1,306 research outputs found

    Structured Sparsity Models for Multiparty Speech Recovery from Reverberant Recordings

    Get PDF
    We tackle the multi-party speech recovery problem through modeling the acoustic of the reverberant chambers. Our approach exploits structured sparsity models to perform room modeling and speech recovery. We propose a scheme for characterizing the room acoustic from the unknown competing speech sources relying on localization of the early images of the speakers by sparse approximation of the spatial spectra of the virtual sources in a free-space model. The images are then clustered exploiting the low-rank structure of the spectro-temporal components belonging to each source. This enables us to identify the early support of the room impulse response function and its unique map to the room geometry. To further tackle the ambiguity of the reflection ratios, we propose a novel formulation of the reverberation model and estimate the absorption coefficients through a convex optimization exploiting joint sparsity model formulated upon spatio-spectral sparsity of concurrent speech representation. The acoustic parameters are then incorporated for separating individual speech signals through either structured sparse recovery or inverse filtering the acoustic channels. The experiments conducted on real data recordings demonstrate the effectiveness of the proposed approach for multi-party speech recovery and recognition.Comment: 31 page

    Audio Source Separation Using Sparse Representations

    Get PDF
    This is the author's final version of the article, first published as A. Nesbit, M. G. Jafari, E. Vincent and M. D. Plumbley. Audio Source Separation Using Sparse Representations. In W. Wang (Ed), Machine Audition: Principles, Algorithms and Systems. Chapter 10, pp. 246-264. IGI Global, 2011. ISBN 978-1-61520-919-4. DOI: 10.4018/978-1-61520-919-4.ch010file: NesbitJafariVincentP11-audio.pdf:n\NesbitJafariVincentP11-audio.pdf:PDF owner: markp timestamp: 2011.02.04file: NesbitJafariVincentP11-audio.pdf:n\NesbitJafariVincentP11-audio.pdf:PDF owner: markp timestamp: 2011.02.04The authors address the problem of audio source separation, namely, the recovery of audio signals from recordings of mixtures of those signals. The sparse component analysis framework is a powerful method for achieving this. Sparse orthogonal transforms, in which only few transform coefficients differ significantly from zero, are developed; once the signal has been transformed, energy is apportioned from each transform coefficient to each estimated source, and, finally, the signal is reconstructed using the inverse transform. The overriding aim of this chapter is to demonstrate how this framework, as exemplified here by two different decomposition methods which adapt to the signal to represent it sparsely, can be used to solve different problems in different mixing scenarios. To address the instantaneous (neither delays nor echoes) and underdetermined (more sources than mixtures) mixing model, a lapped orthogonal transform is adapted to the signal by selecting a basis from a library of predetermined bases. This method is highly related to the windowing methods used in the MPEG audio coding framework. In considering the anechoic (delays but no echoes) and determined (equal number of sources and mixtures) mixing case, a greedy adaptive transform is used based on orthogonal basis functions that are learned from the observed data, instead of being selected from a predetermined library of bases. This is found to encode the signal characteristics, by introducing a feedback system between the bases and the observed data. Experiments on mixtures of speech and music signals demonstrate that these methods give good signal approximations and separation performance, and indicate promising directions for future research

    Exploitation of source nonstationarity in underdetermined blind source separation with advanced clustering techniques

    Get PDF
    The problem of blind source separation (BSS) is investigated. Following the assumption that the time-frequency (TF) distributions of the input sources do not overlap, quadratic TF representation is used to exploit the sparsity of the statistically nonstationary sources. However, separation performance is shown to be limited by the selection of a certain threshold in classifying the eigenvectors of the TF matrices drawn from the observation mixtures. Two methods are, therefore, proposed based on recently introduced advanced clustering techniques, namely Gap statistics and self-splitting competitive learning (SSCL), to mitigate the problem of eigenvector classification. The novel integration of these two approaches successfully overcomes the problem of artificial sources induced by insufficient knowledge of the threshold and enables automatic determination of the number of active sources over the observation. The separation performance is thereby greatly improved. Practical consequences of violating the TF orthogonality assumption in the current approach are also studied, which motivates the proposal of a new solution robust to violation of orthogonality. In this new method, the TF plane is partitioned into appropriate blocks and source separation is thereby carried out in a block-by-block manner. Numerical experiments with linear chirp signals and Gaussian minimum shift keying (GMSK) signals are included which support the improved performance of the proposed approaches

    Precoder design for space-time coded systems over correlated Rayleigh fading channels using convex optimization

    Get PDF
    A class of computationally efficient linear precoders for space-time block coded multiple-input multiple-output wireless systems is derived based on the minimization of the exact symbol error rate (SER) and its upper bound. Both correlations at the transmitter and receiver are assumed to be present, and only statistical channel state information in the form of the transmit and receive correlation matrices is assumed to be available at the transmitter. The convexity of the design based on SER minimization is established and exploited. The advantage of the developed technique is its low complexity. We also find various relationships of the proposed designs to the existing precoding techniques, and derive very simple closed-form precoders for special cases such as two or three receive antennas and constant receive correlation. The numerical simulations illustrate the excellent SER performance of the proposed precoders

    Dictionary Learning for Sparse Representations With Applications to Blind Source Separation.

    Get PDF
    During the past decade, sparse representation has attracted much attention in the signal processing community. It aims to represent a signal as a linear combination of a small number of elementary signals called atoms. These atoms constitute a dictionary so that a signal can be expressed by the multiplication of the dictionary and a sparse coefficients vector. This leads to two main challenges that are studied in the literature, i.e. sparse coding (find the coding coefficients based on a given dictionary) and dictionary design (find an appropriate dictionary to fit the data). Dictionary design is the focus of this thesis. Traditionally, the signals can be decomposed by the predefined mathematical transform, such as discrete cosine transform (DCT), which forms the so-called analytical approach. In recent years, learning-based methods have been introduced to adapt the dictionary from a set of training data, leading to the technique of dictionary learning. Although this may involve a higher computational complexity, learned dictionaries have the potential to offer improved performance as compared with predefined dictionaries. Dictionary learning algorithm is often achieved by iteratively executing two operations: sparse approximation and dictionary update. We focus on the dictionary update step, where the dictionary is optimized with a given sparsity pattern. A novel framework is proposed to generalize benchmark mechanisms such as the method of optimal directions (MOD) and K-SVD where an arbitrary set of codewords and the corresponding sparse coefficients are simultaneously updated, hence the term simultaneous codeword optimization (SimCO). Moreover, its extended formulation ‘regularized SimCO’ mitigates the major bottleneck of dictionary update caused by the singular points. First and second order optimization procedures are designed to solve the primitive and regularized SimCO. In addition, a tree-structured multi-level representation of dictionary based on clustering is used to speed up the optimization process in the sparse coding stage. This novel dictionary learning algorithm is also applied for solving the underdetermined blind speech separation problem, leading to a multi-stage method, where the separation problem is reformulated as a sparse coding problem, with the dictionary being learned by an adaptive algorithm. Using mutual coherence and sparsity index, the performance of a variety of dictionaries for underdetermined speech separation is compared and analyzed, such as the dictionaries learned from speech mixtures and ground truth speech sources, as well as those predefined by mathematical transforms. Finally, we propose a new method for joint dictionary learning and source separation. Different from the multistage method, the proposed method can simultaneously estimate the mixing matrix, the dictionary and the sources in an alternating and blind manner. The advantages of all the proposed methods are demonstrated over the state-of-the-art methods using extensive numerical tests
    • 

    corecore