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     ABSTRACT  

The goal of this research was to develop a neural network that will produce 

considerable improvement in the quality of JPEG compressed images, irrespective 

of compression level present in the images.  In order to develop a computationally 

efficient algorithm for reducing blocky and Gibbs oscillation artifacts from JPEG 

compressed images, we integrated artificial intelligence to remove blocky and 

Gibbs oscillation artifacts. In this approach, alpha blend filter [7] was used to post 

process JPEG compressed images to reduce noise and artifacts without losing 

image details. Here alpha blending was controlled by a limit factor that considers 

the amount of compression present, and any local information derived from Prewitt 

filter application in the input JPEG image. The outcome of modified alpha blend 

was improved by a trained neural network and compared with various other 

published works [7][9][11][14][20][23][30][32][33][35][37] where authors used 

post compression filtering methods.    
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                                                                            CHAPTER I  

                                                                        INTRODUCTION 

 

Image compression refers to the minimization of the size of a graphics file, by 

reducing the number of bytes in the image while keeping the quality and visual 

integrity of image in a standard format. Image compression is required mostly for 

data transmission and storage purposes where size of data impacts cost.  

 Faster transmission of data is getting more important. High-speed transfer of data 

in graphical format, via remote video communication, data from GPS (Global 

Positioning System) and geo-stationary satellites, or instant image sharing hosts 

over the internet all need image compression. A smaller file will require less 

bandwidth to transfer the data over a network. Another benefit of reducing data size 

is that it helps to store image within minimal space.  As image capturing technology 

is very easy to access, people are using vast number of images in regular contexts. 

As such, compression of images before storing them on the disk is still a matter of 

research. 

There can be lossy and lossless image compression. According to the name, lossy 

compression commonly losses data from the original image during compression, 

which might reduce the quality of image after being uncompressed. JPEG is one of 

the most popular lossy compression methodologies. Its standard is defined by the 

Joint Photographic Experts Group (JPEG) [1] where acronym makes the general 

name.  
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On the other hand, in lossless compression the data from original image is preserved 

after compression. Some commonly used methods of lossless encoding include run 

length encoding, which counts the number of bits replaced by taking identical and 

consecutive data elements. It replaces with a single value of the element and counts 

the replacement numbers.  BMP [2] files effectively uses this method. DEFLATE 

[3] is another compression technique which uses Huffman coding and LZ77[2,4] 

which is suitable for PNG files. 

In digital images JPEG is extensively used, although it’s a lossy image compression 

method. When using with this algorithm, users can set the compression ratio in an 

image, which helps to choose the file size and image quality. The standard for the 

JPEG was created by two active groups, ISO (International Organization for 

Standardization) and ITU-T (International Telecommunication Group). The actual 

standard for JPEG algorithm was formally known as ISO/IEC IS 10918-1 | ITU-T 

Recommendation T.87 [1].  

The JPEG algorithm, widely used for digital images and videos, works best when 

applied to photographs and paintings of realistic scenes. Pictures and videos need 

to have smooth variation of tone and color. Hence, JPEG does not fit well for lines, 

icons or any other type of textual contexts where the sharp contrasts between 

adjacent pixels might cause noticeable artifacts. Because of the lossy nature, JPEG 

is not good for medical applications and scientific visualization. Because in these 

cases the user might need exact reproduction of original image data. 

JPEG leads to loss of image data after compression and creates artifacts in the 

uncompressed image.  Figure 1 best illustrates the example of loss of data from 
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JPEG compression which produces artifacts and distortions. The left images a & c 

have higher amount of compression than the right images b & d. As a result, the 

images b & d shows a significant amount of loss of details comparing with rest of 

the image.  

                    

(a)                                                                   (b) 

                  

                       (c)                                                                    (d) 

              Figure 1. Loss of pixel data in lossy compression; Source:  wikipedia.org  

JPEG uses a Block-based Discrete Cosine Transform (BDCT) coding scheme. In 

JPEG an image is first divided into 8X8 non-overlapping blocks. Every block is 

then transformed using a Discrete Cosine Transformation (DCT), followed by 

quantization and variable length coding. Discrete cosine transformation is a 

Fourier-like-transform in which the basis function is only made up of cosines. Like 

Lossless 

Lossy 

144 : 1 
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discrete Fourier transform, the DCT also operates on discrete and finite sequences. 

JPEG encoding is flexible for users allowing for tradeoffs between image quality 

and file size (compression ratio) which provides some control over the compression 

process. Higher compression ratios result in undesirable visual artifacts in the 

decoded image such as blockiness and Gibbs oscillations [5] (ringing artifacts near 

strong edges).  

At this point of discussion, we need to find a way to reduce visual artifacts in the 

decoded images. Post processing is done frequently for this purpose. One approach 

is to use an adaptive spatial filter [6] or adaptive fuzzy post-filtering [6]. These 

techniques commonly involve classification and low pass filtering. Normally these 

techniques classify each block having strong edges or week edges and then apply a 

set of predefined spatial filters. The effectiveness of this method is highly 

dependent on block characteristics and on specific filter design.  

Riddhiman et al. [7] developed a post-processing algorithm that created a better-

quality JPEG compressed image irrespective of the compression level. First, an 

adaptive low pass filter was applied as it can be done on any image irrespective of 

compression level. Second, an adaptive computationally efficient algorithm was 

used for reducing artifacts while preserving the level of quality in the images. Third, 

the original image was blended with a smoothened version of re-constructed image 

which is referred to as an alpha blend because blending is controlled by a limit 

factor that considers the amount of compression present and any local edge 

information derived from a Prewitt filter application. In addition, the value of the 

blending co-efficient (α) is derived from the local Mean Structural Similarity Index 
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Measure (MSSIM). The blending co-efficient is adjusted by a factor which 

considers amount of compression present in JPEG image. 

The aim of this research was to improve on the results of Riddhiman’s approach 

through artificial intelligence integration. To achieve this goal, a neural network 

was trained and applied. For making the training dataset, standard images (Lena, 

Peppers, and Baboon) with compression levels of 5% to 95% were used. Pixel 

values in the decompressed alpha blend post processed image were modified by the 

trained neural network. Post and preprocessing are two different type of 

approaches, but both can be used to improve image quality after JPEG compression. 

In this research, post processing was done on JPEG compressed images due to 

simplicity in implementation and less computational overhead.  

Using a neural network to enhance image quality via post processing of the 

decompressed image is an advanced idea, as it does not require any prior 

uncompressed image data and it can work on any type of compressed image. Once 

trained the network can be used for any image without considering compression 

level.  
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                                                                    CHAPTER II 

RELATED RESEARCH ON REMOVING ARTIFACTS FROM 

COMPRESSED   IMAGE 

 

JPEG is a block transform algorithm. The core principle of this type of algorithm 

creates artifacts in the compressed image because it compresses images using a 

block transformation. In JPEG, the Discrete Cosine Transform (DCT) is applied to 

8×8 blocks of pixels, followed by a quantization of the transform coefficient of each 

block. The coefficients are quantized based on compression ratio. The greater the 

compression, the coefficients are quantized more coarsely. As quantization is 

applied to each 8×8 block separately, the DCT coefficients of each block are 

quantized individually which causes discontinuities in color and luminosity 

between neighboring blocks. This phenomenon is especially common in the areas 

of the image where there is a lack of complex detail which can camouflage the 

artifacts. These artifacts are commonly referred to as blocking artifacts [30], as 

demonstrated in the figure 2. The left and right part of figure 2 are highly 

compressed and decompressed versions of the same image respectively. It’s clear 

that the compressed image has a lot of blocking artifacts.  
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                 Figure: 2 Example of blocking artifacts; Source: Wikimedia commons 

Another type of artifacts is ringing which is caused by loss of coefficients. To 

illustrate how this occurs, a short account of Gibb’s phenomenon is a required. 

Albert Michelson devised a method around 1898 to compute the Fourier series 

decomposition of a periodic signal. He then reproduced the original signal by 

resynthesizing those components from the decomposition. He found that 

resynthesizing a square wave always gave rise to oscillations at discontinuities. In 

fact, this result was consistent to that of several other contemporary 

mathematicians. But later, in 1899, J. Willard Gibbs shown that contrary to popular 

belief, these oscillations are not originally generated from the device’s mechanical 

flaws. The overshot of discontinuity is mathematical: no matter how many higher 

harmonics are considered. The oscillations never die down; they just approach a 

finite limit. This is known as Gibb’s Oscillation.   
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                         (a)                                                                (b) 

                     Figure: 3   Gibb’s oscillation; Source: Wikimedia commons 

In Figure 3, the left-side figure, 3(a) has less high frequency then the right-side 

figure 3(b) wave. The high frequency component makes the right-side wave more 

square shaped.  The high frequencies represent sharp contrast edges where this is a 

lot of pixel intensity variation. So, if we lose or truncate high frequencies during 

JPEG compression then the image will have ringing artifacts.  

Modern displays use 24-bit pixel encoding which uses 8 bits to encode each color 

band (R, G, B). Because JPEG compresses each color band separately, JPEG does 

not work well for color representations with high correlation between bands (RGB 

bands). JPEG works well with color representations that have low correlation 

between bands (like YCbCr).  

           The JPEG encoding process consists of several steps:  

1. Color Space Transformation: First, convert the image color space from RGB to 

YCbCr. This is done to allow greater compression as brightness information (Y), 

which is more important for perceptual quality of the image, is confined to a single 

channel.  
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2. Down sample: Reduce the resolution of the two chroma bands (Cb & Cr) by a factor 

of 2.  

3. Block Splitting: Split the image into non-overlapping blocks of 8×8 pixels.  

4. Cosine Range Transform: As we will work with cosine series, 128 needs to be 

subtracted from every value of this 8×8 block such that input values are both 

positive and negative as the DCT ranges from -1 to +1. 

5. Discrete Cosine Transform: Each block is converted to a frequency-domain 

representation, using a normalized, two-dimensional type-II discrete cosine 

transform (DCT).  

𝐺𝑢, =  ∑ ∑ 𝛼(𝑢)𝛼(𝑣)7
𝑦=0

7
𝑥=0 gx,y  cos [ 𝜋/8 (x+1/2) 𝑢 ] cos [ 𝜋/8 (y+1/2) 𝑣 ] 

Where  𝑢 = 0, ......, N-1 and 𝑣 = 0,…………...., N-1 . 

6. Quantization:  The high frequency components can be eliminated without much 

loss of image quality and we can reduce the number of bits needed to store the 

values from the DCT. The 8×8 DCT results are divided by values in a quantization 

table which are chosen to save the low frequencies and discard the high frequency 

components. When the DCT coefficients are divided by corresponding values from 

quantization table, ringing artifacts can occur. Quantization may also reduce the 

number of bits used to represent the coefficients, which may result in blocking 

artifacts.  

7. Entropy coding: The outcome of the previous steps are compressed with a variant 

of Huffman encoding which is lossless compression.  

 Lee et al. [22] proposed a post processing technique that reduces blocking artifacts, 

staircase noise and corner outliers. Staircase noises are the result of image edges 
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which exist in the transform block of an image. This causes the edge to degrade and 

result in a formation of step-like artifacts along the image edge, as shown in Figure 

4(a). Corner outliers are formed when, after the quantization of the DCT 

coefficients, the corner-most pixel in a transform block has a far greater or smaller 

value than its neighboring block.  Figure 4(b) highlights a corner outlier pixel, 

which is easily distinguishable in figure 4(a) as its pixel value is far different than 

its neighboring pixels.     

 

            Figure 4 (a). Staircase Noise, (b). Corner outlier; Source: Lee et al [22] 

In their algorithm they used a four-step process. First, they used an edge detector 

operator and a Sobel operator to create an absolute gradient magnitude of the image. 

Then an edge map was done by thresholding the gradient image obtained from the 

Sobel filter. This is followed by a classification of the compressed image into an 

edge area or monotone area based on the edge map. Similarly, a local edge map is 

also generated for each 8x8 transform block. A global and local threshold value 

was then calculated.  
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If the nth block does not contain much variation, then the local threshold is close to 

the global threshold. But if it contains enough variation, the ratio 
𝜕𝑛

𝑚𝑛
 increases and 

generates local threshold value which is much smaller then global counterpart. 

Where 𝜕𝑛 is the standard deviation and mn is the mean of the nth block of the 

gradient image generated by the Sobel filter. Secondly, a smoothing filter was used 

to remove blocking artifacts and staircase noise along the edges of the image. This 

algorithm applies 1-D directional smoothing filter along edges on all points on the 

edge map. The direction of all edges on edge map is calculated as:  

                                                     𝜃𝑒 (𝑥, 𝑦) = 𝑄 [𝜃 (𝑥, 𝑦)] −   90◦ 

Where, 𝜃𝑒 (𝑥, 𝑦) is the direction of edge for location (x,y), Q is the quantization 

factor and  𝜃 (𝑥, 𝑦) is the direction of gradient vector calculated by applying Sobel 

filter. The purpose of this filter is to remove staircase noise generated along edges 

in the image.  

After that an adaptive 2-D low pass filter was applied to the image. This process 

removed blocking artifacts which were produced within areas of image that does 

not have too much variance.  

According to their filtering, if the center pixel of 5×5 block, contains an image edge, 

then no filtering is required. The procedure to check if an edge exists in the center 

from global or local edge map of a block is the following:   

a. If no edge pixel is contained within the block, center or anywhere, then 

average mean filtering is applied to the block by convoluting with a Kernel.  
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b. If the block contains an edge pixel, not necessarily in the central point but 

the neighboring pixels close to center then a weighted average filter is 

applied to the block by setting the pixels with edges and their neighboring 

pixels close to 0, followed by convoluting the remaining pixels of the block 

with the weights from the kernel and calculating the average of the block.  

Finally, a 2×2 block window is used to detect and remove any corner outliers in the 

image.  

Singh et al. [13] proposes a novel procedure that models a blocking artifact between 

two neighboring blocks of pixels. Based on the Human Visual System (HVS), using 

the model, they detect the presence of any blocking artifacts and removed them by 

filtering adaptively.  

The HVS model is based on the human perception process for images, luminosity 

and color. In video and image processing, visualization techniques for angel of 

view, resolution, sensitivity and detail of the image is often used to take advantage 

of human vision capabilities.  The model suggests that the human eye can perceive 

changes in luminosity better than changes in color, but cannot easily perceive high 

frequency details of an image, thus allowing high frequency components to be 

quantized without noticing loss in image data. 

For two adjacent blocks, b1 and b2, after DCT quantization, because of independent 

quantization of each block, an artifact can be created between this pair. The artifacts 

can be simulated as a new block created from the existing two blocks b1 and b2.    

The step function is defined as: 
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                                               s (i, j) =   {
− 1/8 , ∀ iϵ[0,7], jϵ[0,7]

    1/ 8 , ∀ iϵ[0,7], jϵ[0,7]
 

And the new block is derived as:  

                                                          𝑏 (𝑖, 𝑗) = 𝛽 𝑠(𝑖,𝑗) + 𝜇 + 𝑟(𝑖,𝑗), ∀ 𝑖,𝑗 𝜖[0,7] 

where, 𝛽 is the amplitude of s, the 2-d step function, µ is the mean of the block b1 

and b2, and r is the residual block which describes the local activity around the 

block edge.  

The classification of blocks as smooth or non-smooth was done based on frequency 

properties. If two blocks, b1 and b2, have similar frequency properties and block b, 

which is comprised of edges between b1 and b2, does not contain high frequency 

components, then b1 and b2 are classified as smooth regions and vice versa.  

This above method is not applicable for a non-smooth block, because it will 

increase artifacts present in the compressed image. In this case, a smoothing sigma 

filter is used. The sigma filter smooths noise by averaging neighborhood pixels 

based on sigma probability of Gaussian distribution. A 5×5 window was used for 

this filter.  

Singh et al. [27] further improves the above work by classifying the blocks as 

smooth, non-smooth and intermediate, and using an adaptive pixel replacement 

algorithm. This approach improves on previous attempts in preserving details of 

the image with minimum loss of image data. This technique reduced the complexity 

and computational overhead by a considerable extent.  
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Filtering is applied to the compressed image based on classification of the area of 

image, and its frequency properties. The smooth regions contain low frequency 

components, non-smooth areas contain high frequency and the regions classified as 

intermediate contain mid-range frequency components. To determine whether an 

area of two adjacent 8×8 blocks, b1 and b2, is smooth, non-smooth or intermediate, 

the activity across block boundary is measured by taking eight pixels into account, 

four on either side of the block boundary. The variation in pixels within b is 

calculated as:  

                              𝐴(𝑝) =    ∑ ∅(𝑝𝑘  − 𝑝𝑘+1)7
𝑘=1  

∅ ( ⍙𝑝) =   {
  0, ⍙𝑝 ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   

 1, otherwise
 

where, A(p) is the block boundary activity and p are the pixel intensities of the 

block b. The number of pixels to be modified while filtering depends on the type 

of region being filtered.  

Saig et al. [1] proposed the use of decimation filters and optimal interpolation in 

block coders. Like many other algorithms which depend on a block-based 

approach, typically block coders are high speed and low-complexity, and perform 

reasonably well, but suffer from creation of artifacts in the decoded image while 

processing images of low bitrate.  

The proposed algorithm works in two parts: initially, determining an optimal 

framework for an interpolation filter (g), and finally, determining an optimal 
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framework for the decimation filter (f) with respect to the previously determined 

optimal interpolation filter (g). 

If we apply the optimal interpolation (g) and decimation (f) filters in the block coder 

algorithm, we will obtain a reasonable improvement in quality over the original 

decoded image.  

Kieu et al. [2] proposed a technique using a ternary polynomial surface to reduce 

blocking artifacts, created in the low activity regions of the image. This recovered 

the image details lost during quantization by compensating the DCT co-efficient.  

In ternary surface modeling, the image intensity for each 2×2 macro block was 

calculated, and linear programming techniques are applied to minimize the 

difference between pixel values across the block boundary of the macro block. The 

quantization error resulted in the image after the JPEG compression.  

Abboud [1] presented a simple adaptive low-pass filtering approach that reduces 

blocking artifacts in the image without degrading the quality. This approach 

exploits a property of HVS, in that human vision is more sensitive to blocking 

artifacts present in smoother areas rather than those that have a lot of activity. This 

approach classifies regions of image into highly smooth, relatively smooth and 

highly detailed and then applies strong filtering and week filtering respectively.  

To classify different regions of the image, the function below is used:  

count = Φ (𝑣0 − 𝑣1) + Φ (𝑣1 − 𝑣2) + Φ (𝑣2 − 𝑣3) + Φ (𝑣4 − 𝑣5) + Φ (𝑣5 − 𝑣6) + Φ (𝑣6 − 𝑣7) 

                                              ∅ ( ⍙) =   {
  0, ⍙ ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑   

 1, otherwise
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where, Vo to V7 are adjacent values along the edges in 8×8 block, as shown in 

figure 5. If the count equals 6, the classified area is very smooth. If the count falls 

between 1 and 5, then the area is classified as relatively smooth. If the count is 0, 

the area is classified as highly detailed.  

                                 

                                       Figure 5. Adjacent blocks of pixels 

For highly detailed blocks of an image, a low amount of filtering is applied using a 

higher factor (a = 0.5). A moderate amount of filtering is applied using a moderate 

factor (a = 0.4) to relative smooth blocks. Finally, the blocks which are very 

smooth, strong filtering is applied using a low factor (a = 0.3). Filtering is applied 

to horizontal and vertical block boundaries respectively. Post processing is 

commonly applied in two ways. The algorithm first applies the filtering along the 

vertical boundaries of the block, followed by the horizontal boundaries. 

After a count has been calculated, if it is 6, the above equations are calculated for 

V3 and V4 using h(n) for a = 0.3, v2 and v5 using a =0.4 and v1 and v6 using a = 

0.5. If the count falls between 1 and 5, indicating the region to be relatively smooth, 
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V3 and V4 are calculated using a = 0.4 and V2 and V5 are calculated using a =0.5. 

If count is 0, then the region is complex in nature and only V3 and V4 are calculated 

using a = 0.5.  

The second algorithm follows all the steps of the first one, differing only when 

dealing with the pixels that are filtered both vertically and horizontally. The 

horizontal and vertical filtering is applied independent of the each other for those 

pixels and the mean of the two values is chosen.  

Liaw et al. [12] proposed an approach for image deblocking and restoration based 

on Classified Vector Quantization (CVQ). In CVQ, code words (stored in a 

codebook) are generated from a set of training vectors and used for both the 

encoding and decoding process. Before applying CVQ, a deblocking algorithm was 

applied to the image. The algorithm worked in two steps: classification and 

deblocking. The image was down sampled into 8×8 blocks for classification into 

smooth and non-smooth based on each block’s DCT coefficients. Following the 

classification, deblocking is applied to the block Bm,n and its neighbors. If Bm,n and 

it’s neighboring block Bm+1, n are smooth, then a 1-D filter {1,1,2,4,2,1,1} is applied 

to one half of the block Bm,n  and the adjacent half of the neighboring blocks Bm+1,n.  

Traditionally, vector quantization uses a single codebook for both encoding and 

decoding, and the generalized LIoyd algorithm [12] is used to generate this 

codebook. Once both codebooks are ready, then restoration of the image is applied 

via further classification. The images are broken into 4×4 blocks, and the mean of 

the pixel intensities of each block is calculated and is used to classify the blocks 

into different sub-categories: uniform, texture and edges. Further classification is 
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required if the block is non-uniform to determine whether it falls under an edge 

class or a texture class. The edge orientation is changed if the block belongs to the 

edge class. 

The process of restoration of the image, which consists of encoding and decoding, 

then starts.  For encoding processing, the mean of a block of the image is 

determined and, the block is classified and sub-classified into a respective category. 

For non-edge class, a codeword is determined from the corresponding class of 

codewords in the codebook. In case the block does not belong to any edge-class, 

then the edge direction is calculated. The applicable codeword is retrieved from the 

codebook based on the type, class and direction. When a suitable codeword is 

found, it is subtracted from the input block to calculate a differential vector, the 

codeword index and the differential vector are recorded. If no suitable codeword is 

found, then the block is not changed. This process is repeated until all blocks have 

been encoded. Decoding for image restoration works similarly. The mean values 

are obtained from indices of recorded blocks. The class of the block is determined 

from mean value. For non-edge type blocks, a respective codeword is determined 

from the respective codewords in the codebook, which is determined from class 

and block information. If the block belongs to an edge-class, then an edge 

orientation is calculated. The relative codeword is retrieved from the codebook, 

which is determined from class and block information. This is done repeatedly until 

all blocks are decoded. The image quality can be restored by combining encoding 

and decoding blocks of compressed image.  
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Chou et al. [9] presented a simple post-processing algorithm that attempts to 

estimate the quantization error present in the JPEG compressed images. They 

modeled each DC coefficient (of the DCT) of all the blocks of an image as Gaussian 

random variables, and each AC coefficient (of the DCT) as zero-mean Laplacian 

random variables. They applied a probabilistic framework to estimate the mean 

square error of each DCT coefficient. The estimated quantization error for each n  

n  block is the mean squared quantization error in the DCT domain which is equal 

to the mean squared error in the spatial domain. They determine row and column 

vectors of discontinuing pixel intensities across the image. They used a threshold 

value determined from the previous mean square error. They then attempted to 

identify the discontinuities caused by quantization error. After identifying any 

anomaly in pixel intensities, a new pixel intensity was calculated. The new intensity 

for relevant pixels was determined by using a proportionality constant derived from 

the threshold value and the mean of the image. 

As shown in the picture 6, the algorithm has low complexity and returns impressive 

results from the Lena test image. The compressed image is on the left and filtered 

result is on the right.   
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                                     Figure 6. Lena, before and after 

 Riddhiman et al. [7], proposed an alpha-blend algorithm which is computationally 

efficient for reducing blocky and Gibbs oscillation artifacts from JPEG compressed 

image. The goal of the alpha-blend filter is to reduce noise and artifacts in the image 

without losing image details. An adaptive limit value was calculated from the 

compression ratio of the image being filtered to decide whether a pixel needs to be 

altered or not. A Prewitt filter was used to derive an edge map. After edge map 

creation, the original image was down sampled into 12×12 blocks of pixels centered 

on 8×8-pixel blocks. For each 12×12 block, the corresponding pixels are compared 

with a limit value. For an image edge pixel, no processing is applied. However, for 

pixels less than the limit value, pixel alteration is done as follows.   

                         M[𝑖][𝑗] = 𝑅𝑂𝑈𝑁𝐷 ((1.0−) ∗ 𝑀[𝑖][𝑗]+  ∗ 𝐿𝑜𝑤𝑃𝑎𝑠𝑠[𝑖][𝑗]) 

where,  ranges between 0 and 1 and is calculated from the MSSIM (Mean Square 

Similarity Index Measure), LowPass is the image (M) after application of a low 

pass filter. The 12×12 block window in the image, moves horizontally and 
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vertically until it reaches the extreme edge of the image. Then it moves back to its 

original position and shifts one pixel down vertically followed by a horizontal shift 

again. This is done repeatedly until all pixels in the image have been processed.  

The original alpha blend filter can be summarized by the flowchart in figure 7. First 

a low-pass filter is applied to the image and the result is stored separately. The next 

step is to use a two pass Prewitt operator creating the edge map. The Prewitt filter 

is one of the most popular edge detection operators. It uses vertical and horizontal 

kernels to calculate the approximate derivation of image pixels in both horizontal 

and vertical directions.   
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                       Figure 7.  Flowchart of the alpha blend algorithm 

              Gx  =        [
−1 0 +1
−1 0 +1
−1 0 +1

] * A                Gy  =      [
−1 −1 −1
0 0 0

+1 +1 +1
] * A 

                                   Figure 8: The Prewitt filter.     

In Figure 8, Gx is the horizontal and Gy is the vertical gradient kernel of the Prewitt 

filter. The * operator implies a convolution operation between the image (A) and 

the matrix (Gx and Gy). The magnitude of the gradient for each pixel of A is derived 

as:                    
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result [𝑥] [𝑦] =  √𝐺𝑥
2   +  𝐺𝑦

2   

Their initial algorithm used the original image to calculate the MSSIM. They 

changed the algorithm such that it now uses the compressed image instead of the 

original image to calculate the MSSIM. After that, a test image set was created 

based on compression ratio, ranging from 5% to 95 %. Then  value was 

determined as follows: 

                              =   𝐶𝐿𝐴𝑀P (0.0, 1.0, 
MSSIM(x,y,M)

𝐶
  ) 

where, alpha (), ranges between 0 and 1 and is calculated from the MSSIM of the 

block containing pixel i and j in image M. C is the image compression ratio 

constant.  The value of C ranged between 0 and 10, incremented by 0.1. The PSNR 

(Peak Signal to Noise Ratio) values of all results for each value of limit (from 1 to 

255) was recorded and the best result was selected for each image. The objective 

of this iteration was to determine a best value of the constant (C) for a given 

compression level. Allowing a function to be created for different bpp (bits per 

pixel) values of the images, as the bpp might vary based on the compression level 

of an image. A brute force approach was used, to calculate C in the alpha function 

taking the adaptive limit into consideration. The value of C ranged between 0 and 

10, incremented by 0.1, and applied to all images in the test set. The resulting data 

was curve fitted using the Matlab curve fitting tool. This resulted in:   

           𝐶 = 5.243 ∗ 𝑒 (− ( (𝑏𝑝𝑝 − 2.414) 1.224 ) 2 ) + 3.374 ∗ 𝑒 (− ( (𝑏𝑝𝑝 − 1.057) 0.8201 ) 2 ) 
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A second brute force method was applied, with respect to the new adaptive C value. 

In this stage, the value limit which had been fixed at 64, was varied from 1 to 255, 

and was applied to all images in test set. The denominator C in this function was 

dynamically calculated from the compression ratio of the image. The PSNR values 

for all the results for each value limit from 1 to 255 was recorded. Then, the best 

result was selected for each image. The best result for every compression level was 

selected. The resulting data was curve fitted using the Matlab curve fitting tool. 

This resulted in:    

                                             Limit = 34.12 * bpp-0.8432 + 42.11   

Finally, their results showed significant improvement of images after post 

processing.  Their overall goal was to derive values for C and L that would allow 

the alpha-blend algorithm to adjust images of different compression ratios which 

would reduce blockiness and artifacts.  
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            CHAPTER III 

IMPLEMENTING NEURAL NETWORK IN JPEG IMAGE POST-

PROCESSING TO IMPROVE QUALITY 

  

The main objective of image compression is to reduce storage and transmission 

cost while maintaining image quality. DCT transformation is widely used for 

compression of images due to relative ease of implementation. JPEG image 

compression is based on 8×8 non-overlapping blocks of pixels, where each block 

is transformed, quantized, and encoded independently. In high compression 

ratios, high frequency components are removed from these blocks, which causes 

artifacts.  

We used a neural network to restore degraded JPEG compressed images.  The 

neural network was trained on standard original images: Lena, Baboon, and 

Peppers. Then the trained network is used to post-process any other JPEG image to 

improve quality. 

For image quality assessment the Mean Square Similarity Index Measure (MSSIM) 

and Peak Signal to Noise Ratio (PSNR) are used. PSNR is defined as ratio between 

maximum possible power of a signal and maximum power of intermingled noise 

that corrupts the original signal. It is used for image processing experiments as a 

measure of quality for reconstructed images from lossy algorithms. Here, in our 

experiment, the original signal comes from the uncompressed prior image data and 

noise is the accumulation of artifacts caused by the loss of data due to compression. 

For an image of dimension m × n:    
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                     𝑀𝑆𝐸 =        
2

 

MSE (Mean Square Error) is the error estimate between the original image I and 

the final processing image K. From this equation, PSNR can be calculated as:  

                     PSNR = 10  

where, MAX is maximum pixel value in original image I. 

MSSIM (Mean Square Similarity Index Measure) [13], is the method of measuring 

similarity between two images. MSSIM, as a full reference metric, references the 

uncompressed data of the original image to determine quality of compressed image. 

SSIM is calculated over n × n blocks of pixels using the following equation: 

                             𝑆𝑆𝐼𝑀(𝑥, 𝑦)  =       

Using the above equation, MSSIM of an image can be derived by calculating the 

mean SSIM of all n × n blocks in the image. 

Here, 𝜇𝑥 is the average pixel value of image pixel block x, 𝜇𝑦 is the average pixel 

value of image pixel block y, 𝜎𝑥
2 is the variance of image pixel block x, 𝜎𝑦

2 is the 

variance of image pixel block y, 𝜎𝑥𝑦 is the covariance of image pixel blocks x and 

y, and c1 and c2 are constants. 

A neural network consists of inter-connected nodes called neurons. Each input 

neuron takes one piece of input data, in this case, one pixel from an input image 
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and applies a computation to generate results.  The inter-connections have 

numerical weights which are initially set up with random numbers.  

A neural network consists of connections between the layers. Each connection 

provides the input to the next layer by passing the output from current layer. Each 

connection must have some weight to represent the relative importance. A neuron 

can have many input and output connections. A sample neural network is presented 

in Figure 9. 

 

               

      Figure 9: An Artificial Neural Network  

The learning process adapts the neural network to produce an expected output by 

observing samples from a training dataset. While learning, the neural network 

adjusts the connection weights to improve the accuracy of the result. The accuracy 

is measured by an error function. The error function compares the network output 

(weights) 
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and pre-defined expected output to measure the error. Learning stops when the error 

does not significantly change in next iteration of training.   

There are two types of learning, supervised and unsupervised. In our research we 

used supervised learning with back-propagation. In supervised learning, a paired 

input and output set is used. The goal is to produce a desired output for a given 

input. Learning involves adjusting the weights of the network to improve the output 

of network.  Back-propagation supervised learning has following schema:  

Input --> Forward Calls --> Error Function --> Derivative of Error --> Back-

propagation of Errors   

Here, the input consists of the values given to the input layer, forward calls are 

function calls during the forward pass of the data which take the input values to the 

output layer via hidden layers, the error function compares the network output with 

the expected output, derivation of error comes from  calculating the derivative of 

the error function with respect to the weights of the network,  Back-propagation of 

errors  calculates the gradient of the error function with respect to the neural 

network's weights. Finally, after each stage we modify the weights according to:  

                          New weight = Old weight — Derivative * Learning rate 

The error function in classic back propagation is the mean square error like 

following equation.  

                                   E(X,θ) =  
1

2𝑁
 ∑ (𝑍𝑖 − 𝑦𝑖)

2𝑁
𝑖=1  

where 𝑦
𝑖
is the targeted value for input-output pair ( 𝑥𝑖, 𝑦𝑖

 )  and 𝑦
𝑖
 is output from 

the network on input  𝑥𝑖 . Backpropagation attempts to minimize the above error 



29 
 

function with respect to the neural network's weights by calculating for each 

weight update by the following equation :   

 

                                                  Δ𝑤𝑖𝑗
𝑘  = - α 

𝜕E(X,θ)

𝜕𝑤𝑖𝑗
𝑘  

where  wij
k is the weight for node j in layer k for incoming node i, α is the neural 

network learning rate,  ∂ function defines changes. 

As weights are changed in each iteration (epoch), the value of the error function is 

changed. The error function used in our case is the Mean Square Error, which 

represents the average square error between the network output and expected 

output. 

As JPEG image compression is based on 8x8 non-overlapping blocks of pixels, 

we can divide the whole image into 8×8 blocks of non-overlapping sub images. 

For adjusting pixels, from the degraded image to the original image, we consider 

partially overlapping 12×12 blocks of pixels centered on non-overlapping 8×8 

blocks.  Figure 10 presents a 12×12-pixel block centered about an 8×8 block.  
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          Figure 10: The 8×8 centered pixel block surrounded by a 12×12-pixel block  

Before starting the neural network training process, we need train and test datasets. 

The test and train datasets were generated from the alpha blend output images and 

original (uncompressed) images. For our experiment we chose Lena, Peppers, and 

Baboon pictures to train the network. Figure 11 shows neural network training 

configuration based on Alpha blend output image and Original uncompressed 

image. 

 

 

    (Input Pattern )                                                                             (Output Pattern) 

                      Figure 11: The Neural Network training configuration  

At first, an input and output pattern dataset file named “pixel.data” was made from 

the original and degraded images. While making the dataset file, a partially 

overlapping 12×12-pixel block window was chosen and was moved through all 

pixels in each alpha-blend output image. From this 12×12 block window, 144-pixel 

Alpha blend output 

image’s 12 ×12-

pixel block 

Training Neural 

Network 

Original 

uncompressed 

Image’s 8×8 block.  
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values were taken as input. For selecting output, an 8×8 non-overlapping block 

pixel window, centered on the corresponding 12×12 overlapping block, were taken 

from the original image. Figure 12 has two overlapping 12×12-pixel blocks where 

each is centered on non-overlapping 8×8-pixel blocks.  

        

                    Figure 12: Two overlapping 12×12-pixel blocks from input image.  

The orange and blue solid colors represent two 8×8 non-overlapping blocks. The 

orange and blue outlined boundaries represent the 12×12 overlapping pixel 

blocks.  The 12×12 block pixel values are the input values and 8×8 block pixel 

values are the output values in the train or test patterns. The 12×12 block pixel 

values were taken from the degraded image and then recorded as input data for a 

pattern in the “pixel.data” file. The 8×8-pixel block values were taken from the 

original image and then recorded as the desired output data for a pattern in the 

“pixel.data” file.  

Finally, after moving the two windows from left to right and top to bottom the 

“pixel.data” file had all possible input and output patterns. Then the “pixel.data” 

file was randomly split into test and train pattern files. The train.pat file has the 
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training dataset and the test.pat file has the validation dataset. For our research, we 

set the number of input units to 144 (12×12).  We set the number of output units to 

64 (8×8).  

Our work attempts to decide what values the center pixels of the 12×12 blocks (the 

8×8 blocks) of a degraded image should have by comparing the trained pixel block 

from the neural network.  Figure 13 shows trained neural network working process 

on reconstructing improved images with input from Alpha blend output images.  

 

 

         (Input)                                  (Processing)                                    (Output) 

                      Figure 13: The trained Neural Network working process 

We used SNNS (Stuttgart Neural Network Simulator) as artificial intelligence tool 

in our experiment.  For this purpose, we first need to make test and train files, which 

is already done. Now, the network needs to be trained from the train file and 

validated by the test file.  

SNNS is a neural network simulator developed by the Universität Stuttgart. It can 

be used to generate, train, test and visualize artificial neural networks. This 

simulator has a graphical user interface, a simulator kernel, and a compiler to 

generate neural networks from a high-level network description language.     

To train a network, we first load test.pat and train.pat files in into SNNS. After that, 

other required parameters (in “control panel” and “bignet”) are filled up to start 

Alpha blend output 

image’s 12 × 12-

pixel block 

Trained  Neural 

Network 

Reconstructed 8 × 

8 output image’s 

pixel block.  
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training a network and testing for respective cases.  SNNS can configure a neural 

network based on the input parameters specified in the “bignet” and “control” 

panel by going through the Manager Panel of the SNNS simulator GUI. By 

clicking the BIGNET button in the Manager Panel (figure 10) and selecting 

“general” from list of options, we would get a window like figure 14.  

                                  

                                 Figure 14:  SNNS “Manager” Panel 
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                                  Figure 15: SNNS “Bignet” Panel 

 In the top section of the figure 15, we would define the nodes of the network, the 

bottom section is to define the connections. With this interface anyone can create 

customized layers of a network.  

The number of input nodes represent the number of independent variables in the 

problem, the number of hidden layers is the measure of the nonlinearity of the 

function, and the number of output nodes is the number of dependent variables. As 

already mentioned, we need 144 input nodes and 64 output nodes. There was one 
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hidden layer with 96 nodes.  Figure 16 shows the SNNS Control Panel setting for 

our research. 

                      

                                       Figure 16: SNNS “Control” Panel 

We then click the CONTROL button in the Manager Panel. The most important 

buttons here are CYCLES, VALID, LEARN, SHUFFLE, INIT, ALL and USE. The 

ALL button starts the training using all the patterns in the current training set. The 

editable field next to VALID has currently 10, which means every 10 epochs SNNS 

will show the validation patterns to the network and will calculate the SSE for the 

validation pattern set. The USE button is to select train and test files from the 

selection list. The field next to LEARN button is for learning rate which we set to 

0.2 and the second field is the momentum which was set to 0.01. These values were 

selected as they were that recommended in the SNNS manual. The number of 

epochs SNNS would use is determined by the value in the editable CYCLES field. 

If the SHUFFLE button is highlighted, then SNNS will use random patterns from 

the train file before each cycle starts.  We used 5000 cycles (epochs) and shuffled 
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the patterns from the train and test files. The INIT button will initialize training and 

set the weights to small random values.     

Each iteration is defined as a cycle (epoch). The connection between nodes are 

called weights. Backpropagation is a learning algorithm that iteratively alters the 

value of the weights until the error function is minimized. The error function being 

minimized also depends on the user. In SNNS there is no build-in option for 

selecting the error function, by default it uses the Mean Square Error for measuring 

the error which we will utilize in our experiment. 

Figure 17 shows the SNNS graph window, which shows the training and testing 

errors. After applying random train and test patterns to the network, when there was 

little change in the training error (MSE) the training was allowed to stop. 

 

                                Figure 17: SNNS “Graph” Panel 

 Once the SNNS stopped running epochs, we saved the trained network for further 

usage in our code.  
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At this stage, we have a neural network trained from the original image and alpha 

blend output image. This network will take 12×12 overlapping blocks of pixels as 

input from the alpha blend output image and, based on the training, will make an 

improved 8×8 centered block of pixels respective to the 12×12-pixel blocks input 

from alpha blend output image.   This 12×12 block window was moved from top 

left to bottom right corner of both the input image and the under-construction output 

image by adjusting the centered 8×8 block. 
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            CHAPTER IV 

            EXPERIMENTAL RESULTS  

 

      To train the neural network, we used three images of Lena with compression 

levels of   8%, 19% and 37%, one image of Peppers with a compression level of 

40% and one image of Baboon with a compression level of 50%. Then, we used 

the trained neural network on Reddhiman’s alpha blend output images. We used 

11 Lena JPEG images with compression levels from 5% to 95% as input to the 

alpha blend process with the same bit-per-pixel value for each image that 

Reddhiman used.  Reddhiman kept bit-per-pixel values the same in the images to 

allow direct comparison from other published papers. The output of each input 

image from SNNS neural network showed improvement over the same image 

from previous experimental results in PSNR (Peak Signal to Noise Ratio) and 

MSE (Mean Square Error) values. Table 1 shows the results after neural network 

integration. For assessment of image quality, Mean Square Error (MSE) and Peak 

Signal to Noise Ratio (PSNR) were used. The higher the PSNR, the better the 

quality of images in post-processing. Likewise, the lower the MSE, the better the 

quality in post-processing.  

      The results obtained by several other authors, Reddhiman’s alpha blend, and 

the neural network are also displayed in table 1. To compare results from the trained 

neural network, the input images were used with compression ratios similar in bit-

per-pixel values to the images used in published results.  
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                                               Table 1. Results of SNNS neural network  

 

 

paper 

Com-

pression original   alpha blend   % SNNS   % 

no bpp PSNR MSE PSNR MSE increase PSNR MSE increase 

                    

11 0.158 28.77 83.48 29.64 68.35 3.02 29.85 65.23 3.75 

14 0.15 28.77 83.48 29.64 68.35 3.02 29.85 65.23 3.75 

30 0.15 28.77 83.48 29.64 68.35 3.02 29.85 65.23 3.75 

32 0.169 29.34 73.18 30.17 60.4 2.83 30.41 57.25 3.65 

33 0.16 29.34 73.18 30.17 60.4 2.83 30.41 57.25 3.65 

11 0.188 29.82 65.55 30.61 54.63 2.65 30.87 51.6 3.52 

23 0.189 29.82 65.55 30.61 54.63 2.65 30.87 51.6 3.52 

32 0.187 29.82 65.55 30.61 54.63 2.65 30.87 51.6 3.52 

32 0.209 30.28 59 31 49.88 2.38 31.28 46.86 3.3 

35 0.2 30.28 59 31 49.88 2.38 31.28 46.86 3.3 

20 0.217 30.63 54.33 31.34 46.19 2.32 31.64 43.21 3.3 

9 0.24 31.3 46.61 31.95 40.11 2.08 32.27 37.32 3.1 

11 0.24 31.3 46.61 31.95 40.11 2.08 32.27 37.32 3.1 

14 0.24 31.3 46.61 31.95 40.11 2.08 32.27 37.32 3.1 

30 0.24 31.3 46.61 31.95 40.11 2.08 32.27 37.32 3.1 

37 0.25 31.3 46.61 31.95 40.11 2.08 32.27 37.32 3.1 

11 0.318 32.65 34.16 33.17 30.28 1.59 33.53 27.91 2.7 

35 0.3 32.65 34.16 33.17 30.28 1.59 33.53 27.91 2.7 

14 0.43 34.13 24.24 34.49 22.32 1.05 35.04 19.75 2.67 

37 0.5 34.75 21 35.07 19.5 0.92 35.56 17.5 2.33 

11 0.626 35.66 17.06 35.94 15.98 0.79 36.2 15.12 1.51 

11 0.997 37.62 10.86 37.8 10.4 0.48 37.88 10.04 0.69 

 

       In the above table, the leftmost “paper no” column gives the published paper 

reference numbers, the “Compression bpp” column shows the bit-per-pixel 

(compression) value of the image, the “original PSNR” column lists the actual 

PSNR values obtained from the respective paper’s experiment. The “MSE” column 

to the right of “original PSNR” columns are the “MSE” values obtained from the 

respective paper’s experiment. The “alpha blend PSNR” column shows the PSNR 

values obtained from Reddhiman’s experiment. The “MSE” column, to the right of 
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“alpha blend PSNR” column, lists the MSE values obtained with Reddhiman’s 

alpha blend filter. Reddhiman calculated the percentage of improvement using 

following equation:  

                (Percentage) % increase  =    
𝑎𝑙𝑝ℎ𝑎 𝑏𝑙𝑒𝑛𝑑 𝑃𝑆𝑁𝑅 − 𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑆𝑁𝑅

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑆𝑁𝑅
 × 100  

The “(percentage) % increase” column displays the improvement of Reddhiman’s 

alpha blend PSNR over the original paper’s PSNR. The “SNNS PSNR” column 

shows the PSNR values obtained from the trained neural network’s output image 

for the corresponding compression level. The “MSE” column to the right of “SNNS 

PSNR” column lists the MSE values for each image obtained from the trained 

neural network. We calculated percentage of improvement using the following 

equation:  

               (Percentage) % increase =     
𝑆𝑁𝑁𝑆 𝑃𝑆𝑁𝑅−𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑆𝑁𝑅

𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑃𝑆𝑁𝑅
  × 100  

The “(percentage) % increase” column to the right “SNNS PSNR” column lists the 

improvement of PSNR obtained from the trained neural network over respective 

published paper’s results.  

      As shown in Table 1, the “SNNS PSNR” column values are always higher 

compared with the other PSNR columns.  From, the “(percentage) % increase” 

column on the left side of “SNNS PSNR” column, we can see Reddhiman’s alpha 

blend filter’s PSNR improvement over the respective published paper’s PSNR. The 

“(percentage) % increase” column on the right most side of the table, shows a 

significant improvement of the neural network output image’s PSNR values over 
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corresponding originally published PSNR values. In some cases, for SNNS PSNR, 

it improved by 3.75% with the lowest improved by 0.69%. It is clear from table 1, 

that improvement does not increase PSNR much for low compressed images but 

works significantly better in highly compressed images. Overall, the proposed 

method always has a higher PSNR, and a lower MSE compared with any other 

method presented in table 1. 

       Example images with different compression levels are shown in Figure 18 with 

a high compression JPEG image. Figure 19 shows a low compression JPEG image:  

 

                                  

(a)                                                        (b) 

         Figure 18. (a) Lena with a high compression input JPEG image (0.150 bpp) 

                           (b) Neural network output image 
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(a)                                                    (b) 

          Figure 19. (a) Lena with a low compression input JPEG image (0.430 bpp)  

                             (b) Neural network output image 

Careful examination of the figures shows that reconstructed images from the neural 

network have more high frequency detail then the JPEG compressed images.  
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           CHAPTER V 

                CONCLUSION 

 

       Image processing is a very important part in data compression which is used 

for storing information in devices and transmitting data over communication 

networks. There are two types of image compression- lossy and lossless but the 

most popular compression algorithm is JPEG, which is specified as lossy. We 

wanted to do research in reconstructing image pixels with their original values 

which were lost during image compression process.  

JPEG is very popular in image compression, because it can produce compression 

ratios up to 10:1 with very little deterioration of image quality. JPEG uses a block 

based Discrete Cosine Transformation (DCT), dividing the image into 8x8 blocks 

and then transforming each block using the DCT.     

        Our goal in this research was to implement a neural network for post-

processing of JPEG images. Reddhiman developed an algorithm which produced 

considerable improvement in the quality of post-processed JPEG images, 

irrespective of level of compression present in the image. He developed the alpha 

blend algorithm because of low computational complexity, and ease of 

implementation. Alpha blend can be applied to any image with any level of 

compression.   
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        In our algorithm, we took the alpha blend output as an input to a neural 

network and trained the neural network to compare these input image pixel values 

with the expected pixel values to increase quality. Once we had a trained neural 

network, it could be used to improve JPEG compressed images after processing 

by the alpha blend filter. We saw a significant improvement in PSNR and MSE 

values of images over other methods, after restoring them using a trained neural 

network, which has been presented in chapter 4.  

      In chapter 4, we saw that the PSNR values from different published papers had 

always been lower and that the MSE had always been higher than our SNNS trained 

neural network's PSNR and MSE respectively. The higher the PSNR ratio the better 

the quality of images after post-processing. The lower the MSE the better the 

quality of images. The SNNS trained neural network output image’s PSNR, (Table 

1, chapter 4) resulted in an improvement over the original published paper output 

image’s PSNR as well as the Alpha blend output image’s PSNR. The improvement 

was 3.75 % for the best, 0.69% for the lowest, with an average of 3.3%.  

       Further improvement can be expected through more refinements in the neural 

network. We used 7 to 8 JPEG images with different level of compressions from 

5% to 95%. For improving results, training image file sets can be changed to 

include more compression levels, so that the neural network would learn more 

about pixel values of a compressed image for a certain level of compression.      

       For further improvement of the results, the number of hidden layer nodes can 

be changed. The number of hidden layer nodes while training the neural network 

can be a vital factor in the performance of the trained neural network. We wanted 
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to find a trained neural network which would work best in improving PSNR and 

MSE. Training a neural network with different numbers of hidden layer nodes is a 

very time-consuming task. For each test experiment, with a new number of hidden 

layer nodes, it would take more than 6-7 hours to finish. In some cases, it took 

almost a day. That’s why we did not change the number of hidden layer nodes, 

more than 100 times in the test experiments.  In our experiments, we changed the 

number of hidden layer nodes ranging from 11 to 196 

(11,12,13,18,32,34,36,40,42,44,45,46,47,48,50, 70,72,74, 90, 92, 94,96, 98, 100, 

104, 108, 144, 160 and 196). Then, we reconstructed the images each time from the 

new trained neural network and noted the PSNR and MSE values for each hidden 

layer nodes number change.  Finally, we found that 96 hidden layer nodes produced 

the best-trained neural network in improving PSNR and MSE values of the images 

of all referenced compression levels of Table 1. For rest of the number of hidden 

layer nodes other than 96, the output of trained neural network images   PSNR and 

MSE values did not improve for all referenced compression levels of images from 

Table 1. Images with high compression levels had some improvement in MSE and 

PSNR values for rest of the number of hidden layers other than 96. But for low 

compression levels, it did not improve at all for rest of the number of hidden layers 

other than 96. 

          For each experimental test, while setting the dimension of overlapping pixel 

blocks, we had to set the same dimension in two different places of the code. Once 

we did this while making training and test files and again in reconstructing an image 

from the trained neural network. Here, if we change the dimension of overlapping 
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blocks in trained and test file generation, then the dimension of overlapping blocks 

must be changed while reconstructing an image from the trained neural network.  

    In test 1, instead of 12×12 input pixel blocks, we chose 14×14 input pixel blocks 

and kept the output non overlapping pixel blocks unchanged to 8×8 for generating 

neural network training files from the alpha blend output images and original 

(uncompressed) images.  But we did not see any improvement in PSNR and MSE 

values after using the 14×14 input pixel blocks. In test 2, we changed both the input 

and output pixel block dimensions. We used 8x8 input pixel blocks, instead of 

12×12 input pixel blocks and 3x3 non overlapping output pixel blocks instead of 

8x8 non overlapping output pixel blocks while generating the neural network 

training files. But in both cases, the resulting output images (from the trained 

neural network with input from the alpha blend algorithm) had more blocky 

artifacts.  The output images also had lower PSNR and higher MSE values than 

both alpha blend and other published paper’s output images.   

    In test 2, as JPEG works by dividing the original image into 8×8 blocks, the 3×3 

output pixel blocks inside the 8×8 input pixels block did not generate the entire 

block information for improvement because it was smaller than 8×8. The reason 

is, JPEG compression algorithm works by dividing the original image into 8×8 

non-overlapping blocks and encodes each block individually through several steps, 

which leads to block information loss if the output pixel block dimension is 

changed to any dimension other than 8×8.   

      Changing the numbers of epochs (iterations), while training the neural network, 

can change the result. In our experiment, we used 5000 epochs every time. If the 
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number of epochs is extended to 10000, it may give different results as the number 

of training iterations would be changed. But, while training the neural network, we 

need to make sure that over fitting is not happening as overfitting causes errors in 

predicting and generalizing new input data. In figure 13, we can see that the 

validation curve started to fall initially. Then due to over fitting the validation curve 

started to raise at the early stopping point. To stop over fitting, the training process 

should stop at the number of iterations where early stopping point is been indicated 

in the figure 13.  

 

 

               Figure 20: Graph with overfitting in validation curve  

                              (source: elitedatascience.com) 
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     As already mentioned before, each experiment took 6-7 hours in average using 

5000 epochs. In the case of 10000 epochs, it took the double amount of time, but 

did not result in better PSNR and MSE values, as compared to 5000 epochs.   

     In our experiment, we used grayscale images. The objects in a color image 

reflect different combinations of light wavelengths from red, green and blue color 

channels. While modifying pixel values in JPEG compressed color images, we need 

to balance the combinations of red, green and blue color light intensity to a specific 

color. The color image uses 24 bits per pixel to represent the exact color of that 

pixel through encoding intensity levels ranging from 0 to 255 of red, green and blue 

light wavelengths for each color channel.  For using color images in the 

experiment, we must do some changes in the alpha blend algorithm. The reason we 

have to make changes is because the bits-per-pixel value must be calculated 

separately. Color images have 24 bits per-pixel, 8 bits per each channel band of red, 

green and blue whereas grayscale images have only 8-bits per pixel. After this, train 

and test files need to be generated from the original RGB image and the alpha blend 

output RGB image to train a neural network. The test and train files will work on 

each color channel individually for each pixel in training the neural network. So, 

the trained neural network would be able to modify input RGB image’s color pixels 

individually to expected values. Hence, the output of neural network should 

improve PSNR and MSE values of JPEG compressed color images.    

         Finally, our results showed a clear improvement of Lena images over any 

compression level ranging from 5% to 95%. The image samples with blocking and 

ringing artifacts were smoothened after post-processing with the trained neural 
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networks.  For evaluating results, we used PSNR and MSE. Besides these, for 

further experiments, the Feature Similarity Index (FSIM) and Structural Similarity 

Index (SSIM) can be used to measure improvement in results.  
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