518,883 research outputs found

    A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation

    Full text link
    Cellular electron cryo-tomography enables the 3D visualization of cellular organization in the near-native state and at submolecular resolution. However, the contents of cellular tomograms are often complex, making it difficult to automatically isolate different in situ cellular components. In this paper, we propose a convolutional autoencoder-based unsupervised approach to provide a coarse grouping of 3D small subvolumes extracted from tomograms. We demonstrate that the autoencoder can be used for efficient and coarse characterization of features of macromolecular complexes and surfaces, such as membranes. In addition, the autoencoder can be used to detect non-cellular features related to sample preparation and data collection, such as carbon edges from the grid and tomogram boundaries. The autoencoder is also able to detect patterns that may indicate spatial interactions between cellular components. Furthermore, we demonstrate that our autoencoder can be used for weakly supervised semantic segmentation of cellular components, requiring a very small amount of manual annotation.Comment: Accepted by Journal of Structural Biolog

    Insightful classification of crystal structures using deep learning

    Full text link
    Computational methods that automatically extract knowledge from data are critical for enabling data-driven materials science. A reliable identification of lattice symmetry is a crucial first step for materials characterization and analytics. Current methods require a user-specified threshold, and are unable to detect average symmetries for defective structures. Here, we propose a machine-learning-based approach to automatically classify structures by crystal symmetry. First, we represent crystals by calculating a diffraction image, then construct a deep-learning neural-network model for classification. Our approach is able to correctly classify a dataset comprising more than 100 000 simulated crystal structures, including heavily defective ones. The internal operations of the neural network are unraveled through attentive response maps, demonstrating that it uses the same landmarks a materials scientist would use, although never explicitly instructed to do so. Our study paves the way for crystal-structure recognition of - possibly noisy and incomplete - three-dimensional structural data in big-data materials science.Comment: Nature Communications, in press (2018

    On Interpretability of Deep Learning based Skin Lesion Classifiers using Concept Activation Vectors

    Full text link
    Deep learning based medical image classifiers have shown remarkable prowess in various application areas like ophthalmology, dermatology, pathology, and radiology. However, the acceptance of these Computer-Aided Diagnosis (CAD) systems in real clinical setups is severely limited primarily because their decision-making process remains largely obscure. This work aims at elucidating a deep learning based medical image classifier by verifying that the model learns and utilizes similar disease-related concepts as described and employed by dermatologists. We used a well-trained and high performing neural network developed by REasoning for COmplex Data (RECOD) Lab for classification of three skin tumours, i.e. Melanocytic Naevi, Melanoma and Seborrheic Keratosis and performed a detailed analysis on its latent space. Two well established and publicly available skin disease datasets, PH2 and derm7pt, are used for experimentation. Human understandable concepts are mapped to RECOD image classification model with the help of Concept Activation Vectors (CAVs), introducing a novel training and significance testing paradigm for CAVs. Our results on an independent evaluation set clearly shows that the classifier learns and encodes human understandable concepts in its latent representation. Additionally, TCAV scores (Testing with CAVs) suggest that the neural network indeed makes use of disease-related concepts in the correct way when making predictions. We anticipate that this work can not only increase confidence of medical practitioners on CAD but also serve as a stepping stone for further development of CAV-based neural network interpretation methods.Comment: Accepted for the IEEE International Joint Conference on Neural Networks (IJCNN) 202

    Load Balancing and Virtual Machine Allocation in Cloud-based Data Centers

    Get PDF
    As cloud services see an exponential increase in consumers, the demand for faster processing of data and a reliable delivery of services becomes a pressing concern. This puts a lot of pressure on the cloud-based data centers, where the consumers’ data is stored, processed and serviced. The rising demand for high quality services and the constrained environment, make load balancing within the cloud data centers a vital concern. This project aims to achieve load balancing within the data centers by means of implementing a Virtual Machine allocation policy, based on consensus algorithm technique. The cloud-based data center system, consisting of Virtual Machines has been simulated on CloudSim – a Java based cloud simulator

    Angel Groups: Developing a Regional Economic Development Strategy for Robust Seed Capital Ecosystems for Entrepreneurs

    Get PDF
    The purpose of this paper is to identify the link between the success of angel organizational structures and the economic footprint within which angel groups operate; ultimately suggesting a novel approach of assisting traditional angel group structures in their operations and entrepreneurs in the process of securing early stage financing. Given the varied angel group structures that exist, some angel portals may be more appropriate for certain regions than others. In-depth field research was developed and analyzed by creating the first undergraduate student-run angel investment fund, to co-invest with investors in the informal venture capital market, in the United States. The research presented in this paper will provide economic planners, educational leaders, and interested students with a potential guideline of how best to organize angel investors within their respective regions, ultimately building local investment capacity that will benefit state economies by creating better financing opportunities for entrepreneurs

    Topology of Networks in Generalized Musical Spaces

    Get PDF
    The abstraction of musical structures (notes, melodies, chords, harmonic or rhythmic progressions, etc.) as mathematical objects in a geometrical space is one of the great accomplishments of contemporary music theory. Building on this foundation, I generalize the concept of musical spaces as networks and derive functional principles of compositional design by the direct analysis of the network topology. This approach provides a novel framework for the analysis and quantification of similarity of musical objects and structures, and suggests a way to relate such measures to the human perception of different musical entities. Finally, the analysis of a single work or a corpus of compositions as complex networks provides alternative ways of interpreting the compositional process of a composer by quantifying emergent behaviors with well-established statistical mechanics techniques. Interpreting the latter as probabilistic randomness in the network, I develop novel compositional design frameworks that are central to my own artistic research
    • …
    corecore