283 research outputs found

    Compression Of 2-Tone Manuscript For Multimedia Application [QA76.9.D33 B171 2008 f rb].

    Get PDF
    Malaysia seperti negara lain kaya dengan dokumen lama berlandaskan unsur sejarah dan kebudayaan yang jarang ditemui. Malaysia like any other country has old and rare documents that depict its history and culture

    Application of multirate digital signal processing to image compression

    Full text link
    With the increasing emphasis on digital communication and digital processing of images and video, image compression is drawing considerable interest as a means of reducing computer storage and communication channels bandwidth requirements. This thesis presents a method for the compression of grayscale images which is based on the multirate digital signal processing system. The input image spectrum is decomposed into octave wide subbands by critically resampling and filtering the image using separable FIR digital filters. These filters are chosen to satisfy the perfect reconstruction requirement. Simulation results on rectangularly sampled images (including a text image) are presented. Then, the algorithm is applied to the hexagonally resampled images and the results show a slight increase in the compression efficiency. Comparing the results against the standard (JPEG), indicate that this method does not have the blocking effect of JPEG and it preserves the edges even in the presence of high noise level

    High fidelity compression of irregularly sampled height fields

    Get PDF
    This paper presents a method to compress irregularly sampled height-fields based on a multi-resolution framework. Unlike many other height-field compression techniques, no resampling is required so the original height-field data is recovered (less quantization error). The method decomposes the compression task into two complementary phases: an in-plane compression scheme for (x, y) coordinate positions, and a separate multi-resolution z compression step. This decoupling allows subsequent improvements in either phase to be seamlessly integrated and also allows for independent control of bit-rates in the decoupled dimensions, should this be desired. Results are presented for a number of height-field sample sets quantized to 12 bits for each of x and y, and 10 bits for z. Total lossless encoded data sizes range from 11 to 24 bits per point, with z bit-rates lying in the range 2.9 to 8.1 bits per z coordinate. Lossy z bit-rates (we do not lossily encode x and y) lie in the range 0.7 to 5.9 bits per z coordinate, with a worst-case root-mean-squared (RMS) error of less than 1.7% of the z range. Even with aggressive lossy encoding, at least 40% of the point samples are perfectly reconstructed

    Efficient ECG Compression and QRS Detection for E-Health Applications

    Get PDF
    Current medical screening and diagnostic procedures have shifted toward recording longer electrocardiogram (ECG) signals, which have traditionally been processed on personal computers (PCs) with high-speed multi-core processors and efficient memory processing. Battery-driven devices are now more commonly used for the same purpose and thus exploring highly efficient, low-power alternatives for local ECG signal collection and processing is essential for efficient and convenient clinical use. Several ECG compression methods have been reported in the current literature with limited discussion on the performance of the compressed and the reconstructed ECG signals in terms of the QRS complex detection accuracy. This paper proposes and evaluates different compression methods based not only on the compression ratio (CR) and percentage root-mean-square difference (PRD), but also based on the accuracy of QRS detection. In this paper, we have developed a lossy method (Methods III) and compared them to the most current lossless and lossy ECG compression methods (Method I and Method II, respectively). The proposed lossy compression method (Method III) achieves CR of 4.5×, PRD of 0.53, as well as an overall sensitivity of 99.78% and positive predictivity of 99.92% are achieved (when coupled with an existing QRS detection algorithm) on the MIT-BIH Arrhythmia database and an overall sensitivity of 99.90% and positive predictivity of 99.84% on the QT database.This work was made possible by NPRP grant #7-684-1-127 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu

    Static 3D Triangle Mesh Compression Overview

    Get PDF
    3D triangle meshes are extremely used to model discrete surfaces, and almost always represented with two tables: one for geometry and another for connectivity. While the raw size of a triangle mesh is of around 200 bits per vertex, by coding cleverly (and separately) those two distinct kinds of information it is possible to achieve compression ratios of 15:1 or more. Different techniques must be used depending on whether single-rate vs. progressive bitstreams are sought; and, in the latter case, on whether or not hierarchically nested meshes are desirable during reconstructio

    Lossless compression of medical images

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and the Institute of Engineering and Sciences of Bilkent Univ., 1991.Thesis (Master's) -- Bilkent University, 1991.Includes bibliographical references.The digital imaging techniques are used more and more in various diagnostic modalities, including computed tomography (CT), Digital Subtraction .A.ngiography (DSA), etc. As a result, a huge amount of digital images are being generated. Therefore, techniques to compress these images into a more compact form for storage and transmission become more important and anyone involved with the storage of medical images in a Picture Archiving and Communication System (PACS) should first apply compression (lossy or lossless depending on the characteristics of the digitized data) on them. There are image coding methods which reduces the storage size of an image b}' an amount of 1/10 without any visual degradation. But in some medical applications lossless coding of medical images is necessary. Multiresolution coding techniques have been used for lossy image and speech coding, in this thesis we developed multiresolution techniques for the lossless image compression. We observed that the use of multiresolution techniques in lossless compression is as advantages as in lossy compression schemes.Kılıç, Behiç FıratM.S

    Multirate digital filters, filter banks, polyphase networks, and applications: a tutorial

    Get PDF
    Multirate digital filters and filter banks find application in communications, speech processing, image compression, antenna systems, analog voice privacy systems, and in the digital audio industry. During the last several years there has been substantial progress in multirate system research. This includes design of decimation and interpolation filters, analysis/synthesis filter banks (also called quadrature mirror filters, or QMFJ, and the development of new sampling theorems. First, the basic concepts and building blocks in multirate digital signal processing (DSPJ, including the digital polyphase representation, are reviewed. Next, recent progress as reported by several authors in this area is discussed. Several applications are described, including the following: subband coding of waveforms, voice privacy systems, integral and fractional sampling rate conversion (such as in digital audio), digital crossover networks, and multirate coding of narrow-band filter coefficients. The M-band QMF bank is discussed in considerable detail, including an analysis of various errors and imperfections. Recent techniques for perfect signal reconstruction in such systems are reviewed. The connection between QMF banks and other related topics, such as block digital filtering and periodically time-varying systems, based on a pseudo-circulant matrix framework, is covered. Unconventional applications of the polyphase concept are discussed

    Removal Of Blocking Artifacts From JPEG-Compressed Images Using Neural Network

    Get PDF
    The goal of this research was to develop a neural network that will produce considerable improvement in the quality of JPEG compressed images, irrespective of compression level present in the images. In order to develop a computationally efficient algorithm for reducing blocky and Gibbs oscillation artifacts from JPEG compressed images, we integrated artificial intelligence to remove blocky and Gibbs oscillation artifacts. In this approach, alpha blend filter [7] was used to post process JPEG compressed images to reduce noise and artifacts without losing image details. Here alpha blending was controlled by a limit factor that considers the amount of compression present, and any local information derived from Prewitt filter application in the input JPEG image. The outcome of modified alpha blend was improved by a trained neural network and compared with various other published works [7][9][11][14][20][23][30][32][33][35][37] where authors used post compression filtering methods

    Summative Stereoscopic Image Compression using Arithmetic Coding

    Get PDF
    Image compression targets at plummeting the amount of bits required for image representation for save storage space and speed up the transmission over network. The reduction of size helps to store more images in the disk and take less transfer time in the data network. Stereoscopic image refers to a three dimensional (3D) image that is perceived by the human brain as the transformation of two images that is being sent to the left and right human eyes with distinct phases. However, storing of these images takes twice space than a single image and hence the motivation for this novel approach called Summative Stereoscopic Image Compression using Arithmetic Coding (S2ICAC) where the difference and average of these stereo pair images are calculated, quantized in the case of lossy approach and unquantized in the case of lossless approach, and arithmetic coding is applied. The experimental result analysis indicates that the proposed method achieves high compression ratio and high PSNR value. The proposed method is also compared with JPEG 2000 Position Based Coding Scheme(JPEG 2000 PBCS) and Stereoscopic Image Compression using Huffman Coding (SICHC). From the experimental analysis, it is observed that S2ICAC outperforms JPEG 2000 PBCS as well as SICHC
    corecore