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Abstract. In this paper, we reconsider a two-server heterogeneous retrial queue with threshold policy.
However, the computation time with the existing method is prohibitively large for certain values of the threshold
parameter. Applying the spectral expansion method, we derive a closed-form expression for the eigenvalues and
eigenvectors matrix that are needed to determine the steady-state distribution of a quasi-birth-death process
describing the queue. As a result, the computation time for the performance measures does not depend on the

threshold parameter.
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1. Introduction

Queueing theory has been applied to analyze the perfor-
mance of telecommunication systems, modern information
and communication technology (ICT) systems, production-
inventory systems and manufacturing systems for long time
[1-5]. Retrial queues where blocked customers may re-re-
quest for service after a certain timeout [1, 6-20] form a
specific research topic in the queueing theory. It is worth
mentioning that the impatient behaviour of customers can
be modelled by retrial queues. Furthermore, a retrial
mechanism can be also applied to control the access of
resources in a certain system [21].

[22] considered a two-server heterogeneous retrial
queue with threshold policy. They modelled the system as
a quasi-birth-and-death (QBD) process with threshold
dependent block-tridiagonal infinitesimal matrix and
applied the general theory of matrix-geometric solutions.
Thus, the computation of the rate matrix R (the minimal
non-negative solution to the matrix equation) is based on
the iteration algorithm. However, their analysis procedure
(see [22]) has limited applicability because the computa-
tional time significantly depends on the value of a
threshold. To enhance the applicability of the two-server
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heterogeneous retrial queue with threshold policy for the
analysis of practical systems such as ICT systems and
manufacturing systems, we derive a closed-form solution
for the steady-state probabilities. Therefore, the compu-
tational time needed to obtain the performance measures
does not depend on the threshold, which is demonstrated
by numerical results.

The rest of the paper is organized as follows. In section
2, we describe a model. We present a mathematical
derivation for the closed form solution in section 3.
Numerical results are presented in section 4.

2. A two-server heterogeneous retrial queue
with threshold policy

In this paper, we consider a retrial queue with two servers.
The service time of a customer follows an exponential
distribution with rate g, if the customer is served by the fast
server and with rate p, if the customer is served by the slow
server. Note that u; > u,. Customers arrive according to a
Poisson process with rate 4. A customer (either arriving or
retrial) gets service from the system if

e cither the fast server is idle, or
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e the fast server is busy, the slow server is idle and the
number of customers in the orbit is above threshold g;.

There is an orbit where customers are stored for the case
when customers could not obtain service from the servers.
According to the First Come First Serve (FCFS) principle,
only the customer at the head of the orbit can retry for
accessing servers. If the customer at the head of the orbit
could not get service, he/she will return to the head of the
orbit. The times between retrials (if the current retried
customer is moved to the orbit when the orbit is not
empty) follow the exponential distribution with parameter
Y.

Let J(¢) denote the number of customers in the orbit at
time ¢, and /(¢) describe the state of the servers as follows:

if two servers are idle

the fast server is busy and the slow server is idle

1(r) =

the fast server is idle and the slow server is busy

W NN = O

if two servers are busy

The entire system is described by Continuous Time Markov
Chain (CTMC) Y ={I(¢),J(r)} with state space
{(i,j) : 0<i<3,j>0}. We denote the steady state
probabilities by m;; = lim, .o Pr(I(r) =i,J(t) =), and
introduce 7; = (7o, T1 j, M2, M3)-

The evolution of CTMC Y is driven by the following
transitions.

(a) A;(i, k) denotes a transition rate from state (i, j) to state
(k,j) (0<i,k<3;j=0,1,...), which is caused by
either the arrival of customers or the departure of
customers after service. Matrix A; is defined as the
matrix with elements A;(i, k).

(b) B;(i, k) represents one step upward transition rate from
state (i, j) to state (k,j+1) (0<i,k<3;j=0,1,...),
which is due to the arrival of a customer when it could
not obtain service. In the similar way, matrix B; (B) is
defined with elements B;(i, k).

(c) Cj(i,k) is the transition rate from state (i, j) to state
(k,j—1) (0<i,k<c;j=1,...), which is due to the
successful retrial of a request from the orbit. Matrix C;
(Vj>1) is defined with elements C;(i, k).

Based on the operation rule, we obtain

Y A 0 07

w00 0 .
A= for 0<j<qp;

Uy 0 0 A

L0 Ha Hy 0]

Y A 0 07

0 0 A

A= for j>g;

Uy 0 0 A

L O Ha H 0.

0 0 0 0]
B; = Ag = 0 400 for 0<j<gy—1;
: 0 0 0 0
o o o0 i]
0 0 0 0]
B =Ap = 0 0 0 0 for j>q—1;
0 0 0 0
o o o0 i]
0y 0 0]
0 0 0 0 ,
G =An = 0 0 0 for 1<j<qp;
o 0 0 0]
0 9y 0 0]
0O 0 0 v _
Ci=An= 0 0 0 ) for j > q». (1)
o 0 0 0]

Let us introduce Agg = Ag — DA — DPo_ A = A — DM —
DAo —DA“, Al :qu — D% — pAe — pAn gpd Ap =
A, — D'2 — DA — DA% where D? (Z =A;,B;,C;) is a
diagonal matrix whose diagonal element is the sum of all
elements in the corresponding row of Z.

By equating the flow out and in each state, the balance
equations can be expressed as below.

e In band 1, we have the balance equations
Ti—1Ao1 + TiA10 + T 1Ay =0, 1<i<q —1. (2)

e The balance equations of band 2 is expressed as
follows.

T A + mAR + A =0, i@+ 1. (3)
The boundary balance equations are

moAoo + m1A2 = 0, 4)

7'Eq2,1A01 + 7'5qu11 + ﬂq2+1A22 =0. (5)

3. A closed-form solution

Following [23], we obtain the expression for n;, 0 <i < ¢p»,
from Eq. (2)

4 4
; e .
ni:;al,kWI,kxll,k+;b17k¢l,ky‘11,2k 'Vi=0,...,q2—1, (6)

where a; s and by ;’s are the coefficients to be determined,
and (x4, ¥, (k=1, 2, 3, 4) are the eigenvalue, left-
eigenvector solution pairs of the matrix equations
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(7)

and (yiz, ¢14) (k=1,2, 3, 4) are the eigenvalue, left-
eigenvector solution pairs of the matrix equations

2% [Am + Ajoxi, +A21X%J =0.

b1, [AZI + Aoy, +Ao1yﬂ =0. (8)

This means, we have to determine the appropriate eigenval-
ues and eigenvectors of the characteristic matrix polynomial

Q1(x1) = Aop +x1410 + x1%Ay

x1(=y—74) X3y + X1 4
e Ani-w)
- X1l 0

0 X1ty

The results are

THy
= O, 2 = 07 3 = )
Y11 Y12 Y13 /l(y—&—i)

w - \/4w1(—v/1 — 22— Ay + ?
2094 2% + Jw)

o+ \/4vu1(—vi = 22 = ) + ?

yia=Lys=

i

e 20+ 72+ i) ’
0 0
0 0 )
xi(=y— 24— ) X}y +x14
X1H Atxi(=4 = — 1)

We can get eigenvalues x;, by solving Det[Q; (x1)] = 0 as

X1,1 = O,xl,z =0,
_w—\/4w1(—vi—/12—luz)+w2 (10)
3 = 21y 7
Ay + 4
X4 = %,xl,s =1,
|
> (11)
o+ \/4w1(—w — 2= ) + @?
X1,6 = )
2y

where = 74 + 22 4 iy + Y + 220 + sy + 13-
The eigenvectors are obtained as follows ¥/, ; = [1,0,0, 0],

Y12=100,0,1,0], 5= [_1»_%%» 1»”?%]’ Via=
[1,2£,0,0].

To obtain eigenvalues y; we solve Det[Qx(y1)] =0,
where

0>(1) = Aa1 + y1A10 + y1* Aol

yi(=y—4) 7+ yid
o Y1y YA+ yi(=4— )
B Vil 0
0 Vi

and the eigenvectors are ¢, ; = [0, 1,0,0], ¢;, = [0,0,0, 1],
(]-’)1,3 = [L 7%7 17y+::——:_#2]? ¢1,4 = [17%7070]
Following [24], the probability n;, i > g5, is given by

4

_ i—q> .
T = E Wy ViZqo,
=1

(12)

where (xax,%,,) (k=1,2,3,4) are the eigenvalue, left-
eigenvector solution pairs of the matrix equations

2 [Aoz +Apxy, + Apyy | =0. (13)
Note that |x,x|<1 for k =1, 2, 3, 4. This means, we
have to determine the appropriate eigenvalues and
eigenvectors of the characteristic matrix polynomial

0 0
0 0
Vi(=y = 24— 1) 7+ yid

Vil YA+ yi(—=A =y — 1)
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O(x) = Agx + XAy + x*As)

0+ Ax  x(Z+x) 0 0

— X — (A4 m)x 0 (04 7)

e 0 — 0+ A+ w)x x(A + 7x)

0 Hox nx d— o+ + p)x
. B 1Y e 71 e T e Y (1)
It yields 2 ) (2 + 2pA Ry — Vias),
DetQ(x)] = (x— 1) |((y+ A +31u) (74 A+ 1) =Py iy Py sy~
(74 A+ 1) (7 + 204+ 22+ ypy — Ypixaa) ;
— (1 (P22 +9(3A+m)) — .
+ ((y+;”)2+2(y+2;“)l‘1 ‘Hﬁ) M (14) Hy

= i 17
(7 A+ ) 15)x+ 77y (1 — ﬂz)xz] 278 Y+ A+ U (17)

=x*(x—

1) [cuo —w1x+w2x2],

where

wy = ﬂv((v+ i)’ +w|)(v+i+uz),

o1 = 7( (7 + 222 + 932+ 1))
(O 7 20+ 220 + 1) 1,
+ (7 + A+ p)s),

Wy = Vz,ul(lll — ).

As a consequence, Det[Q(x)] has three zero roots
(2,1 = x22 = x23 = 0), one root equal to 1. In addition,

2403 +9Al

° Det[Q(x) haS one root x2 4= m

if py = .
o= -
e Det[Q(x)] has two roots x274:w and

2(1)2
_o +4/ 0} =4y,
2,5 2(02 f 7é Ha-

Note that the eigenvalues of Eq. (13) are the roots of
Det[Q(x)]. Following the same argument as in [8], if the
QBD process is ergodic, Q(x) should have four eigenvalues
inside the unit circle. As a consequence, |x;,/<1 (for
U = ) and |xp4| <1 (for p; # u,). In what follows, we
also use x4 to refer to x3 , when u; = p,.

It is easy to check that independent left-eigenvectors
corresponding to three null-eigenvalues are
Y21 =[1,0,0,0], Y5, = [0,1,0,0],....3%, 3 = [0,0,1,0].

Let Y, = [1#2’4’171112“’4’2, V2435 1] be the eigenvector
corresponding to x 4. Utilizing ¥, 4Q(x24) = 0, we get

Besides (2), (3), (4) and (5) the normalization equation can
be used to determine the coefficients:

-1

Zn,e-Zn,e—!—Zne—l (18)
i=q>
Since
ekl -1 er
Tie = a VY
PORTED DU et
-1 +y
+ > b O p———>
Z -1 +Y1k
> me= Z@k‘f’zk
i=q>
the solution for coefficients are
e — 1- Gi)ars,
ap 11413,412 A_’_’uz“/( T6Y1,311 12)611,3
a14=Gaa13,b11=0,b12=0,b; 3 =GB13a, 3,
b14=GBua; 3,021 =Gra1 3,022 =Gpa; 3,a23=0,
ar 4= Gogay 3,
yW1-G T
ajz=1/ (Gn + ! - 12/41%6¥1.3) +G147137T14 + G14713
)
Gu(—t1+1—1
+Gy1 +Gop +%+G314(T14+ 1)) ,
24—

(19)
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where

x5 = 1/ (o) (02 + 22 ppy + Py + 204 + ity + 13

- \/—4“/;411 (+ 2+ ) + (A + 22 + 1o (i + ) + 9(2 + oy + Mz))2)7
Yis =1/ QA + 2+ m)) (A + 22+ iy + pa + 20415 + iy o + 15

- \/74“/2#1 (4 2+ ) + (P + 20 + 1o (i + 1) + 1A+ 1y + 1)),
Xaa = 1/(271 (1 — ) (P ry + 3974y + 29270 + 7715 + V1 + 297,
9+ 297y WAty + Vi VG A YA+
— 1)y + A+ 1) + ("/2(#1 + 1)
b+ 1) + 222+ 1) + A (4 + o)

- (Vz(_‘%“l (Vz + 22 +y(20+ 1))

+v((u1 + 1) + 4GB + 2#2)))2))05> :

= (=14 x24)2 + x24(1y + 1))/ (x2.4(x247 + 4)),

B+ A" (2 )
4:)‘(113 (7 + 44 m),

o G VI CL o

)

T6 =y61],23_2,
7= /(0 + A+ ),
T8 _x(]h’g 2;
19 = 1P

Tio = ()f“_z(v + l)qz_l)/v‘”_z,
22(y+ 2)") ) (y2u?),
Y + A'_% ALI)/lll7

’V—’_i)/:ul?

)

= (
(
= (=1+m)/ (=14 (A + 2)/(rm)),
= (

(
=+ O+ 2+w) (/0 + A+ w) — 1))/ (a7 + 4),
(2

and Gyi, G2, Gia, Go1, GByn, Gy, GBi3 and GBy4 are
expressed as long equations in the e-companion [25].

4. Numerical results

4.1 Comparing computational methods

We compare the execution times of a method presented in
[22] with our closed-form solution with parameters
A=22, y=16.5, y; =2.6 and u, = 0.3. Mathematica
scripts were written and were executed in a machine with
Intel Xeon E5410 2.33 GHz processor to produce results.
The execution times vs g, are depicted in figure 1. The
execution times of a closed-form solution are independent

Execution time (s)

50

40

30

20

an existing method —+—

a closed-form sol. --x--

100 120 140 160 180
q2

Figure 1. Comparison of computation methods.

200
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from g, (see figure 2), while the execution times of a
method by [22] rapidly increase. We get results for g, =
4 x 10* when no result can be obtained with a method
presented in [22].

Figure 3 shows the average time spent by customers
in the system for the g, interval from 10 to 700 when
the first server is (60,80,100,120)-fold faster than the
second server. It can be observed that the average
system time of customers can be minimized by the
appropriate choice of ¢,. It is also observed from
table 1 that r = y; /1, has a small impact on the choice
of q>.

0.05 ‘ ‘ ‘
a closed-form sol. —+—
0.04 | E
>
g2 omf .
=
g
2 002+
Q
>
s3]
0.01 | i
0 | | | | | | | |
0 5000 10000 15000 20000 25000 30000 35000 40000
q2
Figure 2. The execution times of a new method.
Hy/1, rates
110 ‘ ~
90 | .
80 | A
=< R
= 70} T b
5 .
o 60
=
50
40
30 0T
20

’ I I I I I 1]
100 200 300 400 500 600 700

q2

Figure 3. The average system time vs r = p; /i,.

Table 1. g, value when the average system time has the lowest
value for r = p; /.

r=u/l q> The average system time
60 44 19.259

80 46 19.4357

100 48 19.5188

120 50 19.5629

5. Conclusions

We have provided closed-form equations for the steady
state probabilities and the performance measures of a two-
server retrial queue with the threshold policy. Numerical
results clearly demonstrate the advantage of the new
method over the existing method.

The operation mode considered in this paper can be used
to model a practical situation related to the application of
two physical servers to provide IT service. The investiga-
tion will be our future work.
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