1,364 research outputs found

    Validating Sample Average Approximation Solutions with Negatively Dependent Batches

    Full text link
    Sample-average approximations (SAA) are a practical means of finding approximate solutions of stochastic programming problems involving an extremely large (or infinite) number of scenarios. SAA can also be used to find estimates of a lower bound on the optimal objective value of the true problem which, when coupled with an upper bound, provides confidence intervals for the true optimal objective value and valuable information about the quality of the approximate solutions. Specifically, the lower bound can be estimated by solving multiple SAA problems (each obtained using a particular sampling method) and averaging the obtained objective values. State-of-the-art methods for lower-bound estimation generate batches of scenarios for the SAA problems independently. In this paper, we describe sampling methods that produce negatively dependent batches, thus reducing the variance of the sample-averaged lower bound estimator and increasing its usefulness in defining a confidence interval for the optimal objective value. We provide conditions under which the new sampling methods can reduce the variance of the lower bound estimator, and present computational results to verify that our scheme can reduce the variance significantly, by comparison with the traditional Latin hypercube approach

    Rotated sphere packing designs

    Full text link
    We propose a new class of space-filling designs called rotated sphere packing designs for computer experiments. The approach starts from the asymptotically optimal positioning of identical balls that covers the unit cube. Properly scaled, rotated, translated and extracted, such designs are excellent in maximin distance criterion, low in discrepancy, good in projective uniformity and thus useful in both prediction and numerical integration purposes. We provide a fast algorithm to construct such designs for any numbers of dimensions and points with R codes available online. Theoretical and numerical results are also provided

    Construction of nested space-filling designs

    Full text link
    New types of designs called nested space-filling designs have been proposed for conducting multiple computer experiments with different levels of accuracy. In this article, we develop several approaches to constructing such designs. The development of these methods also leads to the introduction of several new discrete mathematics concepts, including nested orthogonal arrays and nested difference matrices.Comment: Published in at http://dx.doi.org/10.1214/09-AOS690 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Design of Experiments for Screening

    Full text link
    The aim of this paper is to review methods of designing screening experiments, ranging from designs originally developed for physical experiments to those especially tailored to experiments on numerical models. The strengths and weaknesses of the various designs for screening variables in numerical models are discussed. First, classes of factorial designs for experiments to estimate main effects and interactions through a linear statistical model are described, specifically regular and nonregular fractional factorial designs, supersaturated designs and systematic fractional replicate designs. Generic issues of aliasing, bias and cancellation of factorial effects are discussed. Second, group screening experiments are considered including factorial group screening and sequential bifurcation. Third, random sampling plans are discussed including Latin hypercube sampling and sampling plans to estimate elementary effects. Fourth, a variety of modelling methods commonly employed with screening designs are briefly described. Finally, a novel study demonstrates six screening methods on two frequently-used exemplars, and their performances are compared

    Entanglement and quantum combinatorial designs

    Full text link
    We introduce several classes of quantum combinatorial designs, namely quantum Latin squares, cubes, hypercubes and a notion of orthogonality between them. A further introduced notion, quantum orthogonal arrays, generalizes all previous classes of designs. We show that mutually orthogonal quantum Latin arrangements can be entangled in the same way than quantum states are entangled. Furthermore, we show that such designs naturally define a remarkable class of genuinely multipartite highly entangled states called kk-uniform, i.e. multipartite pure states such that every reduction to kk parties is maximally mixed. We derive infinitely many classes of mutually orthogonal quantum Latin arrangements and quantum orthogonal arrays having an arbitrary large number of columns. The corresponding multipartite kk-uniform states exhibit a high persistency of entanglement, which makes them ideal candidates to develop multipartite quantum information protocols.Comment: 14 pages, 3 figures. Comments are very welcome

    Second-order nearly orthogonal Latin hypercubes for exploring stochastic simulations

    Get PDF
    The article of record as published may be found at http://dx.doi.org/10.1057/jos.2016.8This paper presents new Latin hypercube designs with minimal correlations between all main, quadratic, and two-way interaction effects for a full second-order model. These new designs facilitate exploratory analysis of stochastic simulation models in which there is considerable a priori uncertainty about the forms of the responses. We focus on understanding the underlying complexities of simulated systems by exploring the input variables’effects on the behavior of simulation responses. These new designs allow us to determine the driving factors, detect interactions between input variables, identify points of diminishing or increasing rates of return, and find thresholds or change points in localized areas. Our proposed designs enable analysts to fit many diverse metamodels to multiple outputs with a single set of runs. Creating these designs is computationally intensive; therefore, several have been cataloged and made available online to experimenters.Office of Naval Research (N0001412WX20823
    • …
    corecore