Sample-average approximations (SAA) are a practical means of finding
approximate solutions of stochastic programming problems involving an extremely
large (or infinite) number of scenarios. SAA can also be used to find estimates
of a lower bound on the optimal objective value of the true problem which, when
coupled with an upper bound, provides confidence intervals for the true optimal
objective value and valuable information about the quality of the approximate
solutions. Specifically, the lower bound can be estimated by solving multiple
SAA problems (each obtained using a particular sampling method) and averaging
the obtained objective values. State-of-the-art methods for lower-bound
estimation generate batches of scenarios for the SAA problems independently. In
this paper, we describe sampling methods that produce negatively dependent
batches, thus reducing the variance of the sample-averaged lower bound
estimator and increasing its usefulness in defining a confidence interval for
the optimal objective value. We provide conditions under which the new sampling
methods can reduce the variance of the lower bound estimator, and present
computational results to verify that our scheme can reduce the variance
significantly, by comparison with the traditional Latin hypercube approach