
A generic hierarchical clustering approach for detecting
bottlenecks in manufacturing

Downloaded from: https://research.chalmers.se, 2020-07-11 06:48 UTC

Citation for the original published paper (version of record):
Subramaniyan, M., Skoogh, A., Sheikh, M. et al (2020)
A generic hierarchical clustering approach for detecting bottlenecks in manufacturing
Journal of Manufacturing Systems, 55: 143-158
http://dx.doi.org/10.1016/j.jmsy.2020.02.011

N.B. When citing this work, cite the original published paper.

research.chalmers.se offers the possibility of retrieving research publications produced at Chalmers University of Technology.
It covers all kind of research output: articles, dissertations, conference papers, reports etc. since 2004.
research.chalmers.se is administrated and maintained by Chalmers Library

(article starts on next page)



Contents lists available at ScienceDirect

Journal of Manufacturing Systems

journal homepage: www.elsevier.com/locate/jmansys

A generic hierarchical clustering approach for detecting bottlenecks in
manufacturing
Mukund Subramaniyana,*, Anders Skoogha, Azam Sheikh Muhammadb, Jon Bokrantza,
Björn Johanssona, Christoph Roserc

a Department of Industrial and Materials Science, Chalmers University of Technology, Gothenburg 41296, Sweden
b Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg 41296, Sweden
c Department of Management Science and Engineering, Karlsruhe University of Applied Sciences, Karlsruhe 76133, Germany

A R T I C L E I N F O

Keywords:
Throughput bottlenecks
Maintenance
Manufacturing system
Unsupervised machine learning
Data-driven

A B S T R A C T

The advancements in machine learning (ML) techniques open new opportunities for analysing production system
dynamics and augmenting the domain expert's decision-making. A common problem for domain experts on the
shop floor is detecting throughput bottlenecks, as they constrain the system throughput. Detecting throughput
bottlenecks is necessary to prioritise maintenance and improvement actions and obtain greater system
throughput. The existing literature provides many ways to detect bottlenecks from machine data, using statis-
tical-based approaches. These statistical-based approaches can be best applied in environments where the sta-
tistical descriptors of machine data (such as distribution of machine data, correlations and stationarity) are
known beforehand. Computing statistical descriptors involves statistical assumptions. When the machine data
doesn't comply with these assumptions, there is a risk of the results being disconnected from actual production
system dynamics. An alternative approach to detecting throughput bottlenecks is to use ML- based techniques.
These techniques, particularly unsupervised ML techniques, require no prior statistical information on machine
data. This paper proposes a generic, unsupervised ML-based hierarchical clustering approach to detect
throughput bottlenecks. The proposed approach is the outcome of systematic and careful selection of ML
techniques. It begins by generating a time series of the chosen bottleneck detection metric and then clustering
the time series using a dynamic time-wrapping measure and a complete-linkage agglomerative hierarchical
clustering technique. The results are clusters of machines with similar production dynamic profiles, revealed
from the historical data and enabling the detection of bottlenecks. The proposed approach is demonstrated in
two real-world production systems. The approach integrates the concept of humans in-loop by using the domain
expert's knowledge.

1. Introduction

Over the last decade, machine learning (ML) has made un-
precedented progress in areas as diverse as finance, energy, e-com-
merce, geology, space and biology. ML is widely used in applications
ranging from automating mundane tasks to offering intelligent insights
and supporting human decision-making [1,2]. In finance, for example,
which has mature ML applications, unsupervised ML techniques are
used to analyse the stock prices of companies and identify companies
with unique stock price behaviour when compared to others [3–5]. The
insights obtained help financial analysts gain an overview of similarly
and dissimilarly behaving stocks and thus enable financial investment
decisions. The success of ML is due to the large volumes of available

data and computational resources allowing advanced ML techniques to
be run. Manufacturing companies are also warming to the idea of using
cutting-edge advances in the ML field to enhance their production
system operations [6–8]. With production systems becoming increas-
ingly complex, managing them has become less amenable to manual
administration. Advancements in the ML field can thus be exploited to
better support the decision-making process of domain experts [9–12].

On a real-world shop floor, domain experts must make important
decisions that aim to increase the overall system throughput [13,14].
One way to achieve this is to focus on reducing throughput-related
losses in the production system. Real-world case studies indicate that
20–30 % of throughput losses are common in production systems [15].
These losses are due to disruption events such as random machine

https://doi.org/10.1016/j.jmsy.2020.02.011
Received 15 January 2020; Received in revised form 20 February 2020; Accepted 28 February 2020

⁎ Corresponding author.
E-mail address: mukunds@chalmers.se (M. Subramaniyan).

Journal of Manufacturing Systems 55 (2020) 143–158

0278-6125/ © 2020 The Authors. Published by Elsevier Ltd on behalf of The Society of Manufacturing Engineers. This is an open access article under the CC BY 
license (http://creativecommons.org/licenses/BY/4.0/).

T

http://www.sciencedirect.com/science/journal/02786125
https://www.elsevier.com/locate/jmansys
https://doi.org/10.1016/j.jmsy.2020.02.011
https://doi.org/10.1016/j.jmsy.2020.02.011
mailto:mukunds@chalmers.se
https://doi.org/10.1016/j.jmsy.2020.02.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmsy.2020.02.011&domain=pdf


downtime and variations in machine cycle time. Depending on the
nature of the production system, disruption events in some machines
will affect overall system throughput more than others, and these ma-
chines are called “throughput bottlenecks” [16]. To achieve steady or
increased throughput, the domain experts must devote their efforts to
increasing throughput in these bottleneck machines [17,13]. Accom-
plishing this means that domain experts must identify the throughput
bottlenecks in their production systems.

From an academic point of view, to support the identification of
bottlenecks, researchers have proposed several methods involving data
collected from the production system [16,18–25]. These methods pro-
vide important contributions towards throughput bottleneck detection,
and usually, the key ideas are built on statistical approaches to de-
tecting bottlenecks (such as using descriptive and inferential statistical
techniques). Employing statistical approaches is normally justified, as it
accounts for the variability of data arising from randomness in the
system [14,16,25]. Usually, a statistical approach will rely on various
underlying assumptions about the machines’ data to compute statistical
descriptors such as distribution, statistical independence and statio-
narity. Thus, a fundamental challenge when using existing scientifically
rigorous statistical approaches in the real-world is to ensure that the
central assumptions of those approaches are satisfied.

In using any statistical approach, a significant amount of time is
required to ensure that the underlying real-world data suits the set of
assumptions. This task in itself requires domain experts to be truly
knowledgeable about various statistical concepts and methods if they
are to validate the data against those concepts and draw meaningful
conclusions. A further challenge is that, as the production system’s
dynamics change over time, time-varying machine data (which behaves
according to a certain statistical descriptor) may also change its pat-
terns. For example, a normal distribution assumption might not hold
good for time-varying data which tends to change distribution in future
scenarios. This would require suitable statistical processing of the data
each time before the statistical approaches are used to detect bottle-
necks [25]. In such scenarios, it therefore becomes challenging for
statistical approaches to maintain a high degree of accuracy and re-
liability. This is where carefully designed ML-based approaches can: a)
help detect bottlenecks without relying on strict statistical assumptions,
b) scale well with time-varying data, and c) produce quick, reliable
results whilst keeping the domain experts in the loop. The problem of
throughput bottleneck detection in production is analogous to that of
analysing the stock prices of finance companies, which was successfully
solved by ML techniques. Instead of finding companies that show a
unique stock price over time compared to other stocks, the target is to
identify machines that exhibit unique behaviour as compared to the
other machines. The unique behaviour of those machines is a key in-
dicator that they are throughput bottlenecks. Inspired by this analogous
common phenomenon in the finance and manufacturing domains, we
explored how ML techniques (widely used in finance for stock price
analysis) can be used to detect throughput bottlenecks.

Accordingly, the purpose of the study is to improve throughput by
facilitating the detection of throughput bottlenecks. The aim of the
paper is to propose a generic, unsupervised, ML-based, hierarchical
clustering approach to identify throughput bottlenecks in the produc-
tion system and test the proposed approach on real-world production
systems. The approach should be flexible enough to couple with any
bottleneck detection method. In sum, this paper provides an exciting
opportunity to advance the knowledge of state-of-the-art throughput
bottleneck detection using unsupervised ML techniques.

The paper is structured as follows. Section 2 presents the theoretical
background of different bottleneck detection methods and the asso-
ciated statistical assumptions and unsupervised ML techniques. Section
3 then starts by presenting a modular breakdown of the proposed ap-
proach, covering the high-level descriptions of all the steps in each
module. Data from a real-world production system is used to explain
the practical aspects of applying each step within every module of the

proposed approach. This integrated description of the generic steps
(and their application to data from a real-world production system)
aims to demonstrate that independent decisions are made within each
module in the hierarchy and that an outcome is generated. This in itself
is valuable and amenable to analysis by domain experts. The proposed
approach is further evaluated by being applied to an additional real-
world production system, with the results shown in Section 4. Section 5
presents a detailed discussion of the proposed approach, in terms of its
contributions to academic and industrial practice (and its limitations)
plus an outlook on future work. The paper concludes with Section 6
summarising the results of the paper.

2. Theoretical background

This section presents a theoretical background to throughput bot-
tleneck detection. It also examines the statistical assumptions made in
the existing literature and explains its implications in practice. An
outline of the theoretical explanation, of different unsupervised ML
techniques used in the proposed approach is then given. Finally, the
active period bottleneck detection method (which is used as an example
in the real-world industrial test studies for the proposed approach) is
explained.

2.1. Existing assumptions in throughput bottleneck detection

The problem of throughput bottleneck detection in production lines
is covered extensively in the literature. Various methods of identifying
historical throughput bottlenecks in the production system have been
proposed (active period method by Roser et al. [16]; turning point
method by Li et al. [19]; inter-departure time variance by Betterton and
Silver [20]; and overall equipment efficiency method by Tang [21]). In
all these different methods, the overall approach is to detect bottlenecks
using traditional statistical approaches, including descriptive (such as
average, standard deviation, coefficient of variation) [19,20] and [21]
and inferential statistical techniques (such as hypothesis testing)
[16,22]. Yu and Matta [25] proposed an improved statistical approach
that can be coupled with any of the bottleneck detection methods.

Inferential statistical techniques are used to account for variability
in machine data when detecting bottlenecks. However, this application
is no trivial task [26]. Various manually supervised steps are involved,
such as: a) identifying statistical descriptors to define the structure of
the machine data collected over a specified period, b) decision to use
relevant test statistics and c) selection of significance level. Of these
different steps, the most important one is identifying statistical de-
scriptors for the collected machine data structure. This is because the
structure guides the choice of relevant test statistics when applying
inferential statistics. An incorrect choice of test statistics can lead to
inaccurate bottleneck detection results. Different assumptions are made
when identifying different statistical descriptors of machine data. The
following is a summary of the four common statistical descriptors, as
inferred from the existing literature. These are: (1) statistical distribu-
tion, (2) autocorrelation, (3) cross-correlation and (4) stationarity.

(1) Statistical distribution: this provides a parameterised mathematical
function, describing the relationship between the data points of a
machine dataset in sample space. The distribution is usually found
using various statistical techniques, or assumed for convenience. It
will guide the choice of parametric and non-parametric statistical
tests when using inferential statistical techniques. The most
common assumption on statistical distribution is that of normality.
For example, Subramaniyan et al. [22] (p. 233) assumes the data to
be taken from a normally distributed population, an assumption
that is the same across all the machines in a production system. This
choice of assumption facilitates the use of a t-test as a statistical
hypothesis test to detect bottlenecks. However Subramaniyan et al.
[22], (p. 233) did not check the validity of the different

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

144



assumptions when detecting bottlenecks. Roser et al. [16] (p. 951)
did not report the distribution of machine data used to detect bot-
tlenecks in the test production system. On the other hand, Yu and
Matta [25] (p. 6321) recognises that the normality assumption is
difficult in production systems and therefore proposed a non-
parametric test to detect bottlenecks (the Mann-Whitney U test).

(2) Autocorrelation: this is the degree of similarity between data points
in a machine dataset (collected chronologically) and the lagged
version of the same data points over successive time intervals. Roser
et al. [16] (p. 951) assumes that the data points in a given machine
dataset are independent of each other. This assumption is later
proved in Roser and Nakano [27] (p. 71), with limited empirical
testing based on a discrete-event simulation environment of a
production system. Subramaniyan et al. [22] (p. 233) assumes that
the data points of a given machine dataset are independent of each
other and they are not tested for their validity when detecting the
bottlenecks. On the other hand, Subramaniyan et al. [28] (p. 536),
in another study, assumes that the data points of a machine dataset
are autocorrelated; this assumption is made in order to facilitate the
adaptation of time series forecasting techniques, such as Auto-re-
gressive Moving Average (ARIMA), to predict future bottlenecks.
Similarly Li et al. [29], (p. 3) makes the assumption that the data
points in a machine’s data are autocorrelated, in order to use time
series techniques to predict future bottlenecks. However, the va-
lidity of this assumption is, again, not tested. Yu and Matta [25] (p.
6322) recognises that data points in a given machine’s data are
usually not independent and proposes a batching means technique
to generate independent data points.

(3) Cross-correlation: for every pair of machines in the production
system, cross-correlation is a measure of similarity, with data from
one machine compared to that from another. Usually, in a pro-
duction system, disturbances in one machine will affect the down-
stream and upstream machines. In other words, the datasets of two
different machines need to be tested for correlation; this guides the
selection of appropriate hypothesis tests. There was no mention of
correlating different machine data in the research reported by Roser
et al. [16]. Subramaniyan et al. [22] (p. 234) assumed the machines
to be independent and used an independent t-test to detect bottle-
necks. Yu and Matta [25] (p. 6321) used a Mann-Whitney U test for
the hypothesis tests, which indicates that machines are assumed to
be independent.

(4) Stationarity: this means that the statistical properties (average,
variance and so on) of the machine data are constant over time. The
existing studies assume that machine data collected chronologically
is stationary. This means that the mean and variance do not change
over time. Subramaniyan et al. [28] (p. 541) show, by means of a
real-world example, that machine data is non-stationary. In other
words, the mean and variance change over time. There was no
mention of stationarity in Roser et al. [16], Li et al. [29], and Yu
and Matta [25]. Thus, using descriptive statistics to identify the
bottlenecks for non-stationary data risks inducing errors when de-
tecting throughput bottlenecks.

To summarise, from the existing studies it is unclear whether the
researchers have properly considered the reasons for not validating the
different assumptions, or tested whether the different statistical ap-
proaches are robust against violations of the assumptions. In real-world
production systems, the machine data is often too noisy. Each ma-
chine’s behaviour can differ, and it is difficult to generalise assumptions
for all machines. Moreover, Li and Ni [13] indicates, through real-world
studies, that the assumptions (specifically those on statistical distribu-
tion) may not reliably capture the machine data’s dynamics. If different
assumptions are used for convenience, there is a risk that the results
will be disconnected from the real-world process [26].

2.2. Unsupervised ML techniques

ML-based approaches are a natural alternative when the data does
not conform to the assumptions of some existing statistical approaches,
or when the data comes from a time-varying dynamic system, possibly
entailing situations which make the data deviate from its normal be-
haviour. This section outlines the unsupervised ML techniques, espe-
cially hierarchical clustering for time series from the academic ML lit-
erature. The different tools and techniques for cluster generation and
analysis from ML literature are then presented. The aim of this section is
to provide readers with the necessary information on unsupervised ML
techniques to allow interpretation and replication of the approach
proposed in this paper.

2.2.1. Hierarchical clustering of time series
The goal of hierarchical clustering is to capture the underlying

structures of the time series data, and it produces a set of nested clus-
ters, organised as a hierarchical tree [30,31]. One main advantage of
hierarchical clustering is that it can capture more complex and intricate
cluster structures. There are different types of hierarchical clustering,
such as agglomerative (also called “bottom-up”) and divisive (also
called “top-down”). A detailed explanation of these types can be found
in Hastie et al. [30]. Of all the different types, agglomerative hier-
archical clustering is the most commonly used in the data science do-
main [32]. The advantages of agglomerative clustering are that it
produces complete hierarchical structures inductively and is relatively
easy to implement [33]. One way of presenting the results of hier-
archical clustering neatly is to use a two-dimensional diagram, known
as a dendrogram [34,30].

The main idea behind agglomerative is to treat each time series as
an individual cluster and then at each step we recursively merge the
closest pair of clusters until one cluster is left. Agglomerative clustering
is conducted by defining the inputs regarding the distances between the
time series and distances between the clusters. The algorithmic details
of the agglomerative hierarchical clustering are found in Hastie et al.
[30]. Before conducting different time series clustering operations, a
distance measure needs to be defined between all pairs of time series.
For this purpose, a number of measures are defined in the literature. For
example, Euclidean distance, dynamic time warping (DTW), Mahala-
nobis distance, Fourier coefficients, auto-regressive models, edit dis-
tance, minimum jump models [35]. Out of several distance measures, it
has been indicated in the literature that DTW outperforms for com-
parisons of time series because of its non-linear mapping capabilities
[36]. After establishing the distance measure between the time series,
there is a need to establish a measure of the distance between the
clusters to facilitate the clustering process. Five common distance
measures of the distance between clusters are defined in the literature.
Those are single linkage, complete linkage, average linkage, average
group linkage, and wards method [30]. Clustering results also depend
on the type of linkage that is chosen, and different types will give dif-
ferent results. However, it is indicated by Hirano and Tsumoto [37] that
complete linkage produces better results compared to other linkages for
producing more compact and balanced clusters.

2.2.2. Tools to facilitate generation and analysis of clusters
To facilitate cluster generation, the required number of clusters

must first be determined. Various tools are defined in the literature,
which can be used to help fix a number. These include the elbow
method, gap statistic method, mode and maximum difference [38].
Determining the appropriate tool depends on the application domain.
Of the different tools, the elbow method (also called a “scree plot”) is a
relatively straightforward method and examines the acceleration in the
jumps of variance. The elbow method explains the percentage of var-
iance for different numbers of clusters. If this value is plotted in a graph
against the number of clusters, the number of clusters corresponding to
the point at which the marginal gain in variance drops is the optimal

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

145



number [39]. Once the clusters are formed, they need to be analysed.
To do this, a representative time series can be generated, representing
each cluster formed. The main idea behind this is to facilitate deeper
analysis of the clusters using regression, trend detection tests, and so
on. A representative time series is constructed by computing the
averages of each data point between two time series sequences [40].
The algorithmic details for generating a representative time series are
explained in Baheti and Toshniwal [40], and an application example is
shown in Baheti and Toshniwal [40,41]. A sample application for
analysing the road accident time series is given in Kumar and Toshniwal
[42]. This uses the averaging algorithm to generate a representative
time series.

2.3. Active period bottleneck detection method

The active period method of bottleneck detection was first proposed
by Roser et al. [16] and demonstrated using a discrete event-simula-
tion-based environment. The basic idea behind the method is to classify
different machine states (a state represents an activity that is carried out
by the machine) during a production run into two binary states. The
first is called the “active” state; the other, the “non-active” state. The
active state is when an activity is conducted on or by the machine that
is causing blockage or starvation in other machines. Examples include
producing state (when the machine is producing a product), downstate
(when the machine has broken down and is being repaired) and setup
state (when setup activities are being conducted on the machine). When
the active state durations are combined and compared with all other
machines in the production system, the bottleneck machines can be
identified, as they are the ones with the highest active duration. [22]
proposed an event-log-based, data-driven statistical approach based on
the active period method, to detect bottlenecks in the production
system.

3. Proposed generic hierarchical clustering approach to
throughput bottleneck detection

In this section, we propose an approach to detecting throughput
bottlenecks, using machine event log data extracted from real-world
production systems and unsupervised ML techniques. The structure of
this approach takes its inspiration from the Cross Industry Process for
Data Mining (CRISP-DM) [43,44] and consists of seven modules: (1)
data collection, (2) selecting a suitable bottleneck detection method, (3)
data pre-processing, (4) applying a hierarchical clustering technique,
(5) cluster computation and generation, (6) representative time series
generation, and (7) throughput bottleneck detection. These are shown
in Fig. 1. In every module, we define the generic steps and the methods
specific to that module. We conclude each module by demonstrating the
proposed steps on the event log data extracted from the real-world
production system. The main aims of discussing the generic steps and
their demonstration on a real-world production system are: a) to ex-
plain how event log data from machines can be processed so that un-
supervised ML techniques may be applied, and b) to show and explain
relevant inputs from production system domain experts in every
module.

Demonstration of the proposed approach in a real-world production
system was carried out in R software (Version 3.4.3) by uploading the
machine event log datasets. R is widely used software in data science
and ML applications. Moreover, it has libraries relevant to the ML
techniques used in the demonstration. The libraries used in this de-
monstration are dplyr, dtwclust, tseries, TSclust, ggplot2, zoo and
cluster.

3.1. Module 1: data collection

This module covers the collection of event log data from a real-
world production system. A real-world production system consists of

many resources (such as machines and humans) working together to
produce products. Every resource carries out actions or has actions
conducted on them during a production run. These actions may be re-
corded digitally with corresponding timestamp information. The data
records containing this information on actions and time stamps are
called “event logs”. Once the event log data has been identified, the
next step is to define the time interval of interest for throughput bot-
tleneck detection. This is important because it sets the parameters for
the required historical event log data from the production system being
studied. The minimum data required for successful application of the
proposed bottleneck detection approach should cover enough past
production runs of the system so that all events relevant to the analysis
are well-represented. The setting up of limits is best done by obtaining
the input of domain experts in the production system. They can de-
termine what duration of historical data would represent the produc-
tion system dynamics well. The output of this module is the event log
data in tabular format, containing the events described and their
timestamps.

In the demonstration conducted in this study, a real-world auto-
motive component manufacturing production line is used to demon-
strate the unsupervised ML approach and detect throughput bottle-
necks. The production line consists entirely of Computer Numerical
Controlled (CNC) machines, which conduct various machining opera-
tions on the component. The layout of the production line is shown in
Fig. 2. The component enters machine M1 in the production line and
emerges from the line once operations at M13 are complete. Each CNC
line machine is connected to a Manufacturing Execution System (MES)
which records machine events and their corresponding timestamps.

For this production line, it was decided to take data from 30 his-
torical production runs, to identify throughput bottlenecks (a single
production run constitutes 17 h in a day, running from 06:00:00 to
23:00:00). Once the time interval has been defined, the raw event log
data for all machines is extracted from the MES for the specified time
interval. A sample of event log data from machine M1 is shown in
Table 1. It shows the events represent unevenly spaced time series data,
in which the spacing of events is not constant. These events, the ma-
chine ID, and the corresponding timestamp form the raw logs used as a
starting point for the proposed approach.

3.2. Module 2: selection of suitable bottleneck detection method

Once the event log data is extracted, the next step is to select a
suitable throughput bottleneck detection method for a given production
system. This selection is important when executing the other modules,
as their steps correlate to the selected method. As explained in Section
2.1, the literature covers various rich methods which may be selected to
detect bottlenecks. However, two things are important in selecting a
suitable method. Firstly, a decision needs to be made on the type of
bottleneck detection method that suits the production system. This is
where domain experts will play a key role, because of their deep un-
derstanding of the underlying system. Thus, a decision about the target
bottleneck detection method is best made by them, based on their do-
main knowledge and on practical requirements. Secondly, exploring the
event log data of the production system to make sure that the necessary
information required to apply the chosen bottleneck detection method
can be extracted. This requirement is handled by introducing a feed-
back loop between Modules 1 and 2, to verify the requirements of the
selected bottleneck detection method from the collected data. This
module’s output is selection of suitable bottleneck detection method, to
facilitate the execution of other modules.

The active period bottleneck detection method [16] has been se-
lected for the demonstration. The metric used by this method to detect
bottlenecks is the active duration. The method was chosen over the
others because it detects bottlenecks causing blockages and starvation
in other machines by using all the action events (conducted either by
the machine, or on it by humans). Thus, combining different events to

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

146



Fig. 1. Modular breakup of the proposed approach for throughput bottleneck detection.

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

147



detect bottlenecks aids better understanding of their nature. Verifica-
tion was also carried out if the event log data was deemed suitable for
this method of bottleneck detection. As the event log data (Table 1)
contains all the “active” events, the information on active durations can
be obtained from it.

3.3. Module 3: data pre-processing

After selection of the bottleneck detection method, the next step is
to pre-process the extracted event log data in accordance with the se-
lected method. Each bottleneck detection method has a defined metric
used to detect bottlenecks. The overall aim of the pre-processing
module is to compute this metric based on the event log data for each
machine in each production run within the defined time interval and
then generate a time series for each machine. This time series is then
used in the other modules to detect bottlenecks. The generic steps in
pre-processing the event log data are: (1) data cleaning, (2) classifica-
tion of event logs and (3) computation of metric from the required set of
classes. The output of this module is a time series of the bottleneck
detection metric for each machine. Each step is described below.

3.3.1. Data cleaning
After extracting the event log data for each machine in the pro-

duction systems, the event log data needs to be cleaned before further
processing. The input of production system domain experts is needed in
this step, as they can define time intervals across different production
runs. Data cleaning can then be conducted. Common cleaning steps
include: removing events that were recorded outside the defined time
interval across different production runs; checking the event logs and
removing duplications, as they might introduce bias in the analysis;
removing events not of interest in bottleneck detection analysis (such as
events recorded when running trail products, and so on). The output
from this step is cleaned event log data for each machine.

In the demonstration production system, the cleaning was under-
taken for each machine by checking and removing redundant events
and those that were not of interest to the domain experts.

3.3.2. Classification of event logs
The cleaned event log data contains entries for all events. However,

some events might be redundant if they are not used in computing the
required metric for the selected bottleneck detection method. In this
step, the various events need to be selected and filtered for every ma-
chine based on the selected bottleneck detection method. This selection
and filtering needs to be done based on event definitions. Event defi-
nitions are best provided by production system domain experts. This is
important, as relevant events, corresponding to the selected method,
will be used for further processing and to detect bottlenecks. The do-
main experts’ involvement in providing these definitions for the set of
unique events represented in the cleaned data is important, as no
available ML technique can automatically define the events on their
own. These event definitions are used to partition the data into a certain
number of classes based on the selected bottleneck method. The output
from this step is event log data from each machine, containing a clas-
sification for each event.

The demonstration production system follows the active period
method of bottleneck detection. The different events in the event log
data were classified as active or inactive based on the definitions of
active and inactive states proposed in the active period method of
bottleneck detection by Roser et al. [16]. To facilitate this process, the
production system domain experts need to provide definitions for each
event. There was a total of seven distinct types of pre-defined event,
recorded across all machines. These events are classified as active or
inactive, based on the definitions provided by the domain experts. The
seven events and their classifications are shown in Table 2. Once the
distinct events are classified, the classification is updated in the cleaned
event logs for all machines.

3.3.3. Time series generation
By this step, we have completed all the necessary pre-processing of

event log data and are now ready to compute the metric corresponding
to the chosen bottleneck detection method from the processed event log
data. In this step, the metric values for each machine are computed
across each individual production run for each machine. If required,
these values are transformed into a uniform scale across all the ma-
chines in the production system, to ensure that scale differences are
normalised before these values are used to generate time series. Let N

Fig. 2. Production line layout.

Table 1
Sample MES event log data from Machine 1.

Machine ID Event Timestamp

M1 Producing 16-09-2017 06:00:01
M1 Stop tool failure 16-09-2017 06:08:18
M1 Tool change 16-09-2017 06:10:37
M1 Producing 16-09-2017 06:20:54
M1 Waiting to unload 16-09-2017 06:21:31

Table 2
Events definitions from domain experts and classification.

Event Description as given by domain experts Classification made

Producing Machine engaged in producing a product Active
Stop tool failure Machine stopped due to tool failure Active
Producing with warning Machine engaged in producing a product with a warning Active
Breakdown Machine is down or ongoing repair work Active
Tool change Machine under tool change activity Active
Waiting to unload Machine waiting for the unloading of the product after operations Inactive
Waiting for incoming parts Machine waiting for incoming parts Inactive

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

148



= {1,2,3,…, n} be the set of n production runs and M representing the
set of m machines, such that M = {1,2,3,…,m}. The time series can be
generated from this step and represented in the form of the matrix Tn x

m, with each row representing one production run and each column
corresponding to a machine in the system. A cell tij ∈ T records the
scaled metric value of production run i for machine j. Thus, all values
along column j represent the full time series corresponding to machine
j.

In the demonstration production system, the active durations for all
machines are computed during a single production run and across all
production runs. This is calculated as the time elapsed between the
start-time instant of an active state and the beginning of the inactive
state during a production run. The algorithm for computing active
durations from event log data is explained in Subramaniyan et al. [22]
(page 233, equation 1). The same algorithm is used to compute the
active duration of each machine across different production runs. A
sample output of this step is shown in Table 3, which shows that the
active durations are not evenly spaced time series.

Next, the active duration for each production run needs to be cal-
culated by aggregating the different active durations during a produc-
tion run. Thereafter, to put the active durations of different machines
on a uniform scale, the active duration of each production run is ex-
pressed as a percentage of scheduled hours of that production run. The
results are shown in the matrix T 30 x 13, in which each row represents
the production run and each column represents the machine. All the
values in a column are the time series for that particular machine.

A time series plot is also constructed for each machine, as shown in
Fig. 3. It can be seen that the time series plot is cluttered, and different
machines have different temporal patterns. Spotting patterns manually
in the time series between different machines and detect bottlenecks
and non-bottlenecks is challenging. Applying ML techniques is ad-
vantageous for studying the individual time series profiles of machines,
comparing them for their temporal behavioural similarities and differ-
ences, and separating the group of potential bottlenecks from the rest.

3.4. Module 4: generating a dendrogram

The first three modules jointly focused on preparing a time series
format of the event log data that adheres to the chosen bottleneck de-
tection method. Preparing the data in a suitable format is vital to re-
vealing underlying patterns in the data and achieving the desired goal.
The last step of the previous module also ensured that the data was
ready for the application of unsupervised machine learning techniques;
specifically, agglomerative hierarchical clustering to generate a den-
drogram. Therefore, agglomerative hierarchical clustering is applied in
this module. The reason for choosing hierarchical clustering and, in

particular, the suitability of agglomerative hierarchical clustering, is
summarised below.

Hierarchical clustering is advantageous for production system ana-
lysis because it is able to give a complete hierarchy of the machines in a
production system. When used prior to running, this type of hier-
archical clustering in production systems has been shown to find
scheduling bottleneck clusters in job-shop type production systems
[45]. Moreover, the hierarchical clustering results can be visualised
through a dendrogram that explains how machines are grouped into a
hierarchy. Various decisions need to be made before conducting hier-
archical clustering, so as to select the right type. The whole strategy we
followed in selecting the different variants of hierarchical clustering for
bottleneck detection is illustrated in Fig. 4. Firstly, a choice needs to be
made between agglomerative and divisive hierarchical clustering. In
the proposed approach, agglomerative hierarchical clustering is sui-
table for bottleneck detection. It generates a complete tree, starting
with individual machines, and orders the machines, which is useful for
interpretation [45]. This will help domain experts better understand
how different machines are grouped into a cluster. Agglomerative
clustering works by iteratively combining the two closest machines into
a new cluster and repeating this until one large cluster remains, en-
compassing all the machines in the production system. However, this
method requires two input parameters: a measure for comparing in-
dividual time series, and choice of an appropriate linkage for clustering.

Measures to compare individual time series: There are various
distance measures for comparing time series; these are explained in

Section 2.2.1. The choice of a particular measure is crucial because
different distance measures can give different results. Making an in-
formed decision requires domain knowledge insights, plus arguments
deduced from a literature study of real applications of ML. Various
measures have been considered and it has been found that, as a distance
measure, DTW is highly suitable for bottleneck detection. We sum-
marise the reasons for this as follows. In real-world production systems,
throughput bottlenecks tend to shift between machines during different
production runs. This is also indicated in the literature by Li et al. [29]
and Subramaniyan et al. [28]. Accordingly, this phenomenon indicates
that the time series of different bottleneck machines may be time-
shifted but the computations made using a common metric, such as
active durations, can still show the same behaviour in limiting system
throughput. On the other hand, using DTW can remove the time-shifts
by wrapping the time axis of the machine such that maximal coin-
cidence is attained which enables to achieve high similarity score with
other machines exhibiting similar behavioural patterns. For instance, as
seen in Fig. 3, there are non-linear fluctuations occurring in active
durations (y-axis) of different machines versus time (x-axis). To address
this, DTW uses a time normalisation effect where the fluctuations in the

Table 3
An example calculation of active duration metric from event log data: from an active state event starting at 06:00:01 till an inactive state event occurring at
06:21:31.

Machine ID Event Timestamp Active duration metric (in seconds)

M1 Producing 16-09-2017 06:00:01 1290
M1 Stop tool failure 16-09-2017 06:08:18
M1 Tool change 16-09-2017 06:10:37
M1 Producing 16-09-2017 06:20:54
M1 Waiting to unload 16-09-2017 06:21:31

= … … … … … … … … … … … … …… … … … … … … … … … … … …… … … … … … … … … … … … …
T

59.66 56.50 59.72 52.61 45.58 64.14 57.05 51.72 59.30 52.07 48.09 38.75 49.84
46.04 60.23 61.37 61.59 48.61 68.21 48.57 43.48 58.33 53.03 48.69 42.96 41.47
53.33 74.08 80.40 74.77 59.60 77.47 70.31 67.39 72.77 65.91 63.15 47.41 52.76

.
59.43 74.46 77.00 74.77 67.91 87.46 81.87 78.26 81.50 83.48 79.60 74.49 70.17
68.03 70.84 62.39 51.05 46.69 68.61 64.21 59.35 76.89 72.52 63.02 57.81 66.74

30 x 13

(1)

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

149



time (x-axis) is modelled using a non-linear time-wrapping function
[46]. Hence, using DTW as similarity measure can point to the group of
throughput bottleneck machines that show similar behaviour in terms
of limiting system throughput. An efficient dynamic programming
based implementation of DTW is used to obtain a distance matrix which
represents the distance measures for all pairs of machines in the pro-
duction system.

Choosing of an appropriate linkage method for agglomerative
hierarchical clustering: Once the distance matrix has been generated
from the individual time series, a linkage method is required. This is
used in agglomerative hierarchical clustering, to generate a dendro-
gram. A linkage method is simply a way of joining individual times
series based on their behavioural characteristics in comparison to other
time series. The behaviour is already captured and recorded in the form
of a distance matrix. Like a distance measure, the linkage method also
effects the final outcome. Selection of an appropriate linkage method
should, therefore, be likewise motivated by a combination of domain
knowledge and state-of-the-art practices in ML for similar problems. As
mentioned in Section 2.2.1, among the various available choices, the
complete linkage method was found suitable for bottleneck detection.
This is because, in real-world production systems, there is a higher
probability of bottlenecks shifting from one machine to the other during
different production runs due to various reasons such as random
maintenance stops in the machine, random processing times, and so on
Li et al. [29] and Subramaniyan et al. [28]. This can also be inferred
from Fig. 3, that the time series have large fluctuations in active
durations (y-axis) versus time (x-axis). This means that there is not
always one single machine which stays as throughput bottleneck across
the entire set of productions runs, however, at times, it can be due to
noise. The dynamism of changing bottlenecks is best captured in the
chosen DTW distance measure. Now, a method which operates on the
distance measures (DTW distance matrix) should be able to carry over
the preserved behavioural patterns to produce a balanced dendrogram
while as the same time be less susceptible to noise. The complete
linkage method tends to fulfil these demands as indicated in the ML
literature [37].

The two specific steps in this module are (1) application of DTW and

(2) application of complete linkage agglomerative hierarchical clus-
tering. These steps are defined below.

3.4.1. Application of DTW
In this step, DTW is applied to compute the distance matrix between

all pairs of machines, based on its time series represented in the matrix
Tn x m. The output from this step is the distance matrix.

In the demonstration, DTW is applied to the time series data as
shown in T30 x 13. This results in a distance matrix, as shown in Table 4.
The smaller the values for a pair of machines, the more similar their
behaviour. For example, machine M1 achieves smallest distance with
M13, which means M1’s behaviour is most similar to M13.

3.4.2. Application of complete linkage hierarchical clustering
In this step, the generated distance matrix is used to conduct hier-

archical clustering with complete linkage criteria by applying DTW
recursively. The result of the clustering procedure is a dendrogram
representing the hierarchical relationship between the machines.

In the demonstration, agglomerative hierarchical clustering with
complete linkage is applied based on distance matrix shown in Table 4.
The resultant dendrogram is shown in Fig. 5. Along the horizontal axis
in this figure are the machines in the production system. The vertical
axis is the distance, represented as the height between different pairs of
machines. A quick visual inspection of the dendrogram indicates which
machines are close to which others, with respect to their behavioural
characteristics captured from the respective time series. For example,
M6 shows completely different behaviour from M5 and M11. It is easy
to see such obvious differences from the dendrogram. However, at this
point, it cannot be confirmed which machine is potentially a
throughput bottleneck, so further analysis is required. Overall, the
dendrogram assists in immediately identifying and highlighting the
machine that shows behaviour distinct from the rest of the machines in
the system. We then need a way to recommend how many clusters can
be generated through the dendrogram. This is explained in Module 5.

Fig. 3. Time series of individual machines.

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

150



3.5. Module 5: cluster computation and generation

Once a dendrogram has been generated, clusters must be generated
from it. This module explains how. Two steps are involved: (1) selecting
the number of clusters and (2) extracting the machine information for
each cluster. The output of this module is the number of clusters gen-
erated and identification of machines within each one.

3.5.1. Selecting the number of clusters
In this step, the number of clusters needs to be selected. This can be

done by placing a horizontal partition line across the dendrogram.
However, partition line should typically not be placed at the level of
granularity where every machine is its own cluster and not at this
coarse granularity, where all machines are in one cluster. The challenge
is finding the best position in the dendrogram to place the line. This can
be solved by using a combined approach of domain experts’ input and

Fig. 4. Strategy followed to develop Module 4.

Table 4
Distance matrix, applying DTW.

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11 M12

M2 283.94
M3 380.27 263.51
M4 297.12 210.54 216.90
M5 335.25 296.86 265.50 256.68
M6 496.22 317.97 305.41 332.52 415.95
M7 348.95 264.13 220.46 265.89 313.92 236.51
M8 311.59 232.48 237.32 216.65 292.14 273.49 202.71
M9 320.23 224.71 261.60 228.43 341.62 265.21 224.02 231.86
M10 323.51 267.06 239.82 250.96 292.54 298.14 282.32 224.72 204.38
M11 295.17 281.61 278.17 300.53 250.32 392.62 323.94 300.44 322.45 284.79
M12 283.74 340.26 383.78 345.59 350.91 526.07 362.51 334.22 407.40 378.86 267.20
M13 214.45 231.00 351.95 277.56 278.43 462.75 347.01 309.18 318.06 280.62 264.23 257.55

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

151



visual aids provided by the algorithms, as explained in Section 2.2.2.
This is because, when placing a partition line, a lot of domain-specific
intuition and contextual information on the given production system
comes into play. Moreover, this combined approach is important in
quantifying the trade-off between the complexity of having a large
number of clusters (not useful in practice) and having too few clusters
(which reduces the resolution when trying to find bottlenecks). Once
the partition line is placed, the clusters can be generated.

In this demonstration, based on the nature of the production system,
it was decided to partition the dendrogram at a height of 300, resulting
in four clusters. This choice was verified by an elbow plot to assess the

chosen number of clusters. The elbow plot for the hierarchical clus-
tering is shown in Fig. 6. The height represented on the vertical axis
represents the variance. As can be seen, there is a significant change in
the slope before the fourth cluster. This indicates that four clusters
could be a reasonable number to consider for further analysis. Fig. 7
shows the different clusters in the dendrogram.

3.5.2. Extracting the machine information of each cluster
Once the clusters are generated, the machines assigned to each one

need to be extracted. This is done so as to understand which machines
in the production system correspond to which cluster. This information

Fig. 5. Hierarchical clustering results represented in a dendrogram.

Fig. 6. Elbow plot as a support tool to determine the number of clusters.

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

152



is necessary to analyse the clusters and detect bottlenecks.
In the demonstration, Table 5 shows the assignment of machines to

each cluster.

3.6. Module 6: representative time series generation

Information on the number of clusters and the assignment of each
machine to those clusters was obtained from the previous module. In
this module, the clusters need to be analysed in detail to facilitate
throughput bottleneck detection. For this purpose, a representative
time series can be generated for each cluster. These are constructed by
computing the averages of each data point for the different individual
time series in that cluster, as explained in Baheti and Toshniwal [40].
To generate the representative time series, we need the individual time
series for each machine. These are extracted from the matrix Tn x m. The
output of this module is the generation of representative time series for
each cluster and visual representation of them on a line graph.

In this demonstration, we generate a representative time series for
each cluster shown in Table 5. The resultant representative time series
are visualised in Fig. 8. By interpreting this figure, throughput bottle-
necks can be detected visually, as explained in Module 7.

3.7. Module 7: throughput bottleneck detection

In this module, probable throughput bottlenecks are determined by
visual analysis of the generated representative series of each cluster. As
a first step in this module, the domain experts need to carry out a visual
inspection of the representative time series for each cluster, according

to the chosen bottleneck detection method. For this purpose, domain
experts need to be aware of how to interpret basic line plots. If the
representative time series for the clusters are well separated from each
other overall, then the domain experts can proceed with interpreting
the representative time series for each cluster and detect the cluster
with bottleneck machines. If not, the domain experts can re-evaluate
the number of clusters and repeat the computations of Modules 5 and 6.
The process of repeating Modules 5 and 6 is depicted with a feedback
loop from Module 7 to Module 5, as shown in Fig. 1.

In this demonstration, it can be seen from Fig. 8 that the re-
presentative time series for each of the four clusters is fairly well se-
parated from one another. Also, it is clear that the active duration of
Cluster 1 is higher than the other clusters across most of the production
runs and that by using the active period method, the highest active
duration is the bottleneck. Therefore, of the machines in Cluster 1,
machine M6 is the probable primary bottleneck in the production
system. Hence, it may be inferred that, compared to other machines in
the production system, M6 shows unique throughput-limiting beha-
viour for most of the production runs. It can also be seen from Fig. 8,
that for production runs 10, 17 and 18, Cluster 2 has the highest active
duration. In other words, it may be said that for these production runs,
the primary bottlenecks shift between the machines in Cluster 1 and
those in Cluster 2. A deeper analysis, based on other contextual in-
formation for the production runs, is required to determine the reasons
for shifting bottlenecks. Domain experts may examine other data
sources to determine the reason for the shift during those production
runs. Moreover, from Fig. 8, it can be seen that Clusters 3 and 4 have
lower active period percentages than Clusters 1 and 2 for most of the
production runs and are indicated as non-bottlenecks.

Overall, it may be seen that, from examining the time series for
active duration profiles generated from individual machines’ event data
logs (as shown in Fig. 3), it was not immediately obvious which ma-
chine was the bottleneck. The proposed approach used hierarchical
clustering (as shown in Fig. 8) to form groups of machines, based on
their temporal behavioural patterns, and reveal the cluster in which the
bottleneck(s) lay. Domain experts may augment the results obtained
with the other contextual information about the machines (by, say,

Fig. 7. Dendrogram representing the number of clusters.

Table 5
Machines in each cluster.

Cluster number Machines

1 M6
2 M9, M10, M2, M4, M3, M7, M8
3 M5, M11
4 M12, M1, M13

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

153



examining other information systems such as sensor data, logistical
information, and so on) to determine which machines need to be
prioritised for throughput improvement activities.

4. Additional real-world test study to evaluate the proposed
approach

The proposed approach was applied across another real-world
production system, to detect throughput bottlenecks using the active
period method of bottleneck detection. As mentioned in Section 3, all
the implementation of this test study was carried out using R software.

The automated serial production system has five crankshaft CNC ma-
chines (M1, M2, M3, M4 and M5) and the event log data from their 44
historical production runs was analysed to detect bottlenecks. The ac-
tive period bottleneck detection method (with active duration metric)
was selected to describe the machine behaviour and detect bottlenecks
in this production system. The proposed approach was used to generate
the dendrogram, as shown in Fig. 9. It was then decided to have two
clusters, based on the nature of the production system. This was further
verified using elbow plots. Fig. 9 shows that, after generating the
clusters, M1 and M2 belonged to Cluster 1 and M3, M4 and M5 be-
longed to Cluster 2.

Fig. 8. Plot of the representative time series of each cluster.

Fig. 9. Dendrogram representing possible machine clusters.

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

154



Thereafter, representative time series were constructed for the two
clusters, with the results shown in Fig. 10. This figure clearly shows that
Cluster 2 has the highest active duration of all production runs (except
production run 11), indicating that bottleneck machines are present
within Cluster 2. From Fig. 9, it can also be seen that the height at
which M3 and M4 merge with M5 happens quite quickly, indicating
that the bottlenecks are very prone to shifting between M3, M4 and M5
across production runs. In other words, M3, M4 and M5 have similar
active duration time series profiles. This can also be confirmed by visual

inspection of the active duration time series for M3, M4 and M5 as
shown in Fig. 11. This reveals a high level of shifting in the primary
bottlenecks between M3, M4 and M5 in different production runs.
Hence, it may be concluded that M3, M4 and M5 constitute a group of
potential primary bottlenecks in the production system. These machines
may be the focus of improvement actions aimed at increased
throughput. These findings highlight the consistency of the proposed
approach when applied to a different production system, yet are at-
tuned to the particularities of the data.

Fig. 10. Representative time series of Clusters 1 and 2.

Fig. 11. Individual time series of M3, M4 and M5.

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

155



5. Discussion

This section discusses the academic and practical contributions of
the proposed throughput bottleneck detection method using un-
supervised ML techniques. The limitations and some possible future
directions based on the proposed research are then presented.

5.1. Academic contributions

The state of art in data-driven throughput bottleneck detection
[16,18–25] has focused on detecting throughput bottlenecks via sta-
tistical approaches which use descriptive and inferential statistical
techniques. When developing such statistical-based approaches, dif-
ferent assumptions were used which were not explicitly described in the
literature. This study outlines the different assumptions (such as as-
sumptions on statistical distribution, auto-correlation, cross-correlation
and stationarity as explained in Section 2.1) made in different statis-
tical-based approaches to detecting bottlenecks. Outlining these explicit
assumptions can be useful to any researcher intending to use statistical-
based approaches; they can check whether the assumptions hold good
for the dataset being studied. On the other hand, ML-based approaches
are becoming increasingly popular in developing better approaches,
without relying on strict statistical assumptions. Taking advantage of
such ML techniques, this study proposes a generic hierarchical clus-
tering approach to detecting throughput bottlenecks, with its usefulness
successfully demonstrated on two real-world production systems. The
bottleneck machines in a production system are those which behave
uniquely among the other machines in the system. A hierarchical
clustering ML technique is used to study the behavioural patterns of
machines. Machines which show similar behavioural characteristics are
clustered, which leads to the detection of bottlenecks. The natural
phenomenon of shop-floor operational dynamics often varies over time.
Thus, dynamically changing patterns are better learned from the data
itself, without imposing any strict statistical rules. Compared to the
existing literature on statistical approaches, the proposed approach
emerges as a thorough approach which achieves its novelty by using:
(1) an unsupervised ML approach, (2) DTW as a generic distance
measure, which best uncovers the dynamics of the time series re-
presentation of a pair of machines using the chosen bottleneck detec-
tion method and (3) recursive application of DTW in agglomerative
hierarchical clustering, to facilitate the identification of clusters of
machines forming different behavioural patterns based on historical
data.

The proposed approach has three main advantages. Firstly, it uses
the complete time series from the machine data and thus encompasses
all temporal information to form clusters, rather than using multiple
statistical descriptors. Secondly, we also note that the methods may be
coupled with any bottleneck detection technique in Module 2, as ex-
plained in Section 4. In the demonstrations, the active period method is
used to detect bottlenecks. However, other methods, such as turning
point method [19] and inter-departure time variance method [20], can
be coupled with the proposed approach by adjusting the computation of
related metrics from the event log data. The underlying logic is that
whichever detection method is applied (and when the corresponding
metric is derived from MES data), the output is a number which can be
turned into a time series. This allows the proposed approach to be
applied. Lastly, the proposed approach can be scaled to detect bottle-
necks in larger production systems and even up to factory level. Using
the statistical-based approach requires statistical modelling for each
machine and thus increases the computational complexity – a time-
consuming task. Using our proposed approach, any number of machines
can easily be grouped according to their behaviour. This enables rapid
detection of bottlenecks.

5.2. Practical contributions

This section discusses the contributions of two types of practice.
Firstly, there is a presentation of the contribution of bottleneck man-
agement to shop-floor practice. This discussion can help production
system domain experts better understand the usefulness of the proposed
approach, thereby enhancing practice. Secondly, there is a presentation
of the contribution to data scientists developing ML-based techniques
for production system analysis. This can help applied data scientists
(who are developing ML-based approaches) to consider different per-
spectives when applying ML to production system analysis.

5.2.1. Shop floor practice
On the shop floor, one of the main challenges faced by domain

experts is identifying the set of throughput bottleneck machines in the
system and initiating activities, such as prioritising reactive main-
tenance work orders in bottlenecks, buffering bottlenecks, and so on.
Using our proposed approach, domain experts can use production
system data to identify the probable set of bottlenecks constraining
throughput. They can then augment their data-driven results with other
contextual information from the production system and select the final
set of throughput bottlenecks. These bottlenecks can then be prioritised
for improvement activities to maximise overall system throughput.
Moreover, the dendrogram generated, with hierarchical clusters and
shown in Figs. 7 and 9, may correspond to meaningful taxonomies of
the production system and can be used as a decision-support tool. The
domain experts can then use this production system dendrogram, ex-
amining its different levels and why the relationships between ma-
chines seen in the data may, or may not, exist in practice. These experts
can gain a systems perspective of the production system through hier-
archical clustering; something not fully revealed by computing the
descriptive and inferential statistics in machine data.

Also, over time, it is common practice for domain experts to develop
a tacit understanding of the system as a whole, as well as the behaviours
of individual machines relative to other machines. The proposed ap-
proach can be used to check whether machines believed to exhibit the
same behaviour show up in the same cluster. At the same time, such
beliefs could be proved incorrect by showing the range of production
runs when those machines (or the system as a whole) behaved differ-
ently. For example, domain experts may believe that M6 (as demon-
strated in Fig. 1) is always the bottleneck. Whilst the results obtained
using the proposed approach (as shown in Fig. 8) also indicate that M6
is the bottleneck for most production runs, it also reveals those pro-
duction runs where M6 was not. So, the proposed approach captures
local variations whilst providing domain experts with a comprehensive
outlook on the production system for the production runs being con-
sidered.

Overall, this paper has explored the use of unsupervised ML ap-
proaches to support the detection of bottlenecks on the shop floor using
digital machine data. This is a potential contribution to the trend of
using ML-based approaches for better decision-making in industrial
practice, as highlighted by Wuest et al. [9] and Bokrantz et al. [11]. It
may be anticipated that such a demonstration of a solution to a highly
relevant practical problem will have the potential to accelerate prac-
tical implementation of Industry 4.0.

5.2.2. ML applied in practice
Through the proposed approach, we provide data scientists with an

easy-to-use yet powerful technique for the application of throughput
bottleneck detection. Through it, we also provide guidelines on how
data scientists may collaborate with production system domain experts
to develop ML-based solutions to practical problems. Studying real-
world data helps data scientists gain insights on real-world production
system dynamics. Moreover, studying ML-based literature will give
insights into the different ML techniques, which may be useful in de-
signing the data-driven approach. Combining these two aspects, the

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

156



data scientists can develop rigorous ML-based, data-driven approaches
to the problem. However, including the input of production system
domain experts (with their significant, tacit and explicit knowledge of
production systems) in designing an ML-based approach, will enhance
the practical relevance of the developed approach to practical decision-
making. Such approaches will also increase the accuracy and usability
of such data-driven approaches [9]. Moreover, including domain ex-
perts’ input in this way helps data scientists generate new hypotheses
on real-world production systems; something not entirely evident just
from studying real-world data. Incorporating the domain knowledge
will generate plausible explanations and better augment the domain
expert’s decision-making on bottlenecks. Overall, production system
domain experts can help data scientists to develop highly relevant ML-
based solutions. They will have significant practical impact and their
active involvement and input will contribute to the emerging concept of
humans in-loop within modern ML practices as indicated by Cimini
et al. [12].

5.3. Limitations and future research

Although there are certain limitations to the proposed study, the
reported results reveal important directions which may, potentially,
steer future work in using ML-based techniques to drive throughput
improvement activities. Firstly, this study is limited to only detecting
throughput bottlenecks from event log data. Although this is the first
step in driving throughput improvement activities, additional data
sources are required to diagnose throughput bottlenecks and then plan
for specific improvement actions. Future work might involve coupling
additional data sources in clustering machines, something which could
provide broader support to the initial results reported here. Secondly,
the proposed approach requires sufficient historical data. This in-
formation is necessary in order to detect throughput bottlenecks and is
defined by the domain experts in this study. However, to complement
this input, there is an opportunity to have an ML-based approach to
automatically detect the length of historical data needed for throughput
bottleneck analysis. This may be an interesting future direction for data
scientists. Lastly, the proposed unsupervised clustering approach to
bottleneck detection opens up an extremely promising direction, that of
designing recommender systems to pinpoint specific and necessary
action on bottlenecks. The recommender systems may be designed by
blending the proposed approach with the action log data on bottle-
necks.

6. Conclusion

Detecting throughput bottlenecks is necessary to improve produc-
tion system throughput and increase productivity. As production sys-
tems become more and more complex, and as large-scale machine data
become available, robust tools for detecting throughput bottlenecks are
of critical importance. This paper proposes an unsupervised, ML-based,
hierarchical clustering approach to throughput bottleneck detection.
Our proposed approach studies the behaviour of machines within a
defined timeframe and clusters them based on their temporal beha-
vioural characteristics. Studying the characteristics of each cluster helps
identify probable bottleneck machines in the production system. The
proposed approach has been demonstrated on two real-world produc-
tion systems and, when used in shop-floor practice, helps production
system domain experts to quickly identify bottlenecks in the system
from large sets of machine event log data. This study also emphasises
the importance of including domain experts’ input when developing
ML-based solutions and shows how this can be realised for the problem
of throughput bottleneck detection.

Declaration of Competing Interest

The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.

Acknowledgements

The authors would like to thank the FFI programme (funded by
VINNOVA, the Swedish Energy Agency and the Swedish Transport
Administration) for their funding of the Data Analytics in Maintenance
Planning research project (DAiMP) [Grant number: 2015-06887],
under which this research was conducted. The authors would also like
to thank Anders Ramström, who furnished real-time data from a real-
world production system. The authors would also like to thank the
other industrial partners in the DAiMP research project, for sharing
their views on the importance of bottleneck detection in manufacturing.
This work has been conducted under the Sustainable Production
Initiative and Production Area of Advance at Chalmers.

References

[1] Miller S. AI: Augmentation, more so than automation. Asian Manag Insights
2018;5:1–20.

[2] Wilson HJ, Daugherty PR. Collaborative intelligence: humans and AI are joining
forces humans. Harv Bus Rev 2018;96:115–23.

[3] Aghabozorgi S, Teh YW. Stock market co-movement assessment using a three-phase
clustering method. Expert Syst Appl 2014;41:1301–14. https://doi.org/10.1016/j.
eswa.2013.08.028.

[4] De Prado ML. Building diversified portfolios that outperform out-of-sample. J Portf
Manag 2016.

[5] Emerson S, Kennedy R, Shea LO, Brien JO. Trends and applications of machine
learning in quantitative finance. 8th Int. Conf. Econ. Financ. Res. (ICEFR 2019)
2019.

[6] Tao F, Qi Q, Liu A, Kusiak A. Data-driven smart manufactuirng. J Manuf Syst
2018;48:157–69. https://doi.org/10.1016/j.jmsy.2018.01.006.

[7] Xia T, Dong Y, Xiao L, Du S, Pan E, Xi L. Recent advances in prognostics and health
management for advanced manufacturing paradigms. Reliab Eng Syst Saf 2018.
https://doi.org/10.1016/j.ress.2018.06.021.

[8] Carvalho TP, Soares FAAMN, Vita R, Francisco R da P, Basto JP, Alcalá SGS. A
systematic literature review of machine learning methods applied to predictive
maintenance. Comput Ind Eng 2019. https://doi.org/10.1016/j.cie.2019.106024.

[9] Wuest T, Weimer D, Irgens C, Thoben K. Machine learning in manufacturing : ad-
vantages, challenges, and applications. Prod Manuf Res 2016;4:1–23. https://doi.
org/10.1080/21693277.2016.1192517.

[10] Sharp M, Ak R, Jr TH. A survey of the advancing use and development of machine
learning in smart manufacturing. J Manuf Syst 2018;48:170–9. https://doi.org/10.
1016/j.jmsy.2018.02.004.

[11] Bokrantz J, Skoogh A, Berlin C, Wuest T, Stahre J. Smart maintenance: a research
agenda for industrial maintenance management. Int J Prod Econ 2019. https://doi.
org/10.1016/j.ijpe.2019.107547.

[12] Cimini C, Pirola F, Pinto R, Cavalieri S. A human-in-the-loop manufacturing control
architecture for the next generation of production systems. J Manuf Syst 2020.
https://doi.org/10.1016/j.jmsy.2020.01.002.

[13] Li L, Ni J. Short-term decision support system for maintenance task prioritization.
Int J Prod Econ 2009;121:195–202. https://doi.org/10.1016/j.ijpe.2009.05.006.

[14] Wu K, Zhou Y, Zhao N. Variability and the fundamental properties of production
lines. Comput Ind Eng 2016;99:364–71. https://doi.org/10.1016/j.cie.2016.04.
014.

[15] Alavian P, Eun Y, Meerkov SM, Zhang L. Smart production systems : automating
decision- making in manufacturing environment. Int J Prod Res 2019:1–18. https://
doi.org/10.1080/00207543.2019.1600765.

[16] Roser C, Nakano M, Tanaka M. A practical bottleneck detection method. In: Peters
B, Smith J, Medeiros D, Rohrer M, editors. Proc. 2001 Winter Simul. Conf.,
Arlington, VA 2001. p. 949–53. https://doi.org/10.1109/WSC.2001.977398.

[17] Goldrat E, Cox J. The goal: a process of ongoing improvement Third Revi. Great
Barrington, MA: North River Press; 1990.

[18] Roser C, Nakano M, Tanaka M. Shifting bottleneck detection. Yucesan E, Chen C-H,
Snowdon J, Charnes J, editors. Proc. 2002 Winter Simul. Conf. vol. 2. 2002. https://
doi.org/10.1109/WSC.2002.1166360.

[19] Li L, Chang Q, Ni J. Data driven bottleneck detection of manufacturing systems. Int
J Prod Res 2009;47:5019–36. https://doi.org/10.1080/00207540701881860.

[20] Betterton CE, Silver SJ. Detecting bottlenecks in serial production lines – a focus on
interdeparture time variance. Int J Prod Res 2012;50:4158–74. https://doi.org/10.
1080/00207543.2011.596847.

[21] Tang H. A new method of bottleneck analysis for manufacturing systems. Manuf
Lett 2019. https://doi.org/10.1016/j.mfglet.2019.01.003.

[22] Subramaniyan M, Skoogh A, Salomonsson H, Bangalore P, Gopalakrishnan M,
Sheikh Muhammad A. Data-driven algorithm for throughput bottleneck analysis of
production systems. Prod Manuf Res 2018;6:225–46. https://doi.org/10.1080/
21693277.2018.1496491.

[23] Li L. A systematic-theoretic analysis of data-driven throughput bottleneck detection
of production systems. J Manuf Syst 2018;47:43–52. https://doi.org/10.1016/j.

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

157

http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0005
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0005
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0010
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0010
https://doi.org/10.1016/j.eswa.2013.08.028
https://doi.org/10.1016/j.eswa.2013.08.028
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0020
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0020
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0025
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0025
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0025
https://doi.org/10.1016/j.jmsy.2018.01.006
https://doi.org/10.1016/j.ress.2018.06.021
https://doi.org/10.1016/j.cie.2019.106024
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1080/21693277.2016.1192517
https://doi.org/10.1016/j.jmsy.2018.02.004
https://doi.org/10.1016/j.jmsy.2018.02.004
https://doi.org/10.1016/j.ijpe.2019.107547
https://doi.org/10.1016/j.ijpe.2019.107547
https://doi.org/10.1016/j.jmsy.2020.01.002
https://doi.org/10.1016/j.ijpe.2009.05.006
https://doi.org/10.1016/j.cie.2016.04.014
https://doi.org/10.1016/j.cie.2016.04.014
https://doi.org/10.1080/00207543.2019.1600765
https://doi.org/10.1080/00207543.2019.1600765
https://doi.org/10.1109/WSC.2001.977398
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0085
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0085
https://doi.org/10.1109/WSC.2002.1166360
https://doi.org/10.1109/WSC.2002.1166360
https://doi.org/10.1080/00207540701881860
https://doi.org/10.1080/00207543.2011.596847
https://doi.org/10.1080/00207543.2011.596847
https://doi.org/10.1016/j.mfglet.2019.01.003
https://doi.org/10.1080/21693277.2018.1496491
https://doi.org/10.1080/21693277.2018.1496491
https://doi.org/10.1016/j.jmsy.2018.03.001


jmsy.2018.03.001.
[24] Pehrsson L, Ng AHC, Bernedixen J. Automatic identification of constraints and

improvement actions in production systems using multi-objective optimization and
post-optimality analysis. J Manuf Syst 2016;39:24–37. https://doi.org/10.1016/j.
jmsy.2016.02.001.

[25] Yu C, Matta A. Data-driven bottleneck detection in manufacturing systems: a sta-
tistical approach. Int J Prod Res 2016;54:6317–22. https://doi.org/10.1080/
00207543.2015.1126681.

[26] Amrhein V, Trafimow D. Inferential statistics as descriptive statistics: there is No
replication crisis if we don’t expect replication. Am Stat 2019;73:262–70. https://
doi.org/10.1080/00031305.2018.1543137.

[27] Roser C, Nakano M. Confidence interval from a single simulation using delta
method. JSME Int J Ser C Mech Syst Mach Elem Manuf 2003;46:67–72. https://doi.
org/10.1299/jsmec.46.67.

[28] Subramaniyan M, Skoogh A, Salomonsson H, Bangalore P, Bokrantz J. A data-
driven algorithm to predict throughput bottlenecks in a production system based on
active periods of the machines. Comput Ind Eng 2018;125:533–44. https://doi.org/
10.1016/j.cie.2018.04.024.

[29] Li L, Qing C, Xiao G, Ambani S. Throughput bottleneck prediction of manufacturing
systems using time series analysis. J Manuf Sci Eng 2011;133:1–8. https://doi.org/
10.1115/1.4003786.

[30] Hastie T, Tibshirani R, Friedman J. The elements of statistical learning. Second edi
New York: Springer Series in Statistics; 2001.

[31] Keogh E, Lin J. Clustering of time-series subsequences is meaningless : implications
for previous and future research. Knowl Inf Syst 2005;8:154–77. https://doi.org/
10.1007/s10115-004-0172-7.

[32] Balcan MF, Liang Y, Gupta P. Robust hierarchical clustering. J Mach Learn Res
2014;15:4011–51.

[33] Davidson I, Ravi SS. Agglomerative hierarchical clustering with constraints: theo-
retical and empirical results. Eur. Conf. Princ. Data Min. Knowl. Discov.. Berlin
Heidelberg: Springer; 2005. p. 59–70. https://doi.org/10.1007/11564126_11.

[34] Jain A, Murty M, Flynn PJ. Data clustering: a review. ACM Comput Surv

1999;31:264–323.
[35] Serr J, Arcos JL. An empirical evaluation of similarity measures for time series

classification. Knowledge-Based Syst 2014;67:305–14. https://doi.org/10.1016/j.
knosys.2014.04.035.

[36] Mueen A, Keogh E. Extracting optimal performance from dynamic time warping.
22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min. 2016. p. 2129–30.

[37] Hirano S, Tsumoto S. Empirical comparison of clustering methods for Long time-
series databases. In: Tsumoto S, Yamaguchi T, Numao M, Motoda H, editors. Act.
Min. Berlin Heidelberg: Springer; 2005. p. 275–94.

[38] Zambelli AE. A data-driven approach to estimating the number of clusters in
hierarchical clustering. F1000Research 2017;5:1–13. https://doi.org/10.12688/
f1000research.10103.1.

[39] Thorndike RL. Who belongs in the family? Psychometrika 1953;18:267–76. https://
doi.org/10.1007/BF02289263.

[40] Baheti A, Toshniwal D. Trend analysis of time series data using data mining tech-
niques. IEEE Int. Congr. Big Data, IEEE 2014:430–7. https://doi.org/10.1109/
BigData.Congress.2014.69.

[41] Baheti A, Toshniwal D. Finding representative time sequence for trend analysis. CSI
Trans ICT 2014;2:181–90. https://doi.org/10.1007/s40012-014-0056-2.

[42] Kumar S, Toshniwal D. A novel framework to analyze road accident time series
data. J Big Data 2016;3:1–11. https://doi.org/10.1186/s40537-016-0044-5.

[43] Wirth R, Hip J. CRISP-DM: towards a standard process model for data mining. Proc.
Fourth Int. Conf. Pract. Appl. Knowl. Discov. Data Min. 2000:29–39.
doi:10.1.1.198.5133.

[44] Huber S, Wiemer H, Schneider D, Ihlenfeldt S. DMME: data mining methodology for
engineering applications - a holistic extension to the CRISP-DM model. Procedia
CIRP 2019;79:403–8. https://doi.org/10.1016/j.procir.2019.02.106.

[45] Lei Q, Li T. Identification approach for bottleneck clusters in a job shop based on
theory of constraints and sensitivity analysis. Proc Inst Mech Eng Part B J Eng
Manuf 2017;231:1091–101. https://doi.org/10.1177/0954405415583884.

[46] Sakoe H, Chiba S. Dynamic programming algorithm optimization for spoken word
recognition. IEEE Trans Acoust 1978;26:43–9.

M. Subramaniyan, et al. Journal of Manufacturing Systems 55 (2020) 143–158

158

https://doi.org/10.1016/j.jmsy.2018.03.001
https://doi.org/10.1016/j.jmsy.2016.02.001
https://doi.org/10.1016/j.jmsy.2016.02.001
https://doi.org/10.1080/00207543.2015.1126681
https://doi.org/10.1080/00207543.2015.1126681
https://doi.org/10.1080/00031305.2018.1543137
https://doi.org/10.1080/00031305.2018.1543137
https://doi.org/10.1299/jsmec.46.67
https://doi.org/10.1299/jsmec.46.67
https://doi.org/10.1016/j.cie.2018.04.024
https://doi.org/10.1016/j.cie.2018.04.024
https://doi.org/10.1115/1.4003786
https://doi.org/10.1115/1.4003786
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0150
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0150
https://doi.org/10.1007/s10115-004-0172-7
https://doi.org/10.1007/s10115-004-0172-7
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0160
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0160
https://doi.org/10.1007/11564126_11
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0170
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0170
https://doi.org/10.1016/j.knosys.2014.04.035
https://doi.org/10.1016/j.knosys.2014.04.035
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0180
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0180
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0185
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0185
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0185
https://doi.org/10.12688/f1000research.10103.1
https://doi.org/10.12688/f1000research.10103.1
https://doi.org/10.1007/BF02289263
https://doi.org/10.1007/BF02289263
https://doi.org/10.1109/BigData.Congress.2014.69
https://doi.org/10.1109/BigData.Congress.2014.69
https://doi.org/10.1007/s40012-014-0056-2
https://doi.org/10.1186/s40537-016-0044-5
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0215
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0215
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0215
https://doi.org/10.1016/j.procir.2019.02.106
https://doi.org/10.1177/0954405415583884
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0230
http://refhub.elsevier.com/S0278-6125(20)30031-5/sbref0230

	A generic hierarchical clustering approach for detecting bottlenecks in manufacturing
	Introduction
	Theoretical background
	Existing assumptions in throughput bottleneck detection
	Unsupervised ML techniques
	Hierarchical clustering of time series
	Tools to facilitate generation and analysis of clusters

	Active period bottleneck detection method

	Proposed generic hierarchical clustering approach to throughput bottleneck detection
	Module 1: data collection
	Module 2: selection of suitable bottleneck detection method
	Module 3: data pre-processing
	Data cleaning
	Classification of event logs
	Time series generation

	Module 4: generating a dendrogram
	Application of DTW
	Application of complete linkage hierarchical clustering

	Module 5: cluster computation and generation
	Selecting the number of clusters
	Extracting the machine information of each cluster

	Module 6: representative time series generation
	Module 7: throughput bottleneck detection

	Additional real-world test study to evaluate the proposed approach
	Discussion
	Academic contributions
	Practical contributions
	Shop floor practice
	ML applied in practice

	Limitations and future research

	Conclusion
	mk:H1_31
	Acknowledgements
	References




