20 research outputs found

    An integrated approach to solving retrial queue complexity

    Get PDF
    Retrial queues have been proposed in literature as a means of managing lost traffic in wireless cellular networks. However, the retrial queue system has led to a more complex Markovic process in network analysis. This complexity is further worsened by the addition of handover prioritization. In this paper, a solution that can minimize this complexity has been studied. The solution involves an integration of computational and analytical modeling techniques. The work was simulated and tested in Matlab/Simulink with guard channels as a handover prioritization scheme. Further evaluations were carried out on the effect of blocking probability (PB) as a quality of service (QoS) parameter. Numerical results obtained from the integrated approach show that the retrial queue reduces the PB for all requests (new and handover). The result obtained from this paper simplifies the solution to the complexity found in retrial queue systems. Furthermore, it was also deduced that reduced retrial rate with corresponding increase in the retrial queue size improves the network quality without an increase in system complexity.Keywords: Markov, retrial, probability, network, traffi

    Modelling and Optimisation of GSM and UMTS Radio Access Networks

    Get PDF
    The size and complexity of mobile communication networks have increased in the last years making network management a very complicated task. GSM/EDGE Radio Access Network (GERAN) systems are in a mature state now. Thus, non-optimal performance does not come from typical network start-up problems, but, more likely, from the mismatching between traffic, network or propagation models used for network planning, and their real counterparts. Such differences cause network congestion problems both in signalling and data channels. With the aim of maximising the financial benefits on their mature networks, operators do not solve anymore congestion problems by adding new radio resources, as they usually did. Alternatively, two main strategies can be adopted, a) a better assignment of radio resources through a re-planning approach, and/or b) the automatic configuration (optimisation, in a wide sense) of network parameters. Both techniques aim to adapt the network to the actual traffic and propagation conditions. Moreover, a new heterogenous scenario, where several services and Radio Access Technologies (RATs) coexist in the same area, is now common, causing new unbalanced traffic scenarios and congestion problems. In this thesis, several optimisation and modelling methods are proposed to solve congestion problems in data and signalling channels for single- and multi-RAT scenarios

    Insensitive Bounds for the Stationary Distribution of a Single Server Retrial Queue with Server Subject to Active Breakdowns

    Get PDF
    The paper addresses monotonicity properties of the single server retrial queue with no waiting room and server subject to active breakdowns. The obtained results allow us to place in a prominent position the insensitive bounds for the stationary distribution of the embedded Markov chain related to the model in the study. Numerical illustrations are provided to support the results

    Acta Cybernetica : Volume 22. Number 3.

    Get PDF

    Energieeffiziente und rechtzeitige Ereignismeldung mittels drahtloser Sensornetze

    Get PDF
    This thesis investigates the suitability of state-of-the-art protocols for large-scale and long-term environmental event monitoring using wireless sensor networks based on the application scenario of early forest fire detection. By suitable combination of energy-efficient protocol mechanisms a novel communication protocol, referred to as cross-layer message-merging protocol (XLMMP), is developed. Qualitative and quantitative protocol analyses are carried out to confirm that XLMMP is particularly suitable for this application area. The quantitative analysis is mainly based on finite-source retrial queues with multiple unreliable servers. While this queueing model is widely applicable in various research areas even beyond communication networks, this thesis is the first to determine the distribution of the response time in this model. The model evaluation is mainly carried out using Markovian analysis and the method of phases. The obtained quantitative results show that XLMMP is a feasible basis to design scalable wireless sensor networks that (1) may comprise hundreds of thousands of tiny sensor nodes with reduced node complexity, (2) are suitable to monitor an area of tens of square kilometers, (3) achieve a lifetime of several years. The deduced quantifiable relationships between key network parameters — e.g., node size, node density, size of the monitored area, aspired lifetime, and the maximum end-to-end communication delay — enable application-specific optimization of the protocol
    corecore