991 research outputs found

    Artificial intelligence for throughput bottleneck analysis – State-of-the-art and future directions

    Get PDF
    Identifying, and eventually eliminating throughput bottlenecks, is a key means to increase throughput and productivity in production systems. In the real world, however, eliminating throughput bottlenecks is a challenge. This is due to the landscape of complex factory dynamics, with several hundred machines operating at any given time. Academic researchers have tried to develop tools to help identify and eliminate throughput bottlenecks. Historically, research efforts have focused on developing analytical and discrete event simulation modelling approaches to identify throughput bottlenecks in production systems. However, with the rise of industrial digitalisation and artificial intelligence (AI), academic researchers explored different ways in which AI might be used to eliminate throughput bottlenecks, based on the vast amounts of digital shop floor data. By conducting a systematic literature review, this paper aims to present state-of-the-art research efforts into the use of AI for throughput bottleneck analysis. To make the work of the academic AI solutions more accessible to practitioners, the research efforts are classified into four categories: (1) identify, (2) diagnose, (3) predict and (4) prescribe. This was inspired by real-world throughput bottleneck management practice. The categories, identify and diagnose focus on analysing historical throughput bottlenecks, whereas predict and prescribe focus on analysing future throughput bottlenecks. This paper also provides future research topics and practical recommendations which may help to further push the boundaries of the theoretical and practical use of AI in throughput bottleneck analysis

    A generic hierarchical clustering approach for detecting bottlenecks in manufacturing

    Get PDF
    The advancements in machine learning (ML) techniques open new opportunities for analysing production system dynamics and augmenting the domain expert\u27s decision-making. A common problem for domain experts on the shop floor is detecting throughput bottlenecks, as they constrain the system throughput. Detecting throughput bottlenecks is necessary to prioritise maintenance and improvement actions and obtain greater system throughput. The existing literature provides many ways to detect bottlenecks from machine data, using statistical-based approaches. These statistical-based approaches can be best applied in environments where the statistical descriptors of machine data (such as distribution of machine data, correlations and stationarity) are known beforehand. Computing statistical descriptors involves statistical assumptions. When the machine data doesn\u27t comply with these assumptions, there is a risk of the results being disconnected from actual production system dynamics. An alternative approach to detecting throughput bottlenecks is to use ML- based techniques. These techniques, particularly unsupervised ML techniques, require no prior statistical information on machine data. This paper proposes a generic, unsupervised ML-based hierarchical clustering approach to detect throughput bottlenecks. The proposed approach is the outcome of systematic and careful selection of ML techniques. It begins by generating a time series of the chosen bottleneck detection metric and then clustering the time series using a dynamic time-wrapping measure and a complete-linkage agglomerative hierarchical clustering technique. The results are clusters of machines with similar production dynamic profiles, revealed from the historical data and enabling the detection of bottlenecks. The proposed approach is demonstrated in two real-world production systems. The approach integrates the concept of humans in-loop by using the domain expert\u27s knowledge

    Bottleneck identification and analysis for an underground blast cycle operation

    Get PDF
    Increasing demand for raw materials and base metals together with severe environmental regulations influence mining operations to be more economic, competitive, and sustainable. Since mining involve numerous operations which difficulty ranges from simple to very complex, each of them need proper design, performance and optimization. Mining operations including activities within blasting cycle affects productivity the most, and thereby their planning and performance is the most important from production point of view. Since blasting cycle operations include many complex activities where many inner and outer factors have an influence on operating efficiency, it is crucial to thoroughly investigate the system every time new problems arise or when looking for improvements. According to Theory of Constraints every production system has at least one bottleneck. Blast cycle operations may be treated as a system regarding production. Therefore, there is/are constraint(s) which should be solved and bottleneck(s) should be debottlenecked. It is in demand to properly identify constraints within the blasting cycle operations and subsequently take measures to improve them for enhanced production results. Due to system complexity and presence of many factors and variables it is efficient to use some techniques that will facilitate analysis. Discrete event simulation approach makes it possible to analyze underground mining operations and identify critical points where improvements could be made. In these thesis computer simulation approach, together with concepts derived from theory of constraints were used to identify bottleneck and perform its analysis. Many simulations were conducted to search for improvements and indicate those with the highest potential for development and increase of production

    Mining association rules for the quality improvement of the production process

    Get PDF
    Academics and practitioners have a common interest in the continuing development of methods and computer applications that support or perform knowledge-intensive engineering tasks. Operations management dysfunctions and lost production time are problems of enormous magnitude that impact the performance and quality of industrial systems as well as their cost of production. Association rule mining is a data mining technique used to find out useful and invaluable information from huge databases. This work develops a better conceptual base for improving the application of association rule mining methods to extract knowledge on operations and information management. The emphasis of the paper is on the improvement of the operations processes. The application example details an industrial experiment in which association rule mining is used to analyze the manufacturing process of a fully integrated provider of drilling products. The study reports some new interesting results with data mining and knowledge discovery techniques applied to a drill production process. Experiment’s results on real-life data sets show that the proposed approach is useful in finding effective knowledge associated to dysfunctions causes

    Simulation in Automated Guided Vehicle System Design

    Get PDF
    The intense global competition that manufacturing companies face today results in an increase of product variety and shorter product life cycles. One response to this threat is agile manufacturing concepts. This requires materials handling systems that are agile and capable of reconfiguration. As competition in the world marketplace becomes increasingly customer-driven, manufacturing environments must be highly reconfigurable and responsive to accommodate product and process changes, with rigid, static automation systems giving way to more flexible types. Automated Guided Vehicle Systems (AGVS) have such capabilities and AGV functionality has been developed to improve flexibility and diminish the traditional disadvantages of AGV-systems. The AGV-system design is however a multi-faceted problem with a large number of design factors of which many are correlating and interdependent. Available methods and techniques exhibit problems in supporting the whole design process. A research review of the work reported on AGVS development in combination with simulation revealed that of 39 papers only four were industrially related. Most work was on the conceptual design phase, but little has been reported on the detailed simulation of AGVS. Semi-autonomous vehicles (SA V) are an innovative concept to overcome the problems of inflexible -systems and to improve materials handling functionality. The SA V concept introduces a higher degree of autonomy in industrial AGV -systems with the man-in-the-Ioop. The introduction of autonomy in industrial applications is approached by explicitly controlling the level of autonomy at different occasions. The SA V s are easy to program and easily reconfigurable regarding navigation systems and material handling equipment. Novel approaches to materials handling like the SA V -concept place new requirements on the AGVS development and the use of simulation as a part of the process. Traditional AGV -system simulation approaches do not fully meet these requirements and the improved functionality of AGVs is not used to its full power. There is a considerflble potential in shortening the AGV -system design-cycle, and thus the manufacturing system design-cycle, and still achieve more accurate solutions well suited for MRS tasks. Recent developments in simulation tools for manufacturing have improved production engineering development and the tools are being adopted more widely in industry. For the development of AGV -systems this has not fully been exploited. Previous research has focused on the conceptual part of the design process and many simulation approaches to AGV -system design lack in validity. In this thesis a methodology is proposed for the structured development of AGV -systems using simulation. Elements of this methodology address the development of novel functionality. The objective of the first research case of this research study was to identify factors for industrial AGV -system simulation. The second research case focuses on simulation in the design of Semi-autonomous vehicles, and the third case evaluates a simulation based design framework. This research study has advanced development by offering a framework for developing testing and evaluating AGV -systems, based on concurrent development using a virtual environment. The ability to exploit unique or novel features of AGVs based on a virtual environment improves the potential of AGV-systems considerably.University of Skovde. European Commission for funding the INCO/COPERNICUS Projec

    Intrinsic and post-hoc XAI approaches for fingerprint identification and response prediction in smart manufacturing processes

    Get PDF
    In quest of improving the productivity and efficiency of manufacturing processes, Artificial Intelligence (AI) is being used extensively for response prediction, model dimensionality reduction, process optimization, and monitoring. Though having superior accuracy, AI predictions are unintelligible to the end users and stakeholders due to their opaqueness. Thus, building interpretable and inclusive machine learning (ML) models is a vital part of the smart manufacturing paradigm to establish traceability and repeatability. The study addresses this fundamental limitation of AI-driven manufacturing processes by introducing a novel Explainable AI (XAI) approach to develop interpretable processes and product fingerprints. Here the explainability is implemented in two stages: by developing interpretable representations for the fingerprints, and by posthoc explanations. Also, for the first time, the concept of process fingerprints is extended to develop an interpretable probabilistic model for bottleneck events during manufacturing processes. The approach is demonstrated using two datasets: nanosecond pulsed laser ablation to produce superhydrophobic surfaces and wire EDM real-time monitoring dataset during the machining of Inconel 718. The fingerprint identification is performed using a global Lipschitz functions optimization tool (MaxLIPO) and a stacked ensemble model is used for response prediction. The proposed interpretable fingerprint approach is robust to change in processes and can responsively handle both continuous and categorical responses alike. Implementation of XAI not only provided useful insights into the process physics but also revealed the decision-making logic for local predictions

    Exploration and implementation of Seaport Manatee to relieve the supply chain congestion at California ports

    Get PDF
    For the global economy to thrive, a stable supply chain network is imperative to provide control of the seamless flow of goods. What is detrimental to supply chain performance due to inconsistency can be costly and consequently cause out-of-stock items, deficient use of container storage capacity and faulty logistics planning. This feasibility study examined leadership decisions in the face of supply chain turbulence. The analysis introduces the congestion free SeaPort Manatee in Palmetto, Florida. It establishes how this seaport could offer an alternative sea trade path to alleviate the supply chain strain since the U.S. will most likely continue to experience an increase in global trade instability. As the closest U.S. port to the Panama Canal, the study, in part, explores the significance of the canal as a primary conduit that allows Panamax and Neo-Panamax vessels expeditious transit from the West Coast to the Gulf Coast. Together with the new locks, the canal can handle ships with an overall length of 1200 feet, 160 feet wide (beam) and a draft of 40 feet. Consequently, not all vessels can travel through the Panama Canal regardless of its newly expanded locks (Rosenberg, 2019). The study also presents data to show how some cargo vessels sailing into Sea Port Manatee have a deep draft, which results in them being restricted by tidal ocean conditions. The draft is the minimum amount of water required to float the boat without it touching the bottom, allowing container vessels to successfully transport up to 15,000 (TEU) cargo containers through the canal. Catastrophic events such as natural disasters, a volatile political climate, and a health pandemic directly impact a company\u27s business strategy. This study addresses the challenge for leadership to make decisions to relieve the congestion at U.S. West Coast ports. By engaging in conversations with vessel shipping lines, shipping lines could create new sea trade routes in exchange for inefficient routes between Asia and the U.S. West Coast. This study introduced how sea-level rise will significantly influence port expansion at Sea Port Manatee and how vessels entering and exiting the port must do so under specific conditions

    A control strategy for promoting shop-floor stability

    Get PDF
    This research aimed to study real-time shop floor control problem in a manufacturing environment with dual resource (machine and labour), under impact of machine breakdowns. In this study, a multiperspective (order and resource perspectives) control strategy is proposed to improve effectiveness of dispatching procedure for promoting shop floor stability. In this control strategy, both order and resource related factors have been taken into account according to information on direct upstream and succeeding workcentres. A simulated manufacturing environment has been developed as a platform for testing and analysing performances of the proposed control strategy. A series of experiments have been carried out in a variety of system settings and conditions in the simulated manufacturing environment. The experiments have shown that the proposed control strategy outperformed the ODD (Earliest Operation Due Date) rule in hostile environments, which have been described by high level of shop load and/or high intensity of machine breakdowns. In hostile environments, the proposed control strategy has given best performance when overtime was not used, and given promising results in reduction of overtime cost when overtime was used to compensate for capacity loss. Further direction of research is also suggested
    corecore