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The paper addresses monotonicity properties of the single server retrial queue with no waiting room and server subject to active
breakdowns. The obtained results allow us to place in a prominent position the insensitive bounds for the stationary distribution
of the embedded Markov chain related to the model in the study. Numerical illustrations are provided to support the results.

1. Introduction

Queueing systems with repeated attempts have been widely
used to model many problems in telecommunication and
computer systems [1–3]. The essential feature of a retrial
queue is that arriving customers who find all servers busy are
obliged to abandon the service area and join a retrial group,
called orbit, in order to try their luck again after some random
time. For a detailed review of the main results and the liter-
ature on this topic the reader is referred to the monographs
[4, 5]. In recent years, there has been an increasing interest in
the investigation of the retrial phenomenon in cellularmobile
network, see [6–10] and the references therein, and in many
other telecommunication systems including starlike local
area networks [11], wavelength-routed optical networks [12],
circuit-switched systems with hybrid fiber-coax architecture
[13], and wireless sensor networks [14].

On the other hand, in most of the queueing literature,
the server is assumed to be always available, although this
assumption is evidently unrealistic. In fact, queueing systems
with server breakdowns are very common in communication
systems and manufacturing systems, the machine may break
down due to themachine or job related problems.This results
in a period of unavailable time until the servers are repaired.
Such a system with repairable server has been studied as a
queueing model and a reliability model by many authors.
Aissani [15] studies the influence of the reliability of the
communication line on the distribution of the number of

customers in the𝑀/𝐺/1/1 retrial queues. A generalization of
the well-known Pollaczek-Khinchin formula is given for this
case. Aissani [16] considers a retrial queue with redundancy
and unreliable server. Dudin [17] treats a problem similar
to [16], and the problem of redundancy and related control
problem are also discussed. Djellab [18] studies a system
with breakdowns in heavy traffic. Kumar et al. [19] consider
an 𝑀/𝐺/1 retrial queue with feedback and starting failure,
which occurs in the startup period and its repair can be
interpreted as a warm up period (the server is unavailable
to customers). Retrial queues with a server subject to break-
downs and repairs are investigated in [20], where the limiting
behavior of two models is considered by using the tools of
Markov regenerative processes. Aissani andArtalejo [21] deal
with a single server retrial queueing system subject to active
and independent breakdowns. Wang et al. [22] study the
active breakdowns model from the viewpoint of reliability
and some main reliability indices are obtained along with
queueing characteristics. Atencia et al. [23] analysed a retrial
queue with active breakdowns where the interrupted cus-
tomers have the option of joining the orbit or remaining in
the server for the repair in order to conclude their remaining
service.Djellab [24] considered an approximationmethod for
the study of queue size distribution of an unreliable 𝑀/𝐺/1

with general retrial distribution based on the stochastic
decomposition property. Wang and Li [25] investigated a
repairable 𝑀/𝐺/1 retrial queue with Bernoulli vacation,
setup times and two-phase service allowing balking of new
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arriving customers and reneging of customers in the retrial
queue. Sherman et al. [26] study an 𝑀/𝐺/1 retrial queue
in which the server is subject to failures and repairs. Only
customers who are interrupted through the server failures
enter into a retrial orbit of infinite size. Assuming the service
times to be generally distributed and all other times to be
exponentially distributed, the authors provide conditions for
the system stability. By applying the supplementary variables
method, Taleb et al. [27] investigate an 𝑀/𝐺/1 retrial queue
with unreliable server in which an arriving customer decides
to leave without service or enter into a retrial orbit of infinite
size according to a Bernoulli trial when the server is busy. For
a review ofmain results andmethods, the reader is referred to
the survey paper byKrishnamoorthy et al. [28] and references
therein.

An examination of the literature reveals the remarkable
fact that the nonhomogeneity caused by the flow of repeated
attempts is the key to understand most analytical difficulties
arising in the study of retrial queues. Many efforts have
been devoted to deriving performance measures such as
queue length, waiting time, and busy period distributions.
However, these performance characteristics have been pro-
vided through transform methods which have made the
expressions cumbersome and the obtained results cannot be
put into practice. In the last decade, there has been a ten-
dency towards the research of approximations and bounds.
Qualitative properties of stochastic models constitute an
important theoretical basis for approximation methods. One
of the important qualitative properties and approximation
methods is monotonicity which can be studied using the
general theory of stochastic ordering [29].

There is a significant body of literature on monotonicity
results in retrial queues and networks. Liang and Kulkarni
[30] study the monotonicity properties of retrial queues
in order to investigate how the retrial time distribution
affects the behavior of the system. They assume that retrial
times have phase type distributions and show that systems
with longer retrial times, with respect to the K-dominance,
create more customers in the system and in the orbit. From
these results, they derive monotonicity properties of several
performance measures of interest. Liang [31] shows that if
the hazard rate function of the retrial time distribution is
decreasing, then stochastically longer service time or less
servers will result in more customers in the system. Khalil
and Falin [32] investigate some monotonicity properties of
an 𝑀/𝐺/1 retrial queue with exponential retrial times and
linear retrial rate. They show that the number of customers
in steady state stochastically decreases when the arrival
rate decreases with increasing retrial rate and decreasing
service time either stochastically or in the convex order-
ing. Inequalities are derived for the mean characteristics
of the busy period and the number of customers served
during a busy period. Boualem et al. [33] investigate some
monotonicity properties of an 𝑀/𝐺/1 queue with constant
retrial policy in which the server operates under a general
exhaustive service and multiple vacation policy relative to
strong stochastic ordering and convex ordering. Taleb and
Aissani [34] show that if the distribution of the retrial time
is close to the exponential distribution in Laplace transform,

then the exponential bound is closer to the exact value than
the deterministic bound. Otherwise, the deterministic bound
is better. More recently, Boualem et al. [35] use the tools
of a qualitative analysis to investigate various monotonicity
properties for an 𝑀/𝐺/1 retrial queue with classical retrial
policy and Bernoulli feedback. The obtained results allow to
place in a prominent position the insensitive bounds for both
the stationary distribution and the conditional distribution
of the stationary queue of the considered model. Mokdad
and Castel-Taleb [36] propose to use a mathematical method
based on stochastic comparisons of Markov chains in order
to derive performance indices bounds of fixed and mobile
networks.Theirmain objective consists in findingMarkovian
bounding models with reduced state spaces, which are
easier to solve. They apply the methodology to performance
evaluation of complex telecommunication systems modeled
by large size Markov chains which cannot be solved by exact
methods. Using stochastic comparisons methods, they prove
that the new systems represent bounds for the exact ones.
To validate their approach and illustrate its interest, they
present some numerical results. Bušić and Fourneau [37]
illustrate through examples how monotonicity may help for
performance evaluation of mobile networks, by considering
two different applications. In the first one, they assume that a
Markov chain of the model depends on a parameter that can
be estimated only up to a certain level and they have only an
interval that contains the exact value of the parameter. Instead
of taking an approximated value for the unknown parameter,
they show how monotonicity properties of the Markov chain
can be used to take into account the error bound from the
measurements. In the second application, they consider a
well-known approximation method: the decomposition into
Markovian submodels. They show that the monotonicity
property may help to derive bounds for Markovian submod-
els and are sufficient conditions for convergence of iterative
algorithms which are often designed to give approximations.

In this paper, we use the general theory of stochastic
ordering to study monotonicity properties similar to that
of Boualem et al. [35], for a single server retrial queue
with server subject to active breakdowns, that is, the service
station can fail only during the service period, relative to
the strong stochastic ordering, convex ordering, and Laplace
ordering.The obtained results give insensitive bounds for the
stationary distribution of the considered embedded Markov
chain. The rest of the paper is organized as follows. In
the next section, we describe the mathematical model. The
embeddedMarkov chain at departure epochs are investigated
in Section 3. The monotonicity properties of the latter are
discussed in Section 4, and the stochastic inequalities for its
stationary distribution are given in Section 5.The last Section
is devoted to the practical aspect.

2. The Mathematical Model

We consider a single server queueing system in which new
customers (primary calls) arrival in a Poisson process with
rate 𝜆. We assume that there is no waiting space and therefore
if an arriving customer finds the server idle, the customer
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Figure 1: Dynamics of the queueing system.

obtains service immediately and leaves the system after
service completion. Otherwise, if the server is found busy or
down, the customer makes a retrial at a later time and then
the arriving customer becomes a source of repeated calls (a
customer in retrial group). The pool of sources of repeated
calls may be viewed as a sort of queue with infinite capacity. It
is assumed that the retrial times for any repeated customer are
exponentially distributed with rate 𝛼/𝑛 given that there are 𝑛

customers in orbit. In this case, the retrial rate diminishes as
more customers unite to the retrial group. Farahmand [38]
calls the retrial queue with this retrial rate control policy a
retrial queue with discouraged repeated demands.

The service times are independent and identically dis-
tributed with common distribution function 𝐵

1
(𝑥), Laplace-

Stieltjes transform 𝐿
𝐵
1

(𝑠) and 𝑛th moments 𝛽
1,𝑛
. Customers

leave the system forever after service completion.
The server may breakdown when serving customers, and

when the server fails it is sent to repair directly.The customer
just being served before server failure waits for the server to
complete his remaining service. We suppose that the server
lifetime has exponential distribution with rate ]; that is, the
server fails after an exponential time with mean 1/]. It is
assumed that the service time for a customer is cumulative,
and after repair, the server is as good as new.The repair times
follow a general distribution 𝐵

2
(𝑦) with Laplace-Stieltjes

transform 𝐿
𝐵
2

(𝑠) and 𝑛th moments 𝛽
2,𝑛
.

As usual, we suppose that interarrival periods, retrial
times, service times, server lifetimes, and repair times are
mutually independent. Figure 1 illustrates the dynamics of the
queueing system.

At an arbitrary time 𝑡, the system can be described by

𝑋 (𝑡) = (𝐶 (𝑡) ,𝑁 (𝑡) , 𝜉
1
(𝑡) , 𝜉
2
(𝑡)) , (1)

where 𝐶(𝑡) denotes the server state (0, 1, or 2, depending if
the server is free, busy, or down) and 𝑁(𝑡) is the number
of repeated customers at time 𝑡. If 𝐶(𝑡) = 1, then 𝜉

1
(𝑡)

represents the elapsed service time of the customer currently
being served. If𝐶(𝑡) = 2, then 𝜉

1
(𝑡)means the elapsed service

time for the customer under service and 𝜉
2
(𝑡) symbolizes the

elapsed repair time.
From this description, it is clear that the evolution of

our retrial queue can be described in terms of an alternating
sequence of idle and busy periods for the server. After each
service, the next customer to be served is determined by a
competition between two exponential laws of rates 𝜆 and (1−

𝛿
0,𝑛

)𝛼, given that the previous service time left 𝑛 customers in
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Figure 2: The generalized service time of the 𝑛th customer.

orbit. This is the main difference with classical waiting lines
without retrials.

We define 𝜒
𝑛
to be the generalized service time of the 𝑛th

customer; that is, the length of time since the 𝑛th customer
begins to be served until the service is completed, where 𝜒

𝑛

includes the service time 𝜒
𝑛
and some eventual repair times

(𝜔
𝑖
). It is obvious that 𝜒

𝑛
is independent of 𝑛, 𝑛 = 1, 2, . . ..

Figure 2 illustrates the details of the general service presented
on Figure 1 to locate the different variables in the model.

By assumption, repeated calls have no effects on 𝜒
𝑛
.

Hence, some results obtained in [39], where the classical
𝑀/𝐺/1 queueing system with repairable server was studied,
can be used here. In order to obtain the distribution function
of 𝜒
𝑛
, 𝑛 = 1, 2, . . ., define

𝐵
(𝑙)

𝑛
(𝑡)

= Pr {𝜒
𝑛
≤ 𝑡 and server just fails 𝑙 times during

the interval since the 𝑛th customer begins

to be served until the service is completed} ,

𝑛 ≥ 1, 𝑙 ≥ 0, 𝑡 ≥ 0.

(2)

Then, it can be shown in [39] that the generalized succes-
sive service times 𝜒

𝑛
are identically distributed, independent

random variables with distribution function:

𝐵 (𝑡) ≜ 𝐵
𝑛
(𝑡) = Pr [𝜒

𝑛
⩽ 𝑡]

=

∞

∑

𝑙=0

∫

𝑡

0

𝐵
(𝑙)

2
(𝑥 − 𝑢) 𝑒

−]𝑢 (]𝑢)𝑙

𝑙!
𝑑𝐵
1
(𝑢) ,

(3)

which is independent of 𝑛. Its Laplace-Stieltjes transform is

𝐿
𝐵
(𝑠) = ∫

∞

0

𝑒
−𝑠𝑡

𝐵 (𝑡) = 𝐿
𝐵
1

(𝑠 + ] − ]𝐿
𝐵
2
(𝑠)) , Re (𝑠) > 0,

(4)

and its expected value is given by

𝐸 (𝜒
𝑛
) = −

𝑑𝐿
𝐵
(𝑠)

𝑑𝑠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨𝑠=0

= 𝛽
1,1

(1 + ]𝛽
2,1

) . (5)
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Wedenote by𝜒 the generic randomvariable corresponding to
the sequence {𝜒

𝑛
} of independent, identically distributed ran-

dom variables with common distribution 𝐵(𝑥) and Laplace-
Stieltjes transform 𝐿

𝐵
(𝑠). According to these assumptions, we

have

𝜒 = 𝜒 +

𝜑(𝜒)

∑

𝑖=1

𝜔
𝑖
, (6)

where 𝜑(𝜒) is the number of failures during the interval since
the customer in service begins to be served until the service
is completed.

3. Embedded Markov Chain

Let 𝜏
𝑖
be the time of the 𝑖th departure and 𝑁

𝑖
= 𝑁(𝜏

𝑖
+) the

number of repeated customers just after the time 𝜏
𝑖
. It is not

difficult to see the following recursive equation:

𝑁
𝑖
= 𝑁
𝑖−1

− 𝑊
𝑖
+ 𝜂
𝑖
, (7)

where 𝑊
𝑖
= 1 or 0, depending on whether the customer who

leaves the systemat time 𝜏
𝑖
proceeds from the orbit or not, and

𝜂
𝑖
represents the number of customers who enter the system

during the generalized service time of the 𝑖th customer.
The random variable 𝑊

𝑖
depends on the history of the

systembefore the time 𝜏
𝑖−1

only through the variable𝑁
𝑖−1

and
its conditional distribution is given by

𝑃 (𝑊
𝑖
= 1 | 𝑁

𝑖−1
= 𝑛) =

(1 − 𝛿
0,𝑛

) 𝛼

𝜆 + (1 − 𝛿
0,𝑛

) 𝛼
,

𝑃 (𝑊
𝑖
= 0 | 𝑁

𝑖−1
= 𝑛) =

𝜆

𝜆 + (1 − 𝛿
0,𝑛

) 𝛼
.

(8)

The distribution of the random variable 𝜂
𝑖
is given by the

following formula:

𝑏
𝑛
= 𝑃 [𝜂

𝑖
= 𝑛] = ∫

∞

0

(𝜆𝑥)
𝑛

𝑛!
𝑒
−𝜆𝑥

𝑑𝐵 (𝑥) , 𝑛 ≥ 0, (9)

where𝐵(𝑥) is the distribution function of the time a customer
remains in the server. It is easy to show that

∞

∑

𝑛=0

𝑏
𝑛
𝑧
𝑛
= 𝐿
𝐵
(𝜆 − 𝜆𝑧) ,

𝐸 (𝜂
𝑖
) =

∞

∑

𝑛=0

𝑛𝑏
𝑛
= 𝜌 (1 + ]𝛽

2,1
) ,

(10)

where 𝐿
𝐵
(𝑠) = 𝐿

𝐵
1

(𝑠 + ] − ]𝐿
𝐵
2

(𝑠)) is the Laplace-Stieltjes
transform of the time a customer stays in the service station
and 𝜌 = 𝜆𝛽

1,1
is the load of the system.

The previous comments imply that the sequence of ran-
dom variables {𝑁

𝑖
}
∞

𝑖=0
forms a Markov chain with {0, 1, 2, . . .}

as state space, which is the embedded Markov chain for our
queueing system. It is not difficult to see that {𝑁

𝑖
, 𝑖 ∈ N} is

irreducible and aperiodic (see (7)).

The one step transition probabilities of {𝑁
𝑖
, 𝑖 ∈ N} are

defined by the following manner:

𝑝
𝑛,𝑚

=

{{{{{{{{

{{{{{{{{

{

𝑏
𝑚
, if 𝑛 = 0,

𝛼

𝜆 + 𝛼
𝑏
0
, if 𝑛 = 𝑚 + 1,

𝜆

𝜆 + 𝛼
𝑏
𝑚−𝑛

+
𝛼

𝜆 + 𝛼
𝑏
𝑚−𝑛+1

, if 1 ≤ 𝑛 ≤ 𝑚,

0, otherwise.

(11)

From (5), we can see that in order to complete the service
of one customer, the server must spend on average 𝛽

1,1
(1 +

]𝛽
2,1

) units of time during which 𝜆𝛽
1,1

(1 + ]𝛽
2,1

) more
customers will arrive on average. Therefore, for the system to
be stable, we must have 𝜌(1+ ]𝛽

2,1
) < 1− (𝜆/(𝜆+𝛼)). Indeed,

we will use Foster’s criterion (see [40]). The mean drifts are
given by

𝑥
𝑛
= 𝐸 [𝑁

𝑖+1
− 𝑁
𝑖
| 𝑁
𝑖
= 𝑛]

= 𝐸 [𝜂
𝑖+1

| 𝑁
𝑖
= 𝑛] − 𝐸 [𝑊

𝑖+1
| 𝑁
𝑖
= 𝑛]

= 𝜆𝛽
1,1

(1 + ]𝛽
2,1

) −
𝛼

𝜆 + 𝛼
.

(12)

Suppose that 𝜆𝛽
1,1

(1 + ]𝛽
2,1

) < 𝛼/(𝜆 + 𝛼) = 1 − (𝜆/(𝜆 + 𝛼)).
Then 𝜀 = (1/2)[1−(𝜆/(𝜆+𝛼))−𝜆𝛽

1,1
(1+]𝛽

2,1
)] is positive

and there exists

lim
𝑛→∞

𝑥
𝑛
= −1 +

𝜆

𝜆 + 𝛼
+ 𝜆𝛽
1,1

(1 + ]𝛽
2,1

) = −2𝜀 < −𝜀.

(13)

Hence, 𝑥
𝑛

< −𝜀 for all the states except a finite number.
Therefore,

𝜆𝛽
1,1

(1 + ]𝛽
2,1

) < 1 −
𝜆

𝜆 + 𝛼
(14)

is a sufficient condition for the ergodicity of the embedded
Markov chain.

To prove that the previous condition is also a necessary
condition for ergodicity of our embedded Markov chain, we
apply Kaplan’s condition: 𝑥

𝑖
< ∞, for all 𝑖 ≥ 0, and there is

an 𝑖
0
such that 𝑥

𝑖
≥ 0, for 𝑖 ≥ 𝑖

0
. In our case, this condition is

verified because 𝑝
𝑖𝑗

= 0 for 𝑗 < 𝑖 − 1 and 𝑖 > 0 (see (11)).

Remark 1. (i) When ] = 0 (without breakdowns), our system
reduces to the 𝑀/𝐺/1 retrial queue with reliable server and
constant repeated attempts [41].

(ii) When the discipline of retrials is considered classical
policy, our system becomes the 𝑀/𝐺/1 retrial queue with
active breakdowns, where the interrupted customer stays at
the server waiting for the repair in order to complete his
remaining service [22].

(iii) It should be also pointed out that our system can
be considered as a queueing model with server vacations
where the server commences the vacations whenever a
service finishes. The length of the vacations depends on
the arrival process, the number of repeated customers and
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the interretrial times; thus, the vacations conclude when an
external customer arrives or the server randomly selects one
of the repeated customers. In thisway, the endof the vacations
is determined by a competition between two exponential laws
of rates 𝜆 and (1 − 𝛿

0,𝑛
)𝛼, given that at the beginning of

the vacations there were 𝑛 customers in the orbit. With this
definition, it is not surprising that our system verifies the
property stated by Fuhrmann and Cooper [42].

4. Monotonicity Properties of
the Embedded Markov Chain

Stochastic orders lead to powerful approximation methods
and bounds in situations where realistic stochastic models
are too complex for rigorous treatment. They are also helpful
in situations where fundamental model distributions are
only known partially. In economics, there are valuable tools
in the theory of individual decision under risk, where a
decision maker has to compare actions leading to different
uncertain payments. Important fields of application are,
amongst others, queueing theory, reliability theory, statistical
physics, epidemiology, and insurance mathematics [29, 43].

We first introduce the following notions on stochastic
orderings. Here, we only note specifically the following fact,
which will be used later on.

Let 𝐹
1
(𝑥) and 𝐹

2
(𝑥) be two distribution functions of

nonnegative random variables. Then

(a) 𝐹
1
≤st 𝐹2 if and only if 𝐹

1
(𝑥) ≥ 𝐹

2
(𝑥) for all 𝑥 ≥ 0,

(b) 𝐹
1
≤V 𝐹2 if and only if ∫+∞

𝑥
(1 − 𝐹

1
(𝑢))𝑑(𝑢) ≤ ∫

+∞

𝑥
(1 −

𝐹
2
(𝑢))𝑑(𝑢), for all 𝑥 ≥ 0,

(c) 𝐹
1
≤
𝐿
𝐹
2

if and only if ∫
+∞

0
𝑒
−𝑠𝑥

𝑑𝐹
1
(𝑥) ≥

∫
+∞

0
𝑒
−𝑠𝑥

𝑑𝐹
2
(𝑥), for all 𝑠 ≥ 0.

If these random variables are of the discrete type and
𝑝
(1)

= (𝑝
(1)

𝑛
), 𝑝(2) = (𝑝

(2)

𝑛
) are the corresponding distribu-

tions, then the above definitions can be given in the following
manner.

(a) 𝑝
(1)

≤st 𝑝
(2) if and only if∑∞

𝑛=𝑚
𝑝
(1)

𝑛
≤ ∑
∞

𝑛=𝑚
𝑝
(2)

𝑛
for all

𝑚.
(b) 𝑝
(1)

≤V 𝑝
(2) if and only if ∑

∞

𝑛=𝑚
∑
∞

𝑙=𝑛
𝑝
(1)

𝑙
≤

∑
∞

𝑛=𝑚
∑
∞

𝑙=𝑛
𝑝
(2)

𝑙
, for all 𝑚.

(c) 𝑝
(1)

≤
𝐿
𝑝
(2) if and only if ∑

𝑛≥0
𝑝
(1)

𝑛
𝑧
𝑛

≥ ∑
𝑛≥0

𝑝
(2)

𝑛
𝑧
𝑛,

for all 𝑧 ∈ [0, 1].

Let 𝑋 be a positive random variable with distribution
function 𝐹 and mean 𝑚.

(a) 𝐹 is NBUE (New Better than Used in Expectation) if
and only if 𝐹≤V 𝐹

∗,
(b) 𝐹 is NWUE (NewWorse than Used in Expectation) if

and only if 𝐹≥V 𝐹
∗,

where 𝐹
∗ is the exponential distribution function with the

same mean as 𝐹.

Now, we study monotonicity properties of our embedded
Markov chain {𝑁

𝑖
}
∞

𝑖=0
relative to the strong stochastic order-

ing ≤st, the convex ordering ≤V, and Laplace ordering ≤
𝐿
.

Let Σ(1) and Σ
(2) be two𝑀/𝐺/1 retrial queues with server

subject to active breakdowns defined by

𝜆
(1)

, 𝛼
(1)

, ](1), 𝐵(1)
1

(𝑥) , 𝐵
(1)

2
(𝑥) , 𝑏

(1)

𝑖
,

𝜆
(2)

, 𝛼
(2)

, ](2), 𝐵(2)
1

(𝑥) , 𝐵
(2)

2
(𝑥) , 𝑏

(2)

𝑖
,

(15)

respectively. Let 𝜒
(𝑖) and 𝜒

(𝑖) be the service time and the
generalized service time in the 𝑖th system, 𝑖 = 1, 2.

Lemma 2. (1) If ](1) ≤ ](2) and 𝐵
(1)

1
≤
𝑠𝑡
𝐵
(2)

1
, then

𝜑
(1)

(𝜒
(1)

) ≤
𝑠𝑡
𝜑
(2)

(𝜒
(2)

).
(2) If ](1) ≤ ](2), 𝐵

(1)

1
≤
𝑠𝑡
𝐵
(2)

1
, and 𝐵

(1)

2
≤
𝑠𝑡
𝐵
(2)

2
, then

𝜒
(1)

≤
𝑠𝑡
𝜒
(2).

Proof. (1) By definition,

∞

∑

𝑗=𝑚

[𝜑
(𝑖)

(𝜒
(𝑖)

) = 𝑗] =

∞

∑

𝑗=𝑚

∫

∞

0

(](𝑖)𝑥)
𝑗

𝑗!
𝑒
−](𝑖)𝑥

𝑑𝐵
(𝑖)

1
(𝑥)

= ∫

∞

0

[

[

∞

∑

𝑗=𝑚

(](𝑖)𝑥)
𝑗

𝑗!
𝑒
−](𝑖)𝑥]

]

𝑑𝐵
(𝑖)

1
(𝑥) .

(16)

Consider 𝑓
𝑚
(𝑥, ]) = ∑

∞

𝑗=𝑚
((]𝑥)
𝑗
/𝑗!)𝑒
−]𝑥, this is an increasing

function with respect to ] and 𝑥:

(
𝜕

𝜕𝑥
)𝑓
𝑚

(𝑥, ]) = ](
(]𝑥)
𝑚−1

(𝑚 − 1)!
) 𝑒
−]𝑥

> 0,

(
𝜕

𝜕]
)𝑓
𝑚

(𝑥, ]) = 𝑥(
(]𝑥)
𝑚−1

(𝑚 − 1)!
) 𝑒
−]𝑥

> 0.

(17)

Under the assumption that𝐵(1)
1

(𝑥) ≤st 𝐵
(2)

1
(𝑥) andwith the

help of Theorem 1.2.2 given in [43] and by monotonicity of
𝑓
𝑚
(𝑥, ]) with respect to ], one can find that

∫

∞

0

𝑓
𝑚

(𝑥, ](1)) 𝑑𝐵
(1)

1
(𝑥) ≤ ∫

∞

0

𝑓
𝑚

(𝑥, ](1)) 𝑑𝐵
(2)

1
(𝑥)

≤ ∫

∞

0

𝑓
𝑚

(𝑥, ](2)) 𝑑𝐵
(2)

1
(𝑥) .

(18)

Therefore,

∞

∑

𝑗=𝑚

[𝜑
(1)

(𝜒
(1)

) = 𝑗] ≤

∞

∑

𝑗=𝑚

[𝜑
(2)

(𝜒
(2)

) = 𝑗]

or 𝜑
(1)

(𝜒
(1)

) ≤st 𝜑
(2)

(𝜒
(2)

) .

(19)
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(2) To prove that 𝜒
(1)

≤st 𝜒
(2), we have to establish the

usual numerical inequality 𝐸[𝑔(𝜒
(1)

)] ≤ 𝐸[𝑔(𝜒
(1)

)] for all
bounded differentiable increasing functions 𝑔. In our case,

𝐸 [𝑔 (𝜒
(𝑖)

)] = 𝐸[

[

𝑔

{

{

{

𝜒
(𝑖)

+

𝜑
(𝑖)
(𝜒
(𝑖)
)

∑

𝑘=1

𝜔
(𝑖)

𝑘

}

}

}

]

]

= ∫

∞

0

𝐸[

[

𝑔

{

{

{

𝑥 +

𝜑
(𝑖)
(𝑥)

∑

𝑘=1

𝜔
(𝑖)

𝑘

}

}

}

]

]

𝑑𝐵
(𝑖)

1
(𝑥)

= ∫

∞

0

ℎ
(𝑖)

(𝑥) 𝑑𝐵
(𝑖)

1
(𝑥) .

(20)

By direct calculation we can obtain

ℎ (𝑥) =

∞

∑

𝑛=0

𝐸[𝑔{𝑥 +

𝑛

∑

𝑘=1

𝜔
𝑘
}]

(]𝑥)
𝑛

𝑛!
𝑒
−]𝑥

=

∞

∑

𝑛=0

𝑔
𝑛
(𝑥)

(]𝑥)
𝑛

𝑛!
𝑒
−]𝑥

,

(21)

differentiating in 𝑥. Since 𝑔 is increasing and (𝜔
𝑘
) are

positive random variable, then 𝑔
𝑛
(𝑥) is increasing in 𝑛 and 𝑥.

Therefore, ℎ(𝑥) is an increasing function. Finally, we obtain
ℎ
(1)

(𝑥) ≤ ℎ
(2)

(𝑥) and

∫

∞

0

ℎ
(1)

(𝑥) 𝑑𝐵
(1)

1
(𝑥) ≤ ∫

∞

0

ℎ
(2)

(𝑥) 𝑑𝐵
(1)

1
(𝑥)

≤ ∫

∞

0

ℎ
(2)

(𝑥) 𝑑𝐵
(2)

1
(𝑥) .

(22)

Lemma 3. If 𝜆
(1)

≤ 𝜆
(2), ](1) ≤ ](2), 𝐵

(1)

1
≤
𝑠𝑡
𝐵
(2)

1
, and

𝐵
(1)

2
≤
𝑠𝑡
𝐵
(2)

2
, then {𝑏

(1)

𝑛
} ≤
𝑠𝑡
{𝑏
(2)

𝑛
}.

Proof. We have

𝑏
(𝑖)

𝑛
= ∑

𝑗≥𝑛

𝑏
(𝑖)

𝑗
= ∫

+∞

0

∑

𝑗≥𝑛

(𝜆
(𝑖)

𝑥)
𝑗

𝑗!
𝑒
−𝜆
(𝑖)
𝑥
𝑑𝐵
(𝑖)

(𝑥) , 𝑖 = 1, 2.

(23)

To prove that {𝑏(1)
𝑛

} ≤st {𝑏
(2)

𝑛
}, we have to establish the usual

numerical inequality:

𝑏
(1)

𝑛
= ∑

𝑚≥𝑛

𝑏
(1)

𝑚
≤ 𝑏
(2)

𝑛
. (24)

The function 𝑓(𝑥, 𝜆) = ∑
𝑗≥𝑛

((𝜆𝑥)
𝑗
/𝑗!)𝑒
−𝜆𝑥 is increasing

in 𝑥 and 𝜆.
By Lemma 2, we have 𝐵

(1)
(𝑥) ≤st 𝐵

(2)
(𝑥). Then,

∫

∞

0

𝑓 (𝑥, 𝜆
(1)

) 𝑑𝐵
(1)

(𝑥) ≤ ∫

∞

0

𝑓 (𝑥, 𝜆
(2)

) 𝑑𝐵
(1)

(𝑥)

≤ ∫

∞

0

𝑓 (𝑥, 𝜆
(2)

) 𝑑𝐵
(2)

(𝑥) .

(25)

Lemma 4. (1) If ](1) ≤ ](2) and 𝐵
(1)

1
≤V 𝐵
(2)

1
, then

𝜑
(1)

(𝜒
(1)

) ≤V 𝜑
(2)

(𝜒
(2)

).
(2) If ](1) ≤ ](2), 𝐵

(1)

1
≤V 𝐵
(2)

1
, and 𝐵

(1)

2
≤V 𝐵
(2)

2
, then

𝜒
(1)

≤V 𝜒
(2).

Proof. (1) Consider also 𝑓
𝑚
(𝑥, ]) = ∑

∞

𝑗=𝑚
𝑓
𝑗
(𝑥, ]) =

∑
∞

𝑗=𝑚
∑
∞

𝑙=𝑗
((]𝑥)
𝑙
/𝑙!)𝑒
−]𝑥; this is an increasing function with

respect to ], and an increasing and convex one with respect
to 𝑥:

(
𝜕
2

𝜕𝑥2
)𝑓
𝑚

(𝑥, ]) = ]2 (
(]𝑥)
𝑚−2

(𝑚 − 2)!
) 𝑒
−]𝑥

> 0. (26)

Similarly, with the help of Theorem 1.3.1 (see [43]) and
by monotonicity of 𝑓

𝑚
(𝑥, 𝜆) with respect to 𝜆, we obtain the

result.
(2) Let 𝑔 be a twice differentiable increasing convex

function. To prove that 𝜒
(1)

≤V 𝜒
(2), we have to establish the

usual numerical inequality:

𝐸 [𝑔 (𝜒
(1)

)] ≤ 𝐸 [𝑔 (𝜒
(1)

)] , ∀𝑔. (27)

In our case, ℎ(𝑥) = ∑
∞

𝑛=0
𝑔
𝑛
(𝑥)((]𝑥)

𝑛
/𝑛!)𝑒
−]𝑥, which is

increasing and convex.
The rest of demonstration is similar to that of Lemma 2.

Lemma 5. If 𝜆
(1)

≤ 𝜆
(2), ](1) ≤ ](2), 𝐵

(1)

1
≤V 𝐵
(2)

1
, and

𝐵
(1)

2
≤V 𝐵
(2)

2
, then {𝑏

(1)

𝑛
} ≤V {𝑏

(2)

𝑛
}.

Proof. By definition,

𝑏

(𝑖)

𝑛
= ∑

𝑗≥𝑛

𝑏
(𝑖)

𝑗
= ∫

+∞

0

∑

𝑗≥𝑛

∑

𝑙≥𝑗

(𝜆
(𝑖)

𝑥)
𝑙

𝑙!
𝑒
−𝜆
(𝑖)
𝑥
𝑑𝐵
(𝑖)

(𝑥) ,

𝑖 = 1, 2.

(28)

To prove that {𝑏(1)
𝑛

} ≤V {𝑏
(2)

𝑛
}, we have to establish the usual

numerical inequality:

𝑏

(1)

𝑛
= ∑

𝑚≥𝑛

𝑏
(1)

𝑚
≤ 𝑏

(2)

𝑛
. (29)

The function 𝑓
𝑛
(𝑥, 𝜆) = ∑

𝑗≥𝑛
∑
𝑙≥𝑗

((𝜆𝑥)
𝑙
/𝑙!)𝑒
−𝜆𝑥, is

increasing in 𝜆 and is convex in 𝑥.
By Lemma 4, we have 𝐵

(1)
(𝑥) ≤V 𝐵

(2)
(𝑥). Then,

∫

∞

0

𝑓 (𝑥, 𝜆
(1)

) 𝑑𝐵
(1)

(𝑥) ≤ ∫

∞

0

𝑓 (𝑥, 𝜆
(2)

) 𝑑𝐵
(1)

(𝑥)

≤ ∫

∞

0

𝑓 (𝑥, 𝜆
(2)

) 𝑑𝐵
(2)

(𝑥) .

(30)

Lemma 6. (1) If ](1) ≤ ](2) and 𝐵
(1)

1
≤
𝐿
𝐵
(2)

1
, then

𝜑
(1)

(𝜒
(1)

) ≤
𝐿
𝜑
(2)

(𝜒
(2)

).
(2) If ](1) ≤ ](2), 𝐵

(1)

1
≤
𝐿
𝐵
(2)

1
, and 𝐵

(1)

2
≤
𝐿
𝐵
(2)

2
, then

𝜒
(1)

≤
𝐿
𝜒
(2).
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Proof. (1) We have

∑

𝑛≥0

𝑃 [𝜑
(𝑖)

(𝜒
(𝑖)

)] 𝑧
𝑛
= 𝐿
𝐵
(𝑖)

1

(](𝑖) (1 − 𝑧)) , 𝑖 = 1, 2. (31)

Let ](1) ≤ ](2) and 𝐵
(1)

1
≤
𝐿
𝐵
(2)

1
. To prove that

𝜑
(1)

(𝜒
(1)

) ≤
𝐿
𝜑
(2)

(𝜒
(2)

), we have to establish that

𝐿
𝐵
(1)

1

(](1) (1 − 𝑧)) ≥ 𝐿
𝐵
(2)

1

(](2) (1 − 𝑧)) . (32)

The inequality 𝐵
(1)

1
≤
𝐿
𝐵
(2)

1
implies that 𝐿

𝐵
(1)

1

(𝑠) ≥ 𝐿
𝐵
(2)

1

(𝑠)

for all 𝑠 ≥ 0.
In particular, for 𝑠 = ](1)(1 − 𝑧) we have

𝐿
𝐵
(1)

1

(](1) (1 − 𝑧)) ≥ 𝐿
𝐵
(2)

1

(](1) (1 − 𝑧)) . (33)

Since any Laplace transform is a decreasing function,
](1) ≤ ](2) implies that

𝐿
𝐵
(2)

1

(](1) (1 − 𝑧)) ≥ 𝐿
𝐵
(2)

1

(](2) (1 − 𝑧)) . (34)

By transitivity, (33) and (34) give (32).
(2) For the generalized service time, we have

𝐿
𝐵
(𝑖) = 𝐿

𝐵
(𝑖)

1

(𝑠 + ](𝑖) − ](𝑖)𝐿
𝐵
(𝑖)

2

(𝑠)) , 𝑖 = 1, 2. (35)

The function 𝑠 + ] − ]𝐿
𝐵
2

(𝑠) is increasing in ] and decreasing
in 𝐿
𝐵
2

(𝑠).
By hypothesis, we have ](1) ≤ ](2) and 𝐵

(1)

2
≤
𝐿
𝐵
(2)

2
, then

𝑠 + ](1) − ](1)𝐿
𝐵
(1)

2

(𝑠) ≤ 𝑠 + ](2) − ](2)𝐿
𝐵
(2)

2

(𝑠) . (36)

Finally, 𝐵(1)
1

≤
𝐿
𝐵
(2)

1
yields

𝐿
𝐵
(1)

1

(𝑠 + ](1) − ](1)𝐿
𝐵
(1)

2

(𝑠))

≥ 𝐿
𝐵
(2)

1

(𝑠 + ](2) − ](2)𝐿
𝐵
(2)

2

(𝑠)) .

(37)

Lemma 7. If 𝜆
(1)

≤ 𝜆
(2), ](1) ≤ ](2), 𝐵

(1)

1
≤
𝐿
𝐵
(2)

1
and

𝐵
(1)

2
≤
𝐿
𝐵
(2)

2
, then {𝑏

(1)

𝑛
} ≤
𝐿
{𝑏
(2)

𝑛
}.

Proof. We have

∑

𝑛≥0

𝑏
(𝑖)

𝑛
𝑧
𝑛
= 𝐿
𝐵
(𝑖) (𝜆
(𝑖)

(1 − 𝑧)) , 𝑖 = 1, 2. (38)

Let 𝜆
(1)

≤ 𝜆
(2) and by Lemma 6, we obtain the stated

result.

Let𝑇 be the transition operator of our embeddedMarkov
chain, which associates to every distribution 𝑝 = {𝑝

𝑛
}
𝑛≥0

, a
distribution 𝑇

𝑝
= {𝑞
𝑚
}
𝑚≥0

such that 𝑞
𝑚

= ∑
𝑛
𝑝
𝑛
𝑝
𝑛,𝑚

. From
Stoyan [43], 𝑇 is monotone with respect to ≤st if and only if

𝑝
𝑛−1,𝑚

≤ 𝑝
𝑛,𝑚

∀𝑛,𝑚 (39)

and is monotone with respect to ≤V if and only if

2𝑝
𝑛,𝑚

≤ 𝑝
𝑛−1,𝑚

+ 𝑝
𝑛+1,𝑚

∀𝑛,𝑚. (40)

Here, 𝑝
𝑛,𝑚

= ∑
∞

𝑙=𝑚
𝑝
𝑛,𝑙
and 𝑝

𝑛,𝑚
= ∑
∞

𝑙=𝑚
𝑝
𝑛,𝑙
.

Theorem 8. Consider the embedded Markov chain {𝑁
𝑖
, 𝑖 ∈

N}. The transition operator 𝑇 is monotone with respect to the
order ≤

𝑠𝑡
(i.e., for any two distributions 𝑝

(1) and 𝑝
(2), the

inequality 𝑝
(1)

≤
𝑠𝑡
𝑝
(2) implies that 𝑇𝑝(1) ≤

𝑠𝑡
𝑇𝑝
(2)).

Proof. The one-step transition probabilities 𝑝
𝑛,𝑚

of {𝑁
𝑖
, 𝑖 ∈

N} are given by (11). Thus,

𝑝
𝑛,𝑚

=

∞

∑

𝑙=𝑚

[
𝜆

𝜆 + 𝛼
𝑏
𝑙−𝑛

+
𝛼

𝜆 + 𝛼
𝑏
𝑙−𝑛+1

]

= 𝑏
𝑚−𝑛

−
𝛼

𝜆 + 𝛼
𝑏
𝑚−𝑛

= 𝑏
𝑚−𝑛+1

+
𝜆

𝜆 + 𝛼
𝑏
𝑚−𝑛

.

(41)

Consequently,

𝑝
𝑛,𝑚

− 𝑝
𝑛−1,𝑚

=
𝜆

𝜆 + 𝛼
𝑏
𝑚−𝑛

+
𝛼

𝜆 + 𝛼
𝑏
𝑚−𝑛+1

≥ 0. (42)

Finally, 𝑇 is monotone with respect to ≤st.

Theorem 9. Consider the embedded Markov chain {𝑁
𝑖
, 𝑖 ∈

N}. The transition operator of our embedded Markov chain
{𝑁
𝑖
, 𝑖 ∈ N} is monotone with respect to ≤V (i.e., for any two

distributions 𝑝
(1) and 𝑝

(2)), the inequality 𝑝
(1)

≤V 𝑝
(2) implies

that 𝑇𝑝(1) ≤V 𝑇𝑝
(2).

Proof. For the embedded Markov chain {𝑁
𝑖
, 𝑖 ∈ N}, we have

𝑝
𝑛,𝑚

=
𝜆

𝜆 + 𝛼
𝑏
𝑚−𝑛

+
𝛼

𝜆 + 𝛼
𝑏
𝑚−𝑛+1

= 𝑏
𝑚−𝑛

+
𝛼

𝜆 + 𝛼
𝑏
𝑚−𝑛

= 𝑏
𝑚−𝑛+1

+
𝜆

𝜆 + 𝛼
𝑏
𝑚−𝑛

,

(43)

𝑝
𝑛−1,𝑚

+ 𝑝
𝑛+1,𝑚

− 2𝑝
𝑛,𝑚

= 𝑏
𝑚−𝑛

+
𝛼

𝜆 + 𝛼
𝑏
𝑚−𝑛+1

+
𝜆

𝜆 + 𝛼
𝑏
𝑚−𝑛−1

≥ 0.

(44)

Thus, 𝑇 is monotone with respect to ≤V.

Remark 10. In particular, the above Theorems imply that
if at time 𝑡 = 0 the system was empty then the number
of customers in the orbit form a monotonically increasing
sequence with respect to the above orderings.

Remark 11. The operator 𝑇 is not monotone with respect to
the order ≤

𝐿
.

Now, we add the transition operators 𝑇
(1) and 𝑇

(2) to
models Σ

(1) and Σ
(2), respectively.

Theorem 12. If 𝜆
(1)

≤ 𝜆
(2), ](1) ≤ ](2), 𝛼

(1)
≥ 𝛼
(2),

𝐵
(1)

1
(𝑥) ≤
𝑠𝑜

𝐵
(2)

1
(𝑥), and 𝐵

(1)

2
(𝑥) ≤
𝑠𝑜

𝐵
(2)

2
(𝑥), where ≤

𝑠𝑜
is either

≤
𝑠𝑡
or ≤V, then 𝑇

(1)
≤
𝑠𝑜

𝑇
(2); that is, for any distribution 𝑝, we

have 𝑇
(1)

𝑝≤
𝑠𝑜

𝑇
(2)

𝑝.
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Proof. The demonstration is based onTheorem 4.2.3 given in
[43]. We wish to establish that

𝑝
(1)

𝑛,𝑚
≤ 𝑝
(2)

𝑛,𝑚
(for st-ordering) , (45)

𝑝
(1)

𝑛,𝑚
≤ 𝑝
(2)

𝑛,𝑚
(for V-ordering) . (46)

Effectively, from Lemma 3, we have that 𝑏
(1)

𝑛
≤ 𝑏
(2)

𝑛
(for

st-ordering). Under the hypothesis that 𝜆(1) ≤ 𝜆
(2) and 𝛼

(1)
≥

𝛼
(2), one can obtain that 𝜆(1)/𝛼(1) ≤ 𝜆

(2)
/𝛼
(2). Moreover, the

function 𝑥/(𝑥 + 𝑛) is increasing. Consequently, 𝜆(1)/(𝜆(1) +
𝛼
(1)

) ≤ 𝛼
(2)

/(𝜆
(2)

+ 𝛼
(2)

).
Finally,

𝑝
(1)

𝑛,𝑚
=

𝜆
(1)

𝜆(1) + 𝛼(1)
𝑏
(1)

𝑚−𝑛
+

𝛼
(1)

𝜆(1) + 𝛼(1)
𝑏
(1)

𝑚−𝑛+1

= 𝑏
(1)

𝑚−𝑛+1
+

𝜆
(1)

𝜆(1) + 𝛼(1)
𝑏
(1)

𝑚−𝑛

≤ 𝑏
(1)

𝑚−𝑛+1
+

𝜆
(2)

𝜆(2) + 𝛼(2)
𝑏
(1)

𝑚−𝑛

≤
𝜆
(2)

𝜆(2) + 𝛼(2)
𝑏
(2)

𝑚−𝑛
+

𝛼
(2)

𝜆(2) + 𝛼(2)
𝑏
(1)

𝑚−𝑛+1

= 𝑝
(2)

𝑛,𝑚
.

(47)

Following the above technique and using Lemma 5, we
establish inequality (46).

Theorem 13. If 𝜆
(1)

≤ 𝜆
(2), ](1) ≤ ](2), 𝛼

(1)
≥ 𝛼
(2),

𝐵
(1)

1
(𝑥) ≤
𝐿
𝐵
(2)

1
(𝑥), and 𝐵

(1)

2
(𝑥) ≤
𝐿
𝐵
(2)

2
(𝑥), then 𝑇

(1)
≤
𝐿
𝑇
(2);

that is, for any distribution 𝑝, we have 𝑇
(1)

𝑝≤
𝐿
𝑇
(2)

𝑝.

Proof. Let 𝑝 = (𝑝
𝑚
) be a distribution and 𝑇

𝑝
= 𝑞 = (𝑞

𝑚
),

where

𝑞
𝑚

= ∑

𝑛≥0

𝑝
𝑛
𝑝
𝑛,𝑚

= 𝑝
0
𝑏
𝑚

+ ∑

𝑛≥1

𝑝
𝑛
𝑝
𝑛,𝑚

, ∀𝑚 ≥ 0. (48)

Let 𝑏(𝑧) = ∑
𝑛≥0

𝑏
𝑛
𝑧
𝑛 and 𝑝(𝑧) = ∑

𝑛≥0
𝑝
𝑛
𝑧
𝑛 be the

generating functions of (𝑏
𝑛
) and (𝑝

𝑛
), respectively.

The generating function of 𝑞 is given by

𝑞 (𝑧) = ∑

𝑚≥0

𝑞
𝑚
𝑧
𝑚

= ∑

𝑚≥0

[𝑝
0
𝑏
𝑚

+ ∑

𝑛≥1

𝑝
𝑛
𝑝
𝑛,𝑚

] 𝑧
𝑚

= 𝑝
0
𝑏 (𝑧) +

𝜆

𝜆 + 𝛼
𝑏 (𝑧) ∑

𝑛≥1

𝑝
𝑛
𝑧
𝑛

+
𝛼

𝜆 + 𝛼
𝑏 (𝑧) ∑

𝑛≥1

𝑝
𝑛
𝑧
𝑛−1

+
𝛼

𝜆 + 𝛼

𝑝 (𝑧) − 𝑝
0

𝑧
𝑏
0

= 𝑝
0
𝑏 (𝑧) +

𝜆

𝜆 + 𝛼
𝑏 (𝑧) (𝑝 (𝑧) − 𝑝

0
)

+
𝛼

𝜆 + 𝛼

𝑏 (𝑧)

𝑧
(𝑝 (𝑧) − 𝑝

0
) +

𝛼

𝜆 + 𝛼

𝑝 (𝑧) − 𝑝
0

𝑧
𝑏
0

= 𝑏 (𝑧) [𝑝
0
+

𝜆𝑧 + 𝛼

(𝜆 + 𝛼) 𝑧
(𝑝 (𝑧) − 𝑝

0
)]

+
𝛼

𝜆 + 𝛼

𝑝 (𝑧) − 𝑝
0

𝑧
𝑏
0
.

(49)

By Lemma 7, we have 𝑏
(1)

(𝑧) ≥ 𝑏
(2)

(𝑧), for all 𝑧 ∈

[0, 1] and if the conditions of Theorem 13 are fulfilled, then
𝑞
(1)

(𝑧) ≥ 𝑞
(2)

(𝑧).

5. Stochastic Inequalities for
the Stationary Distribution

Theorem 14. Suppose once more that we have two models Σ(1)

and Σ
(2) as defined in the previous section. Let {𝑁

(1)

𝑖
, 𝑖 ∈

N}, {𝑁
(2)

𝑖
, 𝑖 ∈ N} be the corresponding embedded Markov

chains as well as their stationary distributions {𝜋
(1)

𝑛
}, {𝜋
(2)

𝑛
},

respectively. Then 𝜆
(1)

≤ 𝜆
(2), ](1) ≤ ](2), 𝛼

(1)
≥ 𝛼
(2),

𝐵
(1)

1
≤
𝑠𝑜

𝐵
(2)

2
, and 𝐵

(1)

2
(𝑥) ≤
𝑠𝑜

𝐵
(2)

2
(𝑥), where ≤

𝑠𝑜
is either ≤

𝑠𝑡
or

≤V, imply that {𝜋(1)
𝑛

} ≤
𝑠𝑜

{𝜋
(2)

𝑛
}.

Proof. By Theorem 12, the inequalities 𝜆
(1)

≤ 𝜆
(2), ](1) ≤

](2), 𝛼
(1)

≥ 𝛼
(2), 𝐵
(1)

1
≤so 𝐵
(2)

2
, and 𝐵

(1)

2
(𝑥) ≤so 𝐵

(2)

2
(𝑥) imply

that 𝑇
(1)

≤so 𝑇
(2); that is, for any distribution 𝑝, we have the

following inequality:

𝑇
(1)

𝑝≤so 𝑇
(2)

𝑝. (50)

According to Theorems 8 and 9, the operator 𝑇
(2) is mono-

tone; that is, for any two distributions 𝑝
(2)

1
, 𝑝
(2)

2
such that

𝑝
(2)

1
≤so 𝑝
(2)

2
, we have

𝑇
(2)

𝑝
(2)

1
≤so 𝑇
(2)

𝑝
(2)

2
. (51)

Moreover, from (50), one can obtain

𝑇
(1)

𝑝
(1)

≤so 𝑇
(2)

𝑝
(1)

. (52)

There exists a probability 𝑝
(2)

1
such that the inequality

𝑇
(2)

𝑝
(1)

≤so 𝑇
(2)

𝑝
(2)

1
, (53)

takes place.
From (51)–(53), for any two distributions 𝑝

(1), 𝑝(2), one
can obtain the following result:

𝑇
(1)

𝑝
(1)

≤so 𝑇
(2)

𝑝
(2)

. (54)

Therefore,

𝑇
(1)

𝑝
(1)

𝑛
= 𝑃 (𝑁

(1)

𝑙
= 𝑛) ≤so 𝑃 (𝑁

(2)

𝑙
= 𝑛) = 𝑇

(2)
𝑝
(2)

𝑛
, (55)

when 𝑙 → ∞, we have {𝜋
(1)

𝑛
} ≤so {𝜋

(2)

𝑛
}.

Theorem 15. If in the𝑀/𝐺/1 retrial queue with server subject
to active breakdowns, the service time distribution 𝐵

1
(𝑥) and
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the repair time distribution 𝐵
2
(𝑥) are NBUE (or NWUE), then

the stationary distribution of the number of customers in the
system is less (respectively, greater) relative to the ordering ≤V
than the stationary distribution of the number of customers
in the 𝑀/𝑀/1 retrial queue with server subject to active
breakdowns and exponential repair time.

Proof. Denote by Σ
(1) our system defined in Section 2 (i.e.,

a single server retrial queue with server subject to active
breakdowns) with parameters:

𝐵
(1)

1
≡ 𝐵
1
, 𝐵

(1)

2
≡ 𝐵
2
, 𝜆

(1)
= 𝜆, ](1) = ],

𝛼
(1)

= 𝛼, 𝛽
(1)

1,1
= 𝛽
1,1

, 𝛽
(1)

2,1
= 𝛽
2,1

.

(56)

On the other hand, let Σ
(2) be an auxiliary 𝑀/𝑀/1

retrial queue with server subject to active breakdowns and
exponential repair times having the same arrival rate 𝜆

(2)
= 𝜆,

retrial rate 𝛼
(2)

= 𝛼, server lifetime rate ](2) = ], mean
service 𝛽

(2)

1,1
= 𝛽
1,1
, and 𝛽

(2)

2,1
= 𝛽
2,1

as in Σ
(1) system, but with

𝐵
(2)

1
≡ 𝐵
∗

1
and 𝐵

(2)

2
≡ 𝐵
∗

2
, where

𝐵
∗

1
(𝑥) = {

1 − 𝑒
−𝑥/𝛽
1,1 , if 𝑥 ≥ 0,

0, if 𝑥 < 0.

𝐵
∗

2
(𝑥) = {

1 − 𝑒
−𝑥/𝛽
2,1 , if 𝑥 ≥ 0,

0, if 𝑥 < 0.

(57)

If 𝐵
1
(𝑥) and 𝐵

2
(𝑥) are NBUE, then 𝐵

1
(𝑥) ≤V 𝐵

∗

1
(𝑥) and

𝐵
2
(𝑥) ≤V 𝐵

∗

2
(𝑥) (the inequalities are reversed if 𝐵

1
(𝑥) and

𝐵
2
(𝑥) are NWUE). Moreover, the following conditions of

Theorem 14 are satisfied: 𝜆
(1)

= 𝜆
(2), ](1) = ](2), 𝛼

(1)
=

𝛼
(2), 𝐵
(1)

1
(𝑥) ≤V 𝐵

(2)

1
(𝑥) (the inequality is reversed if 𝐵

1
(𝑥)

is NWUE) and 𝐵
(1)

2
(𝑥) ≤V 𝐵

(2)

2
(𝑥) (the inequality is reversed

if 𝐵
2
(𝑥) is NWUE). Thus, {𝜋

𝑛
} is less (respectively, greater

if 𝐵
1
(𝑥) and 𝐵

2
(𝑥) are NWUE) than the corresponding

distribution in the 𝑀/𝑀/1 retrial queue with server subject
to active breakdowns and exponential repair times. That is,

{𝜋
(∗)

𝑛
} ≤V {𝜋

𝑛
} ≤V {𝜋

(∗)

𝑛
} . (58)

Remark 16. Theorem 15 gives insensitive bounds for the sta-
tionary distribution of the number of customers in the system
at departure times of the considered embeddedMarkov chain
by using the partial information about the ageing class of the
service time and repair time distributions.

6. Numerical Examples and Discussions

To illustrate the theoretical result of Theorem 15, a simulator
based on the “discrete event” approach was developed under
MATLAB. It reproduces the behavior of the model consid-
ered in Section 2. Indeed, the simulator can estimate the
stationary distributions of such a systemwhen the service and
repair time distributions are NBUE or NWUE. The results

Table 1: Different simulation cases for fixed parameters 𝜆 = 0.3,
𝛼 = 1, and ] = 0.2.

Case Law type 𝐵
1
(𝑥) 𝐵

2
(𝑥) 𝜌

1
NBUE 𝐸

2
(0.50)

𝑊𝑏𝑙(1.1033, 4)
𝑊𝑏𝑙(1.1033, 4)

0.30exp exp(1.0) exp(1.0)

NWUE 𝑊𝑏𝑙(0.5, 0.5)

Γ(0.5, 2.0)
𝑊𝑏𝑙(0.5, 0.5)

2
NBUE 𝐸

2
(0.75)

𝑊𝑏𝑙(1.6549, 4)
𝑊𝑏𝑙(1.1033, 4)

0.45exp exp(1.5) exp(1.0)

NWUE 𝑊𝑏𝑙(0.5, 0.4156)

Γ(0.5, 3.0)
𝑊𝑏𝑙(0.5, 0.5)

3
NBUE 𝐸

2
(1.0)

𝑊𝑏𝑙(2.2065, 4)
𝑊𝑏𝑙(1.1033, 4)

0.60exp exp(2.0) exp(1.0)

NWUE 𝑊𝑏𝑙(0.5, 0.4156)

Γ(0.5, 3.0)
𝑊𝑏𝑙(0.5, 0.5)

are being compared to those of an 𝑀/𝑀/1 retrial queue
with server subject to active breakdowns and exponential
repair time relative to the convex ordering. To do this, two
probability laws ofNBUE type, namely, aWeibull distribution
(𝑊𝑏𝑙(𝑎, 𝑏), with 𝑎 > 1) and Erlang distribution of order
𝑘 (𝐸
𝑘
(𝜆))) and two other probability laws of NWUE type,

namely, a Weibull distribution (𝑊𝑏𝑙(𝑎, 𝑏), with 𝑎 ≤ 1) and
Gamma distribution (Γ(𝑎, 𝑏), with 0 ≤ 𝑎 < 1) are chosen.
Table 1 summarizes three situations for different numerical
values of the laws parameters.

For a simulation time 𝑡max = 10000 units and 𝑛 = 100

(number of replications), Figure 3, reflecting the three cases
studied in Table 1, shows the following.

(i) The stationary distribution of the number of cus-
tomers in the 𝑀/𝑀/1 retrial queue with server sub-
ject to active breakdowns and exponential repair time
is greater (respectively, less) than the stationary dis-
tribution of the number of customers in the 𝑀/𝐺/1

retrial queue with server subject to active break-
downs, where the service time distribution 𝐵

1
(𝑥)

and the repair time distribution 𝐵
2
(𝑥) are NBUE

(respectively,𝐵
1
(𝑥) and𝐵

2
(𝑥) are NWUE); that is, the

inequality {𝜋
(NBUE)
𝑛

} ≤V {𝜋
(exp)
𝑛

} ≤V {𝜋
(NWUE)
𝑛

} holds.

(ii) Figure 3 also shows that the load of the system has a
significant influence on the stationary distribution of
the number of customers in the system at departure
times. Indeed, when 𝜌 is close to 0, then our system
tends to behave as an 𝑀/𝑀/1 retrial queue with
server subject to active breakdowns and exponential
repair time (see Figure 3(a)). Otherwise, when, for
example, 𝜌 tends to be 0.6, our system moves away
from an 𝑀/𝑀/1 retrial queue with server subject to
active breakdowns and exponential repair time (see
Figure 3(c)).
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Figure 3: Comparison of the stationary distributions of the number of customers in the systems for the three considered cases.

7. Conclusion and Further Research

In this paper, we use a monotonicity approach to establish
insensitive bounds for some performance measures of a
single server retrial queue with server subject to active
breakdowns by using the theory of stochastic orderings. The
proposed technique is quite different from those in Djellab
[18] and Wang et al. [22], in the sense that our approach
provides the fact that we can come to a compromise between
the role of these qualitative bounds and the complexity
of resolution of some complicated systems where some
parameters are not perfectly known (e.g., the service times
and repair times distributions are unknown). We prove the
monotonicity of the transition operator of the embedded
Markov chain relative to strong stochastic ordering and

convex ordering. We obtain comparability conditions for the
distribution of the number of customers in the system. The
main result of this paper consists in giving insensitive bounds
for the stationary distribution of the considered embedded
Markov chain. Such a result is confirmed by numerical
illustrations.

In conclusion, the monotonicity approach holds promise
for the solution of several systems with repeated attempts.
Hence, it is worth noting that our approach can be further
extended to more complex systems (e.g., resource allocation
problems in mobile networks).

Moreover, the qualitative bounds given in this paper may
have an interesting impact on “robustness analysis”; if there
is insecurity on the input of a model, then our order results
provide information on what kind of deviation from the



Advances in Operations Research 11

nominal model to expect. In gradient estimation one has to
control the growth of the cycle length as function of a change
of the model.
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[5] J. R. Artalejo and A. Gómez-Corral, Retrial Queueing Systems:
A Computational Approach, Springer, Berlin, Germany, 2008.
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