defined to be zero beyond this range.

6.2.5 Summary of QuTEM Parameter Estimation

This section described how to estimate the four parameters of the QuTEM model (M, R, v, p)
from example data by using the exponential mapping to transform data into a Euclidean
space and then estimating a Gaussian density there using standard techniques. We also de-
scribed how to handle antipodal symmetry. The next section will describe how to generate
samples from a QuTEM model given that we know the parameters.

6.3 QuTEM Sampling

We have found synthesis of new data from the QuTEM density useful in two main ways:

* Generating new test data for Monte-carlo simulations of algorithms by hand-entry of
QuTEM parameters

122

* Generating new joint orientations similar to example animation data

The former will be used to test our pose blending algorithms in Chapter 7. The latter
application was tested for learning a "Perlin noise" model for character motion (see [63])
from example data described in Chapter 10, though more work needs to be done in this
area.

Since we used the standard Gaussian vector density at the heart our model, synthesis is
straightforward using standard techniques and the exponential map.

6.3.1 QuTEM Sampling Algorithm

We can generate new random quaternions by sampling the tangent Gaussian density and
then mapping the result onto S3 with the exponential map at the mode. Sampling from
a vector Gaussian distribution is peformed by the Box-Muller method and is covered in
Appendix B.

To sample a new unit quaternion from the QuTEM density, first generate a sample in
the mode-tangent space, call it w, generated from the density with covariance parameters
R and v from a QuTEM. Since this vector is with respect to the mean M(, we can use the
exponential map to put in on the sphere at the right spot:

Q = me"'

It is crucial to notice that this tangent sample (unlike the transformed data in the esti-
mation case) will actually exist in the entire space of R3 (the entire tangent space) and not
just in the ball of radius z/2, since the Gaussian has infinite extent. When we wrap it back
onto the sphere, the point could potentially end up anywhere on the sphere.

Since we are concerned with modelling closed regions on the sphere (maximally, the
entire hemisphere around the mode representative), we actually can use a simple rejection
method to sample points. For example, to keep the samples on the hemisphere, we can
reject sampled tangent points not in a proper-sized ball in the tangent space. Specifically,
if the sampled point w is outside the solid ball of radius 7/2, we can simply throw it out
and try again. In general, this method will be efficient since the estimated variances of
the tangent space Gaussian will be in this length range since they are estimated from data
in this range. Therefore, the majority of sampled points will fall within several standard
deviations of the mean which will likely also be inside the solid ball of radius 7/2, which
can be seen by simple geometry. Therefore, few of these rejected points will be rejected.

We also apply rejection sampling using the constraint radius p. If the generated tangent
sample's Mahalanobis distance is outside of the radius p, the point is thrown out and another
tried.

6.3.2 Singular Data Woes

This rejection method is sometimes grossly inefficient in practice since the TEM radius
really is in terms of standard deviations. For fixed or near fixed joints, which effectively
have zero variance in all directions and whose only valid sample is effectively the mode

123

itself, our estimation procedure would model the joint as a mode with a tiny lower bound
variance in all directions (since it cannot be zero), but with a tiny (or even zero) constraint
radius. Unfortunately, rejection sampling for these cases is extremely inefficient 3. To
handle these special cases, we use the fact that we know that the data is singular (since we
have stored the variances explicitly as the weight vector a, singular directions have weight
0). Hence, we just do not sample singular components, but rather just set them to zero (the
mean in our case).

6.3.3 Summary of Synthesis

Sampling is done by the following algorithm:

1. Generate a sample w in the tangent space Gaussian distribution using
QuTEM parameters and the Box-Muller algorithm.

2. Exponential map w onto S3 to get an identity mean quaternion Q <e.

3. Map it to the QuTEM mean by rotating the sample by the mean Q +- MQ.

4. Return Q.

The sample is rejected if it is outside the constraint radius p.

6.4 QuTEM Summary

This chapter presented a simple approach to unit quaternion statistical analysis and syn-
thesis by coupling the quaternion exponential mapping and a standard vector Gaussian
probability density. The resulting model, called the QuTEM, models the mean, covariance
and finite support region of the density.

The QuTEM is a useful building block. It can be used to:

" Learn a probability density from data

" Sample new points from this density

" Hemispherize data

" Use covariance as a distance metric that "divides out" differing variances

The first three points we discussed in the chapter in some detail. The final point we only
quickly touched on since we have not used it in depth in our work, but we feel it will be
useful for future work. The main remaining issue is that the Mahalanobis distance is defined
between a point and the mean, and not two arbitrary points. It is not immediately clear how
to handle this properly. In initial tests we convert the examples into their SMT (scaled mode

3The author notes that it results in an infinite loop when p = 0, which is very bad.

124

tangent) descriptions and then used the standard Euclidean norm on the resulting vectors
which we think is a reasonable approach which needs to be looked at more carefully.

Now that we can analyze quaternion statistics we need to be able to synthesize new
examples with a blend operator as well as a statistical operator. Pose-blending involves
the weighted blend of n quaternions and is covered in the next chapter. We will use the
QuTEM to solve certain problems we encountered there, as we shall see.

125

126

Chapter 7

Multi-variate Unit Quaternion
Interpolation

This chapter will describe two new algorithms for performing a weighted blend of N unit
quaternions:

" Slime

" Sasquatch

Such a blending operator is needed to create the multi-target pose blending building
block we motivated in Chapter 2 in order to interpolate between multiple example anima-
tions.

The chapter will proceed as follows:

Section 7.1 will introduce the problem and discuss some of the properties we desire the
operators to have.

Section 7.2 presents the slime algorithm discusses its properties.

Section 7.3 presents the sasquatch algorithm, which improves on several problems en-

countered with slime in practice at the cost of slower performance.

Section 7.4 describes how these two operators can be used to allow an example-based non-
linear vector space function approximation algorithm called Radial Basis Functions
(RBFs) to work with unit quaternions.

Section 7.5 summarizes the chapter and main conclusions.

7.1 Problem Description

Formally, we can describe the problem of pose-blending as follows: Given a set of N
example postures, P = {E;}, and a weight vector a E RN whose ai component specifies

the desired contribution from the ith posture, create a posture B according to the weight

127

Figure 7-1: An abstract depiction of the unit quaternion blending building block. The algo-
rithm should take N unit quaternion examples Qi with associated weights ai and perform
a weighted sum of them. These answer is then usually written to a joint controller.

vector. Figure 7-1 gives an abstract depiction of the problem. We will use the function
QWA (Quaternion Weighted Average) to denote such an operator:

QWA(P, a) = _B

7.1.1 Interpolation and Extrapolation

We would like our operators to have the following properties:

" Interpolation

" Extrapolation

The blend function should interpolate the examples for the standard basis weight vec-
tors ei (recall, ei has zero entries for all except the ith, which is 1). Mathematically, the
interpolation constraint is:

QWA(P, ei) = P

In other words, if the only non-zero weight is on a particular example, we wish to get
that example out. Some blending methods only approximate the examples.

128

Often weight vectors are required to sum to one in order to stay inside the convex hull
of the examples, which leads to pure interpolation behavior. If we relax this constraint,
we can allow some extrapolation, or making a guess as to the answer outside of the region
for which we have data. This is useful to make caricatures of motion, such as making a
happy walk even more happy. Also, if we have good extrapolation behavior, it is likely that
fewer examples will be needed. This is important for leveraging the animator's skill, as we
argued in Chapter 2.

7.1.2 Vector Space vs. Spherical Interpolation

Unfortunately, as we saw in Chapter 3, quaternions do not live in a vector space, so the
standard linear algebra technique of producing a linear combination of the quaternion ex-
amples:

N

i= 1

will not produce an answer on the sphere. Also, antipodal symmetry implies we need to
hemispherize the data, as we saw in Chapter 6.

We can renormalize the solution to get around this, but we would also need to handle
antipodal symmetry. Furthermore, this renormalization means that a constant speed change
in the weight vector does not produce a constant angular velocity change with respect to the
spherical metric (see Chapter 3). This was the original motivation for Shoemake's famous
slerp function, which performs a constant angular velocity interpolation of two examples as
the single parameter changes with constant speed. We desire this behavior an our extension
to N quaternions. This section chapter will consider two algorithms that were motivated as
an multi-variate (more than one interpolation parameter) extensions to slerp.

7.2 Slime: Fixed Tangent Space Quaternion Interpolation

This section describes the first of our two quaternion weighted blending operators, slime.

7.2.1 Motivation: Extension of slerp

In order to lead into our slime algorithm, we first return quickly to Shoemake's slerp func-
tion, which served as a starting point for our algorithm. Recall that slerp essentially defines
a constant angular velocity geodesic curve (great circle) on the quaternion hypersphere in
terms of a reference point (the first example) and a second point which defines the direction
of the curve from the reference (hence the angular velocity).

The geodesic traced by slerp can be parameterized in the exponential form:

slerp(Qo, Q1, t) = Qo et n(Q*o I (7.1)

or to make the angular velocity portion clear:

129

slerp(Qo, Qi, t) = Qoet "O (7.2)

where w is ln(Q*o Qi).
In this way, we can think of slerp as using the exponential map to represent one quater-

nion with respect to another (the reference) in terms of the angular velocity of a unit time
curve between them. Therefore, the reference quaternion shows up on the left as the "zero
point" as well as inside the logarithm. Also, in our formalization, we would actually con-
sider slerp as generating only a blend of one example, since its single parameter can be
thought of as a weight vector of dimension one. Figure 3-7 depicts this graphically.

How do we extend slerp to more than one example quaternion to blend at once? The
first thing we need to realize is that we will still need a reference quaternion. This reference
quaternion is the particular location on the sphere whose tangent space we will be using (we
will see below that it is similar to the mean of the vector space interpolation scheme). As
we saw earlier, each tangent space on the sphere is a different space even though they have
similar algebraic structure, so the decision of a reference quaternion is extremely important.
We will see that all examples need to be represented in the same tangent space. We shall
return to this decision later.

We saw in Section 3.3.4 that the logarithmic map creates a linear vector space (since
angular velocities are true vector quantities). For this reason, we can use map at a fixed
reference point to create a locally-linear space in which to blend the quaternions with the
standard Euclidean weighted sum. The blended tangent space element can then be mapped
back onto the sphere with the exponential map.

7.2.2 Slime Algorithm Definition

Let us formalize these intuitive notions into an algorithm definition:

Definition 5 Given a set of N unit quaternion examples Q {Qi}, a reference
quaternion P, and a weight vector a C RN:

slime(a; /P, Q) = ae=hi(P)

7.2.3 Slime Properties

Several points need to be addressed about slime. First, we need to show that is satisfies the
interpolation constraints (we drop the parameters for clarity):

Property 1 slime satisfies the interpolation constraints

slime(ei) = Qi.

This follows trivially by substituting the standard basis vectors ei into the formula for
slime- the only contribution is from ln(P* Qi) and when exponentiated the reference P
and its conjugate cancel leaving Qi as desired.

130

In general, we will not force our weight vectors to sum to one so that we can perform
extrapolation on quaternions as well. Therefore, we look at another special case of weight
vector, the zero vector 0, which is the answer we would get if we did not ask for a contri-
bution from any example.

Property 2 The zero contribution blend is the reference quaternion:

slime(0) = P

This follows since eo - 1. This property is useful since it gives us a criterion for choos-
ing a reference quaternion for our blend. Since the zero contribution answer is the reference
point, we can choose the reference point by deciding what our "zero contribution" quater-
nion should be. Slerp clearly chooses the first of the examples as the zero contribution since
this is desired for a univariate blend.

Geometric Interpretation of Slime

Figure 7-2 and Figure 7-3 depict the slime algorithm graphically. The yellow vectors are in
the tangent space at the reference quaternion (also yellow for consistency) and illustrate the
logarithm of the red geodesics (great circles), or equivalently, the angular velocities of unit
time spherical curves from the reference to each to example (in green). The interpolation
is performed linearly on the yellow vectors to get a blended angular velocity vector for the
curve through the reference, as shown by the orange vector in Figure 7-3. This linearly
interpolated velocity can then be integrated back onto the sphere since it describes the
orange great circle. By integrating forward unit time, we get the blended example (orange
sphere) which lives on the quaternion group.

Extrapolation Discussion

The geometric interpretation makes it clear how extrapolation works in slime. Consider
some weight vector, a, which we are using to blend. This vector will specify some par-
ticular tangent vector at the reference point. In vague terms, if we want to extrapolate, we
want to "keep going in that direction" away from the reference. Since any scalar multiple
of a will also be in the same direction from the reference as a, we see that it lies on the
same one-parameter subgroup (great circle) of the sphere. The magnitude of a specifies
how far along the curve to go. Therefore, as we extrapolate further in the same direction in
the tangent space, we are moving along a geodesic in the quaternion group. In other words,
as we extrapolate in a straight lines using the exponential map coordinates, we move in a
straight line (great circle) from the reference on the sphere as well. This property is highly

desirable and makes intuitive sense. It is not the case with an Euler angle parameterization
of the same examples and using a vector space weighted blend, however.

This property is related to the idea of canonical coordinates of the first kind (see Sat-

tinger and Weaver [71] or Gallier [23]) in the Lie group theory. Canonical coordinate sys-

tems of the first kind are coordinates 9, such that the constant velocity curves 0i (t) = tai

in the coordinate system map to one-parameter subgroups when lifted back to the group.

131

Figure 7-2: The slime algorithm maps examples (green spheres) into tangent descriptions
(yellow vectors) with respect to a chosen reference quaternion (yellow sphere) by describ-
ing the examples in terms of geodesic curves (red great circles) that pass through the ref-
erence and the example. The yellow vectors live in a linear space since they correspond to
angular velocities of the curves, and therefore can be blended linearly.

132

, =41PIW=

Figure 7-3: The slime algorithm linearly blends the tangent vector description (yellow
vectors) of the geodesics (red great circles) of the examples (green spheres). As an example,
the orange vector is an arbitrary weighted blend of the three example vectors. This blend
is actually specifying a particular different geodesic through the reference point - the
orange great circle. By integrating this blended angular velocity forward unit time from the
reference (using the exponential), we get the blended quatemion (orange sphere).

133

Clearly, the exponential map (tangent space) coordinate system (Ofn) has this property since
any constant velocity line through the origin in the coordinates:

1
w(t) =- tw

2

for t E R, w E R3, and w E R3 . The coordinates are clearly the individual components of
the w vector, wi. When lifted to the group by exponentiating, we get the familiar geodesic
curve:

Q(t) e2'

which as we saw describes the great circle through the identity at t = 0 and with angular
velocity w

Euler angle coordinate systems for SO(3), however, do not form a canonical coordinate
system. We do not form a proof here, but refer the reader to the Lie group theory. For this
reason, however, we can argue analytically that the extrapolation behavior of the Euler
parameterization will not be as good since it will not extrapolate along a geodesic from the
reference.

To summarize,

Slime is better at extrapolation than an Euler angle blend since it moves along
one-parameter subgroups.

Slime Coordinate Singularities

One immediate problem with the slime algorithm is that since it uses a fixed tangent space
for blending the quaternions which is only 3-dimensional, we introduce a singularity into
the algorithm. In particular, the singularity will occur on the great circle orthogonal to the
reference quaternion, since opposite points on this circle are identified in the exponential
map. In terms of the tangent space, this occurs in a spherical shell of radius 2= , since
the great circle is 90 degrees from the reference.

In practice, the singularity amounts to the slime algorithm being useful only for blend-
ing realistic character joints that are not allowed to spin a full 360 degrees in any direction.
Since the joint cannot spin 360 degrees, we can map any quaternion path for the joint into
a local hemisphere that never crosses the shell by choosing the right quaternion reference.
It seems intuitively obvious that the mean of all animation data for the joint would be an
optimal choice, since it places the singularity as far from the data as possible. We saw
how to calculate this using the QuTEM model in Chapter 6. We discuss this choice further
below.

'We are being a little sloppy with the factor of 2 in the angular velocity terms here. In fact, since we use
it merely as a representation here, and not in terms of actual derivatives of curves, we can often ignore this
factor, as long as we are consistent.

134

Figure 7-4: Choice of the reference quaternion (yellow sphere) affects the interpolation
of examples (green spheres) since quatemions are represented as one parameter subgroups
(red great arc circles through the examples and reference) through the reference quaternion.
As the choice approaches the "average" of the examples, the curves (examples) become
more separated from each other and therefore the interpolation becomes better.

Finally, we mention again that root joints are special. Since the root joint is a rigid body,
it is allowed to rotate in one direction by 360 degrees. For this joint, we need a different
algorithm that avoids this problem. This will motivate our discussion of sasquatch below.

Choosing a Reference Quaternion

Choice of the reference quaternion is important since this quaternion specifies the tangent
space which is being used to blend the examples. Different choices will result in different
blends for the same weight vector. This property can be clearly seen in Figure 7-4.

So what is a good choice for a fixed reference quaternion? We will consider three
choices here:

* One of the examples

" The mean of all examples over all animations

" The identity, i

An Example The first of these is similar to slerp, which uses one of the examples as the
reference. Unfortunately, for more than two examples, this does not work as easily. If we
were to choose one of the examples as the reference, however, then the example would
become the new zero point. This effect occurs because multiplying by the conjugate of
the reference before taking the In rotates the examples so that the reference point aligns
with the identity element. Since ln(1) = 0 (we use the vector form for the In result), no
blend weight will have an effect on the example - it effectively becomes the origin of the

135

coordinate system in which the blend occurs, much in the same way as the mean in the
vector space case.

This effect might be exactly what is desired, however! If there is a known "neutral"
example which could be interpreted as corresponding to the zero weight vector, this could
be used as the reference point. In this case the weight vector would not include a component
for the reference since this is defined as the blend of the 0 point.

Mean Over All Animation Data This argument leads us into a second, much better,
choice of reference quaternion of the examples, the mean over all motion examples of the
joint 2. In some sense, this "average" of the rotation examples is an optimal choice since
the tangent vector descriptions will be as orthogonal as possible. Also, for a blend weight
of zero, the average rotation seems like an intuitively reasonable answer - in the absence
of any variation or any explicitly given neutral pose, return the average.

Finally, since the singularity in the logarithmic map occurs on the great circle orthog-
onal to the map center, choosing the mean as the reference point places the singularity as
farfrom the data as possible. Also, since the approximation is better near the map center,
we should minimize the average error in the approximation. 3

Identity Lastly, as we discussed in Chapter 5, we can force our animator to use a certain
distinguished configuration of the character as the identity posture. This requirement turned
out to be useful since it gives us a natural choice for a reference pose for blending, the
identity.

What does using the identity as the reference get us? First of all, the blending formula
in Equation 5 immediately is simplified

slime(a; i, Q) = e= " (7.3)

since we remove N + 1 quaternion multiplies if N is the number of examples.
Furthermore, if the coordinate systems of the bones in the skeleton are chosen such that

the average pose of the character over its animations is itself the identity pose, we have
the best of all worlds - we gain the computational efficiency of using the identity as a
reference as well as the robustness of using the mean to separate the examples.

7.2.4 Summary of Slime

Slime chooses a fixed, global tangent space to blend quaternions using the standard Eu-
clidean weighted average. This algorithm is therefore an approximation which is better
around the tangent space quaternion. By choosing the mean over all example orientations
of the joint, we can place the resulting singularity as far from the data as possible -in fact,

2Note that since quaternions do not live in a vector space, we cannot use the normal formula for finding
the average of a vector directly. We discussed the average of a quatemion in further depth in Section 6.2.1.

3We have proven this empirically by comparing slime and sasquatch solutions over many randomly
chosen weights, quaternion examples, and choices of reference quaternion and showed that the minimum
average approximation error (difference between the slime and sasquatch solutions) occurs at when the
reference point is the mean, as we expected.

136

for internal joints with a constraint boundary for joint limits this singularity will not outside
the valid probability density for the joint. We can do a "reset transform" on the geometry in
order to make the mean over all data be the identity quaternion i by representing the data
in the principal bases of the probability distribution as a preprocessing step.

Slime is at the core of most of our successful pose-blending results, which we present
in Chapter 10.

Finally, the take-home points about the slime algorithm are:

" Slime is best for internal joints with local compact ranges, and not for rigid body
blending since it introduces a singular subspace.

" The singular subspace can be chosen to be as far from the data as possible (orthogonal
to the mean over all data) by using the QuTEM mean.

" Slime only approximately extends slerp to more than two quaternions in the sense
that constant speed changes in the parameters only lead to constant angular velocity
curves if the curve passes through the reference point.

" Slime is fast.

" Since the reference is fixed, we can store preprocess the examples into their log form
if they do not change over time. This means we only have to calculate the exponential
map and not the logarithmic map for a speed increase. We use this in practice often.

7.3 Sasquatch: Moving Tangent Space Quaternion Inter-
polation

This section describes an iterative extension to slime called sasquatch 4 which removes
the singular subspace so that it may be used on fully rotating joints like the root. We will
show how a weighted blend on the sphere can be thought of as the steady state solution
of a physical system of nails and first-order "springs" pulling a free marble around on the
sphere. We will see that the spring constants (relative to each other) can be used as blend
weights. The system will converge on a weighted blend that respects the spherical metric,
unlike other approaches (including slime).

Slime had some problems with singularities, making it a poor choice for the root joint
(which can travel all over the quaternion sphere rather than being locally contained). This
may not be a problem for many cases where there is a preferred direction that tends to keep
rotation data locally-bunched, as is the case for humanoids that always walk upright or an

"up vector" as in a camera. Indeed, we got a lot of mileage from slime until the singularity

finally was manifested when our virtual dog needed a roll-over animation.

4 Sasquatch actually stands for Spherical "Aristotelian Springs" for QUATernion blending Constrained to

a Hemisphere.

137

Figure 7-5: The system of Aristotelian springs with constants ki connected between the
example points (nails), pi, and the free point (yellow), q. All nails must be on the same
local hemisphere.

7.3.1 Spherical Springs Physical Analogy

A fruitful way to think about the problem of spherical weighted averages is as a physical
system of springs on the sphere whose equilibrium point is our desired weighted average.
Imagine that the quaternion examples are nails banged into a unit sphere (again, on the
same local hemisphere). Further imagine that attached to each nail is a "spring." 5 The
ends of each spring are all attached to a tiny marble, which is free to slide around on
the surface of the sphere. The spring constants can be chosen to be the weights of our
weighted average. For this work, we will assume that the weights must sum to one (they
can be trivially renormalized such that they do by dividing through by their actual sum).

Figures 7-5 and 7-6) illustrate this system. This physical system obviously will apply
"forces" to the marble based on the spherical distance between the marble and each nail,
weighted by the spring constant. If we set up the system to some initial marble config-
uration and let it settle to equilibrium, the steady state should be what we desire - the
weighted average of the points, inside the convex hull (based on spherical polygons) of the
examples. Also, it should be obvious from physical considerations that a solution must ex-
ist if the example all live within the same local open hemisphere 6. Also, it should be fairly
clear that this solution is unique if the examples all live inside the open local hemisphere.

5The quotes on spring will be explained below. As a spoiler, we note that these will be Aristotelian
(first-order) springs rather than Newtonian springs for simplicity. See below.

6The open hemisphere excludes the thin set of points on the great circle which defines the hemisphere.
Clearly, symmetrical examples here could lead to multiple solutions. For example, three point evenly spaced
around the great circle with identical weights will have a solution on both poles of the sphere, assuming the
great circle is the equator.

138

M

Figure 7-6: An orthogonal projection of the system from above the free point, q. Note
that this is not the exponential mapping since orthographic projection does not preserve the
spring lengths with respect to the spherical distance metric.

7.3.2 Spherical Metric

The first thing we require is a distance metric on the sphere. We already have one with
quaternions: in particular, the shortest arclength along the geodesic (great circle for the
sphere) between two points is a natural measure of distance between points on the sphere.
If all the examples lie on the same hemisphere, we can use the exponential map to simply
calculate this spherical distance by converting it into a Euclidean distance. In particular,

distsa (A, B) = |1 ln(B*A)|| = ||ln(A*B)|| (7.4)

where 1| is the familiar Euclidean L 2 metric. It is important to note that this metric is
valid only for unit quaternions on a local hemisphere which are up to 1 away from each
other on the sphere, as we saw in Chapter 3.

7.3.3 Setting Up the System

Now that we have a spherical metric over the hemisphere, we need to find an Ordinary
Differential Equation (ODE) for the system. It is well-known that the quaternion derivative
is the product of the location of the derivative on the unit sphere (a unit quatemion) and a
purely imaginary quaternion which has arbitrary magnitude, as we showed in Chapter 3.
This imaginary quaternion can be associated with the familiar angular velocity vector, ex-
pressed in either local or inertial coordinates. Formally,

11
Q = -wQ = -Qw' (7.5)

2 2

139

where w is the angular velocity in the global coordinate system and L' is the angular ve-
locity in local (body) coordinates of a rotation in SO(3). The angular velocity is a vector
quantity and is purely imaginary - it has no scalar component. Also, it is not a unit
quaternion, but has magnitude equal to the angular speed. The multiplication is the stan-
dard quaternion multiplication. Therefore, it is clear that the quaternion derivative is also
not unit. Rather than using the angular velocity in terms of the rotation group SO(3), we
will absorb the 1 term into the velocity term, which then describes angular velocities in H
rather than SO(3). Explicitly:

Q=Q= wQ=Qw' (7.6)

where Q is expressed with respect to the inertial frame coordinates.
How do we find Q? The unit quaternion Q is the location of the local coordinate system,

which in our case is the location of the marble on the sphere. Therefore, we need to find
the angular velocity in terms of our nails and springs. In Aristotelian physics, the angular
velocity is proportional to the displacement. Rewriting Equation 7.6, we get the tangent
operator [59]:

Q* Q = ' (7.7)

which is a vector quantity. Since each nail and spring will pull independently on the marble,
we can simply sum the contributions to the local angular velocity of the marble from each
of the nails. To formalize this, let:

N

Wmn = (7.8)

where 2' is the local angular velocity of the marble.
We need to calculate the local angular velocity contribution from each nail. To be

explicit, let the quaternion example points (nails) be labelled as P. Let the weight for the
ith spring be ki. The distance between Q and Q is simply found by our spherical distance
metric from Equation 7.4. The exponential map gives us tangent vectors anchored at the
center of the map (in this case the point Q) in the local coordinate system whose lengths are
the spherical distance. Therefore, we can simply weight the tangent vector with the spring
gain:

o = ki ln(Q*Pi) (7.9)

to get the angular velocity contribution from the ith nail. The magnitude of Wo is

Iwl | = |1ki ln(o* P#)|| = kilI ln(Q* PN)|| = ki dist(Q, PI) (7.10)
S3

which makes explicit that the magnitude of the force is actually the spherical displacement
of the marble from the nail, weighted by the spring constant.

To get the total local angular velocity, we add up the contributions, giving us:

140

N

, ki ln(Q*P) (7.11)

Now we can substitute into Equation 7.7 and rearrange to get the final quaternion ODE

N

Q = Q k ln(Q*j) . (7.12)

which we need to solve for its steady state solution (as t - oc).

7.3.4 Solving the System for Steady State

To find the steady state solution, we can use two methods:

" Renormalized Euler integration in R4

* Euler integrate the angular velocity vector using the exponential and logarithmic
maps

The first is the standard Euler numerical integration formula

xt+1 = xt + xAt

which will always step off the sphere since the derivative is tangent to it. To handle this, the
quaternion is simply renormalized after each step (see, for example, [62] for more details).

The second approach is to Euler integrate the angular velocity using the exponential
mapping:

Q(t +-- At) = Q(t)e'M A . (7.13)

where the w'(t) is the local angular velocity, which we can be found from the derivative
with the tangent operator.

We discuss the numerical solution of Quaternion ODE's in more detail in Appendix C.)
Since the intrinsic solution takes larger steps and stays within the group, we choose to use

it for efficiency and elegance of the algorithm. To solve for steady state, we simply take as
large step sizes (At) as possible until the solution converges.

7.3.5 Sasquatch Algorithm

Let P = {(Pi, ki) } be the set of pairs of quaternion points and their weight. The sasquatch

algorithm then proceeds as follows:

141

Sasquatch(P, Qo, c, S, At)

{
1. Let Q Q0

2. Hemispherize({P}) to lie nearest to Q
3. Loop with J 1 to S:

(a) Let w = J I ki ln(Q*J jiP).

(b) Let NR ew A'.

(c) Let Q= Qj_ Rj

(d) If ||wj|| < c then EndLoop.

4. Return Q1 as the blend.

}
The algorithm also has several free parameters At, S, and 6, as well as the initial

starting point for the ODE, Qo. We discuss the choice of each in turn.

Precision Parameters

Both S and e refer to how long the iteration continues. The iteration stops if it has run too
many iterations (up to a maximum of S times), or when the magnitude of the update (the
angular speed) on the iteration falls below 6. Therefore, e can be used to set the number of
significant digits desired in the answer, or S can be used to force an explicit maximum on
the number of computations, which is important for real-time applications.

Timestep Choice

The parameter At is the Euler integration timestep. Normally, we would want this to be
small to reduce errors in the calculation, particularly in the case where the trajectory of
the system, denoted in our algorithm by the series of quaternions Q3, is desired. Since we
are only interested in the steady state solution, we want this step to be as large as possible
while still maintaining convergence to the steady state. This fact implies that there exists
for each system there exists some At which will converge as quickly as possible to the
correct answer. The analytic calculation of this value is beyond the scope of this document,
but we can find a good value by testing convergence speeds over many random ensembles
and finding the fastest value on average. We describe this experiment in Section 10.3.1. We
found that a value of about 1.175 gave the best performance.

Choice of Initial Value

Speed of convergence to steady state, as well as potentially convergence itself, will depend
on where the system is started. If we are close to the steady state already, we should

142

take much less iterations to converge within precision than if we start much farther away.
Minimally, since we constrain the spring constants to sum to unity and be non-negative,
the solution obviously must exist inside the convex hull of the examples (where the convex
hull is defined as a spherical polygon). Therefore, our initial choice should lie within this
hull. Since we are seeking the spherical analogue of the Euclidean weighted average, a
fine starting point is simply the Euclidean weighted average of the points in the embedding
space, using the spring constants as the weights, renormalized onto the sphere. Formally,
we define

Q0 - K 1 p (7.14)

where pi E R is the unit quaternion Pi interpreted as a vector quantity.

7.3.6 Interpolation and Extrapolation

Since we explicitly force our weight vector to sum to unity, sasquatch can only interpolate
examples and not extrapolate, which is a drawback. One potential way around this might
be to use slime at the mean of the examples to explicitly extrapolate a new set of examples
which can then be passed into sasquatch.

7.3.7 Convergence Results

Sasquatch converges linearly, which should be clear since we use only a first derivative.
Also, sasquatch should always converge for a proper choice of timestep since all weights
are positive and there are no "corners" to get stuck on.

We will present empirical convergence results of sasquatch in Chapter 10. There we

will demonstrate:

" An optimal choice of timestep based on empirical data collected over many ensem-
bles.

" The property that sasquatch reduces to the same answer as slerp for the case of two
examples.

" Several plots of some attractor trajectories to visualize convergence behavior.

7.3.8 Interpolation Visualization

In order to visualize the output of sasquatch, we created a 2-dimensional orientation field,

where each point in a square has a unique orientation associated with it. We used four

examples to create a square interpolation space, with the examples on the corners. Then,

we used the Sasquatch algorithm to interpolate orientations between the examples. The

space of weight vectors for four examples is four-dimensional, but we can reduce it to a

two dimensional field by parameterizing the weights according to a monotonic function of

143

the distance to the examples. Specifically, the weight value at a point x = (x, y) in the
square maps to the following weight vector:

wi = Clamp(1 - (||x - cill))

where ci is the 2-D location of the center of the ith example on the square. For our example,
the corners are the corners of a unit square: {(0, 0), (1, 0), (0, 1), (1, 1)}. The distance
metric is the standard Euclidean L2 norm. Clamp clamps the value of the weight to be
non-negative - negative weights are forced to zero. Finally, we enforce the unity sum on
weights by dividing through by the actual sum. The results of this applied to a game die
are shown in Figure 7-7.

We show how Sasquatch can be used to blend entire postures in Chapter 10.

7.3.9 Summary of Sasquatch

This section described sasquatch, a new algorithm for calculating a weighted blend of N
unit quaternions. Sasquatch is an iterative algorithm based on the steady state solution of
a differential equation. We showed how to set up the equation and how to solve it. We
presented the algorithm and discussed the choice of the free parameters. We discussed
interpolation and extrapolation behavior and showed that the solution is also rotationally-
invariant. We then visualized the output of sasquatch on a rigid body.

To summarize the main points:

" Sasquatch can currently only interpolate data points and needs to be extended to
extrapolate.

" Sasquatch produces a solution that respects the spherical metric since it explicitly
minimizes the weighted distance to each example in the calculation of the steady
state (minimum energy solution).

" Sasquatch is rotationally-invariant.

" Sasquatch can handle joints which vary over all S3 so is suitable for root joints and
rigid bodies.

" Sasquatch is iterative, so is not as fast as slime.

The next section gives an overview of how to use both slime and sasquatch with a
non-linear function approximator rather than a simple fixed weight combination of the
examples.

7.4 QuRBF's: Quaternion-Valued Radial Basis Functions

Now that we have two ways of performing a weighted blend on the quaternion hypersphere,
we can extend standard linear algorithms using this "pseudo-linear" blending function.
Here we will describe how the standard vector space Radial Basis Function (RBF) function

144

U31
001
001
00

Ld0

e03
03

~KOD O= I 0 0IOe IJ

U4
Figure 7-7: A 3D orientation field specified as a radial basis function around the examples
(corner locations boxed in red). The weight of each example is inversely proportional to its
distance from the sample point in the field as described in text. The center image clearly
has equal weights on all examples, and is therefore the centroid of the four examples with
respect to the spherical metric.

145

approximation architecture (see [8] or [24] for an introduction to RBF's) can be simply
extended to quaternion-valued functions, rather than assuming the output space is a vector
space and renormalizing.

Formally, we propose a function approximator f of the form:

f : R N __

To motivate this discussion, we first quickly show the scalar RBF, then the obvious
Euclidean vector-space extension, followed by our extension to quaternions using our
sasquatch algorithm.

7.4.1 Scalar RBF

The standard formulation of RBF's seeks a function approximator which is a weighted sum
of monotonic functions of the distance to each example, similarly to the method we used
to make 7-7. Each basis function is centered on one of K scalar input examples (here xi),
each of which has an associated observation of the true function, yi. This gives us:

K

y = f(x) = aB(x - xi) (7.15)
i=1

where B(r) is the radial basis kernel function. For our purposes, we usually use a Gaussian
function for B(r):

1 2
B(r) e 2 2

v'2wcr 2

where the characteristic width of the Gaussian (where it falls near to zero) is specified by
o-. The width can be chosen in several ways. We use the simple heuristic of finding the
average pair-wise distance between all input examples and using 2 of this value, which
seems to work well in practice. Using this value, the influence range of the basis function
usually falls to zero on near other examples, which is the behavior we desire.

Since the basis functions are given parameters of the algorithm, as well as the exam-
ple centers xi, we seek a vector of weights ai which satisfy the interpolation constraints
(observation of the function):

f(Xi) = yi

Plugging each of these constraint equations into Equation 7.15 gives us the system of equa-
tions

K

yi = ajB(xy - xi)
j=1

which leads to the symmetric matrix equation:

Ba=y (7.16)

146

where y is the vector of output observations yi, a is the vector of unknown basis weights
a, and B is a symmetric matrix of pairwise basis functions values between the ith and jth
examples. In other words, Big = Bji = B(xi - xj). We invert this system using standard
techniques to solve for a that will interpolate the observations. Notice that in the case of
over- or under-constrained systems, where we choose to have more or less basis functions
than the number of examples (for memory compression, reduction of overfitting, etc), we
get a rectangular system to solve. Standard practice is to use a Singular Value Decom-
position (SVD), or pseudo-inverse, on the system of equations to find the least squares or
minimum norm solutions for a.

7.4.2 Vector-Valued RBF

The extension from scalar to vector-valued RBF's is fairly straightforward. Formally, we
seek a vector-valued function f : RN --+ RM where N is the input dimension and M
the output dimension. Again, we are given a set of K observations of the form {(xi, yi)}
which we must interpolate. Since the bases are radial in input dimension, we assume a
distance metric on the input vectors. Here, we shall assume the standard Euclidean norm,

Ix - y||. Notice that any radial distance function on inputs may be used here, as long as it
is monotonic.

In order to approximate vector outputs, the system is decomposed (since it is a vector
space) into a weighted sum over a basis for the output space. In other words, a separate
component function approximator is learned for each output dimension. In other words,
we assume the vector function f is of the form:

f(x) = fi(x)ei (7.17)

where ei is the standard basis for R" where the vector is 1 for the ith component and 0
otherwise. Now we need only learn M scalar RBF's: one for each output basis vector,
designed to interpolate just the ith output component. Hence, we solve M systems of the
form of Equation 7.16 and assemble the results as a weighted sum over basis elements.

7.4.3 Quaternion-Valued RBF's with Slime

Most of our early work in posture blending used the exponential mapping at near the mean

or identity pose in order to locally-linearize rotations. The complete algorithm is straight-
forward given the primitives we have:

147

1. Hemispherize the data output examples {Qt} to align with the QuTEM mean
representative.

2. Logmap the data into a 3-vector in the tangent space at the mean: r <-
ln(M*Qi).

3. Learn a standard vector-valued RBF f(xi) =T from the inputs into the trans-
formed, linearized examples {T}.

4. Use the RBF to approximate a new T= f(x) based on the query x.

def5. Exponential map the vector back onto the sphere at the mean: Q(x) -fler

An advantage of this approach is that is is fast for internal joints. Another advantage is
that all of our data examples lives in a fixed 3-dimensional output space for each joint, and
therefore 3n-dimensional space for a character with n joints. The method does not depend
on the number of examples, k.

This work was first presented at SIGGRAPH 1999 in a Technical Sketch [45] and has
been used in several successful installations which we describe in Chapter 10.

7.4.4 Quaternion-Valued RBF's with Sasquatch

To simply extend RBF's to work with the more general sasquatch blending operator on
quaternions, we need to learn the weights on the sasquatch blend from the inputs.

We can express a quaternion-valued function as simply a quaternion weighted sum
over these examples using sasquatch. Formally, we seek a function to approximate a set
of examples { (xi E RN, Qi E N) }. We express this function as a quaternion weighted
sum over some set of quaternions which we feel span the output space as the weights in
sasquatch vary.

F(x) = sasquatch(fj, Q) (7.18)

where we have defined our component-functions as calculating the weight on the jth out-
put "basis" quaternion. Each fj is simply another scalar RBF which we calculate in the
standard manner as a weighted sum over the input basis functions:

K

fj (x) =aig B(||x - xil11)
i-I

Putting this all together gives us equations of the form:

K

F(x) = sasquatch([ai Bi (x), Qa)
i=1

Plugging in constraint equations over the K examples (xk, Qk) gives us the system:

148

K

Qk = F(x) = sasquatch([aigBik, Qi)
i=1

where we write Big again for B(d(xi, xj)), and d(x, y) is a monotonic distance function
over the input space, which we have taken to be Euclidean for now.

To solve this non-linear function, we will assume that the output space is covered by
our examples, and hence use all the output examples as a basis for the output space. In this
case, since we are using an RBF to calculate the sasquatch weight for each of these output
examples, we can say that we wish the following hold:

K

aij Bik = ik
i=z1

where ogj is the Kronecker delta and is 1 if i = k and 0 otherwise. This constraint says that
we want the weight on the kth output example to be 1 if the input is the kth input example,

Xk, and zero for all other output examples. This system can be written in matrix notation
as

AB = I (7.19)

which states that our weights are the inverse of the example weight matrix B. Since B is
symmetric positive semi-definite, it might be singular. We can invert this matrix using the
standard SVD pseudo-inverse techniques (see Strang [81]).

Algorithm

To summarize the algorithm:

1. Learn a standard RBF mapping from input examples {xi} to real scalar weights wi on
each of the K quaternion output examples { Q} such that the weight (contribution)
wj of the jth output quaternion Q, on input example xi is 6ij (the Kronecker delta).

2. Interpolate a new weight wj for each output example j with the RBF given a query
point x.

3. Blend the examples together using sasquatch with the interpolated weights.

Discussion

An important problem with this formulation of RBFs with Sasquatch is that the problem

scales linearly in the number of examples rather than being constant as in the slime-based

RBF. Unfortunately, we have found this makes it intractable for reasonably-sized problems.

More research needs to be done here.

149

Interpolation Results on Posture

Figure 7-8 illustrates an example of a Sasquatch RBF with two input dimensions applied to
a walk cycle of a dog - left/right turning and a happiness value. Six examples define the
convex hull of this space, as is required of sasquatch. These are: happy-left, happy-right,
sad-left, sad-right, happy-straight and sad-straight.

Although we have done these early tests on sasquatch, it has not been used in a produc-
tion system yet.

7.4.5 Quaternion Inputs

It should be clear that the spherical metric from Equation 7.4 is in fact radial and monotonic.
Hence, we can use it as a distance function in our basis function as well! This extension
allows us to approximate functions of the form:

f:HE-k

Although we have not used quatemions as inputs in practice, we feel that they will
be useful for an example-based learning approach too inverse kinematics since the current
posture of the character can be used an an input to the approximator.

7.5 Summary of Weighted Quaternion Blending

In this chapter, we described two new algorithms for blending N unit quatemions according
to a weight vector, slime and sasquatch. We demonstrated the following about slime:

" It is fast (constant time).

* It extrapolates well.

" It has a singular subspace and therefore should be used for locally compact data.

" It only approximately respects the spherical distance metric, but is much better than
an Euler angle interpolation.

We also discussed the following about sasquatch:

" It converges linearly.

" It is valid anywhere on the sphere since it does not require a fixed tangent space (i.e.
it has no singularities).

" It reduces to slerp in the case of two examples.

" It respects the spherical distance metric.

We then showed how to implement quaternion Radial Basis Functions (RBF) using
both slime and sasquatch. We present results on using both of these RBF approaches in
Chapter 10. The slime version has proven useful in practice, but the sasquatch version
needs to investigated further.

150

Figure 7-8: A Sasquatch RBF of a parameterized walk cycle with two input dimensions,
happiness and turning radius. All images are sampled at the start of the walk cycle and the
RBF is sampled evenly in all directions. The image was created with six examples, four on
the corners and two for normal-left and normal-right.

151

152

Chapter 8

Eigenpostures: Principal Component
Analysis of Joint Motion Data

This chapter will describe the Principal Component Analysis (PCA) algorithm for find-
ing a subspace for the inherent variations in a set of data. We will call the basis vectors
of this subspace eigenpostures after Turk's "eigenfaces" paper [85] which used PCA on
recognition of face images.

The chapter proceeds as follows:

Section 8.1 will motivate the reasons for desiring such a subspace.

Section 8.2 will present the standard algorithm which assumes Euclidean data.

Section 8.3 describes how to use the QuTEM model and quaternion exponential mapping
to process motion data for use in the standard PCA algorithm.

Section 8.4 presents results from an initial evaluation of the technique on our corpus of
dog animation.

8.1 Motivation for Posture Subspace Analysis

One large problem with computational motion engines is that animation can take up a lot of

memory as more expressivity, and therefore more examples, are required. Storing all these
examples can be prohibitively expensive, so a means of compression or dimensionality re-

duction would be useful for reducing this memory footprint. If we can find an invertible
transformation of our data to some smaller dimension space, we can use it as a lossy com-
pression method. Furthermore, if we want to perform learning on the motion data, having a

smaller dimension learning space will make the learning faster. Additionally (as we discuss

further in Chapter 9), if we had such a basis we could use it to project a novel posture cre-

ated in some procedural manner (such as inverse kinematics or a learning algorithm) onto

the basis in order to bring it "closer to the data" in order to minimize "unnatural" postures

that these algorithms sometime generate.

153

8.2 Principal Component Analysis Overview

Principal component analysis (PCA) is a simple and powerful unsupervised method for
performing dimensionality reduction on a collection of vector data [8, 24, 85]. PCA es-
sentially finds a set of orthonormal basis vectors (called the principal components) which
define a linear subspace of the data space which models the intrinsic variations in the data.
Once such a basis is found, each data vector is then projected onto this subspace to create
a corresponding weight vector with the dimension of this subspace. The full dimension
data vector can then be reconstructed by a linear combination of the basis vectors using
the weights. Notice that this reconstruction will be exact if the dimension of the data is
the same as the subspace. For PCA to be useful, however, the dimension of this subspace
(number of basis vectors) must be smaller than the dimensionality of the data vectors. This
approach leads leads to a lossy compression of the data, with a residual error between the
reconstructed vector and original data vector. The goal of PCA is to find the set of basis
vectors which minimizes this reconstruction error (in a least squares sense). In this way,
PCA can be used to approximate the inherent dimensionality in the data and find an en-
coding which consists of a small set of basis vectors and a (smaller) weight vector for each
example.

It can be shown that the eigenvectors of the sample covariance matrix of the data form
exactly such a basis, with their corresponding eigenvalues giving a measure of the magni-
tude of the variation in that direction [8]. Therefore, by ordering the eigenvectors according
to their eigenvalues, we can choose a subset of eigenvectors which lead to an acceptable
reconstruction error.

8.2.1 Mathematical Description

Mathematically, let {xi} be a set of N data vectors in RD. Let k be the mean of the data
and y, = xi - R be the zero-mean versions of the data vectors. Let Y = [Y1 Y2 ... YN] be
the data matrix with the zero-mean data in its columns. Recall that the sample covariance
matrix is then

1
K = YY T

N - 1

and will be DxD as well as symmetric positive definite. Let uj be the eigenvector of K with
corresponding eigenvalue Aj such that Aj > Aj+1 (lower indices are larger eigenvalues).

Projection Now choose some number M < D of eigenvectors to form an orthonormal
basis for the projection subspace. Any new vector x (either in the original dataset or a new
query point) can be projected onto this subspace using the inner product to find the weight
of the example in that direction. Thus,

Wk - u(x --)

gives the weight Wk of the example z on the eigenvector Uk. Finding the weight for each of
the M subspace vectors gives a weight vector w E Rm for the example z. Since M < D,

154

this transformed example will take up less memory than the original example z, which has
dimension D.

Reconstruction In order to reconstruct from a weight vector w E RMI back into a vector
in the original space (call it x E RD), a simple linear combination of the eigenvectors (plus
the stored mean) is used:

M

X=k + (m. WkUk
k=1

Reconstruction Error Finally, we can check the reconstruction error of a particular data
vector x by projecting it onto the subspace and then reconstructing it and finding the resid-
ual. Let x' be the reconstruction of the vector x. Then the residual is simply the Euclidean
norm between the two:

r = ||x - x'1l.

Finding the Basis Dimension Reconstruction error is useful for calculating the number
M of eigenvectors to use. An average error measure over the entire data set is computed
for increasing values of M < D until the error falls below a certain threshold, specified as
a parameter. In practice, this error curve is drops exponentially as M increases, reaching
zero when M = D.

8.2.2 Standard PCA Algorithm Summary

To summarize, the standard PCA algorithm proceeds as follows. Again, let {xi} be the N
example data vectors.

1. Calculate the sample mean k = y E x- .

2. Subtract off the mean from the examples to get yi = xi - k.

3. Arrange the zero-mean data y, in the columns of a matrix Y.

4. Create the sample covariance matrix K = NIYYT.

5. Find the eigenvectors Uk and eigenvalues Ak of K such that Ak > Ak+1-

6. Choose some number M of eigenvectors to serve as the basis using some
in-sample error metric.

7. Return the sample mean R and the M eigenvectors Uk.

Again, we note that once the basis and sample mean is found, projection and recon-

struction are simple linear operations.

155

8.3 PCA on Posture

The last section described the standard PCA algorithm. One issue with PCA is that it is
a linear algorithm, assuming Euclidean data and trying to find a linear transformation of
the data which best describes the inherent degrees of freedom in the data. As we noted
above, quaternions are not Euclidean, so naive use of the PCA algorithm on quaternion-
valued vectors (such as used to represent posture) can lead to strange behavior, as the
author discovered in practice. This section will describe how to use the quaternion mean
of the data described in Section 6.2.1 and the exponential mapping to perform PCA on
quaternion-valued data.

8.3.1 Eigenposture Algorithm

Say that we have a set of N postures of a character {Pi}, each with M1 joints. Let Pig
denote the jth joint of the ith example posture. Our "quatemion-ized" PCA algorithm then
proceeds as follows:

1. For each joint j, find the sample quaternion mean M1.

2. Hemispherize all examples to lie on the choice M.

3. For each data point i and each joint j, perform the logarithmic map at the
mean to get a vector qij = ln(M*gFP1).

4. For each data point i, collect the linearized joint vectors qij into a block col-
umn vector xi containing the log-mapped components for all joints in order.

5. Perform standard PCA on the linearized data xi to get a basis of eigenvectors
uk.

6. Return the linear basis {Uk} and mean posture Al (quaternion-valued).

Note that the quaternion mean is found as specified in Section 6.2.1 and the data hemispher-
ized to handle double-covering. The algorithm simply transforms the quaternion-valued
posture tuple into a "linearized" posture vector which PCA is then carried out on in the
normal manner.

8.3.2 Projection and Reconstruction

The projection and reconstruction operations follow immediately. In order to project a
new query posture onto the subspace, the mean is rotated out, the posture linearized into a
vector, then the vector is projected onto the subspace to return the weight vector. Likewise,
reconstruction is the inverse of this, combining the linear basis with the weight vector, then
exponentially mapping the result back to the mean posture. Finally, the reconstruction error
between the resulting postures can be calculated using the posture metric in Chapter 5.

156

8.4 Initial Eigenposture Results

We did several initial evaluation experiments of PCA on posture data which we describe
briefly in this section. We performed our posture PCA algorithm on a corpus of dog ani-
mations containing 5800 posture samples of the dog performing various motions such as
walking, begging, running, sitting, paw-shaking and looking around. The data contains 53
quaternion-valued joints, meaning there are 4 x 53 = 212 components, or 3 x 53 159
possible rotational degrees of freedom in the linearized posture vector.

The results of these evaluations are shown in Figure 8-1 and Figure 8-2. Figure 8-1
shows the root-mean-square (RMS) reconstruction error (in radians) over all postures in
the training set as the number of basis eigenvectors is increased. As we noted above, since
the covariance matrix is the outer product of the posture vectors, it will be 159 x 159.
Therefore, the maximal rank of the data is 159. The results show that for an RMS error
of about .01 radians, about 80 eigenvectors are needed, or about a half compression rate.
These results are not as good as we hoped, unfortunately. They seem to show that there is

some structure in the data, but that the individual joints tend to move independently much
of the time, which limits the usefulness of these techniques for large corpi of motion data.
Another potential issue worth investigating is the addition of angular velocity (the time

derivative of posture) to the posture vector to see if this reveals more structure in the data

(but at the expense of doubling the data dimension).
The first ten principal components are depicted in Figure 8-2. To view the linear basis

eigenvectors, we simply exponentially map them back to the mean for each joint to get
a posture tuple which we can view. One issue in using PCA on posture data is that the
linearization is not as effective on the root joint since it might spin all the way around and

whose basis is effectively chosen arbitrarily by the animator. Also, as is common with

PCA, the eigenvectors tend to look fairly uninformative since PCA is finding a rotation
that makes the data uncorrelated with no regard for local structure such as the fact that the
coupling in the data is hierarchical (joints on the same limb tend to be more coupled).

In general, results were mixed. We feel that this is an interesting area for more explo-
ration. Since PCA is a linear algorithm, it finds an orthogonal basis for a subspace. If the

data intrisically actually lives on a curving manifold and not a linear subspace, it is known
that PCA will overestimate the data dimensionaly. Nonlinear techniques might be worth

trying on the data (see [24] for a good overview of these data characterization issues). One
simple thing that can be done is to try a cluster-PCA algorithm. Here, the data is clustered
and then PCA performed within the clusters.

We also performed several initial visualizations of our data using a recent method for

optimally mapping a curved manifold's intrinsic dimensions into a Euclidean space called
Isomap [82]. Although this is beyond the scope of this document, we feel that this algorithm

might be useful for finding a character's motion manifold.

8.5 Summary of Eigenpostures

We described the standard principal component analysis algorithm for dimensionality re-

duction of vector data. We then showed how to use some of the QuTEM building blocks

157

1.8 -

1.6-

1.4-

1.2-

1-

0.8-

0.6-

0.4-

0.2-

0-
0 10 20 30 40 50 60 70 80

Figure 8-1: Training set RMS reconstruction error (radians) versus number of basis eigen-
vectors.

4

I 4 4,
ft

-wI
Figure 8-2: First ten principal components from 5800 frames of a 53 joint dog.

158

I I I I I -- I

(mean and hemispherize) and the quaternion exponental map in order to linearize the data
for use in a standard PCA algorithm. We presented initial results on animation data which
and concluded that the results were inconclusive and more work needs to be done. We sug-
gested the use of some of the newer non-linear dimensionality reduction techniques that
explicitly look for curved manifolds.

159

160

Chapter 9

(Toward) Expressive Inverse Kinematics

This chapter will introduce the difficult problem of Expressive Inverse Kinematics (Expres-
sive IK). The goal of any IK algorithm is to solve the "put my paw on that spot" problem
which is often encountered in real-time interactive character engines. Unfortunately, most
standard IK algorithms produce robotic-looking solutions, which is not surprising since
they were developed in the robotic community where the style of the motion is not impor-
tant, only the resulting configuration.

A character, on the other hand, must constantly express its internal state through its
motion. Therefore, the problem of Expressive IK can be exemplified as "put my paw there
but I am really tired." The resulting motion should convey this internal state in an expressive
manner. Furthermore, different characters move in different styles, so that the way one dog
puts its paw on a spot in different than another. In our example-based approach, this implies
that an Expressive IK angine should find solutions that "look like" that character.

This chapter will describe our progress towards a full Expressive IK algorithm, although
due to time constraints we were not able to fully realize the entire approach. The chapter
will cover the following building blocks for a real-time quaternion IK engine:

" Fast Joint Limits

e Fast numerical IK solver

" Equilibrium points

We will describe each of these in more detail below.
Finally, we will sketch out two ideas for augmenting this standard "robotic-looking"

numerical solver with a model of the character's actual motion subspace:

" A hybrid of pose-blending and CCD

* Using a model of the character's motion subspace learned from a corpus of animation
data (such as Eigenpostures) to augment a CCD approach.

The rest of the chapter will proceed as follow:

Section 9.1 describes the basic approach we will take to tackling the problem of expressive
IK.

161

Section 9.2 will describe our fast model of joint motion constraints learnable from exam-
ple data. The model will be based on the QuTEM (Chapter 6).

Section 9.3 will describe how the QuTEM mean (or any other reference posture) can be
used as a heuristic to try and make solutions more "natural" looking.

Section 9.4 will describe our unit quatemion extension to the currently popular Cyclic
Coordinate Descent (CCD) real-time IK algorithm.

Section 9.5 discusses how a hybrid of pose-blending and CCD can be used to reduce the
number of examples needed in a purely pose-blending approach. This approach was
used on the physical Anenome robot.

Section 9.6 will sketch out how a statistical analysis of posture from examples (such as
our Eigenpostures, described in Chapter 8) could be used in a similar manner to
heuristically pull or project an unnatural (or unexpressive) algorithmic solution into
the subspace of motion that the character lives in.

Section 9.7 summarizes the contributions of the chapter.

9.1 Approach

To approach the problem of Expressive IK, we chose to start from a recently popular real-
time IK solver called Coordinate Cyclic Descent (CCD) [87]. Unfortunately, most standard
IK algorithms (including the original CCD algorithm in [87]) assume an Euler angle rep-
resentation of joint orientation. Since we use a unit quaternion representation of joints, we
need an extension CCD to unit quaternions. We describe our extension - QuCCD - in
Section 9.4.

Furthermore, many standard IK algorithms often exploit the following:

" Joint motion range limits

" Joint equilibrium point (or center) to model muscle tension

" Heuristics for choosing a particular solution from an infinite subspace in order to find
the most "natural" posture, such as lowest energy

Range motion range limits are important to avoid unnatural body configurations in the
IK solution, such as an elbow bending backwards or a shoulder bending too far in any
direction.

Equilibrium points are often used to "pull" the IK solver back towards the "center" of
a joint's motion range. This can be useful for avoiding numerical drift and for coaxing the
IK solver to choose a solution nearer the joint's center than the joint constraint boundary,
which often looks more natural and can sometimes speed up solutions by keeping it from
bouncing along the constraint boundary.

Other heuristics on the posture can be added to choose between multiple solutions to
find the most "natural" solution. For example, many IK solvers will just find the nearest

162

solution in terms of displacement magnitude (smallest rotation). This can still lead to pos-
tures which also look awkward or unnatural. Another common heuristic is to minimize
some energy metric on posture to choose the most natural solution (see, for example, Gras-
sia [30] or Hecker's GDC video [38]). Unfortunately, if the character happens to be excited,
this might not be what is desired. We believe that an example-based approach to finding
these heuristics will be better than trying them by hand.

Due to time constraints and the initially mixed results from Eigenpostures (see Chap-
ter 8), we were not able to incorporate the Eigenpostures into our IK algorithm. We feel,
however, that this is one of the most exciting areas for future work and will lead towards
much more expressive IK solvers.

9.2 Joint Constraints with the QuTEM

Usually, joints are modeled using an Euler angle parameterization where the joint limits
are explicit intervals over which the Euler angles are allowed to vary. If the joint tries to go
outside of its range, the angle can simply be clamped into the interval. This approach is se-
ductively simple, since it involves only scalar comparisons and clamping, and each degree
of freedom can be thought of separately. Essentially, this constraint approach "unwraps"
the Euler angle (which is S') into a line and clamps the interval there.

Unit quaternions, however, live on a sphere, which makes this approach problematic.
We could represent the sphere using spherical coordinates, but this factorization can create
"corners" on the resulting constraint boundary. Such edges, as we argued in Chapter 4, can
cause numerical optimization procedures (such as most IK algorithms) to get "stuck." Due
to the lack of a good unit quaternion constraint model, other researchers 1 who use a unit
quaternion representation for joints convert to an Euler angle description, clamp the angles
there, and then convert back to a quaternion. This is expensive if it must be done every
iteration of an IK algorithm, however, since it involves several matrix multiplications and

trigonometric functions.

9.2.1 Approach

We chose to approach the problem geometrically. We model unit quaternion joint con-
straints as an elliptical boundary on S3 (see Figure 9-1). We already saw how the loga-
rithmic mapping converts ellipses on the sphere (isodensity contours) into ellipsoids in the
tangent space at the ellipse center in our discussion of the QuTEM model in Chapter 6.
Also, we saw how we can learn such a boundary from data, which we argued is required
to leverage the animator. For these reasons, the QuTEM will let us implement this model
directly.

9.2.2 Goals

To handle joint constraints, we will need two operations on the QuTEM model:

'Jeff Lander (personal communication,1999).

163

Figure 9-1: An abtsract visualization of finding whether the query point Q on the unit
quaternion sphere is inside the constraint ellipse boundary or not and the nearest projected
valid point, Q'.

164

dhdlh

Constraint Satisfaction Is Q inside the constraint boundary?

Constraint Projection If Q is not inside the constraint boundary, what is the nearest point
to Q that is within the boundary?

We describe how to compute each from a learned QuTEM model for a joint.

9.2.3 Constraint Satisfaction Operator

We define the constraint boundary to be the isodensity contour of the QuTEM with Maha-
lanobis distance of p from the center of the joint (the QuTEM mean Ml). Since we defined
the density to be zero outside this region, the joint is not allowed to go there. We now show
perform the test.

Recall that our SMT (Scaled Mode Tangent) transformation defined in Equation 6.2
turns a unit quaternion into a unit variance vector in the tangent space at the mode of the
Gaussian, and that its magnitude is simply the quaternion Mahalanobis distance. Therefore,
an ellipse (and its interior) on the sphere maps to a solid ball (filled sphere) of some radius
when transformed using the SMT. The transformed constraint boundary is obvious - it
is simply a sphere with radius p (see Figure 9-2)! We can therefore define our constraint

satisfaction predicate as a simple sphere-point test on the transformed query point using
the QuTEM. If the transformed point is inside the sphere, it is valid, otherwise not. Simply
put, only quaternions within p standard deviations of the mode (M) are valid.

The test is then defined as follows: First, hemispherize Q to be on the same hemisphere
at the QuTEM mean, M. Then the following formula tests to see if the query point is within
the constraint radius:

ConstraintSatisfied(Q) = SMT(Q)| <= p

This check is fairly efficient, involving several quaternion multiplications and the sinc
call to evaluate the log, so is suitable for use inside an iterative IK algorithm.

9.2.4 Constraint Projection Operator

We can also use the SMT transformation and its inverse to project an invalid point Q into
the valid region. Formally, we define a ProjectOntoConstraintBoundary function which
takes a quaternion and returns the nearest quaternion which on the constraint surface:

L SMT(Q)ProjectOntoConstraintBoundary (Q) = SMT 1 (p
where again need to hemispherize the query first.

This operator simply changes the magnitude of the unit variance to p so that it lies on

the boundary of the sphere, then inverts the SMT transform to put modified unit variance

tangent vector back onto S3 at the correct location. Figure 9-2 illustrates this operation.

165

5A'Q)

Figure 9-2: A visualization of the SMT(Q sphere which divides out variance differences
along the principal directions x, y and i. The mode, M is mapped to the origin, and the
constraint boundary p away from the mean is the surface of the sphere (which is radius
p). Therefore, we can perform very fast, simple sphere-point checks and projections on
properly mapped data.

In practice, we often project to a radius of p - E, so that the point is just inside the con-
straint boundary to avoid numerical roundoff issues with projected points not satisfying the
constraint satisfaction predicate.

9.2.5 Singular Densities

For joints with only one degree of freedom, the QuTEM density will be singular. In this
case, we must use the pseudoinverse of the covariance matrix. Since the singular directions
will be scaled to zero by the pseudinverse, this will also project points that move off the
great circle that defines the joint's degrees of freedom back onto it. For example, if an IK
algorithm tries to bend an elbow about a different axis than its fixed axis, the projection
will place it back on the appropriate great circle around the elbow's fixed axis.

166

9.2.6 Empirical Results

We tested these operations on a QuTEM learned from a the corpus of all dog animations.
First, we generate a uniform rotation for every joint 2. Next, we project all the quater-
nion samples onto the constraint surface (in this case, we also project points that happen
to be already inside the surface as well). In this manner, we can randomly sample the con-
straint boundary. The constrained posture samples can be rendered to see if the resulting
constraints are "reasonable." Figure 9-3 shows several random such samples on our dog.
In general, the constraints are visually good - elbows and knees are constrained to one
direction, as desired, and other joints seem equally valid.

One issue that becomes immediately obvious from this method, however, is that this
joint constraint model is local to joints and does not know about posture constraints. A
posture constraint is an invalid posture for the character, such as one that causes a body
penetration. These constraints are much harder to handle since the boundaries are non-
convex and depend on the geometry of the character. Often collision detection routines
are used to handle these constraints. We feel that using a statistical model of pose such as
our Eigenpostures (see Chapter 8) could help with this problem. If we had a model of the
character's motion subspace learned from examples, we could project a posture that causes
an interpenetration onto this surface since, by definition, the surface is learned from positive
examples where no interpentration occurs. More work needs to be done here, however, to
validate this approach.

9.3 Equilibrium Points with the QuTEM

One problem often found in numerical integration or inverse kinematics algorithms is that
we often want the joint to slowly pull itself back towards its equilibrium point, or center.
For example, some IK algorithms will add in an error terms based on distance from this
joint center in order to constrain the usually under-constrained IK problem.

We can use following simple update rule to "pull" the solution towards the QuTEM
mean M by an amount proportional to distance:

+ Q(=*fc

where a is the "strength" of the pull. For a = 0, the system will not pull at all. For a = 1,
we jump immediately to the mean M. The parameter is currently chosen empirically.

We have not used this building block extensively, but have found it useful for pulling
back numerical drift in numerical integration of the root node, which causes characters to
slowly list to one side as they walk.

2Note that our QuTEM model cannot represent uniform distributions easily without infinite variances.

Uniform rotations are simple to generate in quaternions by rejection sampling a unit cube to get uniform

points inside the unit sphere in R4, then normalizing them to the surface, as discussed by Shoemake [751.
Notice we can't sample inside the cube and renormalize as the cube's corner directions will get more density,

but rather need to rejection sample to get points uniformly in a sphere of arbitrary size, then normalize the

result.

167

Figure 9-3: Several screenshots of random sampled dog postures on the constraint bound-
ary. The shots were created by creating a uniform rotation for each joint in the dog, then
projecting to the nearest point on the constraint surface. Most sampled configurations are
reasonable, though in some the "joint-local" nature of these constraints becomes obvious
by a body interpenetration. We do not handle these posture constraints yet, but feel the
Eigenpostures might be useful here.

168

Another use of the equilibrium point is as a "soft" joint constraint. If the joint begins
to go outside of its range, a non-zero a based on the distance from the constraint boundary
can be applied to slowly pull the joint back inside the region. Soft boundaries could be used

to avoid "bouncing" off the boundary as often in the inner loop of an iterative IK algorithm,
but we have not looked into this yet.

9.4 QuCCD: Quaternion Cyclic Coordinate Descent

CCD is a recent heuristic iterative technique for solving simple IK problems in real-time
for articulated characters [87, 9, 38]. It has begun to attract much attention in the computer
game and interactive character communities due to its relative speed compared to the more
traditional Jacobian-based methods (see, for example, [79, 3], or Welman's excellent the-
sis [87] which compares the two methods.). For these reasons, we chose to use CCD rather
than a Jacobian method. The standard description of CCD, however, assumes an Euler an-
gle and SO(3) representation of joints [87]. This section will describe the basic paradigm
of the algorithm and then present our unit quaternion extension of it.

9.4.1 CCD 1K Paradigm

Recall that the basic problem of IK is as follows: Given an open kinematic chain (see
Chapter 5) of bones connected by joints and an end effector (a paw, for example), find a set

of joint displacements from the current posture of the chain that places the effector at some
desired goal location in space.

CCD proceeds by iteratively solving a local subproblem at each joint along the chain
(see Figure 9-4). Specifically, it calculates the rotation of each joint that will get the effector
as close to the goal as possible while leaving all other joints fixed. It then updates the joint
orientation by a weighted version of this rotation (see Figure 9-5), where the weights are

usually chosen heuristically 3 The weights acan be thought of as joint stiffness constants,
so that smaller weights imply stiffer joints.

The algorithm starts at one end of the chain 4, solving locally for a rotation of that joint
and performing the weighted update. It then continues performing the local minimizations
at each joint in order down the chain. Since it often takes multiple passes passes down
the entire chain to converge, deals only locally with coordinates, and essentially performs
a heuristic gradient descent on the effector error, the algorithm is called cyclic coordinate
descent.

To summarize the basic CCD paradigm:

3Unfortunately, the weights are a free parameter that must be specified by hand to achieve "good" results

empirically. It is future work to someone estimate appropriate values of these from data.
4Welman starts from the distal end; we usually start from the base. The solution will depend on which

choice is made.

169

A2 C
B1

B B3

2

Figure 9-4: The geometry of a CCD local update step on a three link kinematic chain. The
algorithm calculates the vector from the current joint being updated (here 2) to both the
effector's current Cartesian position (c) and the goal's position (d), expressed in the local
coordinate system of the joint (B2). These vectors can be used to calculate the local angular
displacement of joint 2 (A/2) which minimizes the error ||c - dI| between the goal and
effector. Joint 2's orientation is then updated by rotating it in the displacement's direction
by some percentage, which is expressed as a weight (ai). This completes a single CCD
sub-step on Joint 2. The algorithm would then proceed to Joint 3 and perform the same set
of operations again on the updated chain. This continues cyclically down the chain until
convergence or a stopping criterion is met.

1. Loop until the error is under a threshold (convergence) or a maximum number
of iterations is performed:

(a) For each joint in the chain in order from one end to the other:

i. Find a rotation of the joint that locally minimizes the distance be-
tween the goal and the current effector position.

ii. Update the joint orientation by a weighted version of this rotation.

We will not describe the Euler angle subproblem minimizations here, but refer the
reader to Welman's thesis.

170

Figure 9-5: The CCD algorithm after updating Joint 2 with a full weight of 1.0. The rotation
update (A2) must be applied in the parent's coordinate system since the orientation of the
joint is specified as an update.

171

9.4.2 Unconstrained QuCCD Algorithm

This section describes our QuCCD algorithm which extends the CCD paradigm to a unit
quaternion joint description. This section will express the algorithm without regard for
joint constraints, which we will discuss separately in Section 9.4.3.

Assume we have an open kinematic chain consisting of a path through the skeletal tree
(see Chapter 5) containing N bones upon which we want to perform inverse kinematics.
Let Nc denote the (fixed) location of the end-effector in the last frame frame N in which
it is embedded and Od denote the desired location of the effector in frame 0 (as is usually
the case for IK problems). Let jF be the forward kinematic transform that takes a point in
a bone frame j and expresses with respect to bone frame k. Let Qj denote the quaternion
representing the rotation of bone j with respect to its parent in the chain, j - 1.

In order to calculate the subproblem solution, CCD requires c and d both expressed at
the current joint in the update cycle, say i, or 'c and 'd. We can calculate these values using
iF using

kN

c = N F NC

and

0d=F d .

Figure 9-4 depicts this geometry for an N = 3 three link chain. In this case, i 2
Let 'd and '6 be normalized versions of the vectors. Then the rotation that minimizes

the angle between these vectors follows immediately from the quaternion vector product
we saw in Chapter 3:

Nk = (16* I1)2

which is a unit quaternion rotation that will take vector c into d along the shortest path.
Note that Ri is also expressed in the local, rotated coordinate frame i, but the orientation

of i, Qi, is expressed with respect to its parent frame, i - 1. In order to update the joint
quaternion Qi, we therefore need to express R in the parent frame using the transform
'-F. Since the translational portion of the transform will have no effect on a rotation, we
can ignore it. Therefore, we can perform a change of basis on the update R by rotating so
the parent and child orientations align, applying the update rotation there, and then rotating
back into the local frame:

Using this rule and scaling the update rotation by exponentiating it to the joint weight ai,
we get an update rule for the joint quaternion:

Q -(Qi aiQi)Qi

Note that we left-multiply here since we are rotating in the local frame, as we saw in
Chapter 3. Also notice, however, that similar cancellation occurs on the right, leaving:

172

which is quite simple and elegant, although we can make this faster computationally by
using the geometric formula for the square root of a quaternion rather than the exponential
map version:

Plugging all of these pieces together gives us the following simple update rule based on the
current and desired effector positions expressed in the coordinates of the local joint:

Qi i at (9.2)
|1+ 16*ia||

QuCCD Subproblem Algorithm Summary

To summarize the QuCCD solution to the local joint (i) subproblem:

1. Calculate the current effector position vector in the local frame:
16 = Normalize ('F NC)

2. Calculate the desired effector position vector in the local frame:
'a = Normalize (6F Od)

3. Update the joint: Qi +- Qi)

The complete unconstrained QuCCD algorithm follows by using the CCD paradigm
and solving the subproblems with this algorithm.

Discussion and Future Work

Joint Weights The main free parameters of the CCD algorithm are the joint weights. We

use a simple heuristic rule that makes the base joints stiffer since they have to move more
mass. Learning these weights from data or making them functions of time might be a useful
extension for allowing expressivity into the algorithm. For example, if a character gets his

leg hurt, the joint stiffness could be increased so it seems like he is favoring it.

Singularities A nice property of such a geometric approach is that there very few coor-

dinate singularities, unlike the standard Jacobian methods which become ill-defined as the

Jacobian becomes singular. The main singularity in the algorithm occurs when c = -d

since there are an infinite number of ways to get from c to d. A simple check can be used

to check for this case and choose and arbitrary path as it gets close.

173

Qi +-- Qi R" (9.1)

Other 1K Constraints Welman also shows how to implement more than just this point
constraint, which tries to place one point on another. Another useful constraint is a point-
orientation constraint which also specifies the desired orientation the end effector should
have at the point. We leave this extension as future work, but expect a similarly simple
solution.

Other Extension to CCD As CCD is becoming more popular, other researchers are find-
ing other extensions to it as well. We discuss some of these in Chapter 11, including some
work on ways to get around the convergence problems with very tight joint constraints, and
ways to handle branching chains.

The next section will discuss adding joint constraints to this unconstrained solution.

9.4.3 QuCCD with Constraints

The unconstrained CCD algorithm can be augmented with our joint constraints in several
ways. The simplest one, which we used for our work, is to simply perform the constraint
satisfaction test after solving each sub-problem. If a constrant is violated, the invalid point
is projected onto the boundary, then the next joint is solved.

Although this approach works much of the time, it has several problems. Unfortunately,
we discovered that this method tends to produce very slow convergence for I DOF joints
which are constantly bumping into a boundary. The problem is that the CCD step does not
take the constraints into account directly and will step in invalid directions, then get pulled
back, making for slow progress. Both Hecker [38] and Blow [9] note similar issues and
discuss several solutions.

The most direct approach is probably to find a new solution to the subproblem that
takes the constraints into account. We feel that it is possible to set up a joint-local error
metric which penalizes constraint violations and solve this analytically. The Mahalanobis
distance (see Chapter 6, for example, would be a likely candidate for this approach. Initial
calculations seem to imply an extended eigenvector solution to the problem, but we leave
this extension for future work.

9.5 Mixing Pose Blending and 1K

A useful technique for either adding expressivity to an IK algorithm or adding procedural
generalization to a standard pose-blending algorithm is to make a hybrid of the two.

For example, a pose-blending space can be created which gives examples of what the
posture should look like for several goal points. Then adverb parameters can be chosen
to correspond to the goal point's Cartesian location 5. This blend approach, since it must
use the known set of examples, is not procedurally general on its own as we argued in
Chapter 2. Also, the solution will often have a residual error between the desired effector
location (goal) and the resulting effector position from the pose-blending solution. Since

5Rose investigates using pose-blending for IK in his PhD, which was influential in our approach here.

174

in both cases we get a solution that is in some sense "close" to the answer we desire, we
can use our IK algorithm to "clean up" the solution.

Section 10.5 describes the use of this technique on a physical robot.

9.6 Adding Expressivity with Subspace Models

One problem with the QuCCD algorithm (and most other numerical IK solutions) is that it
simply is looking at coordinates without regard for any body knowledge of the character.

Solutions often appear "unnatural" since it chooses the nearest solution it finds. To handle
this, many IK systems add in heuristics to the optimization to make the algorithm choose
more natural looking postures. Some of these are energy minimization or the equilibrium
points we discussed above. Most of these are hand-coded and need to be tweaked. Further-
more, they do not explicitly capture what makes one character move like Mickey Mouse
and not Donald Duck.

On the other hand, if we could learn a mathematical model of the manifold of motion-
space that a particular character "lives" on from data, we could project an unnatural IK

solution onto this manifold, or pull it towards it like an equilibrium point. In other words,
we could take a "Mickey Mouse-looking" IK solution and convert it to a "Donald Duck"
solution.

To approach this problem, we did an initial evaluation of one such subspace analysis

technique, Principal Component Analysis (PCA), to find a minimal linear sub-space of

the character's motion learned from data, which we described in Chapter 8). Due to time

constraints and the mixed results of the linear PCA approach to Eigenpostures, we have

not been able to integrate it with the QuCCD algorithm, and leave this for future work. We

predict that these manifold and sub-space techniques will be very useful for augmenting

numerical IK solutions.
It is worth comparing this "inverse" approach to the more "forward" approach of speci-

fying a pose-blending to IK as we described above. In the pose-blending case, our animator

creates the examples needed to specify the space at particular locations to span the space.

On the other hand, if we just have a large corpus of animations such as motion capture data,
we cannot use this approach. In this case, learning the subspace is exactly what we want.

For this reason, both approach are potentially useful.

9.7 Summary of Expressive 1K

This chapter presented the basic IK problem of putting an end effector on a goal point

subject to joint constraints. In particular, our contributions were:

" A fast joint constraint model using unit quaternions that can be learned from exam-

ples.

" How to implement joint equilibrium points with the QuTEM

" An extension of the basic Euler angle based CCD IK algorithm to a unit quaternion

representation.

175

* A description of using a mixture of both pose-blending and CCD in order to reduce
the number of examples in a pure pose-blending approach to IK.

* A sketch of how a subspace or manifold learned from example data, such as our
Eigenpostures, could be used to make a robotic-looking solution more expressive.

176

Chapter 10

Experimental Results and Application
Examples

This chapter will describe several experiments and results on the algorithms and ideas we

presented in this thesis. The chapter will proceed as follows:

Section 10.1 illustrates several QuTEM models learned on dog animation data and dis-
cusses advantages and disadvantages of the model.

Section 10.2 describes a simple way to generate new animations "similar" to an example.
This is only an initial evaluation.

Section 10.3 describes several different convergence experiments of the sasquatch algo-
rithm, including choice of timestep, reduction to slerp, and a visualization of the
attractor.

Section 10.4 describes the many projects which have successfully used the slime algorithm
for pose-blending.

Section 10.5 describes an initial evaluation of mixing pose-blending and CCD on a physi-

cal robot, the Anenome.

Section 10.6 summarizes the chapter.

10.1 QuTEM Analysis Results

We used the estimation procedures described in Chapter 6 to estimate a QuTEM for each
of 38 joints on an earlier dog model (see Figure 5-1) using 26 animations containing about

1200 points. The animations were created by a skilled animator for a particular installa-

tion. The full set of animations used was: Beg, BegLow, SolicitPlay 1, StandToLie, LieTo-

Stand, StandToSit, SitToStand, ChaseTailLeft, ChaseTailRight, TightTurnLeft, TightTurn-

Right, TightTurnLeftToStand, TightTurnRightToStand, Lie, LookUp, Shake, ShakeHigh,

ShakeLow, TurnLeft, TurnRight, WalkLeft, WalkRight, Sit, WalkStraight, CatchTreat, Sniff.

Crouching down as dogs do when they want to play.

177

Figure 10-1: The dog in "mean pose" where all of his joints have been set to their mode.

The animations tend to fall into verb/adverb groups, with several variants on particular an-
imations. Some are transitions between cyclic animations.

Figure 10-1 depicts the mean pose graphically, where the dog's joints are all set to the
QuTEM mean. This appears correct, and is in fact close to the canonical pose.

The QuTEM covariances are slightly harder to visualize, but since the tangent space
description of the quaternion data is three-dimensional, as are the ellipsoids which describe
the covariance of this data, we can plot both of them to visualize the ellipsoids that com-
prise our model. Figure 10-2 contains plots of several joint QuTEM. The plots were made
by transforming the data into the tangent space at the mean with the logarithmic map and
plotting the resulting points. We also show the ellipsoid of Mahalanobis distance 1.0 (plot-
ted wireframe so the data is visible). Notice that our constraint radius (p) would scale this
ellipsoid until it just contains our all of the data.

Discussion One clear issue is that the data does not seem Gaussian on initial inspection,
but seems to contain more structure. Since the QuTEM is learned from a set of animations
whose data is concatenated together, the original curves of the animation are visible in the
scatterplot. Each individual animation tends to cluster data more closely together such that
a smaller ellipsoidal model with a different mean would capture each of the animations
better than learning a model of the entire joint from multiple animations. This structure
implies that the ranges for a joint are non-stationary, and depend on some other variable.

For this data, some of the animations are simply adverb variations on the same basic

178

Head

02

0-

.2

-0.5 -

-0.4

-0.3 0.1
-0.2

0

-0.1
0.1

0.2 -0.2

SpineOl

0.3,

0.2,

0.1

0,

-.3,

-02

0
0.1

.0.2

Tail01 .

0.3 - .. l -

-0.2-

-0.4

0.-
-0.2

0

-0.2 --
0.2

0.1 00.4

-0.1
-0.3 -0.4 0-6

Knee

--. 0.5

02 0.3

005 0.1

0.05 0
-0.1 -'

-1_01

0.1 -0.2

0 -0.3

-0.1 .04

/

Hip

0.

003

02

-0.0501

-0.1 -0

0.1

-.5 -0.1-0.4

0.06- -0-0.

-00.3

-0.2

-0.15
-. 3

-0.0 .
-0.4

0 41

.05
.0

Shoulder

0.1 030

-0. 0

-0.6 0.3

Figure 10-2: Plots of the mode-tangent descriptions learned from animation data for several
joints on a dog model. The scatterplot is the transformed quaternion data and the ellipsoid
shows the Mahalanobis distance 1.0 isocontour of the estimated density from the data.

179

0.1.

0.056

0

-. - 0 .5

-0.05 0.1

-0.05 0 0.05 0.2

Figure 10-3: TEM plot of just the elbow joint of our dog. Notice the structure contains
more than one degree of freedom, although it tends to lie in a particular direction.

verb (see Chapter 7, such as walking left or right. In these cases, the motion tends to be
similar in variation, but with a different mean. It is expected that as more animations with
different variations are added, the data will fill the ellipsoidal area more, although more
experiments need to be done.

Another interesting result from these data is that the elbow and knee joints do not seem
to be entirely one degree of freedom, as we expected, but tend to vary a little in other direc-
tions as well (in particular, see Figure 10-3). In particular, although individual animations
tend to be one degree of freedom (the estimation process finds only one significant variance
direction), when taken together, the different means for each tend to add extra directions.
Our hypothesis is that since the bone animations actually are deforming a mesh skin, the
animator used these extra degrees of freedom to get around problems with the skinning
algorithm. We need to investiagte this further.

10.2 Synthesis of New Motion from the QuTEM

To test our pose synthesis algorithm described in Chapter 7, we created a simple method
for generating new animations similar to an example (or multiple example) animation. We
did this using the following approach:

1. Learn a QuTEM from one or more example animations.

180

2. Generate two new postures Pi and P 2 with the QuTEM.

3. Generate a squad cubic spline from the current posture _P0 which goes through P,,
then P2 then returns to _P.

4. Choose a time function f(t) for the squad interpolation parameter to play out the new
animation at some desired speed.

Using this simple approach and a constant interpolation speed, we learned a QuTEM
from a walk cycle and then generated aniamtions from it. The results were as expected -
the dog appeared to be swimming randomly. This test was useful for validating the QuTEM
models. We omit the results here.

The time function could also theoretically be learned from data using a temporal fre-

quency analysis of the animation in addition to spatial analysis we perform in the QuTEM.

10.3 Sasquatch Experiments

This section will describe some simple experiments on the Sasquatch algorithm to investi-
gate its behavior.

First, we ran Monte-Carlo simulations by sampling random systems of springs and

points in order to calculate average convergence rates and to calculate an (empirically) op-

timal At. Second, we ran experiments to see statistically how bad of an approximation the

naive renormalized Euclidean weighted average was compared to our Sasquatch solution.
Third, we made sure the system empirically reduces to Shoemake's slerp function in the

boundary case of two examples.

10.3.1 Monte-Carlo Convergence Trials

The first experiment we performed was to get a feeling for the convergence rate of the

algorithm with respect to the timestep choice. This experiment also compared the two
integration techniques. One trial of the experiment went as follows:

1. Generate M uniformly distributed random quaternions as the data (nails).

2. Enforce local hemisphere constraint on the examples.

3. Generate M non-negative random spring constants which sum to unity.

4. Run the algorithm (either intrinsic or embedding) over uniformly sampled At E [0, 2]
and record the steps to converge to e for that At.

Uniform Quaternions First, we must generate random quaternion examples. We chose

to do this over the uniform distribution on the unit hypersphere. This is done by sampling

from a zero-mean, unit-variance 4-dimensional Gaussian and normalizing the result to the

sphere. Shoemake describes this correct algorithm in [75], along with caveats for other

naive methods.

181

Hemispherization Next, we enforce the local hemispherical constraint. We refer the
reader to Section 6.2.2 for details on this important problem.

Spring Gains To generate the spring constants, we simply choose M1 constants in the
interval [0, 1], then divide each by the sum of all to enforce the unity summation constraint.

Sampling At Next, we select a uniform sampling of timesteps, At, over the interval
(0, 2]. If we choose a spacing of 7 between samples, then we run the system over the
timesteps At =i y, where i is an integer and goes from 1 up to [such that 0 < At < 2.0.

Integration Finally, we run each of the integration schemes on the trial for each of the
values of the timestep and record statistics on how many steps were required to converge
for all the various At for each of the integration schemes.

Results In order to get a feeling for how the system behaves, we ran 100 trials of this
experiment on 5 points chosen as above and collected statistics on the number of steps
taken to converge for the samples of At. These statistics give us a feeling for how the
system converges on average and how the convergence rate depends on At. Figure 10-4
illustrates the results of these trials for the intrinsice numerical integration technque given
in Appendix C (results were practically identical for the embedding integration, so we omit
them). The middle curve on the graph shows the mean number of steps to convergence for
each At. The curves above and below show one standard deviation away from the mean.
Convergence for At < 0.25 became huge quickly, so we truncat the graph to see the detail
in the minimum.

We can deduce from this graph that the algorithm is robust in its convergence behavior
since the standard deviations are small in the middle area of the graph. Also, we see that our
guess of a timestep of 1 was actually reasonable, although on average the system converges
slightly more quickly at At ~ 1.175. The reason for this number is not obvious, but we
expect that it could be found if the system were analyzed in terms of a linear update, where
the eigenvalues of the update matrix define convergence behavior, although the nonlinearity
of the solution makes this analysis beyond the scope of this paper.

Another slightly surprising result was that the intrinsic and embedding integration tech-
niques both converged at virtually identical rates, though the actual trajectories were slightly
different. Therefore, we can choose either in practice, depending on which runs faster in
real-time, though we have not done these timing experinments yet. We expect that the em-
bedding integration approach will faster since it does not use any trigonometric function
calls.

10.3.2 Reduction to slerp

We also tested whether the algorithm as described reduces to the same result as Shoemake's
slerp in the case of two examples since we desire it to be a multiple example extension to
slerp. In this case, the slerp blend parameter, call it a, can be considered the weight on the

182

Convergence Statistics to 1.0-12 for 100 Trials-- Intrinsic Integrator
400

350

300-

100-

50-

01
0.2 0.4 0.6 0.8 1 12 1.4 1.6 1.8 2

dl

Figure 10-4: Convergence statistics for a 5 point system using intrinsic integration over
100 random trials. Here, e = 1.Oe - 12. The middle curve is the mean and those bracketing
it are one standard deviation.

second example, forcing the second weight to be 1 - a due to unity constraint. Therefore,
we must have:

Va E [0, 1], sasquatch((a, A), (1 - a, B)) = slerp(A, $, 1 - a)

where slerp can be defined exponentially as:

slerp(A, b, a) = e" " (10.1)

To test this, we also used a simple Monte-Carlo simulation. We created a random set of
two quaternions chosen uniformly, then sampled sasquatch and slerp for evenly sampled
choices of a and calculated the angular distance between the results. For all trials, we got
only roundoff errors on the order of 1.0e-8. This was the case whether we started from a
purely uniformly chosen initial location or the Euclidean average of the two points, which
also shows the algorithm is robust and will converge properly from many choices of initial
configuration, even for initial choices not on the one-parameter subgroup between the two
examples.

10.3.3 Attractor Trajectories

We can view some of the attractors for our ODE by choosing a fixed system of examples
and weights, then plotting the trajectories for various choices of initial conditions. This
allows us to illustrate that the attractor is stable over the sphere, even though we will be
choosing initial conditions more intelligently than at random.

183

0.6

0.4

0.2-

0-

-0.2-

-0.4,___

-0.6

-0.8 -.-

-0.5

0.5
-0.5 0 0.5

Figure 10-5: An illustration of the stable attractor which is the steady state solution to
Sasquatch. Here we choose 50 random initial points not too close to each other then in-
tegrate the system with dt = .01 and plot the resultant trajectories. Here we choose two
examples, whose attractor (steady state) is the identity quaternion, 1. Since the data live in
S3 , we project out the z component for this plot.

Experimental Design We chose to plot a simple attractor based on two examples. Since
the solution lives in a one-parameter subgroup of the quaternion group, we can see how
solutions arrive at the solution from points off the subgroup. In particular, we chose the
simple system of the quaternions

Qi,2 = e

with equal weights on each. Hence, the solution will be at the identity, 1. We then choose
random initial Qo for solving the ODE, but making sure that no example started off too
close to another, so the trajectories could be seen. If a new Qo is within some chosen e
distance to another example.

Results The results for a = 1.0 and n = [100]T with equal weights is shown in Figure 10-
5. In this figure, we project out the z component to make a 3D plot. More visually appealing
is a plot of the logspace of the quaternion, which is in R3 . We choose to use the logmap at
the solution (identity), 1, such that the attractor is at the origin. The results of this plot on
the same trajectories can be seen in Figure 10-6.

184

0.5,

0,

-0.5,

Figure 10-6: A plot of the trajectories for the atttractor taken as the log at the attractor
location (the identity), which is the tangent space R3. The attractor in the log is located at
the origin.

10.4 Slime Results

We have used the basic slime blending algorithm as the basis for pose blending in several
successful projects. This section will give a quick synopsis of each project and some basic
lessons we learned for each.

10.4.1 Swamped!

The Swamped! project was the first to use slime posture-blending in 1998 and was based
on the author's SCOOT motor system (unpublished), which was based on Perlin's and
Blumberg's motor systems.

Overview

The first project to use one of my quatemnion blending algorithms was the Swamped!
project [10] shown at the interactive exhibition at SIGGRAPH 1998. The story scenario
is simple: an autonomous raccoon tries to steal the eggs of the semni-autonomous chicken,
controlled by the interactor using a wireless sensored plush toy (see Figure 10-7) which we
coined a sympathetic interface [46].

185

Figure 10-7: The Swamped! project, shown at SIGGRAPH 1998. The interactor directs
the chicken character using natural gestures of the plush toy (sympathetic interface). The
raccoon is autonomous and uses an early slime-based RBF system based on Rose's Verbs
and Adverbs work.

Technology Used

The raccoon (Figure 10-8) was a fully autonomous character with several simple emotional
states - happy, tired, angry - which changed based on interactions with the chicken.
These emotional states were expressed continually in the animation using an early version
of our Slime RBF algorithms based on Rose's Verbs and Adverbs research, as implemented
in our SCOOT motor system. The RBF's converted the normalized emotional values, such
as happiness, into weights on the animations which were blended with the slime algorithm
around the identity pose. The animator was forced to use a particular basis for the identity
pose.

Lessons Learned

The Swamped! project successfully demonstrated how to blend animations represented
as quaternion efficiently, and how to extend Rose's Verbs and Adverbs work into a direct
quaternion representation rather than his Euler angle factorization.

This project taught me about the problems with always using the identity as the refer-
ence pose for the blending and forcing the animator to work from a certain structure rather
than designing their own model. These showed up as "glitches" in the animation as the
rotations for certain widely varying joints, in particular the shoulders, hit the mathematical
singularity in this global linearization. Also, animators tended to dislike being forced to
keep resetting geometry transforms every time they made a change. This motivated the
need for the mean of the animations and began the investigation into the QuTEM model.

186

Figure 10-8: The raccoon character is autonomous. He can blend between several emo-
tional states based on his interactions with the chicken. These states are expressed through
the motion with pose-blending.

10.4.2 (void*)

The (void*) project was shown at the interactive installation at SIGGRAPH 1999, as well
as within the Media Lab.

Overview

Another example of a sympathetic interface was used in the (void*) project. Here, a pair
of wireless sensored bread rolls with forks stuck in them were used to make dance move
gestures as if they were legs (inspired by Charly Chaplin's classic restaurant bit in The Gold
Rush). Three characters - Earl the beefy trucker, Elliot the nerdy salesman, and Eddy the
slick dude - meet in a diner. They get possessed by an interactor and made to dance using
the forks and buns as the interface.

Each character had several dance contents based on recognizable gestures on the buns.
Some of these were: split, march, leg twirls, and jump. Each of the dances also had stylistic
variations based on the character's "feeling" about being forced to dance. For example,
Elliot the nerd was much more inhibited as he started dancing, holding his hands close
to his body (Figure 10-9). If the interactor did dance moves that he seemed to like, he
would get more happy and his dance style more open. Earl the trucker was very stiff and
hated doing certain moves, such as the split, which Eddy the Dude was very proud of (see
Figure 10-10).

The dancing scenario was quite interesting, as it led to a fast interaction and forced
the motor system to blend quickly between the various dance moves flawlessly. Likewise,
while another character performed, the idle characters still had to appear alive and could

187

Figure 10-9: Elliot the shy nerd starts off dancing very inhibited. Over time, his dance
styles becomes more open as he enjoys himself.

make reactions to certain moves by the other character, such as giving a thumbs-up if they
liked the move.

Technology Used

(void*) ran on a version of the SCOOT motor system using similar Slime RBF technology
as Swamped!, but with a few new features. Blends were done in the same way, but we
needed better layering support to handle reaction shots, such as giving the dancer a thumbs-
up for a cool move. These blends were layered on top of other basic idling animations
when needed using a temporal transition blend (the weight smoothly changes from one to
the other and then back). Figure 10-11 shows an example of a blend at a particular point in
time of one of the characters. Again, a one-dimensional blend like this could be done with
slerp directly, but we actually had several axes in some of the animations.

Idling characters on the screen also needed to appear alive, even if they were not danc-
ing. Therefore, we introduced a simple Perlin noise source (see [63] as a blend weight be-
tween idling postures. In other words, each character had several idling ("sitting around")
animations. To avoid obvious repetition created if these were played in a loop, we simply
blended between the examples using a random walk through the weight-space.

Lessons Learned

The high energy dancing scenario, with all the possible transitions, was interesting from a
motor system standpoint. An early lesson was that we needed to maintain angular veloc-
ity continuity, since velocity glitches were very noticable in dance moves. Therefore, we
switched from slerp to squad for blending our animations in time.

188

Figure 10-10: Eddy the Dude shows off the range of motion of his hip joints with his split
move.

Figure 10-11: Blend of two animations, sampled at the same time t but at different blend
weights, from -0.1 to 1.1. The examples (red boxes) are the original animations, so the
algorithm can extrapolate as well as interpolate.

189

- - -- - . . - ..-- ... iii MO -

Figure 10-12: Rufus, a simple articulated robot dog head with a camera in its eye. Rufus
was the first example of using out pose-blending slime algorithm on a physical robot.

As mentioned above, we found that adding layered partial animations (like waves and
other gestures) could add expressivity. This worked fairly well.

Finally, the slime based pose blending performing quite well except for a few instances
of widely-varying joint ranges, such as hips and shoulders. These were evidenced as
"glitches" where the blend would go through the singular shell since we were not using
the mean as a reference.

10.4.3 Rufus

Rufus (see Figure 10-12) was a class project by Burke, Eaton, and Stiehl of the Synthetic
Characters Group in the fall of 1999. It was the first to hook up our pose-blending system to
a robot output. Rufus had a camera for tracking objects and could express several emotional
states with just his ears and tongue.

Technology Used

Rufus consisted of simple I DOF Futaba airplane servos, which meant animations for Ru-
fus actually lived on a one-parameter subgroup of the quaternions. The fact that physical

190

Figure 10-13: Duncan and the Shepherd. This project was one of the first to begin to look
at clicker training the animal. Both the shepherd and dog used an early slime-based blend.

robots still used several 1 DOF joints to produce higher DOF joints became clear from this
project.

Rufus ran a version of the SCOOT motor system that was close to the one used for
(void*).

Lessons Learned

The fact that many interactive physical robots still used several 1 DOF joints to produce
higher DOF joints became clear from this project. It is unfortunate that need for such
servos forces the mathematical coordinate singularity to be expressed physically. On the
other hand, these joints are usually built to avoid the singularity in the operating region.

We realized in this project that we could use the same motor system for both physical
and graphical creatures. The only difference was in the "render" stage when the quaternions
needed to be converted to Euler angles (for a robot) or homogenous matrices (graphics
render).

10.4.4 Duncan the Highland Terrier

The Year of the Dog began in 2000, where the Synthetic Characters Group tried to build a
virtual dog with similar perceptive, cognitive, emotional and learning abilities exhibited by
real dogs. One of the first projects from this was Duncan the Highland Terrier.

Technology Used

Duncan was one of the first projects where I did not have an active role in building the
actual motor system. The motor system used was an early port of my SCOOT system by
Marc Downie.

Figure 10-14: Sheep-Dog used an acoustic pattern recognition system to direct the dog to
herd sheep into a pen using traditional dog-training lingo.

Lessons Learned

This being one of the first projects with dogs, I quickly noticed a "roll-over" animation was
required. Unfortunately, a rollover caused the root joint to perform a complete revolution,
going right through the exponential map singularity in the slime algorithm and causing a
glitch. This led me to begin looking for a local method which would not have this singular-
ity and would allow weighted blends over the entire group. The result was the sasquatch
algorithm.

10.4.5 Sheep Dog: Trial by Eire

SheeplDog was a project in 2000, shown at the Media Lab Europe opening in Dublin,
Ireland. It was one of the first "Year of the Dog" projects aimed at achieving dog-level
perception, cognition and expression. Figure 10-14 shows the dog herding several sheep.
Sheep|Dog was also shown at the Es electronics exposition show as part of academic
trendsin videogames.

Technology Used

Sheep|Dog was one of the first systems to stop using an RBF function approximator with
slime to perform blends and to just use direct weights which were calculated by the pro-
grammer. This motor system was a home-grown, simple system developed by Blumberg
and Downie based on my slime algorithm.

Lessons Learned

Again, one of the earliest lessons learned in this exhibit was the singularities introduced by
the slime algorithm when used on the root joint during a roll-over.

10.4.6 a- Wolf

a-Wolf, Tomlinson's Phd research project, was presented at SIGGRAPH 2001 and con-
sisted of simple social interactions (a dominance hierarchy) amongst a virtual wolf pack [90].

192

Figure 10-15: A shot of the a-Wolf installation

Figure 10-16: A blend along one of the emotional adverb axes. Picture credit to Bill
Tomlinson.

Tomlinson showed that emotional perception, memory and expressivity are required for
proper social relationships. a-Wolf had three wolf pups and a mother wolf, which was the
largest number of complex motor systems we had running at once.

Technology Used

a-Wolf was one of the first systems to use Downie's pose-graph motor system [20]. Pose-
graphs extend the simple verb graph ideas which Perlin, Blumberg, Rose and I used into
a graph structure which explicitly models the motion manifold in terms of animations and
transition animations between them. Transitions became heuristic (A*) searches through
this graph according to some distance metric, such as minimizing acceleration.

The quaternion pose-blending technology used in the pose-graph is essentially slime
on a set of weights inside the convex hull of examples. Thus, no extrapolation is possible
in Downie's current pose-graph. Transitions all happened explicitly through the graph
whereas the SCOOT system generated a transition qith squad if one did not exist.

Figure 10-16 shows samples along one of the emotional adverb axes for the wolf pup.

193

Lessons Learned

a-Wolf basically hit the current limit on using purely blend-based methods 2 Essentially, the
number of transitions required to achieve graph closure, as well as the number of required
examples to parameterize the many different actions the wolves could take, were at about
the limits of an animator's ability. This project made explicit the need to make the more
general procedural methods such as IK more expressive.

Another issue that become clear is that we needed to handle the problems of "close con-
tact" that showed up in the dominance interactions, such as biting each other and wrestling.
These close, collision-ridden postures of several characters are very difficult to solve with a
purely pose-blend solution, and require the more flexible abilities of and collision response
algorithms. This is the subject of future research.

10.4.7 Slime Results Summary

The basic slime algorithm has proven to be very robust and efficient for performing a
weighted blend of multiple unit quaternions. It has been the core animation blending tech-
nology in all the Synthetic Characters Group motor systems since Swamped! in 1998.

10.5 Expressive 1K Results

A variant on this approach was used on the Anenome robot pictured in Figures 10-17
and 10-18 3. The Public Anenome was shown at the SIGGRAPH 2002 interactive exhibit.
The Anenome lived in a small stage environment with a waterfall and plants. An expressive
IK algorithm was needed to orient the "head" of the Anenome towards things in its environ-
ment. For example, a stereo-vision algorithm was used to find people in the environment
and track them as they moved.

In the Anenome, the degrees of freedom near the base were calculated using a slime-
based pose-blending and the degrees of freedom nearer the effector were calculated ex-
clusively using CCD. This allowed the gross movement of the base to be specified by the
animator through examples that get the effector nearest the solution but also look natu-
ral. The top DOFs could then be controlled by the more general CCD algorithm to "finish
the job." This approach is useful since producing a pose-blending space that spans the
entire possible IK space of the robot is time-consuming since many examples are poten-
tially needed. By combining approaches, we argue that we are better able to leverage the
animator's ability by reducing the number of examples.

In order to "render" the animation, the quaternions are converted to the Euler angles
which are fed to a feedback motor controller which tries to track the given kinematic tra-
jectory. This is simply the analogue of converting the quaternions to a homogenous matrix
which is usually required by graphics hardware to render polygons. By holding off on this
conversion until "just-in-time," we can maintain the efficiency of the quatemion represen-

2Downie, personal communication.
3Very special thanks to Jesse Gray and Matt Berlin who implemented this approach on the Anenome.

194

Figure 10-17: The insides of the "Public Anenome" robot by the Robotic Life Group at the
MIT Media Lab that was shown at SIGGRAPH 2002.

tation as long as possible and avoid problems with gimbal lock not associated with the
physical servos on the robot.

Also, we can use the same motor system for both virtual and physical creatures. The
main issue with this approach is that the robot is physical and dynamics come into play even
with the feedback controllers. Adding dynamics is the subject on ongoing future work on
our group.

10.6 Results Summary

This chapter:

" Presented results of joint motion analysis experiments with our QuTEM model and
described how to visualize it.

" Described initial experiments at pose and animation synthesis from the QuTEM.

" Presented experimental results of the sasquatch algorithm's convergence behavior.

" Described chronologically the many motor systems which have used the slime prim-
itive as the core blending technology, lessons learned for each and motivations for
the other building blocks we discovered along the way.

" Presented initial results on a hybrid of pose-blending and CCD IK on a physical
robot.

The next chapter will present and discuss related and influential work.

195

Figure 10-18: The Anenome with its skin on.

196

Chapter 11

Related Work

This chapter will present and discuss some of the more directly related work than is spread
throughout the thesis. We break it into several separate sections:

Section 11.1 describes other research in real-time expressive character motion engines.
Some of these influenced our approach and others were done independently.

Section 11.2 describes several related methods for blending poses either with an Euler
angle description or quatemions.

Section 11.3 described several other approaches to using statistical analysis and synthesis
on joint rotation data. We present those which use quaternions or which follow a
related approach.

Section 11.4 describes several other approach to quaternion joint limits, none of which
existed when we began our work.

Section 11.5 discusses research which is related to our work on expressive IK. In particu-
lar, we look at example-based IK methods or those that use a quaternion representa-
tion.

11.1 Animation Engines

There have been several other researchers who have looked into expressive motion engines

for interactive characters. We discuss each of these in this section from a high level, and

discuss particular subsets of the work in more detail below.

11.1.1 Perlin

Perlin's Improv system served as a primary influence in the beginning of our work [63].

Perlin shows how to use his noise functions for generating organic textures can also be

applied to joint animations. Perlin describes how a programmer can use the blending of

sinusoidals, noise functions and inverse kinematics solutions to create a real-time character

animation engine with personality. He also gives heuristics for handling the classic "foot

197

sliding" problem with these methods and introduces the buffered action method of avoid-
ing self-intersection, or a transition point to go through when traversing from one skill to
another. Our motor system uses many of these ideas.

One problem with Perlin's work is that the artist must program the textures on each joint
(and correlations between them) by twiddling with parameters and several constructive
primitives. In order to make this problem intuitive for the programmer, he uses an Euler
angle representation, avoiding the problems with generating band-limited quaternion noise
or multi-dimensional blending. Also, there is no way to learn these functions given desired
data.

11.1.2 Blumberg

Blumberg's "Silas the Dog" character in his PhD research [11] uses an interactive motor
system for controlling the dog motion. Here, he explicitly uses a DOF-locking system
so that different hand-programmed procedural motor skills can only run simultaneously if
they do not touch the same DOFs. Also, he used a real-time inverse kinematics solution for
the placement of the dog's paws in the creation of a procedural walk cycle, although this
used an Euler representation. To handle emotional parameters, motor skills which did not
receive a lock could make suggestions to the winners for how they would do the motion, so
that the winning skill could layer or add the expressive skill if it did not overlap with other
DOFs.

Although this system ran in real-time, the orthogonality of motor skills was a limitation.
Also, expressivity was limited since hand-programmed procedures are difficult to make
expressive, as we discussed earlier. He suggests interpolation of these skills as future work.

11.1.3 Rose

Our pose-blending work is similar to Rose's PhD work on Verbs and Adverbs in several
ways [69, 44]. Rose's motion formalism for combining motor skills according to a resource
prioritized locking mechanism is practically identical to the one in the author's SCOOT
motor system which was used in Swamped! and (void*), which was in turn based on Perlin
and Blumberg's systems.

Rose is one of of the first to look at multi-dimensional blending of animations. He
chose to use Radial Basis Functions to approximate the blending functions from an adverb
parameter (like happiness) to a weighted blend of Euler angles in the animation. Rose
does a good job of covering the high level issues with using pose-blending practically. For
example, he shows ways to handle the time-warping problem of matching up the structure
of examples. He describes what good examples should consist of. He shows how to use
a quick, local IK solver to "fix" the classic foot-sliding problem with blending techniques.
Finally, he shows how to learn inverse kinematics as an RBF from the Cartesian effector
space to the space of joint angles, and looks at errors.

One major problem that Rose discusses is that he found the extrapolation behavior to
be poor, so that animators needed to generate the convex hull of animations, rather than
just a point along each axis. In other words, if there was a happy axis and a drunk axis,
he would need examples of a happy walk, drunk walk, normal walk, and the drunk-happy

198

walk. We feel that his poor extrapolation behavior (and perhaps some of the issues in the
error in his IK learning) is due to his choice of an Euler angle representation as the basis,
which causes these sorts of problems. Rose avoids gimbal lock by a pre-processing step
that puts the gimbal lock point away from the data and reinterprets the data in that Euler
set.

Rose hints at quaternions, mentioning that he uses squad to transition between two
animations, which leads some readers to believe that he used a quaternion representation
for the blending and IK (such as Grassia), which is not true 1.

Rose's work was influential in our implementations of quaternion RBF's for pose-
blending, and we followed his lead on the many issues with creating good example ani-
mations. Our work complements his by extending it to a quatemion representation.

11.1.4 Grassia

Grassia's PhD work [30] is also quite similar to our research as well, although was done
independently. Grassia, like Rose, investigates a clip-based animation authoring system for
transforming animations to work in new contexts. He also uses example data in the form of
quaternion motion curves and quaternion joint limits. He considers operations for blending
and editing known animations to work for new situations.

For example, he also describes his own inverse kinematics solver based on a quaternion
representation, but does not discuss his joint limit model, if he even uses one. On the other
hand, he focuses on the use of scaleless metrics in the IK algorithm, although rather than
removing the scale of the joint motion ranges as we looked into with our QuTEM model and
Mahalanobis distance metric, he uses a notion of energy and mass and removes the scale
caused by these effects. When he discusses pose distances here, he considers a Euclidean
norm between "pose vectors" but does not discuss the details such as hemispherization.

Grassia discusses many of the issues with transitioning from one animation to another
in detail, and how to handle the timings and angular velocities of joints getting there. We
discovered many of the same issues in the implementations of Swamped! and (void*) and
refer to Grassia's work here rather than duplicate it.

Grassia only discusses real-time engines towards the end of his thesis, suggesting that
he IK solver is likely the limiting factor, though not enough had been done. Our work fo-

cuses on real-time performance as the first design principle so we avoided slow algorithms
from the start.

11.1.5 Downie: Pose Graph

The last few projects in the Synthetic Characters Group have used Marc Downie's pose

graph formulation of the motion manifold for a character. A pose graph is a directed graph

of animation frames from examples. The graph needs transitive closure in that transition

animations between certain verbs (like walk to sit) need to be added explicitly. They can be

created by hand, or potentially by some algorithmic method such as spacetime optimiza-

tion [25].

'Rose, personal communication

199

Blended animations are specified in terms of a motor skill with a set of examples that
can be blended. He assumes that he weights sum to one, therefore he ignores extrapolation
issues. He uses an A* search through the graph in order to find shortest paths from the
current motor skill to the desired motor skills, according to a pose distance metric that
also considers velocity information, though not joint ranges. The addition of velocity is
important and our algorithms should be extended to handle it. Since angular velocity is a
vector quantity, this should be fairly straightforward.

The pose graph uses our slime blending algorithm at its heart. Rather than use an RBF
approach like we did in Swamped! and (void*), however, the programmer now needs to
specify the weights on each animation by writing an AdverbConverter function. We feel
that this does not leverage the animator's ability maximally, but for certain types of motor
skills it has proven to be useful.

11.2 Multi-dimensional Quaternion and Pose Blending

This section will cover related work on multi-dimensional quaternion blending.

11.2.1 Grassia: Nested Slerps

Grassia uses a quaternion representation for his joints in his PhD work on example-based
motion transformation [30]. He admits that the weighted blend of n quaternion values
for joint blending is an outstanding research problem and chooses to use nested slerp's to
construct his blends for "simplicity." For example, to throw a ball in a certain direction, he
would blend between the examples of throwing high/low and left/right:

slerp(slerp(Qieft, Qright, Wlef tright), Qp, wup)
Unfortunately, this process produces different blend results depending on the order the
slerps are done in due to the non-commutivity of rotations. For example, if he chose to
blend up/down first, then left/right, he would get a different result. He also admits that
the complexity gets deep quickly as the number of blend axes increases. We feel that
having the animator and programmer have to deal with the non-commutivity directly in
the specification of blends is a bad idea. Likewise, we do not want our character to have
to learn this non-commutivity by having it choose the slerp values that will produce the
desired behavior or have it have to deal with the ordering of its motions.

Grassia argues that he made this choice since there were no other alternatives at the
time. He suggests that one can instead use a "mathematically sophisticated non-Euclidean
blending function" to blend the quaternions "such as the RBF's used by Rose." Grassia is
not quite correct here, however, since as we said Rose used an Euler angle representation
for his RBF's and did not handle the many issues with creating a useful quaternion RBF.
Proper use of a radial basis function (or other kernel technique) on quaternions requires
dealing with the group theory of rotations directly. Instead, we argue that our slime and
sasquatch algorithms solve this problem better than nested slerps for two main reasons:

* Nested slerps do not extrapolate since they blend inside the convex hull of examples.

200

* Nested slerps scale poorly as the number of examples increases.

Grassia also discusses the quaternion exponential map for joint representation [29]. He
concludes that it is a poor representation to use directly due to singularities and interpola-
tion errors, but does not really go into enough detail here. Therefore, he uses quaternion
joint models in his thesis. We argue that the exponential mapping is a useful computational
tool for generating local coordinate systems and invariants and that it can be used properly
in conjunction with a quaternion joint model in the development of algorithms and does
not need to be used as the representation explicitly.

11.2.2 Buss and Filmore: Spherical Weighted Averages

Buss and Filmore sought the same type of pseudo-linear spherical blending function that
extends Shoemake's slerp to N points and for spheres of arbitrary dimension, arguing that a
proper technique that respects the spherical metric has not been presented before in the lit-
erature [15]. They show how the spherical blend can be used to generate B-splines without
using one of the nested slerp geometric spline constructions.

Like our sasquatch, they also start from a Euclidean analogy, namely the minimization
of a quadratic error function in the spherical distance metric for Sd:

f (Q) = 2Z widistsd(Q, Pi)2
i=1

They show how this can be solved using the exponential mapping of the sphere, which
works for any dimension sphere. To solve the system, they calculate derivatives of the
system and solve for a critical point. To find this point, they describe a first order and sec-
ond order algorithm which amount to gradient descent without and with a Hessian matrix,
respectively. They argue that the first order algorithm runs faster and therefore linear con-

vergence is on par with quadratic in compute time due to the calculation of the Hessian.
They also give uniqueness and other proofs.

The first order algorithm they present is practically identical to our sasquatch algo-
rithm, which was derived as a physical system. Their timestep is effectively unity. This is
not surprising given that the error function they are minimizing can be considered as the
potential energy in our "springs." They do not exploit the physical analogy any further,
however, which means their proofs get mathematically technical, whereas we can often ar-
gue from physical analogy directly. We also show that on average a higher time-step than
unity (which they use) leads to slightly better convergence.

We feel that our work, independently discovered at about the same time, is complemen-

tary to theirs, as well as more intuitive since we start from physical systems analogy and

leverage the familiarity most interactive engine designers have with this approach already.

We also show how to use the averaging technique to do multidimensional blends directly,

rather than creating a unidimensional temporal spline as they do.

201

11.2.3 Lee: Orientation Filters

Jehee Lee's PhD work is quite similar to ours in that it also uses a pure quaternion joint
model, along with the exponential mapping, to build useful primitives for analysis and
synthesis of motion. Unlike our work, his statistical analysis is hierarchical in that he com-
putes a Gaussian pyramid of filtered data over time. This gives more power in interpolation
given that similar frequency bands can be blended together, rather than all frequencies at
once as in our non-hierarchical approach. Unfortunately, the power comes at the expense
of complexity in time and space, which is why we focused on simple, fast techniques.

Lee also shows how to build coordinate-invariant temporal filters for orientation data.
These filters are useful for producing his filter pyramids as well cleaning up noisy motion
capture data. Lee's temporal filters can also be used for blending multiple quaternions
together, although Lee does not go into the specifics of real-time blending, arguing that
the formulation of the problem for real-time is often different. He also does not go into
the details of multi-dimensional interpolation and extrapolation issues. On the other hand,
he has some good quaternion algebra proofs on showing that the filters are rotationally-
invariant and time-invariant.

11.3 Joint Rotation Statistical Synthesis

Statistical analysis and synthesis has become popular for animation recently, though many
use an Euler angle representation do use the standard linear algorithms. This section will
describe

11.3.1 Brand: Style Machines

Matt Brand describes how to synthesize new animation content consistent with the style
found in examples using a purely statistical method called Hidden Markov Models [12].
His results are mixed - one issue is that this method needs a lot of data.

One problem with this work is that the representation of rotation and how he generates
new samples is not clear in the paper. For example, one difficulty with using HMM's is
that synthesis is not easy to do, so this is important 2. We expect he used an Euler angle
representation since he was not explicit.

11.3.2 Pullen and Bregler

Katherine Pullen and Christoph Bregler describe how to use statistical analysis across poses
encoded in terms of Euler angles to "texture" a sketch of an animation [66]. They rely on
the fact that joint motions are correlated, and that by specifying some of the joint values,
others can be generated from motion capture examples. This method is similar to our work
on encoding body knowledge in terms of eigenposes in that both will consider the statistics
across all joints. Pullen's method uses tiny clips from the motion capture data and joins

2Andy Wilson, personal communication

202

them together in order to preserve the original data. They also have the same problem with
blending techniques in that the foot slippage problem shows up here as well.

11.3.3 Lee: Hierarchical Analysis and Synthesis

Lee also shows how to use his orientation filters to perform a hierarchical, multi-resolution
analysis of quaternion-represented animation data and how to use this for synthesis. His

approach is theoretically more powerful than ours since it can blend animations at different
frequency bands. We considered using a quaternion wavelet approach for this same reason
(see [17]), but we decided that a multi-resolution approach would be too expensive for a

real-time engine.

11.4 Quaternion Joint Limits

This section will give an overview of related work on joint constraints with quaternions.

11.4.1 Grassia

Grassia discusses separating out the swing and twist components of ball-and-socket joints
in his paper on the exponential map [29]. He shows how this simple model can be used to
handle constraints in terms of an ellipse for swing and another constraint for twist, but does

not discuss how to learn these from data, as we do. He argues that quaternion angular joint

limits are difficult, but goes no further.

Our work goes into more depth with gleaning joint limit constraints directly from data

in terms of our QuTEM model. This allows constraints to be learned from data. We do
not explicitly factor out the twist/swing components for efficiency and simplicity - we

have found reasonable performance for joint limits using this technique. Neither of these

techniques directly handles the fact that the twist constraint often depends on the swing

value in humanoid joints, like the shoulder.

11.4.2 Lee

Jehee Lee's PhD work [54, 55] describes how to model several common types of joint

limit models on the quaternion sphere. He describes three: conic, axial and spherical and

shows how to do inclusion tests in the quaternion algebra. He argues that more complex
constraints like a shoulder can be made up from intersections of these; for example, a conic

plus an axial limit the swing and twist or a shoulder. He does not show how these can be

learned from data, so we assume that they must be generated by hand algorithmically by

the programmer and not the animator. Also, it is not clear that an intersection of three axial

constraints will gives rise to the same ellipsoid boundary on the sphere which we use.

203

11.4.3 Wilhelms and Van Gelder

Recently, Wilhelms and Van Gelder [89] show how to use joint sinus cones. A sinus cone
is a region on S2 which limits the range of motion of the swing component of a joint to
being within the region. This allows the twist component to be limited separately so it can
be made a function of the swing, which is the case for humanoid joints such as shoulders.
Wilhelms and Van Gelder describe how these ranges can be created by having the animator
specify the ranges by examples. They show how to quickly perform inclusion/exclusion
methods on this structure. Finally, they describe how to smooth out the spherical polygons
so they appear more like ellipses on the surface of the sphere by using the stereographic
projection of the sphere. The stereographic projection is very related to the exponential
map of S2 .

11.4.4 Herda, Urtason, Fua and Hanson

Recently, Herda et al [39, 40] have shown how to learn joint limits from data automatically
using implicit surfaces on quaternion fields. Here, joint data for a human shoulder is an-
alyzed using a quaternion representation. By ignoring the scalar component 3, they get a
cloud of points in 3D which describe a valid rotation. Given this data cloud, they can find
an implicit surface which contains all the joint animation frames for the joint. The problem
of constraining a joint then amounts to finding the nearest point on the implicit surface.
One advantage of their approach allows them to find the relationship between swing and
twist limits, which is why they focus on the shoulder joint. Unfortunately, they notice the
problem of holes in the data and discuss some early ways to handle this.

One issue is that although more general, their primitives are not as computationally
efficient as ours, since we focused on real-time performance inside an inverse kinematics
algorithm. Also, our work has not looked into the holes in the data directly - some of the
holes depend on the configuration of other body parts (in order to avoid self-penetration,
for example), so in some sense a local joint constraint model will not be able to understand
these holes. This is an interesting area for future work.

11.5 Expressive 1K

Much of the work on motion retargetting uses an inverse kinematic solver to warp (or dis-
placement map) existing animations to meet certain kinematic constraints, such as keeping
a support foot fixed on the ground. Almost all of these are designed for "interactive editing"
of motion capture data. In general, we focus on those that use a quaternion representation
or are designed for real-time performance by multiple interactive characters, rather than as
an animation creation tool.

3I believe the direct use of the exponential mapping is probably equivalent to this, though they do not
describe that here.

204

11.5.1 Blow: Quaternion CCD 1K with Joint Limits

Jonathan Blow's recent work presents some insights with using a quaternion joint model
with CCD and adding joint limits [9]. He also is one of the few developers who focuses
on speed, and even argues that an arcosine and a sine are expensive. He never mentions
the exponential mapping, but it seems clear that he is referring to it here, since Grassia's
decomposition is basically the same as this [29].

He encountered the same problem we did with adding joint constraints as a separate
computation between each CCD step - very poor convergence, or lack of convergence,
for certain starting configurations. To deal with this, he selects several poses which seem
to converge to a large set of solutions. When he gets stuck, he can then choose a different
pose to iterate from. He shows how these can be chosen by hand with visual inspection, or
by calculating clusters experimentally. It is not clear which solution this will find, however
- usually, we expect to iterate from the current pose forward in time by a little bit. In
general, however, this seems like a very good idea.

Blow also describes a joint model with quaternions which is similar to Grassia's. It
factors the rotation into two terms: a factor R which rotates the bone to align its axis in
the correct direction and a factor 5 next which then twists around that axis, resulting in the
composite rotation SR. In this way, swing and twist ranges can be limited separately. He
shows how this can be done by using a similar 2D polygon inclusion test that Wilhelms
uses.

11.5.2 Lee: Quaternion 1K with Constraints Using Conjugate Gradi-
ent

Lee presents a quaternion-based IK algorithm which uses his joint limits in his Phd work

(also SIGGRAPH 99) [54, 55]. He uses a quaternion representation of rotation and shows
how the inverse kinematics problem amounts to a minimization which respects the con-
straint functions. He shows how to use the exponential mapping to do this minimization
without adding an explicit unity constraint and resulting Lagrange multiplier. He solves
the minimization problem with a conjugate gradient solver, which effectively chooses the
directions to take steps in, rather than being forced to take steps in each decoupled joint
direction as in CCD. Ideally, this should increase convergence rates for the case of an axial
constraint. Unfortunately, use of a conjugate gradient technique increases the computa-
tional burden quite a bit, especially since a matrix representation of quaternions is almost
unavoidable here. Lee's experiments showed that the IK algorithm is slow in practice. To
help this, he reduces some of the IK chains to fewer coordinates by encoding humanoid

heuristics (in particular the elbow circle) into his representation. Effectively, this reduces

some of the 1 DOF joints to a 1 DOF search in the optimization rather than 4. One problem

is that the elbow circle is a known redundancy in the human arm (and legs), but might not

be the case for some arbitrary alien creature which a videogame animator might create.

205

11.5.3 Grassia: Quaternion 1K for Motion Transformation

Grassia's PhD research [30] also considers a quaternion version of an IK algorithm similar
to Lee's for transforming motion capture data with a displacement map. The most inter-
esting part of this work is that he describes how to make the IK algorithm scale-invariant
with respect to a description of mass and energy. A problem with this approach is that
some notion of dynamics is needed, which can get expensive. He admits that he expects
the IK algorithm to be the slowest part of his motion transformation algorithm, which Lee
seems to agree with. In our case, the IK algorithm is the most expensive as well since it
is iterative. Since we avoid the full conjugate gradient matrix approach, however, and use
geometric methods, we expect that we should ultimately be able to get better performance
than these methods although more experiments need to be done.

11.5.4 Hecker: Advanced CCD Extensions

Chris Hecker describes his investigation of using CCD on a human figure in a rock-climbing
simulation at the GDC 2002 [38]. He uses an Euler angle representation. He describes
ways to add constraints at each iteration by clamping the joint angle ranges and describes
how this slows the solution and produces different results than are expected often. He also
describes how to handle multiple branching points in the IK chain, which Welman only
hints at and no one else addresses. He suggests performing the CCD on each chain at a
branch point separately, then blending the resulting answers. For the case of more than two
branches, this amounts to blending more than two poses. He does not discuss interpolation
much here, but we expect he will have the classic Euler angle problems. Our blending
primitives will allow this CCD extension to be incorporated directly into out QuCCD algo-
rithm.

Finally, he touches on the fundamental problem of expressive IK: CCD chooses a pose
which is not the pose the character (according to an animator) would have chosen. He men-
tions early uses of physics to "relax" these poses under gravity and other effects, but does
not present further. He describes future work of a "Body Knowledge" engine that would
encode valid poses by looking at all animated poses and "somehow" push the answer near
there. As we argued, we expect that a statistical analysis of posture such as our Eigenpos-
tures will be a useful approach to creating such a body knowledge engine and handling this
problem.

11.5.5 Fod, Mataric and Jenkins: Eigen-movements

Recently, Fod et al [22] used a Principal Component Analysis (PCA) on movement exam-
ples in order to find useful "movement primitives." The goal is to use these primitives as a
lower-dimensional subspace to help the recognition of movement. They use an IK solver
to convert their 3D point positions of joints tracked on a performer into an Euler angle rep-
resentation. They then perform PCA and K-means clustering to find a lower dimensional
set of "eigen-movements." They compare reconstruction results and use a simple servo to
move a robot with combinations of these primitives.

206

One issue they have is that the IK solver needs to handle gimbal lock since they are
using Euler angles. It is not clear how they handle this since they do not go into the details
of the IK algorithm. An advantage of their work is that by looking at full movements some
of the dynamics might be captured by the PCA. We have begun to look at PCA on posture
plus its derivative to hopefully discover more structure in the data.

11.5.6 D'Souza, Vijayakumar, Schaal and Atkeson: Locally Weighted
Projection Regression for Learning Inverse Kinematics

D'Souza et al describe a method for learning inverse kinematics solutions a humanoid
robot [21]. They use locally weighted projection regression (LWPR) algorithm to learn the
nonlinear inverse kinematics solution. In order to make the algorithm local to the posture,
they must include it into the learning input. Therefore, they learn a mapping from:

(6, 5) -+ 6

where 0 is the vector of Euler angles that describes the current posture, 5 is the desired

velocity at the end effector (for the next timestep) and 0 is the required angular velocity of

the posture.
They use Gaussian "receptive fields" (RF) as a source of local blending functions. They

use these local RF's as the source of blend weights on locally-linear models, with each

kernel calculating how far it is from the query. The output is simply the weighted mean of

the local models, using the Gaussians as the weight.
Finally, they create a cost function to provide a learning update. To help resolve kine-

matic redundancies, they add a cost for the posture from some "optimal" posture, which

essentially allows the chain to move in the nullspace towards this optimal once it has found
a solution. This is the equilibrium point that resolved rate IK systems use and we described
in Chapter 9.

One interesting method they use to train the system is called "motor babbling." Here,
the robot chooses a mean for each joint, then "wiggles" around it to learn the local behavior.

These locally-weighted mixtures of linear models are becoming popular these days (see

Gershenfeld's book for a good overview of these mixture model techniques, including his

own Cluster-Weighted Modeling [24]. One issue is that they implicitly assume a vector
space, but since the model is local, this is often close to true. We considered using Cluster-
Weighted Modeling to approach this problem, but decided to try a geometric approach

(CCD) first.
The equations they use should be fairly simply to convert into a quaternion represen-

tation. The Gaussian receptive fields simply require a proper distance metric on postures,
which we have discussed, and should be able to be implemented with our QuTEM model.

The unity sum weight blend of local models on quaternions can be done using our spherical

blending primitives. Furthermore, our QuTEM can be used to perform "motor babbling"

by sampling new orientations.
This work is quite promising, and we feel that a quaternion version should perform

even better for a virtual character. Minimally, we expect that less linear models will be

necessary and the system will perform better with less data since the quaternion metrics are

207

more appropriate, but this needs to be tested empirically.

11.6 Summary and Recommended Reading

We recommend that the reader interested in the problems of example-based expressive
interactive character animation read Rose's PhD on using Radial Basis Functions for ani-
mation blending [44], Grassia's PhD on motion transformation for editing motion capture
data [30], and Jehee Lee's PhD on multi-resolution statistical analysis and synthesis of mo-
tion [54]. Their work is complementary to ours and to each other and between our work
and theirs much of the problems with creating expressive animation from examples are
addressed.

208

Chapter 12

Discussion, Future Work and
Conclusions

We have come a long way, from a high level description of expressive interactive characters,
down to some most likely unfamiliar quaternion mathematics, and back out to a set of new
algorithms for solving the problems encountered in designing a real-time motion engine.
So what lessons can we take away?

Section 12.1 discusses several points about using quaternions in a real-time, expressive
interactive character engine and evaluates the success of the approach.

Section 12.2 describes future directions we think will be fruitful.

Section 12.3 collects the conclusions drawn throughout the work.

Section 12.4 summarizes the main contributions of this research.

12.1 Discussion

Both myself and others have successfully used the algorithms and ideas in this dissertation
in the design of real-time animation engines and motor systems for expressive interactive
characters. Along the way, we learned quite a bit about the theory and application of
quaternions for use in real-time skeletal character animation. This section will try to collect

some of the more useful ideas and intuitions for readers who need to implement their own

such system. We break the section into the main related work areas.

12.1.1 Pose Metrics

We use the geodesic metric based on the exponential map throughout this work. We made

this choice for two reasons:

* It is closely related to Euler's theorem and therefore models the magnitude of the

physical action of rotation mathematically as directly as possible.

209

* It is valid over points "far" apart on S3

One point that should be made is that for two points P, Q E S3 that are "close" together,
the length of the chord in the embedding space R 4 (denoted 4 and 0) between the points

d = ||Q - p||

is a good approximation to the geodesic metric since the local structure of the sphere is
flat.

Metrics are often used to estimate the angular speed between the two rotations described
by the points if they are samples At apart in time. On the other hand, the geodesic metric
will give a much better approximation to the angular speed for points that are farther away
(with respect to the spherical metric) since it respects the group metric. Explicitly,

I
Ate 11| ln(Q*/P)|

is a better estimate of the angular speed than

- 1 1 - 1

as the samples get farther apart since the geodesic metric respects the rotation group metric
of Euler's theorem. In other words, for uniformly sampled points in time, estimates of
the derivative will be better behaved as the sample period (At) is increased or the angular
velocity of the curves is larger. In these cases, the distance between two sample points
(on the sphere) will be larger. Explicitly, an estimate using the chord-length between two
quaternions will asymptotically under-estimate the true angular velocity as compared to the
spherical metric.

12.1.2 Multi-variate Unit Quaternion Blending

We described two new algorithms based on the invertible exponential mapping of the unit
quaternions to and from a tangent space, slime and sasquatch. We argued for the use of
the faster, approximate slime algorithm with the mean over the corpus of animation data as
the reference. This both puts the singular shell as far from where the data lives as possible
as well as giving the best approximation behavior there most of the data lives. We also
suggested that slime be used on internal character joints and sasquatch on the root node.

These are not the only possibilities for blending quaternions, however. We discuss
several other briefly.

Renormalized Embedding Space Blending

If the examples are hemispherized, then the renormalized Euclidean blend will also produce
reasonable solutions, as we showed when we used it as the initial value for our sasquatch
algorithm. The problem with this method is that the embedding renormalization does not
respect the group metric, so a constant change of the weights will not necessarily produce
a constant angular velocity curve. This parametric variation is undesirable and was the

210

motivation for Shoemake's slerp in the first place. We also require it in the case of more
than two examples. We have not done the actual analytic derivatives of neither slime nor
sasquatch, but expect the desired behavior from sasquatch and approximate behavior for
slime (when examples lie on a great circle through the reference).

Nested slerps

Grassia used nested slerp's which he calculated the weights of by hand for each of his
problems. This is undesirable if we wish to just use the blending primitive as a "black box"
like that shown in Figure 7-1. Furthermore, the order the slerps are applied in matters due
to the non-commutivity of rotation. For example, if we have three examples with weights
on each, applying a slerp from A to B first then a slerp of the result to C, we will in general

get a different blend result for the same weight vector if we perform the slerps in a different
order, such as from B to C and then slerp the result to A. Additionally, the extrapolation
behavior, which we argued leverages the animator's skill, is not clear using this method.

Barycentric Coordinates

Barycentric coordinates (see Hanson's Gem [35]) allow interpolation of points inside a
simplex in terms of affine transformations between the simplex vertices. Since we can use
a spherical triangle on S3 as a simplex and the geodesic interpolator slerp to perform affine
combinations on them, we could use barycentric coordinates to describe a point inside the

spherical triangle. We did not consider this approach in our work and leave it to future

work to compute the barycentric coordinates on S3 of an interpolated point. One issue
with using this method, however, is that it defines points inside the simplex, and therefore

will not extrapolate which as we argued leverages the animator through the requirement
of less examples and the ability to make caricatures of an animation. On the other hand,

our sasquatch algorithm also only interpolates. It would be interesting to work out the

relationship between these approaches.

12.1.3 Quaternion Statistics

Our approach to quaternion statistics was to use the logarithmic mapping at the largest

value eigenvector of the sample covariance matrix of the data as embedded in R4 to map

from the non-Euclidean surface of 3 into a tangent space R3 where we could use standard
vector-space Gaussian densities. This approach was motivated to be an analogue of the

vector Gaussian density - subtract of the mean, create the sample covariance matrix, find

its principal axes with an eigenvector or SVD algorithm, and use the resulting Mahalanobis
distance formula in a scalar Gaussian function to find the unnormalized density value.

The Bingham distribution, on the other hand, estimates a singular Gaussian in the em-

bedding space R4 . It is singular since the data lie on a sphere, removing a degree of free-

dom. In practice, this implies a constraint on the eigenvalues and therefore a convention is

used to choose the actual parameters used. These parameters do not have a direct physical

interpretation in terms of the rotations we are modeling, however, which this convention

just underscores. On the other hand, the Binghame distribution really is just a Gaussian

211

density in R4, which means that sampling from it would not involve the exponential map
and its resulting trigonometric functions. Since the QuTEM distribution and Bingham
distribution seem very related mathematically by the exponential mapping, and especially
since they both calculate the eigenvectors of the sample covariance matrix as the Maximum
Likelihood Estimate of the covariance rotational factor, we feel that it could be possible to
estimate the Bingham parameters as a function of our estimated variances. The paper by
Prentice [64] also seems to imply this, but more investigation is required.

12.2 Future Work

This section offers some future work directions we feel are promising.

12.2.1 Dynamics

This work assumed only a first order approach - kinematics. Many systems these days
require dynamics, such as physical robotic systems, so these issues need to be addressed.
Grimes in our group has begun on implementing non-linear force fields using the QuTEM
model for solving some inverse dynamics (joint torque calculation) problems.

12.2.2 Joint Limits

We use an isoprobability contour of the QuTEM density to model a hard joint limit model
learnable from data. The main problem with this model is its simplicity. In reality, a
human shoulder joint, for example, has different ranges for the twist around the upper
arm depending on which way it is facing due to the internal organic joint structure. Other
methods such as Herda et al allow for more general joint constraints and will therefore have
better results. We plan to implement their method and investigate its properties on our dog
data.

12.2.3 QuCCD

Our extension to CCD is fast, but still has problems when a joint constraint model is applied
after each step in the case of a 1 DOF joint. This is because the algorithm is unaware of the
constraints when it takes its step. It should be possible to compute an analytic solution to
the joint subproblem using the Mahalanobis distance to "make the algorithm aware of the
limits."

Chris Hecker showed an advanced CCD IK system at the GDC '02, showing how to
handle branching chains and more complex constraints. He uses an Euler approach, but
again, we can drop our primitives into his general framework and should gain immediate
benefits.

212

12.2.4 Orientation Statistics

As we argued above, the Bingham distribution can also model unit quaternion densities.
Although we chose not to use it for our work, the recent PhD by Antone [1] shows its

efficacy for application to a computer vision problem. It would be interesting to test this

approach on our data as well. One main advantage of the Bingham approach is that it

stays in the embedding space, where standard familiar vector calculus techniques can be

used. In certain cases this may simplify the mathematics, but more investigation is required.
Also, the mathematical link between our QuTEM tangent-space approach and the Bingham
distribution should prove elucidating.

12.2.5 Posture Statistics

Since Principal Component Analysis (PCA) finds a linear subspace of the posture, it cannot
capture curved manifolds. If the motion-space of a particular character lives on a curved

manifold, then PCA will miss this structure. Recently, global manifold unfolding methods
have begun to be used in computer vision to solve this problem of PCA and should be ap-

plicable here. In particular, we did an initial characterization of some of our animation data

with the new, successful Isomap algorithm [82], which finds a global Euclidean coordinate

system of minimum dimension that tries to capture the intrinsic degrees of freedom of a

manifold given only a pair-wise distance metric between examples. We used the geodesic
metric for this. When applied to a walk cycle of a dog, the algorithm found a 2D Euclidean

space that mapped the points on the walk cycle into a circle, which is not surprising.

We think it would be interesting to try Isomap on the entire corpus of animation data

and then perform Euclidean blends on the resulting Euclidean mapping of the data to see

what the inherent degrees of freedom of the motion manifold correspond to. Much more

investigation needs to be done here.

12.2.6 Expressive 1K

We made it only part of the way in our approach to expressive IK, but the early results

seem promising. Even though the Eigenpostures did not give as good results as we expect,

it would still be interesting to try and use them to keep a procedural IK solution from
drifting too far away from the character's motion subspace as expressed by the examples.
Future work by the Robotic Life group led by Breazeal will attempt to apply some of the

algorithms and ideas to the more complex humanoid robot from Stan Winston Studios

shown on the right in Figure 1-1.

12.2.7 Translational Joints

Sometime translational joints are desired by an animator to create expressive animation.

For example, cartoons characters sometime have their eyes "pop out" of their head to show

surprise. Since we ignore translational effects in joints, we cannot handle these types of

prismatic joints yet.

213

The exciting field of Geometric (or Clifford) Algebra (see for example [17, 31, 68]),
however, models the entire Euclidean transformation group (rotation and translation) in
terms of the algebra generated by formal sums of a vector and a scalar rather than starting
from a hypercomplex viewpoint. It generalizes the notion of the vector cross product to
N dimensions by introducing the geometric product of two vectors as a sum of an inner
and outer product of these elements, similarly to the quaternions. This create a multilin-
ear algebra which can describe rotations in N dimensions in a unified, principled frame-
work. The geometric algebra for R3 can be factored into a dual quaternion representation
(see [59]). One of the unit quaternions represents the rotation effect and the other quater-
nion of arbitrarily-large radius 1 can represent translation since rotations of a large sphere
look like translations up close. McCarthy uses dual quaternions in some of his robotics
work [59, 17]. J uttler also shows how to create rational splines (Bezier and B-spline)
using proportional dual quaternions in [48] uses them in [49].

We also have attempted to use the geometric algebra to calculate a Bayesian solution
to Inverse Kinematics problem using the QuTEM model as a prior on the joint's mobility,
but got stuck in the derivation. The problem seems to lead to a generalized eigenvector
problem, but more work needs to be done.

12.3 Conclusions

This thesis presented several new mathematical and computational building blocks for the
design of real-time expressive interactive quaternions by exploiting the quaternion repre-
sentation of spatial rotation for modeling joint rotation of a skeletal articulated figure.

Our goal was to create a set of building blocks that:

" Are computationally efficient

" Are mathematically robust

" Leverage the animator's skill in the form of examples

We now present conclusions from using quaternions and their exponential mappings to
design these computational building blocks.

Pose metrics The pose metrics we provide are far superior to a Euclidean norm on Euler
angle triples as examples are farther apart. We conclude that they are more mathe-
matically robust.

slime The slime algorithm was the first algorithm we developed and therefore has gotten
the most use. Its successful use in our early motor system for Swamped! and (void*)
as well as the subsequent successful incorporation into Downie's pose-graph algo-
rithm [20] demonstrate its robustness. The fact that we can use it to blend multiple
characters on the screen at one time in a subset of CPU cycles demonstrates its effi-
ciency. On the other hand, it can only be used on internal joints without modification.

'Hanson calls this the "Giant Beach Ball."

214

Since the majority of joints in a character are internal, this is not a limitation for its
use in figure animation blending. We conclude that it is a good building block for
pseudo-linear unit quaternion blending. Since it affords excellent extrapolation be-
havior due to its use of the Lie algebra of quaternions, it also allows us to leverage
the animator by requiring fewer examples and allowing us to generate caricatures of
example animations.

sasquatch The iterative sasquatch algorithm has not been used in a full engine yet, but

trial experiments have shown that it produces desirable results, as we depicted in Fig-
ure 7-7 and Figure 7-8. Although it is iterative, it is linear and robust in convergence.
This taken with the fact that it need only be used on root nodes implies that it can be
used efficiently in an engine.

QuRBF We used our quaternion extension to Radial Basis Functions using the slime prim-
tive to implement Rose's Verbs and Adverbs [44] seminal work in real-time anima-
tion blending. This implementation was used successfully in Swamped! and (void*).
This demonstrates both the usefulness of the slime blending algorithm as well as the
usefulness of being able to approximate unit quaternion-valued functions. Rose's
work was also motivated by a need to leverage an animator's skill, but he found poor
extrapolation behavior, which we did not. We argue that the quaternion group affords
this behavior as we argued above since our slime algorithm has much better extrap-
olation as well as interpolation properties than the Euler angle representation which
Rose used. Our work complements his in that we show how to increase both per-
formance and behavior of his framework by using quaternions while still being able
to use many of his techniques and design recommendations for creating appropriate
pose-blending examples.

QuTEM The QuTEM statistical model for learning a model of joint motion from ex-
ample data was shown to be useful for choosing an appropriate tangent space for

slime, calculating fast joint limits for QuCCD and quickly mapping large amounts of
quaternion data to a local hemisphere of S' for handling antipodal symmetry when
required. Furthermore, it can be used as a quaternion kernel function in other ma-
chine learning algorithms. Furthermore, early results at using it to synthesize new
animations similar to another animation suggest that it will be useful for leveraging
the animator's skill. We conclude that it is a very useful building block for designing
many expressive interactive character algorithms.

QuCCD Our quaternion extension to CCD demonstrates that by exploiting a quaternion
representation of joints, we can not only simplify the mathematics of an IK algo-

rithm, we can also increase its computational efficiency. On the other hand, the use

of a joint constraint model as a projection operation slows or stops convergence of

the CCD algorithm. On the positive side, we have described how it should be pos-

sible to extend this to take constraints into account in a more principled way. The

CCD algorithm also does not need to deal with ill-conditiong caused by coordinate

singularities (singular Jacobian matrix) and is much, much faster in general. Full

215

optimization techniques or Jacobian methods are still in general too slow to be vi-
able for multiple characters with multiple IK chains. We therefore conclude that the
QuCCD is a useful building block.

Joint Limits Our model of joint limits is learnable from data, so allows us to leverage the
animator's ability. In addition, it is convex, which affords mathematical robustness
by keeping an IK solver from getting stuck on a corner and requiring the need for a
complicated non-linear programming algorithm such as described in Badler [3]. Fur-
thermore, we describe how the limits can be computed simply with an exponential
mapping, rotation and non-uniform scale, followed by a vector magnitude compar-
ison. These operations are fairly efficient and therefore we conclude that the joint
limit model is computationally efficient.

Eigenpostures Our early experiments with eigenpostures suggests that they offer some
computational efficiency advantage by potentially allowing for animation compres-
sion. We cannot make claims about the robustness until more work is done. Since
they potentially offer the ability to directly learn a model of the subspace of motion
of a character from a corpus of animation data, they should allow us to leverage the
animator. Our results to date do not support nor invalidate this claim. More work
needs to be done.

Expressive 1K Our initial results in combining our building blocks to approach the prob-
lem of Expressive IK have shown that a hybrid example-based pose-blending algo-
rithm coupled with a numerical IK procedure can leverage the animator by reducing
the number of example animations required. The fact that pose-blending can be used
to "get the solution close" before an IK algorithm is applied demonstrated that a
hybrid can also speed up the calculation of an appropriate IK solution, which is of-
ten the slowest building block in any character engine. We cannot make robustness
claims yet as there are still several issues with CCD in general. Hecker's recent find-
ings might help alleviate some of these problems, however, as he demonstrated that
it can be made fairly robust with a few extensions.

Exponential Map In our work, we discovered that the exponential mapping of the quater-
nions is an extremely useful primitive for performing a robust local-linearization of
the quaternion group. We used this fact in the design of all of our algorithms, which
shows that it is an important primitive that is often ignored. By coupling it with a
unit quaternion representation instead of using it as a parameterization of rotation
itself, we can avoid some of the problems encountered by Grassia in his work [29].
By using a unit quaternion joint representation, we gain the benefit of a straightfor-
ward calculus and an algebra of pose. Specifically, we avoid the need to calculate the
exponential and logarithmic maps in order to compose two rotations, which is a very
common operation in forward kinematics as we showed in Chapter 5. Since these
maps use trigonometric functions, they can be expensive computational on some
platforms. The quaternion composition of rotations involves only multiplications
and additions, making it much more efficient.

216

Physical Robots Our quaternion pose-blending primitives were also applied to the motion
of the Public Anenome robot (Figures 10-17 and 10-18) along with a CCD algorithm.

From these conclusions we make the final conclusion:

The quaternion representation of joint rotation, along with its exponential
mapping and Lie algebra, allow us to create building blocks for real-time
expressive interactive character engines that are computationally efficient,
mathematically robust and leverage the ability of an animator.

12.4 Summary of Contributions

We summarize the main contributions of this research:

* Appropriate posture metrics for use in example-based algorithms that require domain-
specific metrics for robustness and performance

* The fast slime algorithm to give the optimal average approximate blending perfor-
mance and good extrapolation performance for internal (non-root) joints.

* The iterative sasquatch algorithm for an exact weighted blend of n quaternions for

handling root nodes and other joints where slime is not enough.

* How to use these two blend primitives for non-linear blending and a specific descrip-
tion of using them with Radial Basis Functions.

* The QuTEM statistical model for learning a model of joint motion from example
data, synthesizing new joint orientations similar to example data, choosing an appro-
priate tangent space for slime, calculating fast joint limits for QuCCD and quickly
mapping large amounts of quaternion data to a local hemisphere of S' for handling
antipodal symmetry when required.

9 QuCCD : a quaternion version of the heuristic Cyclic Coordinate Descent (CCD) IK

algorithm.

. A simple, intuitive and fast way to estimate joint rotation limits and inherent degrees
of freedom using the QuTEM for use in blending and IK.

* Eigenpostures : How to use Principal Component Analysis (PCA) on pose data for

finding an "expressive" subspace of the full motion-space.

* An initial investigation of Expressive Inverse Kinematics using all of the primitives
in conjunction.

217

218

Appendix A

Hermitian, Skew-Hermitian and Unitary
Matrices

This appendix gives a quick mathematical background in unitary matrices. When we refer
to the group SU(2), we refer to the group of special (determinant one) unitary (rotation) 2

by 2 matrices consisting of complex entries.
For complex matrices, we introduce the hermitian transpose operator on complex ma-

trices as the analog of the transpose for real matrices.

Definition 6 The hermitian transpose At of a matrix A with complex entries is the conju-
gate transpose of the matrix, (A*)T, or the matrix with each entry replaced by its complex

conguate (z -+ z*) and then transposed (Aij -+ Ai):

At = (A*)T

Immediately we see that if A has real entries, the hermitian transpose is the same as the

real transpose.
Using this definition, we extend the inner product of vectors in R" to vectors in C".

Definition 7 The inner product of x, y C C" is

n

xty =i xyi

Definition 8 The magnitude of length of a complex vector x C C" is the sum of the

squared moduli of the components:

n

lxidef -ziI2

The analog of the symmetric real matrices are the complex Hermitian matrices.

Definition 9 A complex matrix A is called Hermitian if it equals its Hermitian transpose:

If A = At then A is Hermitian

219

The analog of an orthogonal real matrix is the complex unitary matrix.

Definition 10 A complex matrix is unitary if

AtA=I

Clearly for unitary A, A = A-', as was the case with orthogonal matrices.
Finally, we present the complex analog of a real skew-symmetric matrix.

Definition 11 A complex matrix A is skew-Hermitian if

At = -A

Corollary 1 If complex A is Hermitian, then (iA) is skew-Hermitian.

Likewise, the complex matrix exponential work similarly, though we will not go into
much detail (the interested reader should see the wonderful introduction to theoretical al-
gebra by Artin [2]).

Property 3 The exponential of a skew-Hermitian matrix of trace zero is unitary.

This is the complex analog of the fact that the matrix exponential of a skew-symmetric
trace-zero matrix in the real 3x3 matrices is special orthogonal, or SO(3). It can be shown
with the power series form of the exponential.

These skew-symmetric (hermitian) matrices are very similar to each other and form the
Lie algebra elements of the Lie groups SO(3) and SU(2). In fact, it can be shown that
the Lie algebras of SO(3) and SU(2) are in fact isomorphic to a proportionality constant
(since the group SU(2) double-covers SO(3) and we get half-angles). In other words,
infinitesimally (or locally) the groups SU(2) and SO(3) are isomorphic since they have
the same infinitesimal generators - these skew-symmetric matrices which in effect encode
the axis and angle of the two rotation groups (the classical rotation group SO(3) and the
quantum spin group Spin(2) = SU(2). Globally, however, we know the structures are
different since one double-covers the other.

220

Appendix B

Multi-variate (Vector) Gaussian
Distributions

This appendix gives a brief introduction to vector Gaussian probability distributions.

B.1 Definitions

The multi-variate (vector) Gaussian probability density function (p.d.f.) for a vector x E
R" has the form

Px(x) = 1 e-(x-m)
TK(xm)

(27r)n/2|K l2

where the scalar factor in front of the exponential is the normalizing constant (so the p.d.f.
integrates to one over its domain), K is called the covariance matrix and m is the mean
(see, for example, [83] for an introduction to multi-variate Gaussian densities). We use a
subscript on the density to make it clear which variable it is the density of, as we will use
more than one at a time often.

Compare this to the scalar version of the normal distribution, which is likely more
familiar:

1 (x-m)2

p2(X) = C
vl/27ro.2

The covariance matrix is usually decomposed into a principal axis description as:

K=UDUT

where U is an orthogonal (rotation) matrix and D is diagonal. This is sometimes called

an eigenvector decomposition since the columns of U are the set of eigenvectors of the

covariance matrix and the corresponding eigenvalues are on the diagonal of D. Specifically,
recall that an eigenvector of a matrix A satisfies the equation:

Ax = Ax

221

where x is a vector of appropriate dimension called an eigenvector of A and A is a scalar
associated with x called the eigenvalue of the eigenvector x. An eigenvector is merely
scaled by some value when the matrix is applied to it, so the eigenvectors describe the
invariant directions or principal axes of the matrix. In general, a real matrix A can have
complex eigenvectors and eigenvalues! Luckily, we state without proof here that symmetric
real matrices which are positive semi-definite (having determinant greater than or equal to
zero) will always have real, non-negative eigenvalues and real eigenvectors. Covariance
matrices fall into this class, so we need only handle real eigenvectors and eigenvalues.
A numerical algorithm (which we use extensively) for finding all the eigenvectors and
eigenvalues of a matrix can be found in Numerical Recipes [65].

The reasoning for the decomposition is that the eigenvector matrix U of the covariance
can be used to diagonalize the covariance matrix. In our case, the eigenvectors in U will
form a new basis in which the components are uncorrelated. Using the eigenvector matrix
to change basis:

U TKU = D

we see explicitly that the matrix U can turn the covariance matrix into a diagonal ma-
trix. Mathematically, this is showing how any covariance matrix (which we use to model
Gaussians) can be diagonalized by finding its eigenvectors.

Using this decomposition, the inverse of K can also then be found using the simpler
inverse formulas for these decomposition factors:

K-' = (UDU T)-l = U TD'U

since the inverse of a rotation matrix is its transpose

U' = U T

and, the inverse of the diagonal matrix is just the diagonal matrix with the reciprocals in
place of the original entry. Notice that the inverse will only exist if the diagonal matrix
is non-singular (has all positive entries). If any variances are zero, the density is singular.
We are forced to handle this by either using the pseudoinverse or by forcing a lower bound
on the variance (we shall use both ideas in our work, depending on what we need to do).
In general, practitioners force the variances to a small lower value to avoid singular data
issues.

B.2 Isoprobability Contours and Ellipsoids

In order to simplify the use and discussion of Gaussian densities, we will usually write them
in a more compact form which will make the comparison between the QuTEM density and
the vector space Gaussian more clear, as well as show how Gaussians relate to ellipsoids.

First, consider the isocontours of the Gaussian p.d.f. found by setting the density to
some constant value, call it c:

222

1 (XM)T KI(xm)=C
PX)X = (27r)n/ 2 |K I/ 2

Since the value is constant, we can take the logarithm of both sides to get

(x - m)TK-'(x - m) = r2 (B.1)

where we have collected the constant scalar terms into a new scalar, r2 in the obvious way.
Writing the new constant as r 2 is suggestive; in fact, it can be considered as the radius of
an ellipsoid. This is made explicit by using the diagonalization technique described above
to change the basis of x - m into the principal axes of the covariance matrix:

x- m=UT - m)

where the prime (/) denotes that the vector is represented in the principal basis. This gives
us the simpler formula for the log of the density in the principal basis:

(x' - m')T D-'(x' - m') = r2 (B.2)

which immediately can be multiplied out (since D is diagonal) in order to give

(X - m)2 (- 2)2 (x' - m'1)2 2
+ 2 + - - = (B.3)

which should be familiar as the equation of an ellipsoid in n-dimensions with a "radius" r

(the two dimensional case is simple to visualize). The principal axes are the eigenvectors,
as we have said, and have length 2r di. We call this r the radius to be consistent with the
spherical case, where all the di = 1.

The other thing to notice about Equation B.3 is that it is a log density. If we exponentiate
it back into a p.d.f., we notice that we have a sum of scalars in the exponent. Therefore, we

can factor this into a product of separate, uncorrelated scalar Gaussians, each one aligned
along one of the principal directions and with variance the same as the variance in that
principal direction:

(zi-min)2 (z'2_m2)2 (z' -m')

px(x) = ce i e - ... e dn (B.4)

This factoring capability is another reason why Gaussians are often used in practice. This
factored form is mostly useful in our case for generating samples, as we describe below.

B.3 Mahalanobis distance

Notice that the original logdensity equation (Equation B. 1) is a simple quadratic expression

in the input vector with respect to the mean. In general, quadratic vector functions of the

form:

yTMy

223

can be considered as a distance function on the vector x with the metric tensor M if M
is symmetric positive definite. Notice that if M is diagonal, this just weights different
dimensions (components) differently. If M is the inverse of the covariance matrix, as in the
logdensity (M = K-'), the distance function is known as the Mahalanobis distance.

Specifically, we can use Equation B.3 as a distance metric. It effectively divides through
the principal variance directions (eigenvectors) by their variance (eigenvalues), therefore
"sphere-izing" the space by making the variance "units" the same for all components. The
Mahalanobis distance can therefore correctly be thought of as the distance of a point from
the mean taking into account unequal variances, and is in units of "standard deviations." In
the scalar Gaussian case, most students are familiar with their grades defined in terms of
standard deviations from the mean - this is just the Mahalanobis distance of their grade
from the mean.

We have also shown how this quadratic form encodes the equation of an ellipsoid, where
the particular ellipsoid is defined by the radius, r and particular variances a. This fact lets
us say that the locus of all points at a constant Mahalanobis distance from the mean is an
ellipsoid centered around the mean. For example, the ellipsoid with Mahalanobis distance
(radius) 1.0 is the set of all points one "standard deviation" from the mean.

Computationally, we define the Mahalanobis distance of a vector x from the mean m
to be

d2Xaha=anobis (X - m) TK-'(x - m) (B.5)

We can use the Mahalanobis distance to simplify the appearance of the Gaussian density
function:

Px(X) = ce aaranobis(X)

where we have now made the mean and covariance implicit parameters of the Mahalanobis
distance function and labelled our normalization constant as c. Given the mean and covari-
ance, we can simply find the distance of any point by using the quadratic form above.

Following in this vein, we can write the Mahalanobis distance simply as the magni-
tude of the vector transformed into the principal basis, which will prove useful for other
purposes:

mahalanobis m)K - m)

YTUD-1/21 [D-1/2UTY (B.6)

S S

where we have noticed that the quadratic product is just the magnitude squared of the
input vector translated to the mean, rotated into the principal axes of the Gaussian, and
then sphere-ized by dividing through the standard deviations (square root of the variance).
Specifically,

s = D u/2 UTX (B.7)

224

where we use the s to stand for the vector scaled to unit variance, and y to represent x in
the coordinate system with the origin translated to the mean m. This is the form of the
Mahalanobis distance, and therefore the Gaussian density, that we shall use computation-
ally. The transformation from an arbitrary point into a point aligned with the principal axes
and scaled to have unit variance is a simple rotation followed by a non-uniform scale. The
magnitude of this vector, again, is our Mahalanobis distance:

dmahalanobs = |lsi| = ||D-1/ 2 UTYI|

B.4 Sampling a Multi-Variate Gaussian Density

To generate random vectors according to a multi-variate Gaussian density, we use the stan-

dard technique of generating the vector in the principal (uncorrelated, diagonalized) ba-
sis of the covariance matrix by using Box-Muller scalar sampling algorithm in Numerical
Recipes [65] to generate the uncorrelated components, then rotating the uncorrelated sam-
ple into the basis of the actual vector. This section details how this is done and can be
skipped by those familiar with the technique.

Recall that we can diagonalize the covariance into principal axes using an eigenvector
decomposition. In this basis, the density factors, as we saw, and can be considered as n sep-
arate scalar Gaussian densities, one for each component. Put another way, each component
of the random vector in this basis can be thought of as a separate scalar Gaussian density.
Therefore, to generate a vector sample, we need only generate a sample in the principal
basis using and then rotate it into the basis of our actual random vector. If we have factored
the covariance matrix K into UAUT, then our component densities will simply be zero
mean densities with variances ai, the diagonal entries of A, or entries in our QuTEM's
variance vector a.

Mathematically, in the principal basis (denoted by the /) our random vector's compo-
nents are distributed according to the uncorrelated scalar densities:

X' +- N(O, ai)

where we denote sampling from a density with an arrow and the scalar Gaussian (Normal)
density is written in the compact N(m, v) form with mean m and variance v.

To generate the scalar samples, we use the Box-Muller algorithm (as described in Nu-

merical Recipes [65] to generate a sample according to a zero-mean scalar Gaussian with
variance ai 1. This gives us a sample vector, x', in the principal basis with components x'.
Next we rotate this vector back into our standard basis in the tangent space by rotating by
the U matrix:

x = Ux'

As a side note, in our case of a 3-dimensional density, we mention that we actually will

use the quaternion representation of U, u, to perform this rotation for efficiency:

1Box-Muller cannot handle zero variances, but sampling from a zero variance density is simple - return

the mean itself for that component, which is just zero for our zero-mean data.

225

I *
x =U*.

B.5 Recommended Reading

The treatment in this section was compiled from several sources. The author recommends
[8, 65, 83] for a more in-depth treatment of probability theory from an engineering and
computational stand-point.

226

Appendix C

Quaternion Numerical Calculus

This appendix introduces quaternion ordinary differential equations (ODE's) and how to
solve them numerically using both the embedding space or intrinsically in the group using
the exponential map. Since unit quaternions live on a sphere, care must be taken when
integrating. We refer to the problem of finding the steady state for the sasquatch quater-
nion blending algorithm in Chapter 7 which motivated the need for solving unit quaternion
ODE's.

We will change notation for unit quaternions slightly in this appendix for readability of
some of the differential equations. We will be explicit about what group each of the terms
belongs to if it is not clear from context.

C.1 Solving Quaternion ODE's

The quatemion ODE in Equation 7.12 is non-linear since it lives on the sphere, so an
analytic closed-form solutions seems unlikely, even for steady state. Several numerical

integration techniques can be used, however. We will discuss two of these, both versions
of the first order forward Euler integration scheme, which is the most simple and common,
and its flaws are well-known. These methods are:

* Renormalized Embedding Space Euler Integration

" Intrinsic Euler Integration

We argue that the last of these, which is by far the least familiar, is the best for solving such

systems. It is also the most elegant in that it does integration intrinsically within the group

rather than relying on the calculus in the embedding space, R4, and renormalization. Since

we are solving for a steady state solution where speed (number of iterations) is an issue, we

would like the largest timesteps possible for convergence. We mention that both methods

will assume that the angular velocity over a timestep is constant. This fact is not true, as the

exponential map is location-dependent on the sphere, but for reasonable steps and a simple

system like that we are trying to solve for steady-state, this is less of a worry.

227

C.2 Embedding Euler Integration with Renormalization

The standard practice for solving a simple ODE in a vector space is to use forward Euler
integration, which is based on a first order Taylor series expansion. Specifically, given the
derivative at a point, Euler integration takes a step in the derivative direction scaled by the
timestep:

x(t + At) = x(t) + At x(t) (C.1)

This type of integration has many issues with error accumulation, but for our purposes
it will be sufficient and fast.' Most importantly, it is simple.

If we apply this formula to the quatemion derivative, we always will step off the sphere,
since all derivatives are tangent to the sphere. Worse, the larger the timestep, the further we
step away from the group. In order to solve this, standard practice is simply to renormalize
the quaternion, essentially projecting it back onto the sphere. The fact that we can use em-
bedding space integration is a consequence of spheres looking flat locally, or like a vector
space. If the steps are small enough, we get close to the actual solution, but otherwise we
only get an approximation of the true integral. Formally, if we desire to integrate forward
by a finite step t

f~t+t t±'At'

ds (C.2)
t |it + At Qi

This formula leads to similar warping of the space as a standard Euclidean weighted
average caused by stepping in the tangent plane and then renormalizing. A step of magni-
tude s in the tangent space does not lead to a step of magnitude s on the sphere. For larger
timesteps, we get worse behavior of the integration step because the step moves further
from the sphere. Therefore, this method usually requires small timesteps to be effective.
We offer an alternative below.

C.3 Intrinsic Euler Integration

We can also integrate Equation 7.12 intrinsically - that is, by staying on the surface of the
sphere. Since

Q = og = qw' (C.3)

we can choose to integrate the local or intertial (global) angular velocities, even though we
formulated the derivative locally.

To simplify the calculation, we will use the isomorphism between the quaternions and
SU(2), the group of complex unitary 2x2 matrices with determinant 1, called Special Uni-
tary. These matrices are the complex analog of the special orthogonal real matrices. For-
mally, we have a mapping from a unit quaternion represented as a unit 4-vector (q C S3)
to a matrix in SU(2).

'For a great discussion of numerical integration techniques and problems, see Gershendfeld's book [24].

228

It is important to note that since the w actually represent vectors in R3 , or pure quater-
nions that are not unit, these are also mapped into complex 2x2 matrices, though they will
not have determinant 1. In fact, it can be shown that w will transform to a skew-hermitian
matrix (that is, Q = -*, where -* denotes complex conjugation of the matrix. Further-
more, eQ C SU(2) if Q is skew-Hermitian with trace 0. The multiplication of the complex
matrices is equivalent to the quaternion product due to the isomorphism. Therefore, we can
map all our quaternions into 2x2 complex matrices and calculate the derivatives there using
the familiar calculus of complex matrices. We will not prove this isomorphism, though the
reader is referred to Artin [2] for more details or can work it out themselves as an exercise.

Formally, the isomorphism of Equation C.3 results in the complex matrix differential
equation:

Q(t) = Q M)n' (C.4)

which we must solve for Q(t). This equation can be solved formally with the matrix
exponential, which converges absolutely for all complex matrices ([2]). To prove this fact,
we will assume an ansatz solution, or guess, and then show that this is truly a solution by
plugging it back in and solving for unknowns that make it true. Since we wish to solve the
system in local coordinates, we assume the ansatz solution

Q = Aest (C.5)

where A is a constant matrix in SU(2) which effectively defines the initial condition in
terms of the inertial frame. Also, S is an unknown constant matrix which we know must
be skew-Hermitian, since Q, A and est all must lie in SU(2). This fact implies that S
must be skew-Hermitian, or equivalently, must lie in the Lie algebra of su(2), denotes as

su(2) 2. It is well-known in differential equation theory that if we find any solution to the
differential equation, it must be unique (given conditions which hold in our case, but we
ignore the details). Therefore, we must plug our ansatz into Equation C.4 and see if it is a

valid solution. If so, we have found the solution. Differentiating Equation C.5 gives us

Q = ASest (C.6)

since the derivative of the matrix exponential is

eBt = BeBt .

This follows from the formal power series for the exponential:

A2 A3
eA = I + A + 2! + 3!

and can be worked out by the reader. Plugging our ansatz and its derivative back into the

original equation gives us

2 The reader does not need the details of Lie theory here, but many of these calculations can be expressed

in terms of Lie group theory. We refer the reader to Artin [2] for an introduction to Lie theory, or [71] for an

introduction focusing on physics calculations.

229

ASest = AeStQ'. (C.7)

We must solve this equation for A and S. First, we use the fact that S and es commute
(since S can be thought of as an infinitesimal rotation, which commutes). Explicitly,

Ses eSS (C.8)

which can be found directly from the power series expansion of the exponential. This
property lets us write the equation as

Aes t S = AestQ' (C.9)

which we can obviously simplify. First, we cancel A since its inverse exists. Also, the
inverse of the matrix exponential exists, and we can left-cancel it as well, leading to the
simple characteristic polynomial of the equation

S = Q' (C.10)

which makes sense since both matrices are known to be skew-Hermitian. Now we need to
solve for the unknown constant matrix coefficient A using the constraint that we know the
boundary condition at the beginning of the timestep. Assuming without loss of generality
that t = 0 at the start of the timestep (we can change the time variable if not), let the value
of Q at t = 0 be Qo. Plugging this into our solution at t = 0 gives us:

Q (0) = Qo = Aef'" (C. 11)

which immediately implies that A = Qo. Therefore, our solution for ome timestep, as-
suming t = 0 at the start

of timestep and that S is constant over the integration interval (which is true for small
At), we get the following forward Euler integration formula for the timestep:

Q(t + At) r Q(t)e'(t)A' . (C.12)

Due to our isomorphism, we can convert this directly back into the quaternion algebra,
giving us the quatemion equation

q(t + At) .q(t)e'' (C.13)

By integrating each timestep assuming the angular velocity is constant at each position,
we get a trajectory of the system of the form:

q(NAt) = q(0) e"'(O)At ew'(At) ew' .. ew'(Nt) (C.14)

We note here that we can also solve the differential equation in terms of the global
angular velocity, which leads to a solution of the form

q(t + At) ~ ew'(q(t) (C.15)

230

which is clearly of similar form but with all multiplication orders reversed and the global
angular velocity used. We also mention here that this type of trajectory is given for describ-
ing quaternion curves with simple higher derivatives in [52].

An intuitive way to think about this numerical integral is that transform the quaternion
derivative to a vector quantity (either the local or global angular velocity vector), take a
step in this direction, then transform the answer back onto the sphere using the exponential
map. Note that this is an approximate answer to the integral, but for our simple first order
system we have found this to be valid. Also, since we seek the steady state solution, the
approximate answer and actual answer should be identical if the system converges.

231

232

Appendix D

Quaternions: Group Theory, Algebra,
Topology, Lie Algebra

This appendix is a more formal algebraic treatment of quaternions and will serve as a
reference for the more mathematically inclined, such as those who already known quantum
physics, or who would like to learn it. The interested reader is also directed to the recent
book by Gallier [23] or the edited collection on geometric algebra [17].

D.1 Vector Space

Most algorithms are designed to work in a vector space rather than on a curved manifold
such as a sphere. We will see below that unit quaternions do not form a vector space. What
is a vector space?

Definition 12 A real vector space is a set V together with the two composition laws of:

Addition V x V -+ V, written x + y = z

Scalar multiplication R x V -+ V, written ax.

Furthermore, the following axioms must hold for all elements:

1. Addition with V forms an abelian (commutative) group.

2. Scalar multiplication is associative with multiplication by real numbers.

3. Scalar multiplication by the real number 1 is the identity operation.

4. Two distributive laws hold:

(a + b)x = ax + bxa(x + y) = ax + ay

Specifically, the unit quaternions are not a vector space since addition is not closed.

Put simply, adding two unit vectors does not produce another unit vector. Therefore, all

Euclidean operations or algorithms on unit quaternions must take this into account.

233

D.2 The Rotation Group in R3

Much of this dissertation discusses the rotation group of R3 , three-dimensional Euclidean
space, and various ways to parameterize, represent and compute within it. This group of
rotations is called SO(3), which stands for special orthogonal 3 x 3 matrices. Recall that
an orthogonal matrix consists of orthogonal column vectors which are of unit magnitude
- in other words, the columns for an orthonormal basis for the space. Of these matrices,
called O(3), there are two subsets: those with det +1 and det = -1, where det is the
matrix determinant. The subset of 0(3) with det = +1 are called the special orthogonal
matrices.

A rotation transformation must preserve magnitude of vectors and must preserve orien-
tation of coordinate systems in the space. In other words, R E SO(3) must preserve the
inner product of two vectors:

(Rx)T(Ry) xTy.

It follows that

xTRTRy xTy

which is only true for the constraint

RTR=I

where I is the identity matrix. Clearly

RT = R- 1

which describes the set of orthogonal matrices as defined above. Unfortunately, the con-
straint holds for det R = 1. We need to chose the matrices with det R = 1 since to
preserve the orientation of space, i.e.:

xy=z

we must have

(Rk) x (Ry) = Rz

where x denotes the cross product of two vectors. Consider the matrix -I which clearly
has det = -1 and is orthogonal. Plugging into the constraint gives

(-k) x (-y)= : x y = -z

which is a contradiction. The negative determinant matrices change the orientation of
space, and therefore are inversions of the space rather than rotations.

234

Axis-Angle Representation

According to a famous theorem of Euler, every rotation in R3 can be parameterized by
some axis and some angle. This representation is called axis-angle notation.

Theorem 1 (Euler) Every rotation R E R3 can be represented as a rotation around some
axis n by some 0, which we denote as R(0, i).

We do not prove the theorem here, but offer a few corollaries which follow immediately.

Corollary 2 Every composition of rotations R1 o R2 can be written as a single rotation
around some axis and angle.

This result follows immediately from the closure of rotations.
Another way to visualize axis-angle notation is as a point in the solid ball in R3 of

radius r (notice 7r is enough since a rotation of more than 7 can be represented as a rotation
less than 7r around -fi). Then we can represent the vector Ofi in the ball as the rotation
R(0, fn) by separating the magnitude and direction of the point. Clearly the center of the
ball is the identity rotation. Also, notice that opposite points on the surface of the ball are
identified since

R(7, fn) = R(7r, -fi).

D.3 Quaternion Theory

A quaternion is a hypercomplex number with one real and three imaginary components
discovered by Sir William Rowan Hamilton in 1866 [33].

D.3.1 Hypercomplex Representation

This section describes the original quaternion formulation as described by Hamilton as
an extension of the complex numbers C to four dimensions (there does not exist a three-
dimensional, or any odd-dimension, extension to complex numbers).

Definition 13 A quaternion is a hypercomplex number which can be written in the form

q = w + xi + yj + zk

where w, x, y, z G R and i, j, k are each distinct imaginary numbers such that

i2 2 = k2 = ijk

and pairs multiply similarly to a cross product in a right-handed manner

ij = -i = k

jk = -kj =i

ki = -ik = j

235

Hamilton called the real part a scalar and the 3-component imaginary part a vector,
which are the precursors of the modem definitions of vector analysis which were derived
from quaternions. In a strange quirk of fate, quaternions, which spawned vector analysis,
were then reinterpreted in terms of vector analysis which (in the author's opinion) obscures
the beauty of the original description. We describe the vector representation in Chapter 3.

We will denote the set of all quaternions as H after Hamilton. A few special subsets of
H deserve mention. First, the set of quaternions of the form (w + 0i + 0j + Ok) with only
a scalar term are called pure scalars. It should be obvious that this subset is in one-to-one
correspondence with the real numbers R. The subset of quaternions with 0 scalar (0 + xi +
yj + zk) are called pure quaternions or pure vectors. Those familiar with vector analysis
will notice that the set of pure vectors can be represented as a vector in R3. We discuss this
further below. Finally, we denote the set of unit-magnitude quaternions (magnitude will be
defined formally below) as the set fH.

Perhaps more elegantly, the properties of quaternions can be derived similarly to com-
plex numbers by interpreting addition and multiplication as quadronomials and reducing
combinations of imaginary terms according to the rules above.

Definition 14 Let qi, q2 E KL The addition operator + is defined as

qi + q2 (wi + xii + yij+ zik) + (w2 + X2i + Y2j + z2 k)

((wi + W2) + (X1 + X2)i + (y1 + Y2)j + (zi + z 2)k)

Quaternions add component-wise like complex numbers.

Theorem 2 Quaternions form an abelian (commutative) group {H, +} under addition.

PROOF We need to show the four group properties plus commutivity hold:

1. Closure: If p, q E H then p + q C H.

2. Associativity: (p + q) + r = p + (q + r) Vp,q,r E H

3. Identity: E10 CEHsuchthatp+0 = 0+p =p Vp C H.

4. Inverse: For any p E H,] (-p) C H such that p + (-p) = (-p) + p = 0.

5. Commutivity: p + q = q + p Vp,q C H.

All these properties can be proven trivially by using the group properties of the reals for
each real component of the quaternion 4-tuple and the definition of quaternion addition. 4

We can also define a multiplication operator on the quaternions by using normal poly-
nomial multiplication with i, j, k as the variables. Combinations of i, j, k are then reduced
using the quatemion rules.

236

Definition 15 Let q1, q2 E K Then the quaternion product is defined as:

qiq2 = ((wiw 2 - X1X2 - YiY2 - ziz2)+

(yiz2 - y2z1 + wix 2 + w2 x1)i+
(x 2z1 - X1z 2 + w1y 2 + w 2 yi)j+

(x1y2 - X2y1 + wiz 2 + w2 zi)k)

Before we explore the properties of multiplication, we offer a few more definitions to

help the discussion.

Definition 16 The conjugate q* of a quaternion q is created by negating the vector part:

q* = (w - xi - yj - zk)

The quaternion conjugate has similar properties to the complex conjugate:

(q*)* = q (D.1)

(pq)* q* p* (D.2)

(p + q)* =p* + q* (D.3)

qq* = w2 + X2 + Y2 + z2 (D.4)

These properties can be proven by some algebra on the definition of multiplication and
conjugate. Notice that multiplying a quaternion by its conjugate results in a real number,
just as with complex numbers. Analogously, we can define the absolute value, or modulus,
of a quaternion.

Definition 17 The modulus (also called absolute value or magnitude) of a quaternion is

|q| = Vw2 + x2 + y 2 + z2=

Several properties of the quaternion subsets described above can be found directly using
these properties.

Theorem 3 Let s = (s) be a pure scalar quaternion. Let q = (w + xi + yj + zk) be an

arbitrary quaternion. Then the product commutes:

sq = qs = (sw + sxi + syj + szk).

Multiplication of a quaternion by a scalar is commutative and involves scaling each compo-
nent by the scalar. The proof is trivial from the definition of multiplication. It also follows
that

|sq| = sq|
where s is a scalar and q is a quatemion. These properties can simplify calculations. We

can also show that

237

|q*| = |q| (D.5)

|pg| = |p| \q| (D.6)

through application of the definition of modulus and multiplication.

Theorem 4 Quaternion multiplication over H forms a non-commutative group.

PROOF Again, we need to show the group properties for quaternion multiplication:

1. Closure: If p, q E H then pq C H

2. Associativity: (pq)r = p(qr) V p, q, r, E H.

3. Identity There exists an element 1 E H such that 1p = pl - p V p E H.

4. Inverse: For any p E El, there exists an element p- such that pp- 1 = p'p 1.

Closure follows immediately from the definition of multiplication. Associativity in-
volves lengthy algebraic manipulation of the equation gotten by substituting the definition
of multiplication into the definition of associativity. We omit it here.

The identity quaternion for multiplication, 1, is obviously the pure real quaternion (1)
since

(1)(w + xi + yj + zk) = (w + xi + yj + zk)

when the definition of scalar multiplication is applied.
The inverse is a bit harder. Let q be an arbitrary quaternion in H. We seek a quaternion

q-1 such that qq-' = q-lq = 1. Assume q-' is defined as

1
w + xi + yj + zk

where 1 is the identity quaternion. We can then multiply the numerator and denominator
by the complex conjugate of the denominator to make the denominator real:

1q* 1 w -xi- yj -zk
qq* w+xi+ yj+zk (w-xi-yJ-zk/

w - x- yj - zk

w 2 + x 2 + y2 + z 2

q*

|q

1 ,

238

First, we check left-multiplication:

q *q = (w -xi - yj - zk)(w + xi + yj + zk)

((w 2 + x 2 + Y 2 + z 2)

1 (-yz + yz +wx - wx)i+

1q| 2 (-xz + xz + Wy - wy)j+

(-xy + xy + wz - wz)k)

1
(I ql

=1.

We get the identity element, 1, as we chose to prove. A similar calculation or symmetry
argument can confirm that it also holds true for right multiplication by the inverse. 4

A useful property of the inverse follows:

(pq)- 1 -q-1i

Finally, the the quaternion product and addition operators with H constitute a ring.

Definition 18 A ring is a set R over which there are defined two binary operations, + and

x, which satisfy the following properties:

1. {R, +} is a commutative group.

2. {R, x } has closure, associativity and identity properties.

3. Distributive (bilinear): For all a, b, c C R,

a x (b + c) = (a x b) + (a x c) (D.7)

(a + b) x c = (a x c) + (b x c) (D.8)
(D.9)

Taking (x) to be the quaternion product (we will usually suppress the x symbol and

denote a x b = ab as above), and (+) as the quaternion summation, we can show that

{H, +, x} is a ring.

Theorem 5 {H, +, x } forms a ring.

PROOF We have already proven that {H, +} is a commutative group and that {H, x}

is a group, which satisfy the first two ring properties. We must show that it is distribu-

tive as well. Again, this involves substituting the operator definitions into the two prop-

erties and showing they are true. We omit the details here, but intuitively we know that

239

component-wise the elements are reals and that reals with real multiplication and addition
are distributive. By applying the real distributive rules to each component and noticing that
the products stay on the left or right sides (since multiplication is non-cummutative), the
quaternion distributive property holds.

D.3.2 Vector Space Interpretation of Quaternions

Some readers may have noticed the similarity of the definition of a quaternion to a vector
in R! with the component directions being the real axis and the three imaginary axes. A
quaternion can be represented as such a 4-vector for convenience (as we shall do later),
but we still use the symbol H rather than R4 to represent the set of quaternions to avoid
confusion. Another useful representation of a quaternion is as a sum of a real number and
a vector in R3:

q (w + v) (w, v)

where v is the column vector of reals

z

yz
interpreted in the basis defined by the imaginary components i, j, k. In other words, we
could also define the vector part as a pure quaternion as

-- T -.-
X z

y j =- zi+ yj+zk

where i, j, k are the imaginary numbers described above the transpose gives the inner prod-
uct of the components with the imaginary basis. We will alternate between the sum and
pair notation for a quaternion as needed.

Given this description, we can consider any real number w E R to be interpreted as
a quaternion (w, 0) as well as a real scalar. The distinction will be obvious in context.
Also, a vector v E R3 will be simultaneously interpreted as a true vector and also as the
pure quaternion (0, v), depending on context. We can reinterpret some of the previous
definitions and theorems using this new notation. We simply present them without proof
for the interested reader.

Definition 19 Given two quaternions q1 = (w1 , v1), q2 = (w2, v2), the product

pq =(wiw2 - Vi - v 2, v 1 x v 2 + wiv 2 + w 2 vi)

where (.) represents the dot product and (x) the cross product of vectors in R 3 .

Consider the pure quaternions v1 and v2. The product is

v1v 2 = (-v 1 - v2 , v 1 x v 2)

240

So pure vectors multiply with a simultaneous cross product and a dot product term. The
definitions of these products in vector analysis came out of Hamilton's quaternion multipli-
cation originally. Given this definition, we can easily find the set of commutative subgroups
of H

Theorem 6 Given two quaternions qi, q2 E IH, qq2 = q2 qi 4=> vi = V 2 .

PROOF Consider the vector representation of the quaternions qI = (wI, v1), q2 = (w2 , v2).
Using the multiplication formula we need to prove

qq 2 = q2qi = (wiw 2 - vi - v 2, vI x v 2 + w1 v 2 + w2v 1)

= (w 2 Wi - v 2 Vi, V2 X V1 + w2vi + wiv 2

Since scalar multiplication and the dot product are commutative, the constraint is

V 1 X V 2 = V 2 X VI

but this is only true for vi = v2 , when the cross product is zero. 4

Commutative subgroups of H will be useful later in the discussion.
Since q c H can be represented as a vector q E R4 , it inherits the dot product operator.

Specifically,

Definition 20

For qi, q 2 E H, qi - q2 =Ww 2 + XIX2 + Y1y2 + Z1Z2

For p = q, we get

qq* = q*q = |q| 2

as with the familiar dot product.
We also extend the functions which return the real and imaginary part of a complex

number to quaternions.

Definition 21 The real part (or scalar part) of q = (w + xi + yj + zk) can be calculated

with

R(q) w q + q* .
2

The imaginary part can extracted with

q *

D(q) = q - R(q) = q *
2

It can also be shown that

R(p*q) = R(q*p) = p - q.

241

Another useful identity for pure quaternions can be used to extract the cross product:

xy - yx

xxy= 2

Unit Quaternions and Polar Form

A very important (as we shall see later) subset of H is the set of unit magnitude quaternions,
which we shall denote as fH to distinguish it from the arbitrary magnitude quaternions H.
Formally,

def
H - {q c H : |qJ = 1}

Clearly H is not a subgroup of H with respect to addition. It can be shown that it is a
subgroup with respect to quaternion multiplication, however.

Theorem 7 The subset H C H is a subgroup of H with respect to quaternion multiplica-
tion.

PROOF The identity element is inherited from H directly. Associativity also follows di-
rectly. We need to prove closure and that the inverse exists in H. Closure follows from the
property that |pq = |pl |qJ. Assume the inverse is the same as the inverse inherited from

H, q*. Since |qj2 = 1, the inverse of q is simply its conjugate q*. Conjugation clearly
does not change the magnitude of a quaternion, so if |ql = 1 then Iq*I = 1. 4

If we interpret unit quaternions in vector notation, we can extend some useful theorems
of the complex numbers. First, consider the pure unit quaternion ii, where the hat denotes
a unit vector. We choose n rather than v to reinforce this distinction. It is easy to show that

f2 =_I

by using the definition of multiplication. This result implies that the pure imaginary unit
vector i has a correspondence with the pure imaginary complex number i, since i2 = -1 as
well. Using this result, we can extend Euler's theorem and DeMoivre's theorem of powers
of complex numbers to quaternions.

Theorem 8
eaO = (cos , fi sin 0).

PROOF Expand the exponential in a power series:

sa(ofn)2 (6nl)3 (6nl)4 (ofn)5
e = + +i + + (i) +

2! 3! 4! 5!
Notice that we can reduce the powers of n using the replacement fn2 = -1 in order to get

9 02 3 i 04 05 fn
ea=1+On 2! 3! +4! 5!

242

Grouping real terms together and imaginary terms together produces the suggestive

e* =66i - nii+ nii+... +
3! 5!

02 04
1- + -+..

2! 4!

The even powers form the power series of cos(0). Factoring out the n from the odd powers
leaves the power series of sin(O). In other words,

eaa = cos(0) + sin()ii = (cos 0, i sin 0)

as we chose to prove. A simple check shows that

leof|=1

It follows that any unit quaternion q E H can be written in the form (cos 0, i sin 0) for
some 0 and some n. Additionally, as with complex numbers, this theorem implies that an
arbitrary quaternion q E H can be represented in polar form

q = |qe 9i

by pulling out the magnitude and representing the unit quaternion in exponential form.

One must be very careful about applying the familiar rules of products of exponentials.
These rules apply only to commutative subgroups of H, which were defined above. For
example, consider unit quaternions p, q E H. Then we have

pq = e*lfle2f2

It is very tempting to collect the exponents to

e"lfl eo2fn2 = eolfil+02fn2 Wrong!

but this is not true. Since it follows that

e in1+
0
2f2 = e 0

2f2+Ofil

by commutivity of addition, which then leads to

e02 n 2 + 1 fni =e2n2_eii - g

which is a contradiction since in general pq = qp for arbitrary quaternions.

The polar form is useful for many calculations, as we will demonstrate. We can also

define the inverse of exponentiation, the natural logarithm of a unit quaternion.

243

Definition 22 The natural logarithm of a unit quaternion is defined as

ln q = ln(cosO, fi sin 0) = On

As with exponentials, familiar rules for reducing sums of logarithms can only be used
if the involved quaternions commute. In general, ln p + In q L ln pq.

Notice that exponentiation only works on pure quaternions. Conversely, in q always
produces a pure quaternion. These functions lead to several useful identities:

e" - q V qj 1 (D.10)
e0 = 1 (D.11)

(1q eO") =qje--4" (D.12)

(|qje 9") =1 e-0 V q E H, q # 0O. (D.13)
|q|

(D.14)

In addition we can now raise unit quaternions to arbitrary real powers t (E R by

t _ Ingi __ tInq

We can use the power rule for logarithms since t is a real scalar, which commutes with any
quaternion. We can also raise an arbitrary quaternion to a power with

qt = \qjtet1"(q9/qj

which follows immediately.
For the remainder of the discussion, we will mostly concern ourselves with the sub-

group of unit quaternions, H. The reason for this will become clear in the next section
as we show that a unit quaternion represents a rotation of R3 in the same way that a unit
complex number represents a rotation of the plane R2, a quite beautiful result.

Rotations in R3

The previous description of the properties of quaternions can be used to discover a useful
property of quaternions - they can represent a rotation in R 3 . This result is beatiful since
the complex numbers can be used to represent rotations in the plane (so(2)). We show
that using quaternions to parameterize rotations leads to some useful properties and avoids
the problems of an Euler angle representation, such as singularities and lack of rotational
invariance.

Euler proved that any arbitrary rotation (or composition of rotations) in R3 can be writ-
ten as a single rotation by some angle 6 around some axis i. This parameterization is called
axis-angle notation. We now show that a quaternion q = |qeOf" can be used to rotate a pure
vector x by 20 degrees around the axis n.

244

Theorem 9 Let q E H and x be a pure quaternion (zero scalar c

mation Tq (x) = qxq-' rotates x around axis nt by 20.

PROOF Clearly for the transformation to be a rotation it must f
the vector, which it does.

|qxq-'Il - qlxllq'l = 1| -

We also need to show that the transformation does not affect the
must remain 0 for a pure vector. Recall

For all p E H, 2R(p) = p + p*.

First, we will assume that Iql = 1 so that we can replace the in
We will show that this is a reasonable thing later. For now, we mi
polar form of q = qjeo". Since scalar multiplication commutes,
of q = |ql and the magnitude of q-' =- can be pulled out,

leaving unit quaternions q and q = .
The effect of Tq on the scalar part of p (assuming Iq = 1 as

2R(Tq(p)) 2R(qpq*)

= qpq + (qpq*)*

=qpq + qp q*

= q(p + p*)q* (by bilinearity)

= q(2R(p))q*

= 2R(p)qq* (scalar multiplication

=2R(p)

So R(p) is invariant with respect to Tq.
Since Tq preserves magnitude and the scalar component, it

(notice that it cannot be a reflection since this would affect the
quaternion).
Since it is a rotation, it must have at least one fixed point f E R3

qfq-' = f

Using polar form,

|qedif 1e-0 = f

The magnitudes of q and q- 1 cancel for any q E H. Theref

unit quaternions without loss of generality. This simplification le

Expanding f into polar form gives

245

omponent). The transfor-

reserve the magnitude of

scalar component, which

verse with the conjugate.
)tivate by considering the
we see that the magnitude
-ancelling each other and

notivated above) is

Iommutes)

must describe a rotation
scalar part of an arbitrary

such that

re, we can consider only
,ts us replace q -1 with q*.

Cancelling the magnitudes again

Premultiplying by e-Of gives

since it the inverse. This equation says that to be a fixed point, the two quaternions e -o and
ewv must commute. Clearly e-Of commutes with e0 f. This property only holds if fi = V,
as we saw above. Commutivity allows us to collect exponents which leaves

e~fi+Wfl-Ofi = ewil = ewX

So the set of fixed points under this transformation is the set of vectors along the axis nl,
as is expected of a rotation. We have shown that the transformation preserves length and
leaves points along i fixed, which is sufficient to prove that the transformation is a rotation
around axis nl. We now need to show that the rotation is by 20.

Since points in the n direction are fixed, we can remove the component from x in the n
direction since it passes through unchanged. In other words, write x as

x = (x . i)i + (x - (x -n)f)

which breaks it into components parallel to ii and perpendicular to i. Making this explicit,

x = x11 + x1I

By the bilinearity of quaternions,

Tq(x) qxq*

q(x,, + xi)q*

qxq* + qxIq*

Since Tq leaves points parallel to n fixed

qxq* + qxlq* = x, + qxlq* X + Tq(xi)

So we need only look at the action of Tq on the components in the plane perpendicular to
n, or x1 . We will do this in halves. First, we look at the action of left-multiplication by q,
then we look at the action of right-multiplication by q*. Since |q = 1, we use the vector
form q = (cos 0, n sin 0) Then we have

qx 1 = (cos 0, i sin 0)x1

= (- sin Ofn. x1 , sin Ofn x x 1 + cos Ox1)

246

by applying the vector form of the quaternion product. But since n -x± = 0, this reduces
to

qx1 = (0, cos Ox, + sin Oft x x,)

Notice that n x x, is orthogonal to both fn and x,. Therefore it also lies in the plane perpen-
dicular to fn. Since it also orthogonal to x1, we can write any vector in the perpendicular
plane in terms of the orthogonal basis defined by x, and fn x x,. We make this explicit by
introducing the unit vectors

u =

and

V = |nxx|

Clearly in this coordinate system x, lIx±Illn. This change of variables results in

qx± = q|Ix±IIft
= |xI||qfn
= IIxII (cos Oft + sin O'()

which should be familiar as a rotation of a point in the plane defined by nt and ' clockwise
by 0. We define this action as the linear transformation R(O, ni) which rotates vectors in the
plane perpendicular to ni by 0. Left-multiplication of a vector in the plane perpendicular
to the axis by a unit quaternion q therefore results in that vector rotating by 0 around the
plane. Explicity,

qx, = R(O, ni)x±.
Now we find the action of right-multiplication by q*. Similarly to left multiplication,

we can find that

xiq* = (0, x, x (- sin Ofn) + cos Ox,)

= (0, cos Ox, - sin Ox, x ni)
= (0, cos Ox1 - sin (-f x x'))

= (0, cos Ox, + sin Ofn x x,)

which is the same as left-multiplying by q! So we get

xiq* = |Ix,1(0, cos Oft + sin O')
= R(O, ft)x,
= qx 1

247

We now write

R(0, fi)x = y± = xq*

which leads to

q= xjyi

Now we can substitute this into form of Tq above

Tq(x) = x, + qxiq*

= x11 + qx-x y1

= x, + qy 1

= x, + R(0, fi)y1

- x, + R(0, fi)(R(0, fi)x)

So we see that Tq rotates the perpendicular part by 0 around i, then rotates the newly
rotated vector around i by 0 again. Since rotations in the same plane commute, we have

R(01 , fi) o R(0 2 , fi) = R(0 1 + 02, i)

where o denotes composition of functions. It follows that

Tq(x) = x, + R(20, fi)x±

which is clearly a rotation of x around axis i by 20, as we were to prove. 4

The interested reader can also consider the inverse of Tq(x) = q*xq. It can be shown
that left multiplication by q* results in a rotation by 0 and then reflection through 9'. The
triple product, since it reflects twice, is again a rotation by 20.

Finally, we can show that Tq Tq. In other words, q and -q represent the same
rotation in R3. -q represents the action R(-0, -i) which is clearly the same as R(0, i).
Thus, the unit quaternion group 1H1 has a 2-1 correspondence with the rotation group in R1.
Explicitly,

0 0
R(0, fi) = (cos -, n sin -)

2 2

where R(0, fi) is the rotation transformation in R3 by 0 around fn. To make this explicit, we
will usually write a unit quaternion in terms of the half-angle as

0 0
q = (cos- fi sin -).2' 2

248

Unit Quaternion Group Manifold

The multiplicative subgroup of unit quaternions iHI lies on the surface of the three-dimensional
hypersphere in 4-space: S3 c R4 . This geometry can be easily verified by considering the
components of a quaternion q as a point (vector) q E R4 . The constraint Iql = 1 keeps the
vector on the surface of the unit sphere. As we mentioned above, -q and q both represent
the same rotation. So antipodal points on S3 refer to the same rotation. This double map-
ping can be tricky when we use quaternions to represent rotations, and we must constantly
be careful when defining metrics and functions.

Using the hyperspherical description of a quaternion, we can easily find a quatemion
which will rotate one pure quaternion (vector in R3) into another pure quaternion, which
results in a change of coordinate system. Consider two pure quaternions x, y represented
as vectors in R4 . From linear algebra, we know that the dot product of two unit vectors is
the angle a between the two vectors:

x y = |xl|yl cosa

We are looking for a unit quaternion r = (cos 6, fn sin 6) such that

rxr* = y

From above, we know that unit quaternion will rotate a vector by 26 around the axis
n. From the geometry, we see that we desire a rotation of a around the axis formed by the
perpendicular to both vectors (in other words, the two vectors form a plane of rotation).
This axis is perpendicular to both x and y, so clearly must be x x y. It follows that the
desired quaternion r is

a a
r = (cos -, (x x y) sin)2 2

Notice that the axis vanishes as x - y. The limit clearly exists, however, since we know
that the identity quaternion 1 would leave the vector fixed.

Since they lie on S', we can talk about quaternion curves, or paths, that lie on the
hypersphere. Representing quaternions geometrically as points on a hypersphere allows us

to use the results of spherical geometry to simplify proofs and to visualize results, as we

did above.

D.3.3 Quaternion Curves

We now consider the set of curves on the hypersphere, q(t) E S3. In vector form a curve
can be expressed as

0 6
q(t) = (cos -(t), i(t) sin -(t))2 2

or exponentially as

q(t)

249

First, we look at the set of curves with a fixed axis, fi(t) = i. We get

0 0
q(t) = (cos -(t), fi sin -(t))

2 2

By the geometry of the manifold, it is clear that the curve lies in the subgroup of Sa
consisting of the great circle with axis ii. Recall that a great circle of a sphere is a circle on
the sphere whose embedding plane passes through the center of the sphere. On the Earth,
for example, the lines of longitude and the equator are all great circles, but the other lines
of latitude are not.

We will soon consider the constant speed curve with fixed axis n. We have not yet
defined the speed of a point on a curve, however, since we have not yet introduced quater-
nion calculus. Since the quaternions lie on a non-Euclidean manifold, the normal rules
of Euclidean calculus do not hold. For the one-parameter subgroup of H we have de-
scribed here, however, we can use the familiar vector calculus formulae. Specifically, for
the single-parameter set of curves with fixed axis qfi(t), which we denote

d d 0 0
qja(t) + (cos -(t), fi sin (t))

0 0 -0 0
=(- sin n- cos -)

2 2' 2 2
0 0 0
-(- sin -, fi cos -)2 2 2
0 2 0 0
= (sin ,-n cos)

0 0 0
-flfl(sin- -ncos -)

2 2' 2

S(fl)(-((- cos)), nx (-i) + sin fl)
2 2' 2
0 0 . 0

S(-n)(cos-,n sm)
2) CS2 sn2

= nqa

2
=(t)nfe2(O

We could also get to this result by using the exponential form and the familiar rules for
single parameter exponential derivation:

d o d 0 2
e = (- (t)fn)e()"

dt dt 2

= (t)fne'(t)f"

250

The form of the derivative should be suggestive. We have only derived it for the one-
parameter subgroup, but it appears to be of the form

d dln(q) 1
dt =q = -w(t)q(t)dt dt 2

where w is a pure vector function in R3 (or equivalently a pure quaternion). We prove this
formally later. For now, this is enough to explore some other properties of the quaternions.
Finally, notice that

d 0
-q = |dt q 2

since nt and q are both unit length. This fact implies an important property - the derivative
of a unit quaternion is not a unit quaternion. It is a general quaternion in H Such a
derivative quaternion q = jwq can, as we will also prove formally later, be used to represent
the derivative at q as an instantaneous rotation around axis C with angular speed 1 w 1. Thus,
the vector w describes (locally) an instantaneous rotation around C with speed I W.

Now we can consider the set of fixed axis curves of constant speed. The derivative for
a constant speed 0 curve around fi is

q = -nq

which we will write as

.1
q = wq

Assuming we can separate variables normally for this case

1
dq q- 1 = -wdt

2

whose solution is

lnq = - + c
2

where c is a constant of integration. Exponentiating, we get

q = e2+C

c is obviously In q(0) since

q(O) = ec

and so the constant speed curves are those of the form

q(t) = e 2*(

Of course, this is not rigourous, but we can also use the antiderivative of the derivative

251

we described above since

1
q -wq

2
ln(q)q

Then the antiderivative must have

q t In q

since In q is constant. This gives us

tw,

q e2

which can clearly be augmented for q(O) by adding the same term as above.
For now, we will just consider the curves which start at the identity, in other words q(t)
such that q(O) = 1. This reduces the form to

La t||W|| O |W1|q(t) = e 2 = (cos 2 , o sin 2
which by the geometry of the manifold also describes a constant speed rotation around nl,
as we desired. So the one-parameter derivative described above is valid. We use it to look
at the tangent space of the quaternion group.

Tangent Space of H

We will find is useful to consider the tangent space of the unit quaternion group 11. First,
we define the tangent space.

Definition 23 The tangent space anchored at the identity 1 in a continuous group G is
defined as the space of tangent vectors of all curves g(t) passing through 1 at t = 0
evaluated at t = 0. In other words,

d
Tan G= -d g(t) = (0) V g(t) E G such that g(0) = 1.

dt t=0

For the quaternion group (we will now only consider unit quaternions and will only
be explicit if we use a non-unit quaternion), H, we consider the curves q(t) through the
quaternion identity 1 such that q(0) = 1. As we saw above,

0
= in(q(t))q(t) = -(t)i(t)q(t)

2

Evaluating this at t = 0, we get

0 0
4(0)= -(0)fi(0)1 = -(0)i(0)2 2

252

which clearly describes some arbitrary vector in R3 . Therefore, the tangent space (set of

tangent vectors) of fH can be considered as In H (we will see this is called the Lie algebra
of the H Lie group).

This result is important. R3 is a Euclidean vector space, whereas IH is not. Therefore
the (locally invertible) mapping

p : N -> R3 = lnq

takes our non-Euclidean quatemion q into a three-dimensional vector space, which is likely
more familiar to us. The inverse of this mapping exists locally:

10 1 f-
p-f) = e"

22
For (< 27r the inverse is unique (single-valued) and therefore p is one-to-one.

D.4 SU(2)

Another classical group investigated by physicists and mathematicians is the group of Spe-

cial Unitary 2 x 2 matrices, SU(2) (see Artin [2] for an excellent introduction). Special

unitary matrices are the extension of special orthogonal matrices (with real entries) to those
matrices with complex entries. The unfamiliar reader can review complex matrices in Ap-
pendix A.

An element U E SU(2) is usually written in terms of two complex entries:

U = 0 a B a, B E C, j0a|2 + 10|2

Since an SU(2) element has four real components, we can also express it as a vector

in Rh. Additionally, the magnitude constraint implies that the magnitude of the 4-vector

is also unity. Therefore, the group manifold of SU(2) is the hypersphere S3 E R 4. This
manifold is the same as the unit quaternion group H! This similarity suggests that there
exists an isomorphism between H and SU(2), and therefore a 2-1 mapping of SU(2) into

SO(3). Indeed, such a mapping exists, as we now prove.

D.4.1 Isomorphism

Consider the representation of a unit quaternion as a unit vector q E S3 C R4. Let a =

qo + iqi and # q2 + iq3 . Let h(q) be the bijection from a unit quaternion into a matrix in

SU(2) by plugging these two complex values into the components of the SU(2). We now
show that H is isomorphic to SU(2) (which we write as H ~~ SU(2)).

Theorem 10 The group of unit quaternions H is isomorphic to the group of special unitary

2 x 2 matrices SU(2).

PROOF To prove group isomorphism, we must show that the bijection (invertible one-

to-one mapping) we defined above respects the multiplication operator in both groups.

Formally,

253

h(pq) = h(p) h(q) V p, q E .

The proof simply involves multiplying out the matrices on the RHS of the above equation
and showing that it is the same as the LHS.

h (p) h (q) = _a * - * 7*

_ a-y -B * a +]
- B*7 - a** - By + a*7*

The matrix is clearly also an element of SU(2). Therefore, we can pull out the two
complex degrees of freedom from the matrix (written in a complex vector for convenience):

Now we calculate A and p using Hamilton's multiplication rules. Let p = (Po, PI, P2, P3)
and q = (qo, q1, q2 , q3).

A = (po + ip1)(qo + iq1) - (P2 + ip3)(q2 - iqa)

= (poqo - p 1q1 - p2q2 - pAq3) + i(poq 1 + p1O + P2q3 - pAq2)

and

p = (po + ip 1)(q2 + i 3) + (P2 + ip3)(qo - iq1)

= (poq 2 - p1 q3 + P2q0 + pg) + i(poq3 + pAO + p1 q2 - p2q1)

The equality follows from the definition of the quaternion product in Definition 15 since
h(pq) clearly produces the SU(2) matrix with the two complex degrees of freedom A and
p above. Clearly, the real components of A and p map directly to the components of the
product of p and q. Therefore, E l SU(2). 4

Given this isomorphism, we can now convert any SU(2) element into a quaternion and
then into a rotation, so the group SU(2) also maps 2-1 onto the rotations in R3

D.4.2 Pauli Spin Matrices

Consider the following set of matrices (we break our normal style convention here of using
capital bold for matrices and use lower case bold to agree more closely with the physics
literature):

0 1 0-
i= 1 0 ' 2= i 0 ' s= 0 -1

254

These Hermitian matrices are called the Pauli spin matrices and can be used to generate
elements of SU(2) [71, 60].

First, we notice the Pauli spin matrices form a basis for some the set of traceless (trace
zero) Hermitian matrices (see Appendix A for a refresher on Hermitian matrices). Now
consider the mapping from a vector x E R3 into a complex 2 x 2 matrix spanned by the
Pauli spin basis:

3

X = x -= x o-.
j=1

In other words, we project a real unit vector in Ra into the space defined by the basis of the
Pauli spin matrices. We can also invert this transformation easily using the relation

1
zi = - Tr(Xri)

2

where xi is the ith component of x and X is the matrix form x -0.
It is useful to note that the Pauli spin matrices square to unity:

S=I

which is useful since they form an orthonormal basis, and multiply cyclically

Orjgk = 6jkI + Ejklrl

or equivalently

jJcrk + gk~j 26jk (D.15)

Next consider the matrix

if
U(0, ii) = exp(--ni -)

2

This matrix is very similar to the polar form of the quaternions. It can be shown that it is a
unitary matrix by carrying out the normal power series expansion of the exponential.

Theorem 11 The matrix

1o
U(0, ni) = exp(- (i -))

2

can be written as

0 0
I cos - - i(ni - 0') sin -

2 2

PROOF The proof proceeds by expanding the matrix exponential formally. Let a = -0/2

and N = fn - . Then we have

i2a2 N 2 i3a3N3 i4 a4N4
eaN=IiaN+ 2! 3! + 4!

255

First we note that:

N 2 I

which follows by writing out N as a multinomial with the components of nl as components
in terms of the Pauli basis:

N 2 = (nioi + n292 + n 3u3)2

and using the skew-symmetric properties of the algebra as shown in Equation D.15 to
remove the zero cross-terms

(n o i + n 2 u 2 + n -3)2 n2 o2 + n2a2 + n o-321cr 1 22 223

since all the jOrk + o-ior terms vanish for j - k. Noting that each of the or2 terms is the
identity, we get simply:

N2 = (n + n2 + n2)I

which is simply the identity I since n is a unit vector.
After this simplification, collecting the even and odd terms and reducing powers of the

imaginary unit i gives the standard formula for the complex exponential in terms of the
Pauli matrices:

I cosa + i(fi -') sin a

which reduces to:

0 0
Icos- - i(n-) sin -

2 2

by replacing a with - and using trigonometric rules

cos -O = cos 0

sin -0 = -sin 0

as we desired to prove. 4

This theorem implies that the matrix U(0, nl) rotates the space spanned by the Pauli
matrices by 0 around n . 6. (Again, the half-angle is implicit in the transformation, as we
are about to see).

Theorem 12 The transformation

X - X' = e-i(0/2)n-dXei(0/2)nis

rotates the vector x represented as X = x -a by 0 around ii. In other words,

256

X'= x- 6 = (R(6, fi)x) - 0

We can extract the real components from the resulting matrix with the inverse of the
change of basis as described above. We will not prove this theorem, but note that the proof
is very similar to the other rotation proofs due to the trigonemetric representation of the
exponential.

Thus, we can create the unitary matrix U as above from the axis and angle description
in terms of the exponential matrices and use the similar quadratic product to rotate a vector
expressed in the Pauli matrix basis much like a quatemion representation:

Y = UXU*

D.5 Lie Groups and Lie Algebras

This section provides a quick introduction to the theory and application of Lie groups and
Lie algebras, which are important for theoretical physics. They can be used to simplfy
calculus on manifolds. We will not give a formal definition of a Lie group just yet, but
instead offer the simple description given by Sattinger and Weaver [71]. A Lie group is
a continous group which is also a topological manifold (concepts such as connectedness
and continuity apply) on which the group operations are analytic. We have already seen

several examples of Lie groups - the unit quaternions IH and the special orthogonal 3 x 3
matrices. We now offer a set of definitions and explanations about Lie groups and how to

get to the Lie algebra of a group. The theory of Lie algebras will lead to some other proofs
about quaternions leading to rotations.

Definition 24 The Lie algebra of a Lie group is the tangent space at the group identity el-

ement, which can befoundfor a linear group by differentiating all curves that pass through

the identity element 1 at t = 0 and evaluating at t = 0.

We have already seen that for the unit quatemion group N the tangent space is R3 .

We will denote the Lie algebra of a arbitrary group 0 or G as the lowercase g, following

Sattinger.
A Lie algebra is a vector space over some field F (usually R or C), which implies it is

linear:

a(X + Y) = aX + aY

It also has a product operator called the Lie bracket, denoted as [,], with the following

properties:

1. Closure: X, Y c g implies [X, Y] E g.

2. Distributive: [X, aY + BZ] = a[X, Y] + B[X, Z] V a, B E F, X, Y, Z E g.

3. Skew symmetry: [X, Y] = -[Y, X].

257

4. Jacobi identity: [X, [Y, Z]] + [Y, [Z, X]] + [Z, [X, Y]] = 0

For a matrix Lie algebra (elements are represented as matrices), the Lie product can
be chosen to be the commutator of the two matrices, which gives an idea of how "non-
commutative" two elements are. The commutator of X and Y = XY - YX = [X, Y].

If we imagine vectors in R3 to be pure quaternions, then as the commutator (in terms of
quatemion multiplication) of two elements is xy - yx. As we saw above, this is 2(x x y).
Therefore, we can use the cross product operator in R3 as the Lie bracket of the quaternion
algebra without using a matrix representation! It is easily shown that the cross product
satisfies the four properties of a Lie bracket as defined above.

We define the structure constants of the Lie algebra as the set of constants Cijk such
that

[Ei, Ej] = S CigkEk
k

where the {Ej} form a basis for the algebra.
Again using our quaternion example, we use the normal basis for R3 of {ej}, consisting

of the unit vectors (1, 0, 0), (0, 1, 0) and (0, 0, 1). Then the structure constants must have
the property that

ej x ej = Cikek
k

Then clearly Cigj must be 1 if (i, J, k) is a cyclic permutation of (1, 2, 3), -1 if (i, j, k) is
an anti-cyclic permutation of (1, 2, 3) and 0 otherwise. In physics this is often described by
the completely antisymmetric tensor Eijk defined as

1 if ijk are a cyclic permutation of 123

Eijk -1 if ijk is an anticyclic permutation of 123
0 otherwise

The structure constants for the cross product are therefore defined by Eijk.

Definition 25 The adjoint operator of an element X C b (denoted as ad X) is the matrix
which maps Y into [X, Y].

For our vector space R3 and the cross product Lie bracket, the adjoint representation
needs to define a matrix X based on the vector x such that Xy = x x y. The following
mapping of x into a 3 x 3 skew-symmetric matrix accomplishes this:

0 X 3 X 2
def 0 -3 x

xX= X3 0 ..- Xi

-x2 x1 0
We will sometimes use the - character over matrices which we have created in this way for
clarity.

So the skew-symmetric matrix made from x is the adjoint representation of x. In other
words, ad x = X.

258

D.6 Recommended Reading

The treatment in this section has been derived from several sources. A good introduction
to vector spaces, linear transformations and group theory can be found in Artin [2] and also
the less theoretical book by Strang [81]. The quaternion hypercomplex algebra extension
to complex numbers was re-derived from the original Hamilton equations by the author,
but a fairly good introduction can be found in [32] although it gets dense very quickly. The
section on group theory and the group manifold was mostly collected from McCarthy's
kinematics book [59] and portions of Sattinger and Weaver's book on Lie groups [71],
which unfortunately uses mostly examples from quantum theory. Recently, the book by
Gallier [23] collects many of these concepts into a fairly comprehensive book with a com-
putational focus.

259

260

Bibliography

[1] Matthew E. Antone. Robust Camera Pose Recovery Using Stochastic Geometry. PhD
thesis, Massachusetts Institute of Technology, 2001.

[2] Michael Artin. Algebra. Prentice-Hall, 1991.

[3] Norman I. Badler, Cary B. Phillips, and Bonnie Lynn Webber. Simulating Humans:
Computer Graphics Animation and Control. Oxford University Press, 1993.

[4] A. Barr, B. Currin, S. Gabriel, and J. Hughes. Smooth interpolation of orientations
with angular velocity constraints using quaternions. In Computer Graphics, pages

313-320. ACM Press, 1992.

[5] Richard H. Bartels, John C. Beatty, and Brian A. Barsky. An Introduction to Splines
for use in Computer Graphics and Geometric Modeling. Morgan Kauffman, 1987.

[6] E. T. Bell. Men of Mathematics. Simon and Schuster, 1937.

[7] Christopher Bingham. An antipodally symmetric distribution on the sphere. Annals

of Statistics, 2(6):1201-1225, 1974.

[8] Christopher M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press,

Oxford, 1995.

[9] Jonathan Blow. Inverse kinematics with joint limits. Game Developer Magazine,

April 2002.

[10] Bruce Blumberg. Swamped! Synthetic Characters Group, MIT Media Lab. Appeared
at SIGGRAPH '98 Interactive Exhibition, 1998.

[11] Bruce Mitchell Blumberg. New Dogs, Old Tricks: Ethology and Interactive Charac-

ters. PhD thesis, The Media Lab, Massachusetts Institute of Technology, 1997.

[12] Matthew Brand and Aaron Hertzmann. Style machines. Computer Graphics (Pro-

ceedings of SIGGRAPH 2000), 2000.

[13] Cynthia L. Breazeal. Designing Sociable Robotics. The MIT Press, 2002.

[14] William L. Burke. Applied Differential Geometry. Cambridge University Press, 1985.

261

[15] Samuel R. Buss and Jay P. Fillmore. Spherical averages and applications to spherical
splines and interpolation. ACM Transactions on Graphics, 20(2), April 2001.

[16] Robert T. Collins. Model Acquisition Using Stochastic Projective Geometry. PhD
thesis, University of Massachusetts, 1993.

[17] Eduardo Baryo Corrochano and Garret Sobczyk, editors. Geometric Algebra with
Applications in Science and Engineering. Birhauser, 2001.

[18] John J. Craig. Introduction to Robotics: Mechanics and Control. Addison-Wesley
Publishing Company, Inc., second edition edition, 1989.

[19] Erik B. Dam, Martin Koch, and Martin Lillholm. Quaternions, interpolation and
animation. Technical Report DIKU-TR-98/5, University of Copenhagen, July 1998.

[20] Marc Downie. behavior, animation, music: the music and movement of synthetic
characters. Master's thesis, Massachusetts Institute of Technology, 2000.

[21] Aaron D'Souza, Sethu Vijayakumar, and Stefan Schaal. Learning inverse kinematics.
International Conference on Intelligence in Robotics and Autonomous Systems (IROS
2001, 2001.

[22] Ajo Fod, Mya J. Mataric, and Odest Chadwicke Jenkins. Automated derivation of
primitives for movement classification. IEEE-RAS International Conference on Hu-
manoid Robotics (Humanoids-2000), 2000.

[23] Jean Gallier. Geometric Methods and Applications for Computer Science and Engi-
neering. Springer, 2001.

[24] Neil Gershenfeld. The Nature of Mathematical Modeling. Cambridge University
Press, 1999.

[25] Michael Gleicher. Motion editing with spacetime constraints. In Proceedings of the
1997 symposium on Interactive 3D graphics, pages 139-ff. ACM Press, 1997.

[26] Michael Gleicher and Andrew Witkin. Through the lens camera control. In Computer
Graphics (Proceedings of SIGGRAPH '92), volume 26, pages 331-340, 1992.

[27] Ron Goldman. Cross product in four dimensions and beyond. In David Kirk, editor,
Graphic Gems III, pages 84-88. AP Professional, 1992.

[28] Ronald H. Goldman. Transformations as exponentials. In James Arvo, editor, Graph-
ics Gems II, pages 332-337. Academic Press, Inc., 1991. useful intro to matrix expo-
nentials.

[29] F. S. Grassia. Practical parameterization of rotations using the exponential map. Jour-
nal of Graphics Tools, 3(3):29-48, 1998.

[30] F. Sebastian Grassia. Believable Automatically Synthesized Motion by Knowledge-
Enhanced Motion Transformation. PhD thesis, Carnegie Mellon University, 2000.

262

[31] S.F. Gull, A.N. Lasenby, and C.J.L. Doran. Imaginary numbers are not real - the
geometric algebra of spacetime. Found. Phys., 23(9), 1993.

[32] Klaus Gurlebeck and Wolfgang Spr6ssig. Quaternionic and Clifford Calculus for

Physicists and Engineers. John Wiley and Sons, 1997.

[33] William Rowan Hamilton. Elements of Quaternions. Longmans, 1866.

[34] Andrew Hanson. The rolling ball. In David Kirk, editor, Graphic Gems III, pages
51-60. AP Professional, 1992.

[35] Andrew Hanson. Geometry for n-dimensional graphics. In Paul S. Heckbert, editor,
Graphics Gems IV, pages 149-170. AP Professional, 1994.

[36] Andrew Hanson. Visualizing quatemions. In SIGGRAPH 2000 Course Notes, num-
ber 9. ACM SIGGRAPH, 2000.

[37] Andrew J. Hanson. Rotations for n-dimensional graphics. In Alan W. Paeth, editor,
Graphics Gems V, pages 55-64, 1995.

[38] Chris Hecker. Game developer conference (gdc 2002) talk. (unpublished), 2002.

[39] L. Herda, R. Urtasun, P. Fua, and A. Hanson. Automatic determination of shoulder
joint limits using quaternion field boundaries. In Proceedings of the 5th International

Conference on Automatic Face and Gesture Recognition, pages 95-100. IEEE Com-

puter Society, 2002.

[40] L. Herda, R. Urtasun, P. Fua, and A. Hanson. Automatic determination of shoulder
joint limits using experimentally determined quaternion field boundaries. Interna-
tional Journal on Robotics Research, 2002. In press.

[41] David Hestenes and Garret Sobczyk. CliffordAlgebra to Geometric Calculus. Kluwer

Academic Publishers, 1984.

[42] David Hoag. Apollo guidance and navigation considerations of apollo
imu gimbal lock. Technical report, Massachusetts Institute of Technology,
1963. MIT Instrumenation Laboratory Document E-1344 (available online at
http://www.hq.nasa.gov/office/pao/History/alsj/e- 1 344.htm).

[43] Berthold Klaus Paul Horn. Robot Vision. MIT Press, 1986. good appendix for vector
algebra and calculus of variations.

[44] Charles F. Rose III. Verbs and Adverbs: Multidimensional Motion Interpolation Us-

ing Radial Basis Functions. PhD thesis, Princeton University, 1999.

[45] Michael Patrick Johnson. Multi-dimensional quatemion interpolation. In SIGGRAPH

'99 Conference Abstracts and Applications, page 258, 1999.

263

[46] Michael Patrick Johnson, Andrew Wilson, Bruce Blumber, Chris Kline, and Aaron
Bobick. Sympathetic interfaces: Using a plush toy to direct synthetic characters. In
Proceedings of SIGCHI 1999, 1999.

[47] P.E. Jupp and K.V. Mardia. Maximum likelihood estimators for the matrix von mises-
fisher and bingham distributions. Annals of Statistics, 7(3):599-606, May 1979.

[48] B. Juttler. Visualization of moving objects using dual quatemion curves. Computers
and Graphics, 18(3):315-326, 1994.

[49] B. Juttler and M.G. Wagner. Computer-aided design with spatial rational B-spline
motions. Journal of Mechanical Design, 118:193-201, June 1996.

[50] John T. Kent. Asymptotic expansion for the bingham distribution. Applied Statistics,
36(2):139-144, 1987.

[51] John T. Kent. The complex bingham distribution and shape analysis. Journal of the
Royal Statistical Society Series B (Methodological), 56(2):285-299, 1994.

[52] Myoung-Jun Kim, Myung-Soo Kim, and Sung Yong Shin. A general construction
scheme for unit quaternion curves with simple high order derivatives. In Computer
Graphics (Proceedings of SIGGRAPH '95), pages 3 69-376, 1995.

[53] Jack B. Kuipers. Quaternions and Rotation Sequences. Princeton University Press,
1999.

[54] Jehee Lee. A Hierarchical Approach to Motion Analysis and Synthesis for Articulated
Figures. PhD thesis, Korea Advanced Institute of Science and Technology, 2000.

[55] Jehee Lee and Sung Yong Shin. A hierarchical approach to interactive motion editing
for human-like figures. Computer Graphics, Proceedings of SIGGRAPH '99, 1999.

[56] Patrick-Gilles Maillot. Using quaternions for coding 3d transformations. In An-
drew S. Glassner, editor, Graphics Gems, pages 498-515. Academic Press Ltd., 1990.
early ref to quats in CG.

[57] Kanti V. Mardia and Peter E. Jupp. Directional Statistics. John Wiley and Sons, Ltd.,
2000.

[58] K.V. Mardia. Statistics of directional data. Journal of the Royal Statistical Society.
Series B (Methodological), 37(3):349-393, 1975.

[59] J. M. McCarthy. Introduction to Theoretical Mechanics. MIT Press, 1990.

[60] Charles W. Misner, Kip S. Thome, and John Archibald Wheeler. Gravitation. W. H.
Freeman and Company, 1970.

[61] Jack Morrison. Quatemion interpolation with extra spins. In David Kirk, editor,
Graphic Gems III, pages 96-97. AP Professional, 1992.

264

[62] Parviz E. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice-Hall,
Inc., 1988.

[63] Ken Perlin. Real time responsive animation with personality. IEEE Transactions on

Visualization and Computer Graphics, 1(1), 1995.

[64] Michael J. Prentice. Orientation statistics without parametric assumptions. Jour-

nal of the Royal Statistical Society, Series B (Methodolo), 8:2:214-222, 1986.
www.jstor.org.

[65] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling.
Numerical Recipes in C. Cambridge University Press, 1988.

[66] Katherine Pullen and Christoph Bregler. Motion capture assisted animation: Textur-

ing and synthesis. Computer Graphics. Proceeding of SIGGRAPH 2002.

[67] R. Ramamoorthi and A.H. Barr. Fast construction of accurate quaternion splines. In
Computer Graphics (Proceedings of SIGGRAPH 1997), pages 287-292, 1997.

[68] Alyn Rockwood. Geometric algebras: New foundations, new insights. In SIGGRAPH
2000 Course Notes, number 31, 2000.

[69] C. Rose, B. Bodenheimer, and M. Cohen. Verbs and adverbs: Multidimensional
motion interpolation. IEEE Computer Graphics and Applications, Sep/Oct 1998.

[70] E. B. Saff and A. D. Snider. Fundamentals of Complex Analysis for Mathematics,

Science and Engineering. Prentice-Hall, Inc., 1976.

[71] D. H. Sattinger and 0. L. Weaver. Lie Groups and Algebras with Applications to
Physics, Geometry and Mechanics. Springer-Verlag, 1986.

[72] John Schlag. Using geometric constructions to interpolate orientation with quater-
nions. In James Arvo, editor, Graphic Gems II, pages 377-380. Academic Press,

Inc., 1991.

[73] Ken Shoemake. Quaternion calculus for animation. SIGGRAPH '89 Course Notes,
23, 1989. Math for SIGGRAPH.

[74] Ken Shoemake. Quaternions and 4 x 4 matrices. In James Arvo, editor, Graphic

Gems II, pages 351-354. Academic Press, Inc., 1991.

[75] Ken Shoemake. Uniform random rotations. In David Kirk, editor, Graphic Gems III,

pages 124-132. AP Professional, 1992.

[76] Ken Shoemake. Arcball rotation control. In Paul S. Heckbert, editor, Graphics Gems

IV, pages 175-192. AP Professional, 1994.

[77] Ken Shoemake. Euler angle conversion. In Paul S. Heckbert, editor, Graphics Gems

IV, pages 222-229. AP Professional, 1994.

265

[78] Ken Shoemake. Fiber bundle twist reduction. In Paul S. Heckbert, editor, Graphics
Gems IV, pages 230-236. AP Professional, 1994.

[79] Karl Sims. Locomotion of jointed figures over complex terrain. Master's thesis,
Massachusetts Institute of Technology, 1987.

[80] Gilbert Strang. Introduction to Applied Mathematics. Wellesley-Cambridge Press,
1986.

[81] Gilbert Strang. Linear Algebra and its Applications. Harcourt Brace Jovanovich,
1988.

[82] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric frame-
work for nonlinear dimensionality reduction. Science, pages 2319-2323, Dec 22
2000.

[83] Charles W. Therrien. Decision Estimation and Classification: An Introduction to
Pattern Recognition and Related Topics. John Wiley and Sons, 1989.

[84] Frank Thomas and Ollie Johnston. The Illusion of Life: Disney Animation. Walt
Disney Productions, 1981.

[85] Matthew Turk and Alex Pentland. Eigenfaces for recognition. Journal of Cognitive
Neuroscience, 3(1), 1991.

[86] Alan Watt and Mark Watt. Advanced Animation and Rendering Techniques: Theory
and Practice. Addison-Wesley, 1992.

[87] Chris Welman. Inverse kinematics and geometric constraints for articulated figure
manipulation. Master's thesis, Simon Frasier University, 1993.

[88] Hermann Weyl. The Classical Groups: Their Invariants and Representations. Prince-
ton University Press, 1939.

[89] Jane Wilhelms and Allen Van Gelder. Fast and easy reach-cone joint limits. Journal
of Graphics Tools, 6(2):27-41, 2001.

[90] Jr. William M. Tomlinson. Synthetic Social Relationshipsfor Computational Entities.
PhD thesis, Massachusetts Institute of Technology, 2002.

[91] Robert C. Wrede. Introduction to Vector and Tensor Analysis. Dover Pulications,
Inc., 1963.

266

