
Dictionary Learning for Sparse Representations 
with Applications to Blind Source Separation

Tao Xu

Submitted for the Degree of 
Doctor of Philosophy 

from the 
University of Surrey

UNIVERSITY OF

SURREY

Centre for Vision, Speech and Signal Processing 
Faculty of Engineering and Physical Sciences 

University of Surrey 
Guildford, Surrey GU2 7XH, U.K.

February 2013

(c) Tao Xu 2013



ProQ uest Number: 27750488

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent on the quality of the copy submitted.

in the unlikely event that the author did not send a complete manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 27750488

Published by ProQuest LLC (2019). Copyright of the Dissertation is held by the Author.

Ail Rights Reserved.
This work is protected against unauthorized copying under Title 17, United States Code

Microform Edition © ProQuest LLC.

ProQuest LLC 
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106 - 1346



Abstract

During the past decade, sparse representation has attracted much attention in the signal 
processing community. It aims to represent a signal as a linear combination of a small 
number of elementary signals called atoms. These atoms constitute a dictionary so that 
a signal can be expressed by the multiplication of the dictionary and a sparse coefficients 
vector. This leads to two main challenges that are studied in the literature, i.e. sparse 
coding (find the coding coefficients based on a given dictionary) and dictionary design 
(find an appropriate dictionary to fit the data). Dictionary design is the focus of this 
thesis.

Traditionally, the signals can be decomposed by the predefined mathematical transform, 
such as discrete cosine transform (DOT), which forms the so-called analytical approach. 
In recent years, learning-based methods have been introduced to adapt the dictionary 
from a set of training data, leading to the technique of dictionary learning. Although this 
may involve a higher computational complexity, learned dictionaries have the potential 
to offer improved performance as compared with predefined dictionaries.

Dictionary learning algorithm is often achieved by iteratively executing two operations: 
sparse approximation and dictionary update. We focus on the dictionary update step, 
where the dictionary is optimized with a given sparsity pattern. A novel framework is 
proposed to generalize benchmark mechanisms such as the method of optimal directions 
(MOD) and K-SVD where an arbitrary set of codewords and the corresponding sparse 
coefficients are simultaneously updated, hence the term simultaneous codeword opti­
mization (SimCO). Moreover, its extended formulation ‘regularized SimCO’ mitigates 
the major bottleneck of dictionary update caused by the singular points. First and sec­
ond order optimization procedures are designed to solve the primitive and regularized 
SimCO. In addition, a tree-structured multi-level representation of dictionary based on 
clustering is used to speed up the optimization process in the sparse coding stage.

This novel dictionary learning algorithm is also applied for solving the underdetermined 
blind speech separation problem, leading to a multi-stage method, where the separation 
problem is reformulated as a sparse coding problem, with the dictionary being learned by 
an adaptive algorithm. Using mutual coherence and sparsity index, the performance of a 
variety of dictionaries for underdetermined speech separation is compared and analyzed, 
such as the dictionaries learned from speech mixtures and ground tru th  speech sources, 
as well as those predefined by mathematical transforms.

Finally, we propose a new method for joint dictionary learning and source separation. 
Different from the multistage method, the proposed method can simultaneously estimate 
the mixing matrix, the dictionary and the sources in an alternating and blind manner. 
The advantages of all the proposed methods are demonstrated over the state-of-the-art 
methods using extensive numerical tests.



K ey  w ords: Blind source separation (BSS), compressed sensing (CS), dictionary learn­
ing, sparse representation, sparse coding, numerical optimization, underdetermined 
blind speech separation, image denoising and separation

Email: t.xu@surrey.ac.uk

WWW: http://www.surrey.ac.uk/feps/

mailto:t.xu@surrey.ac.uk
http://www.surrey.ac.uk/feps/


Acknowledgements

First of all, I would like to express my most sincere thanks to my principal supervisor. Dr. 
Wenwu Wang who has given me his guidance, enthusiasm and encouragement during 
my PhD research period. My PhD research cannot make such progress without his 
great support on theoretical development, experimental analysis and academic writing. 
Most of the advice and education from him will be helpful to my professional career in 
the future. I would also like to thank my second supervisor Dr. Philip Jackson for his 
kind behavior and support throughout my PhD studies. Further appreciations will be 
given to my colleagues in CVSSP including some graduated PhD students and friends. 
Their help since I joined the University of Surrey makes my PhD route totally different.

In addition, my appreciation goes to Dr. Wei Dai in Imperial College London with whom 
I collaborated on a joint project which led to important progress in this academic field. 
His great inspiration in academic research has motivated and impressed me during this 
fruitful collaboration period. Here thank Dr. Wenwu Wang again for providing this 
valuable opportunity to me. I also would like to thank the other two PhD students, 
Guangyu Zhou and Xiaochen Zhao from Dr. Wei Dai’s research team. The cooperation 
with them is very pleasant.

Finally, I want to give special thanks to my parents. They look after me all the time 
and supply continual spiritual support during my study. W ithout this care and love, I 
cannot reach the final PhD stage and finish it successfully.



VI



List of Figures

3.1 Starting with the same point, the convergence behaviors of MOD, K-
SVD, primitive SimCO and regularized SimCO are different. In this par­
ticular example, only regularized SimCO avoids converging to a singular 
point..........................................................................................................................  43

3.2 Performance comparison of dictionary update (no sparse coding step). . 45

3.3 Performance comparison of dictionary learning using OMP for sparse
coding.......................................................................................................................  46

3.4 Example of the image denoising using dictionary learning. PSNR values
in dB are given in sub-figure titles.....................................................................  47

3.5 Average running time comparison between fast SimCO and the baselines. 51

3.6 Average approximation error comparison between fast SimCO and the
baselines...................................................................................................................  51

4.1 The fiow chart of the proposed system for separating four speech sources 
from two mixtures..................................................................................................  56

4.2 An example of the scatter plots for two mixtures of four speech sources 
in the time (a) and frequency (b) domain. Note that, the absolute values
of the mixtures and their STFT coefficients are plotted...............................  57

4.3 The fiow chart of the STD stra tegy ...................................................................  63

4.4 The fiow chart of the MTD s tr a te g y ................................................................ 63

4.5 The effect of different block length on the computational efficiency and
separation performance of the proposed algorithm. The cost-benefit (i.e. 
computing time divided by the output SDR) is also shown......................... 70

4.6 The four male speech sources (a), (b), (c), (d) and the two mixtures 
(e), (f) used in the experiment. The horizontal and vertical axis are the 
sample indices and amplitude respectively, same for those in Figure 4.7. 74

4.7 The four estimated male speech sources............................................................  75

4.8 Time domain original female speech mixtures (down sampled at rate 
100:1) and their scatter plot................................................................................  78

vii



viii List of Figures

4.9 Coding coefficients obtained using the dictionary learned by SimCO (down
sampled at rate 100:1) and their scatter plot..................................................  79

4.10 DCT coding coefficients (down sampled at rate 100:1) and their scatter
plot............................................................................................................................ 80

4.11 STFT coding coefficients (down sampled at rate 100:1) and their scatter
plot.................................  81

5.1 Four noisy mixtures with Gaussian noise (cr =  10).......................................  97

5.2 (a) Original Images. Separated images using (b) GMCA, (c) FastICA,
(d) BMMCA, and (e) the proposed method.................................................. 97

5.3 Separating related human face images by proposed method .....................  98

5.4 Dictionary trained from the proposed algorithm...........................................  99

5.5 The performance of the tested algorithms at different noise levels 100

A .l Illustration of u, u a ,i , h g  and uj_.  ..........................................................107



List of Tables

3.1 Comparison of running time (in seconds) for dictionary learning. Note 
that sparse coding step was included in producing Figures 3.3 and 3.4. . 48

4.1 Average SDR, SIR, SAR (in dB) measured for four estimated speech 
sources and p-values from the (-test between the methods, where B =
BP, M =  MP, L =  LILS....................................................................................... 69

4.2 Average SDR, SIR, SAR (in dB) measured for four estimated speech 
sources by using adaptive dictionary with different learning strategy and 
compared to using fixed dictionary i.e. DCT, STFT, MDCT. The right 
four columns present the p-values from the (-tests between STD and other 
four methods, respectively MTD, DCT, STFT and MDCT, where S =
STD, M =  MTD, D =  DCT, F =  STFT, C =  MDCT.................................  71

4.3 Average SDR, SIR, SAR (in dB) measured for four estimated speech
sources by using the dictionaries learned with different learning algo­
rithms. The right three columns present the p-values from the (-tests 
between these methods, where S =  SimCO, K =  K-SVD, and G =  GAD. 72

4.4 Performance comparison (measured by SDR in dB) between the learned 
dictionaries and the predefined dictionary (i.e. DCT) for the noise-free 
mixtures, noisy mixtures, and the performance degradation (i.e. the 
difference between the results obtained from the noise-free mixtures and
the noisy mixtures)................................................................................................  73

4.5 Average SDR, SIR, SAR (in dB) measured for four estimated male speech
sources obtained by the proposed method (with the learned dictionary), 
the method due to Gowreesunker and Tewfik, and the proposed method 
with the STFT dictionary..................................................................................... 75

4.6 Average SDR, SIR, SAR (in dB) measured for four estimated female
speech sources obtained by the proposed method (with the learned dic­
tionary), the method due to Gowreesunker and Tewfik, and the proposed 
method with the STFT dictionary.....................................................................  75

4.7 Average SDR, SIR, SAR (in dB) measured for four estimated male speech
sources......................................................................................................................  76

4.8 Average SDR, SIR, SAR (in dB) measured for four estimated female
speech sources.........................................................................................................  76

ix



List o f Tables

4.9 M utual coherence of the dictionaries learned from the female and male 
speech mixtures using SimCO, as compared with the DCT and STFT 
dictionaries. Note that, the DCT and STFT atoms (bases) are pre­
defined, hence they are kept the same for female and male speech in this 
example....................................................................................................................  78

4.10 The average sparsity indices (and their standard deviations) of all the 
atoms and the coding coefficients from the learned dictionaries (different 
for female and male speech mixtures) and the predefined dictionaries 
(DCT and STFT, fixed for male and female speech mixtures)...................  81

5.1 Achieved MSEs of the algorithms in noiseless case....................................... 96

B .l The confidence intervals corresponding to the p-values in Table 4.1 ob­
tained from the (-test between the methods, where B =  BP, M =  MP, 
and L — LILS............................................................................................................ I l l

B.2 The confidence intervals corresponding to the p-values in Table 4.2 ob­
tained from the (-tests between the STD and other four methods, respec­
tively MTD, DCT, STFT and MDCT, where S =  STD, M =  MTD, D 
=  DCT, F =  STFT, and C =  M DCT.................................................................. I l l

B.3 The confidence intervals corresponding to the p-values in Table 4.3 ob­
tained from the (-tests between the methods of SimCO, K-SVD and GAD, 
where S =  SimCO, K =  K-SVD, and G =  GAD...............................................112



Contents

List o f  Figures vi

List o f Tables v iii

Acronym s and M athem atical Sym bols x iv

List o f Pub lications xviii

1 Introduction  1

1.1 Problem Description and M o tiv a tio n ............................................................  1

1.2 C on tribu tions ....................................................................................................... 5

1.3 Thesis Structure ................................................................................................  7

2 Background and Literature Survey 9

2.1 Sparse Representations....................................................................................... 9

2.2 Compressed S e n s in g ..........................................................................................  12

2.3 Dictionary Design and L earn ing ......................................................................  14

2.3.1 Predefined and Learned D ic tio n a rie s ................................................. 14

2.3.2 Benchmark Approaches for Dictionary Update .............................  16

2.4 Blind Source S e p a ra tio n .................................................................................... 19

2.4.1 W hat is Blind Source S e p a ra tio n .......................................................  19

2.4.2 Underdetermined Blind Source Separation and Dictionary Learn­
ing based Techniques..............................................................................  21

2.5 Other Related M odels/M ethods....................................................................... 22

2.5.1 Non-negative Matrix F a c to riz a tio n ....................................................  22

2.5.2 Analysis Sparse M o d e l...........................................................................  23

2.6 S u m m a ry .............................................................................................................. 24

xi



xii Contents

3 Sim ultaneous Codeword O ptim ization (Sim CO ) for D ictionary Learn­
ing 25

3.1 In troduction ...........................................................................................................  25

3.2 The Optimization Framework of S im C O .........................................................  26

3.3 Relation to the State of the A r t ........................................................................  31

3.4 Preliminaries on M anifolds...............................................................................  33

3.5 Implementation Details for S im C O ...............................................................  34

3.5.1 Outline of A lg o rith m s ..........................................................................  34

3.5.2 Computation of the First and Second Order D eriv a tiv e s ............  36

3.5.3 Line Search P a t h ....................................................................................  39

3.6 Convergence of Primitive S im C O ...................................................................  40

3.7 Empirical T e s ts .........................................................  42

3.7.1 Ill-conditioned D ic tio n a rie s ................................................................  42

3.7.2 Experiments on Synthetic D a t a .......................................................... 44

3.7.3 Numerical Results for Image Denoising............................................  46

3.7.4 Comments on the Running T i m e .........................  47

3.8 A Fast Version of SimCO via Codeword Clustering and Hierarchical
Sparse Coding  ....................................................................................................  48

3.8.1 The Proposed M e th o d ..........................................................................  48

3.8.2 Simulation Results for Fast S im C O ...................................................  49

3.9 S u m m a ry .............................................................................................................  51

4 M ulti-stage U nderdeterm ined B lind Speech Separation B ased on Sparse 
Signal R ecovery w ith  Learned and Predefined D ictionaries 53

4.1 In troduction ..........................................................................................................  53

4.2 The Proposed Multi-stage System .................................................................... 55

4.2.1 Estimating the Mixing Matrix by C lustering.................................... 56

4.2.2 Separating Sources by Sparse Signal Recovery................................. 57

4.2.3 The Adaptive Dictionary Learning Algorithms .............................  60

4.2.4 Dictionary Learning S tra te g ie s ..........................................................  61

4.2.5 Blocking and R e c o n s tru c tio n ......................................   64

4.2.6 The Whole S y s te m .............................  65

4.3 Experimental R esu lts ......................................................   65



Contents xiii

4.3.1 Evaluation Dataset and Performance M e tr ic s .................................. 65

4.3.2 Separation Results with Fixed D ic tio n a ry ........................................  67

4.3.3 Separation Performance with Adaptive D ic t io n a ry ........................ 71

4.3.4 Separation in Noisy Case .....................................................................  72

4.3.5 Comparison with the State-of-the-art M e th o d .................................  73

4.3.6 Additional Performance A n a ly s is ........................................................ 77

4.4 S u m m a ry ..............................................................................................................  82

5 Joint B lind Source Separation and A daptive D ictionary Learning 85

5.1 In troduction ..........................................................................................................   85

5.2 Related W o rk .......................................................................................................  87

5.2.1 Independent Component A nalysis................   87

5.2.2 Image Denoising via Dictionary Learning ........................................ 87

5.2.3 Multichannel MCA for Blind Source S epara tion ..............................  88

5.3 Proposed Optimization Formulation .............................................................  89

5.4 Algorithmic D e ta ils .............................................................................................. 91

5.4.1 Dictionary Learning S ta g e .....................................................................  91

5.4.2 Mixture Learning S t a g e ........................................................................  92

5.4.3 Advantage of Optimization on M anifolds...........................................  93

5.4.4 Line Search P a t h .....................................................................................  94

5.5 S im u la tio n s ...........................................................................................................  94

5.6 S u m m a ry ..............................................................................................................  99

6 Conclusion and Future W ork 101

6.1 Conclusion..................................................................................................................101

6.2 Future Work ........................................................................................................... 102

A 105

A .l Proof of Theorem 1 ..................................................................................................105

A.2 Proof of Lemma 6  107

B 111

R eferences 113



xiv Contents



Acronyms and Mathematical 
Symbols

List of Acronyms
A cronym  /  A bbreviation
BSS
CASA
CPP
DPT
DCT
MDCT
STFT
IBM
ICA
ML
MMSE
NMF
SDR
SIR
SAR
SNR
MTD
STD
SimCO
GAD
MOD
ILS
RLS
MP
BP
GP
SP
OMP
WDO
MAP
DUET
LILS
BMMCA

M eaning
Blind Source Separation
Computational Auditory Scene Analysis
Cocktail Party Problem
Discrete Fourier Transform
Discrete Cosine Transform
Modified Discrete Cosine Transform
Short Time Fourier Transform
Ideal Binary Mask
Independent Component Analysis
Maximum Likelihood
Minimum Mean Squared Error
Non-negative Matrix Factorization
Signal to Distortion Ratio
Signal to Interference Ratio
Signal to Artifacts Ratio
Signal to Noise Ratio
Mixture-Trained Dictionary
Source-Trained Dictionary
Simultaneous Codeword Optimization
Greedy Adaptive Dictionary
Method of Optimal
Iterative Least Squares
Recursive Least Squares
Matching Pursuit
Basis Pursuit
Gradient Pursuit
Subspace Pursuit
Orthogonal Matching Pursuit
W-Disjoint Orthogonality
Maximum A Posteriori
Degenerate Unmixing Estimation Technique
11-Regularized Lease Squares
Blind Multichannel Morphological Component Analysis

XV



xvi Contents

List of Symbols

M The number of mixtures

N The number of sources

T The length of mixtures and sources

m The dimension of training signal

n The number of training signals

d The number of atoms in dictionary

Z Mixture matrix

A Mixing m atrix

S Source m atrix

Y Training data matrix

D Dictionary

X Coefficients matrix

V Noise matrix

r Residual of the signal

R Residual matrix

E Error matrix

0 Index set of sparsity pattern

X Index set of the codewords to be updated

Index set complementary to X

The Stiefel manifold

Gm,l The Grassmann manifold

V Gradient of the cost function



Contents xvii

Hessian of the cost function 

H  Newton direction matrix

$  Dictionary for reshaped signals

A  Estimated mixing matrix

b  Reshaped mixtures vector

f  Reshaped sources vector

y  Reshaped coefficients vector

T  Training sources m atrix

G Corresponding coefficients matrix to T

M  Reshaped mixing matrix

P  The number of blocks

L  The number of samples in consecutive speech frame

F  The number of samples of speech frame overlap

(/($) The mutual coherence of a dictionary



xviii Contents



List of Publications

PUBLICATIONS

Journal A rticles

T. Xu, W. Wang, and W. Dai, “Joint Blind Source Separation and Adaptive Dictionary 
Learning with Compound Optimization.” to be submitted.

T. Xu, W. Wang, and W. Dai, “Sparse Coding with Adaptive Dictionary Learning for 
Underdetermined Blind Speech Separation.” Speech Communication., vol. 55, no. 3, 
pp. 432-450, 2013

W. Dai, T. Xu, and W. Wang, “Simultaneous Codeword Optimisation (SimCO) for 
Dictionary Update and Learning.” IEEE Transactions on Signal Processing, vol. 60, 
no. 12, pp. 6340-6353, 2012.

Conference Papers

X. Zhao, T. Xu, G. Zhou, W. Dai, and W. Wang, “Joint Image Separation and Dic­
tionary Learning.” in Proc. 18th International Conference on Digital Signal Processing 
(DSP 2013), Santorini, Greece, 1-3 July 2013, submitted.

W. Dai, T. Xu, and W. Wang, “Dictionary Learning and Update based on Simulta­
neous Codeword Optimization (SIMCO).” in Proc. IEEE International Conference on 
Acoustics, Speech and Signal Processing (ICASSP 2012), Kyoto, Japan, March 25-30, 
2012 .

T. Xu, W. Wang, and W. Dai, “Fast Dictionary Learning Algorithm via Codeword 
Clustering and Hierarchical Sparse Coding.” in Proc. 9th IMA International Conference 
on Mathematics in Signal Processing (IMA 2012), Birmingham, UK, December 17-20, 
2012 .

W. Dai, T. Xu, and W. Wang, “Simultaneous Codeword Optimization (SimCO) for 
Dictionary Learning.” in Proc. fOth Annual Allerton Conference on Communication, 
Control, and Computing (ALLERTON 2011), Monticello, Illinois, USA, Sept 28-30, 
2011. (Invited Paper)

T. Xu and W. Wang, “Methods for Learning Adaptive Dictionary for Underdetermined 
Speech Separation.” in Proc. IEEE 21st International Workshop on Machine Learning 
for Signal Processing (MLSP 2011), Beijing, China, Sept 18-21, 2011.

xix



XX Contents

T. Xu and W. Wang, “Learning Dictionary for Underdetermined Blind Speech Sepa­
ration Based on Compressed Sensing Method.” in Proc. INSPIRE Conference on In­
formation Representation and Estimation (INSPIRE 2010), London, United Kingdom, 
7th September 2010.

T. Xu and W. Wang, “A Block-based Compressed Sensing Method for Underdetermined 
Blind Speech Separation Incorporating Binary Mask.” in Proc. 35th International 
Conference on Acoustics, Speech and Signal Processing (ICASSP) in Dallas, Texas, 
United States, 17th April 2010.

T. Xu and W. Wang, “A Compressed Sensing Approach for Underdetermined Blind 
Audio Source Separation with Sparse Representations.” in Proc. IEEE International 
Workshop on Statistical Signal Processing (SSP 2009), Cardiff, United Kingdom, August 
31-Sept 3, 2009.



Chapter 1

Introduction

1.1 Problem  Description and M otivation

Sparse signal representation has recently drawn much attention in signal processing and 

information theory [64,98,118,149]. The key idea of sparse signal representation is to 

assume that the signals are sparse, or can be decomposed into the combination of sig­

nal components with a small number of significant coefficients, which means tha t most 

values in the signal or its transformed coefficients are zero, except for a few nonzero 

values. In sparse representation, the elementary signals are called atoms or codewords 

and the collection of all the atoms is referred to as a dictionary. The dictionary can be 

either based on a mathematical model of the data or learned directly from the data. 

The mathematical models that are often used include discrete cosine transform (DCT), 

short-time Fourier transform (STFT), Gabor transform, wavelets [136], curvelets [33], 

contourlets [55] and bandelets [97], which can reveal certain structures of a signal such 

as sparsity in a different domain. Such dictionaries are relatively easy to obtain and 

more suitable for generic signals. Other than choosing atoms from a complete dictio­

nary (square), such as DCT, STFT basis, the atoms can be chosen from an overcomplete 

(redundant) dictionary in which the number of basis vectors (atoms) exceeds the di­

mensionality of the signal space. The signal can be represented by more than one 

combination of different atoms based on the overcomplete dictionary. The represen­

tation of the signal by an overcomplete dictionary can be sparser and has a greater
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flexibility in matching the structure of the signals as well as being more robust in the 

presence of noise [98]. The overcomplete dictionary can be generated either by the com­

bination of the classical complete dictionaries or by dictionaries learned from training 

data. This raises a key problem emerging in signal processing society during the recent 

years: ‘dictionary design’ [147].

The goal of dictionary learning is to seek an over-complete dictionary from which ev­

ery training signal can be best approximated by a linear combination of only a few 

codewords. This task is often achieved by iteratively executing two operations: sparse 

coding and dictionary update. In the literature, there are two benchmark mechanisms 

for the update of a dictionary. The first approach, for example the method of optimal 

directions (MOD) algorithm [61], is characterized by searching for the optimal code­

words while fixing the sparse coefficients. In the second approach, represented by the 

K-SVD method [5], one codeword and the related sparse coefficients are simultaneously 

updated while all other codewords and coefficients remain unchanged. We propose a 

novel framework that generalizes the aforementioned two methods. The unique fea­

ture of our approach is that one can update an arbitrary set of codewords and the 

corresponding sparse coefficients simultaneously: when sparse coefficients are fixed, the 

underlying optimization problem is the same as that in the MOD algorithm; when only 

one codeword is selected for update, it can be proved that the proposed algorithm is 

equivalent to the K-SVD method; and more importantly, our method allows to update 

all codewords and all sparse coefficients simultaneously, hence the term simultaneously 

codeword optimization (SimCO). Under the proposed framework, we design two algo­

rithms. We prove the convergence and where to converge under certain conditions. 

Simulations demonstrate that our approach excels the benchmark K-SVD in terms of 

both learning performance and running speed. The learning process, however, may in­

volve a higher computational complexity, rendering the algorithms to be less practical 

in computation extensive applications, for example, when dealing with large scale or 

high-dimensional data. Therefore, we then propose a new method to improve the com­

putational efficiency of the dictionary learning algorithms based on codeword clustering 

and hierarchical sparse coding, and we apply this method to the SimCO algorithm. 

The numerical results have shown the advantage of this tree structure sparse coding
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operation.

The proposed novel dictionary learning algorithm is then applied in the real applications 

e.g. blind source separation (BSS), which is also one of the central problems in signal 

processing. The aim of BSS is to separate the superposition of multiple source signals 

when the information about the mixing process and sources is unknown or very limited. 

For example, in acoustic processing, human’s auditory perception of sound mixtures 

results from the vibration of the ear drum by superposition of many different air-pressure 

signals, emitted from different audio sources at the same time. The brain can separate 

the sources from the mixtures quite efficiently according to the theory of auditory scene 

analysis (ASA) [29]. For a machine, however, it is a difficult task to separate the 

sources from the mixtures, widely known as the machine cocktail party problem [41]. 

Many approaches have been proposed for this problem including computational auditory 

scene analysis (CASA) [154] and BSS.

In the simplest mixing models, each mixture consists of different weighted source sig­

nals, which is called ‘instantaneous case’ (spatial-only). However, in the real-world 

applications, such as in acoustics, the mixing process is more complex. The observed 

mixtures consist of original source signals, at different time delays and amplitude levels, 

as well as multipath copies of the sources, distorted by the environment, which is called 

‘convolutive case’ (spatio-temporal). The convolutive BSS model has been investigated 

in many publications [6,84,93,108,133]. Although the convolutive BSS model is not the 

focus of this thesis, the methods developed here can also be used in convolutive speech 

separation algorithms.

In this thesis, we focus on the instantaneous BSS problem. Given M  mixtures obtained 

by mixing from N  sources via an unknown M  x N  mixing matrix, the purpose of BSS is 

to estimate the N  sources from the M  mixtures. When M  = N , this can be called the 

even-determined case. When M  > N , this is called the overdetermined case, and for 

M  < N , the underdetermined case. Many algorithms have been successfully developed 

for the BSS problem, especially for the even or over determined cases. Independent 

component analysis (ICA) is a well-known family of BSS techniques based on the as­

sumption that the source signals are statistically independent [80]. In the first two
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cases, once the mixing matrix A is estimated, the process of separation can be achieved 

by solving a linear equation. The underdetermined case is an ill-posed problem and 

cannot be addressed by an exact inverse operation such as ICA. Solving this problem 

normally requires making some assumptions (e.g. sparsity) about the sources, and the 

source estimation is usually achieved by using a sparse representation technique.

Although several approaches [105] have been developed to address this problem, which 

are reviewed in next chapter, it remains an open problem, especially for speech source 

signals. Using sparse representation, we propose an approach to improve the separation 

performance for speech signals based on dictionary learning, where the BSS problem is 

reformulated to the sparse signal recovery problem. However, the optimization process 

for source estimation is computationally demanding as the microphone signals of full 

length are stacked into a single vector, resulting in a large dimension of the measure­

ment matrix, as well as the signal dictionary. Therefore, a block based operation is 

incorporated into the approach. This multi-stage method has shown good performance 

compared with the state-of-the-art approaches.

This multi-stage method uses, however, the dictionaries pretrained from the speech data 

(either clean sources or mixtures). In BSS, clean speech sources are usually not available 

a priori, while training dictionaries from mixtures often render poor and noisy atoms. 

Therefore, we propose a new BSS method that simultaneously estimates the mixing 

matrix and sources and learns the dictionaries. We adapt the SimCO optimization 

framework to this method in order to keep the optimization on a product of Crassmann 

manifolds, which ensures that the constraints on the column norms of the mixing ma­

trix and dictionaries are satisfied. The numerical experiments show the performance 

advantages of the proposed method over the benchmark algorithms.

Overall, in this thesis, we investigate theories and techniques based on sparse represen­

tations including the foundational methods in dictionary learning, sparse coding and 

use them to address blind speech and image separation problems.
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1.2 Contributions

There are some major contributions of this thesis as described below:

1. A novel optimization framework SimCO is proposed for dictionary learning problem, 

where an arbitrary subset of the codewords is allowed to be updated simultaneously. 

The proposed framework has the following characteristics.

SimCO generalizes MOD and K-SVD. We show that the MOD algorithm is in fact an 

inexact Newton’s method under the proposed framework while K-SVD can be viewed 

as a special case of SimCO where only one codeword is selected for update at each 

iteration. The SimCO framework is general and flexible. Two possible algorithmic 

implementations are presented: one is based on gradient descent and the other uses a 

Newton’s method.

The proposed optimization framework allows the discovery of the bottleneck of dictio­

nary update. As opposed to traditional formulations, in the SimCO framework, the 

objective function involves only the dictionary by treating sparse coefficients as a func­

tion of the dictionary. In this way, the gradient can be easily computed and analyzed. 

Surprisingly, against the traditional belief that local minima are the major problem, we 

empirically discover that singular points are the bottleneck.

Regularized SimCO is introduced to mitigate the singularity problem. To avoid the 

singularity problem, an additive regularization term is introduced. The resulting ob­

jective function is differentiable. Significant improvement in empirical performance is 

observed. This, from another angle, verifies that singularity is the bottleneck.

A fast version of SimCO is proposed for improving the computational efficiency of 

dictionary learning algorithms based on codeword clustering and hierarchical sparse 

coding. Specifically, we develop a tree-structured multi-level representation of dictionary 

based on clustering, which is used to derive a hierarchical algorithm in the sparse coding 

stage. The proposed idea is then applied to the original SimCO algorithm resulting in a 

new algorithm: fast SimCO. Numerical examples are provided to show its computational 

efficiency and the performance for image denoising.

2. We propose a novel algorithm in which the BSS model is reformulated to a sparse
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signal recovery model. As a result, any of the state-of-the-art sparse signal recovery 

algorithms could be incorporated into this model to solve the underdetermined blind 

speech separation problem, with various separation performance and computational ef­

ficiency. Several signal recovery algorithms, such as basis pursuit (BP) [40], the least 

squares method LILS [90], matching pursuit (MP) [107] and orthogonal matching pur­

suit (OMP) [122,150], have been examined in the proposed system. We then extend 

this approach to a multi-stage method for enhancing the separation performance by 

incorporating adaptive dictionary learning algorithms for the signal recovery and incor­

porating a blocking process to improve its computational efficiency. In other words, the 

predefined transform traditionally used is replaced by an adaptive transform containing 

a group of atoms trained from the speech data. Under the adaptive transform, a speech 

signal can be decomposed as a linear combination of only a few atoms, i.e. it has a 

sparse representation. This sparse representation not only captures important features 

from the speech data, but also has the potential to reduce the effects of noise. We will 

also evaluate the performance of the proposed algorithm systematically and compare 

it with the state-of-the-art techniques. The results show that the separation perfor­

mance obtained by using the adaptive dictionary is more robust in noisy environments 

as compared with the fixed dictionary obtained by, for example, the DOT. Among the 

dictionary learning algorithms compared, SimCO offers the best performance as com­

pared with others [5,61]. To further improve the computational efficiency and enhance 

the system performance, we employ a block processing stage in the front-end of our 

system. The proposed algorithm will be compared with the recent methods [28] [69,70] 

in the source separation evaluation campaigns using the same datasets and evaluation 

approach.

3. We propose a new joint dictionary learning and source separation method which uni­

fies two stages (dictionary learning and source separation) in the optimization process. 

The coarsely separated sources are used to learn the dictionaries which are used in turn 

to refine the source estimate. The refined source is then used to update the dictionary 

further in the next iteration. The process is alternated until the cost function is opti­

mized. By adding the regularization term we are also able to force the search path away 

from singular points to achieve improved performance. To show the performance of our
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proposed method, synthetic data experiment and real application experiment (blind 

image separation and denoising) are provided to compare this novel joint method with 

benchmark methods such as ICA [80], generalized morphological component analysis 

(GMCA) [27] and blind multichannel morphological component analysis (BMMCA) [1].

1.3 Thesis Structure

In the next chapter, we will give a literature survey for the technical field tha t we 

mentioned above. The details of the proposed SimCO and fast SimCO are described in 

Chapter 3. The multi-stage method for underdetermined BSS is presented in Chapter

4. Finally, the joint dictionary learning and source separation method is presented in 

Chapter 5, followed by conclusions and future works in Chapter 6.
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Background and Literature Survey

2.1 Sparse R epresentations

Sparse representations have found successful applications in data interpretation [119, 

146], source separation [71,162,168], signal denoising [60,83], coding [92,128,134], classi­

fication [77,104,135], recognition [159], impainting [3,39] and many more (see e.g. [16]). 

Finding the sparse representations of signals is an important issue in signal processing, 

and it is often referred to as sparse decomposition or sparse approximation. It aims 

to estimate the coding coefficient vector x  G from the data vector y  G R™*1 by 

solving the following Iq minimization problem

min II X jjo s.t. y  =  D x  (2.1)

where the dictionary D  G R"^^^ consists of basis function vectors called atoms, jj x  ||o is 

the Iq norm measuring the sparseness of x  and D  is an overcomplete dictionary matrix. 

However, the process of finding the representation with the smallest number of atoms 

from an overcomplete dictionary is a NP-hard problem [66], which is not a good choice 

in practice. In this case, signals no longer have unique representations and finding 

the sparsest representation (i.e. the minimum number of non-zero coefficients) is non­

trivial. Therefore, the sparse coding algorithms typically fall into two broad classes: 

convex relaxation and greedy iteration.

9
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For convex relaxation methods, the problem formulation in (2.1) which is non-convex 

is replaced by some sub-optimal schemes. Many works have already shown that near 

optimal performance can be achieved by using different relaxations for the sparsity 

measure, e.g. the i i  norm [40], the £p norm [53], and the smoothed io norm [110]. Such 

relaxations have led to a wide range of algorithms for signal reconstruction, e.g. the basis 

pursuit technique based on linear programming [40], the least squares method LILS 

[90], regression shrinkage and selection (LASSO) [144], and the focal under-determined 

system solver (FOCUSS) [68].

In contrast, greedy algorithms operate iteratively on the signal measurements, by de­

riving the locally optimal solution at each stage to reach a global optimization after 

a number of iterations. Compared to convex relaxation approaches, these algorithms 

are often more efficient and better for large scale problems [36], such as matching pur­

suit [107], orthogonal matching pursuit (OMP) [122,150], iterative thresholding [25], 

CoSaMP [114] and subspace pursuit [51]. There are four sparse coding methods used 

in this thesis and we give a brief introduction below for these methods.

B asis P u rs u it

It has been shown in [40] that the solution to the io minimization problem is essentially 

equivalent to the solution of the following i i  minimization problem

min II X 111 s.t. y  =  D x. (2.2)

This £i norm minimization problem corresponds to the so-called basis pursuit (BP) [40] 

and can be solved through linear programming. One starts from a solution to the 

overcomplete representation problem y  =  Dx^^) then iteratively updates the coefficients 

while keeping y  =  D x(^ \ as follows. First, we choose an initial basis m atrix B  which is 

a square m atrix having the same rank as D and consists of the selected columns of D, 

i.e. the smallest possible complete dictionary. Then, we update the basis by swapping 

a column of B with an unselected column in D. When the basis cannot be further 

improved based on a pre-defined criterion, we reach the optimal solution. Finally, x  can 

be readily computed by B ” ^y.
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^ i-R eg u la rized  L east S q u ares  M e th o d

A least squares method with i i  regularization (LILS) is described in [90] for large 

scale problems. This interior-point method uses the preconditioned conjugate gradient 

algorithm to compute the search direction. It solves the following problem:

min II y  -  D x  ||  ̂ +A || x  ||i (2.3)

where || • H2 denotes the £2 norm and A is the regularization parameter. The search 

direction is computed first, followed by setting the step size using a line search mech­

anism. After computing the Hessian matrix, the preconditioned conjugate gradients 

algorithm [54] is applied to update the coefficients. Note that for a “small" A, this 

method will become equivalent to basis pursuit (BP).

M atch in g  P u rs u it

Apart from the convex relaxation approaches BP and LILS described above, there

are alternative greedy methods for recovering the speech signals, such as matching

pursuit (MP) [107]. The basic idea of MP is to represent a signal as a weighted sum of 

atoms using Equation (2.4) which involves finding the “best matching” projections of 

multidimensional data onto an over-complete dictionary,

k
y  =  (2.4)

2=1

where is a residual after k iterations, and d^. is the atom of D  that has the largest 

inner product with the residual. At stage i, it identifies the dictionary atom that best 

correlates with the residual then removes its contribution as follows,

j,b+i) _  J.W _  Xidj. (2.5)

where æ* =  < , d-y. > , and < , >  is an inner product operation. Then the process is

repeated until the signal is satisfactorily decomposed.
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O rth o g o n a l M a tch in g  P u rs u it

The orthogonal matching pursuit (OMP) [122] was developed to improve the MP by 

projecting the signal vector to the subspace spanned by the atoms selected as in MP 

via the same method. However, as opposed to MP, OMP maintains full backward 

orthogonality of the residual at each step when updating the coefficients:

k
y  =  < r^^\d.y. > — 0  (2 .6 )

i=l

As proven in [122] the necessary number of iterations for OMP to converge is no greater 

than the number of atoms in the dictionary, while MP does not possess this property.

There are also many other sparse coding methods developed in recent years such as 

[25,51], together with our novel tree-structured OMP algorithm [163] to be presented 

in Chapter 3 of this thesis.

2.2 Compressed Sensing

Compressed sensing (also known as compressive sensing, compressive sampling, or 

sparse sampling) [34, 56] is a signal processing technique for efficiently acquiring and 

reconstructing a signal, by finding solutions to underdetermined linear systems. This 

takes advantage of the signal’s sparseness or compressibility in some domain, allowing 

the entire signal to be determined from reducing the number of measurements necessary 

to reconstruct a signal. It is based on the principle that the object has some underlying 

sparse representation, i.e. that it can be described using a small number of non-zero 

coefficients.

The traditional Shannon-Nyquist sampling theorem states tha t a certain minimum num­

ber of samples is required to perfectly recover a signal, which must sample at least two 

times faster than the signal bandwidth. In many applications, including digital image 

and video capture, the data has to be compressed prior to storage or transmission be­

cause the Nyquist rate may be too high. However, compressed sensing (CS) techniques 

can capture and represent compressible signals at a rate significantly below the Nyquist
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rate. The fundamental idea behind CS: rather than first sampling at a high rate and 

then compressing the sampled data, we would like to find ways to directly sense the 

data in a compressed form, i.e., at a lower sampling rate [17].

There are two important parts of compressed sensing: the sampling strategy and the 

reconstruction algorithm [17]. In other words, once a signal is known to be sparse in a 

specific basis, one of the main challenges is to find a set of measurement tools (produc­

ing the compressed measurements) and the attendant nonlinear solver that reconstructs 

the original full signal. The compressible signal is randomly projected to a low dimen­

sional space, using an appropriate sampling matrix, then the nonlinear reconstruction 

techniques developed for finding sparse representations can be used to decode the signal 

from the compressed measurements. There are theoretical results analyzing the mini­

mum number of measurements required to produce the original signal when the specific 

measurement matrices and nonlinear solvers were given [56]. In all cases, the number 

of compressed measurements in compressed sensing is expected to be much less than 

the sampled measurements in traditional Nyquist sampling constraints.

One of the key differences between conventional sampling and compressed sensing is the 

sampling strategy. The measurement matrix in CS must allow the reconstruction of the 

signal from measurements, in which the problem appears ill-conditioned. It needs to 

follow the restricted isometry property (RIP) [35] while a related condition, referred to 

as incoherence [58], is necessary. Both the RIP and incoherence can be achieved with 

high probability simply by selecting the measurement m atrix as an appropriate random 

matrix. Certain families of matrices can satisfy this, for example, the random Gaussian 

measurement matrix.

Another key difference between conventional sampling and compressed sensing is tha t 

the reconstruction operator is nonlinear [37]. Essentially this selects the significant co­

efficients for the data in some sparse representation and then calculates a least squares 

approximation using the associated basis functions. Theoretical study of compressed 

sensing has been focusing on proving that near optimal performance is possible by us­

ing either a convex relaxation that amounts to solving a linear or quadratic program 

or greedy algorithm that iteratively selects the coefficients one at a time. There exist
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nonlinear solvers that can be used to reconstruct the original signal from its compressed 

measurements on incoherent bases. Reconstruction algorithms span a wide range of 

techniques that include Greedy [107], Linear Programming [40], Bayesian [85] and Iter­

ative Thresholding [25]. There are plenty of tutorials and reviews [15,32,37] by Bara- 

niuk, Candes and Wakin respectively to discuss compressed sensing while more academic 

papers and applications based on this emerging technique is currently appearing.

The multi-stage approach based on compressed sensing is presented in Chapter 4 of this 

thesis for solving underdetermined BSS problems. This work is motivated by reformu­

lating the BSS problem to a compressed sensing model. However, the reconstruction 

algorithm i.e. sparse coding, is the core technique used in this approach. Therefore, we 

use the term ‘sparse signal recovery’ instead of ‘compressed sensing’ in that chapter.

2.3 D ictionary D esign and Learning

2.3.1 Predefined and Learned Dictionaries

Designing dictionary is the key issue in sparse coding algorithms because sparse de­

compositions of a signal highly rely on the degree of fitting between the data and 

the dictionary. The dictionary can be either based on a mathematical model of the 

data or learned directly from the data. The mathematical models, that can be used 

for generating dictionaries include discrete cosine transform (DOT), short-time Fourier 

transform (STFT), Gabor transform, wavelets [136], curvelets [33], contourlets [55] and 

bandelets [97]. Such dictionaries are relatively easy to obtain and suitable for generic 

signals. In learning-based approaches, the dictionaries are adapted from a set of training 

data [60,61,67,74,82,94,119,120,127,158]. Although this may involve higher computa­

tional complexity, learned dictionaries have the potential to offer improved performance 

as compared with predefined dictionaries, since the atoms are derived to capture the 

salient information directly from the signals.

One of the early algorithms that adopted such a two-step structure was proposed by 

Olshausen and Field [119,120], where a maximum likelihood (ML) learning method 

was used to sparsely code the natural images upon a redundant dictionary. The sparse



2.3. Dictionary Design and Learning 15

approximation step in the ML algorithm [119] which involves probabilistic inference is 

computationally expensive. In a similar probabilistic framework, Kreutz-Delgado et al. 

[94] proposed a maximum a posteriori (MAP) dictionary learning algorithm, where the 

maximization of the likelihood function as used in [119] is replaced by the maximization 

of posterior probability that a given signal can be synthesized by a dictionary and the 

sparse coefficients. Based on the same ML objective function as in [119], Engan [61] 

developed a more efficient algorithm, called the method of optimal directions (MOD), in 

which a closed-form solution for the dictionary update has been proposed. This method 

is one of the earliest methods that implements the concept of sparification process [130]. 

Several variants of this algorithm, such as the iterative least squares (ILS) method, have 

also been developed which were summarized in [62]. A recursive least squares (RLS) 

dictionary learning algorithm was recently presented in [137] where the dictionary is 

continuously updated as each training vector is being processed, which is different from 

the ILS dictionary learning method. Aharon, Elad and Bruckstein developed the K-SVD 

algorithm in [5] by generalizing the K-means algorithm for dictionary learning. This 

algorithm uses a similar block-relaxation approach to MOD, but updates the dictionary 

on atom-by-atom basis, without having to compute m atrix inversion as required in the 

original MOD algorithm. The majorization method was proposed by [164] in which the 

original objective function is substituted by a surrogate function in the each step of 

optimization process.

In contrast to generic dictionaries described above, learning structure-oriented param et­

ric dictionaries has also been attracted attention in this academic field. For example, 

a Gammatone generating function has been used by Yaghoobi et al. [165] to learn dic­

tionaries from audio data. In [132], a pyramidal wavelet-like transform was proposed 

to learn a multiscale structure in the dictionary. Other constraints have also been 

considered in the learning process to favor the desired structures of the dictionaries, 

such as the translation-invariant or shift-invariant characteristics of the atoms imposed 

in [4,24,31,102,141] and the orthogonality between subspaces enforced in [73], and the 

de-correlation between the atoms promoted in [8 6 ]. An advantage of parametric dictio­

nary lies in its potential of reducing the number of free parameters and thereby leads 

to more efficient implementation and better convergence of dictionary learning algo­
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rithms [130]. Other recent efforts in dictionary learning include the seek of robust and 

computationally efficient algorithms, such as [83,95,103], and learning dictionaries from 

multimodal data [38, 1 1 1 ]. Comprehensive reviews of dictionary learning algorithms can 

be found in recent survey papers e.g. [130] [147].

2.3.2 Benchmark Approaches for D ictionary U pdate

The dictionary learning problem can be formulated as follows: let Y  G be the

training data, where each column of Y  corresponds to one training sample; one is 

looking for the solution of the following optimization problem

min | |Y - D X | | | ,

subject to |lD;^i||2 =  1 , VI < 2 < d. (2.7)

Here, the matrices D  and X  are often referred to as a dictionary and the corresponding 

coefficients respectively, and D   ̂ denotes the column (i.e., the codeword) of the 

dictionary D . In practice, it is typical that m  < d < n, i.e., an over-complete dictionary 

is considered and the number of training samples is larger than the number of codewords. 

Generally speaking, the optimization problem (2.7) is ill-posed unless there are extra 

constraints on X. The most common constraint on X  is that X  is sparse, i.e., the 

number of nonzero entries in X, compared with the total number of entries, is small.

Dictionary learning algorithms are often established on an optimization process involv­

ing the iteration between two stages: sparse approximation and dictionary update. First 

an initial dictionary is given and a signal is decomposed as a linear combination of only 

a few atoms from the initial dictionary. Then the atoms of the dictionary are trained 

with fixed or sometimes unfixed weighting coefficients. After that, the trained dictio­

nary is used to compute the new weighting coefficients. The process is iterated until 

the most suitable dictionary is obtained eventually.

There are different formulations for dictionary update stage, leading to substantially 

different algorithms. In the following subsections, we introduce three methods: method 

of optimal directions (MOD), K-SVD and greedy adaptive dictionary (GAD) algorithms.
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A lg o rith m  1 A typical dictionary learning algorithm
Task: find the best dictionary to represent the data sample m atrix Y .
In itia liza tio n : Set the initial dictionary Set J  =  1 .
R e p e a t until convergence (use stop rule):

• Sparse coding stage: Fix the dictionary and update using some sparse 
coding technique.

• Dictionary update stage: Update and X̂ "̂ ) as appropriate.

• J  = J  + 1.

which will be used as baseline algorithms in our experimental evaluations.

M O D

Method of optimized directions (MOD) can be used to find the dictionary for a finite 

learning set Y  which is decomposed as a sparse representation with sparseness constraint 

defined by either ^o-norm (the number of non-zero coefficient is limited) or ^i-norm (the 

sum of absolute values of coefficients is limited). In MOD, the optimization problem 

of Equation (2.7) is iteratively solved in three steps. Firstly, we find X  keeping D 

fixed, which is a sparse approximation problem. Then X  is fixed to find D  using the 

least squares solution: D  =  (Y X ^ )(X X ^)“  ̂ =  B A “ .̂ It is convenient to define the 

matrices B  =  Y X ^  and A  =  X X ^. Finally, D  is normalized, i.e. scale each column 

vector (atom) of D  to unit norm. However, the normalization step may be skipped if D  is 

almost normalized and the ^o-sparseness is used. Sparse coding step is computationally 

demanding, and with this setup there will be a lot of computational effort between each 

dictionary update, thus slowing down the learning process. This is especially true with 

large training sets.

K -SV D

The K-SVD algorithm aims to iteratively find the best dictionary to represent the 

training signals by approximating the solution to Equation (2.7). The K-SVD algorithm 

consists of a sparse-coding step and a dictionary update step. The first step is to
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compute the sparse coefficient vectors from the training signals in Y  using any sparse- 

approximation approach such as a pursuit method based on the given dictionary. The 

second step is updating the atoms which are columns in the dictionary matrix to better 

fit the signal using the sparse representations obtained in the first step. The dictionary 

update is carried out for one atom each time, i.e. optimizing the Equation (2.7) for 

each atom in turn while keeping the other atoms fixed. These two steps are iteratively 

repeated until the convergence of the algorithm. The essential part of the dictionary 

update step is presented here. First, the overall representation error m atrix E j is 

computed by (2 .8 ).

%  =  Y - ^ d i x f  (2.8)

where is the ffh column of the dictionary matrix D , x f  is the 2th  row of the coeffi­

cient matrix X  and E j stands for the residual when the j th  atom is removed from the 

dictionary matrix. The SVD decomposition is then applied to E j to find alternative 

di and x [  for approximating E j  as the closest rank-1 matrix. When all the atoms in 

the dictionary have been updated, the learned dictionary is ready for the sparse coding 

stage in the next iteration.

G A D

The greedy adaptive dictionary (GAD) algorithm [83] learns the dictionary atoms based 

on an iterative process using the sparsity index defined as follows:

where \\ ■ ||i and || • H2 denote the £1- and ^2-norm respectively and y j  is the column 

vector of Y . The sparsity index measures the sparsity of a signal, where the smaller Oj, 

the sparser the signal vector j j .

The GAD algorithm begins with the definition of a residual matrix =  [r^ ,..., r^], 

where is a residual column vector corresponding to the j - th  column of R^. This 

residual matrix changes at each iteration k and is initialized to Y . The dictionary is
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then built by selecting the residual vector that has the lowest sparsity index j .

j  = arg min || j  (2 .1 0 )
j  II U  Il2

Then r |  is normalized and added to the dictionary. Finally, the new residual is computed 

for all the columns. The process is repeated until the number of obtained atoms reaches 

a pre-determined value.

2.4 Blind Source Separation

2.4.1 W hat is B lind Source Separation

Source separation arises in a variety of signal processing applications, ranging from 

speech processing to medical image analysis [105] by making assumptions about the 

sources. When the information about the mixing process and sources is limited, the 

problem is called blind source separation (BSS) [84]. One well-known application of 

blind source separation is for processing acoustic mixtures, which is often referred to as 

the cocktail party problem [41]; that is the separation of individual voices from a myriad 

of voices in an uncontrolled acoustic environment such as a cocktail party environment. 

Sensor observations in a natural environment are confounded by room reverberations 

and consequently the unmixing process needs to identify a source arriving from mul­

tiple directions at different times as one individual source. Generally, BSS techniques 

depart from this difficult real-world scenario and make less realistic assumptions about 

the environment in order to make the problem more tractable [105]. There are typi­

cally three assumptions that are often made about the environment. The most basic 

assumption is the instantaneous case, where sources arrive instantly at the sensors but 

with differing signal intensity. An extension to this assumption, where the arrival delays 

between sensors are also considered, is known as the anechoic case. The anechoic case 

can be further extended by considering multiple paths between each source and each 

sensor which results in the echoic case, sometimes known as convolutive mixing [84].
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The mathematic model is;

N  P
= ' ^ ^ h j i { p ) s i { t - p  + l) {j = l , . . . ,M )  (2.11)

i=l p=l

where si and zj are the source and mixture signals respectively, hji is a P-point room 

impulse response from source Si to microphone Zj. Hence the separation problem in 

the convolutive situation is more complex than in the instantaneous situation. There 

have been many methods to solve the convolutive blind source separation problem [8,9] 

[106,157]. Blind source separation techniques are not only applied to acoustic signals 

but also the decomposition of biomedical data such as electroencephalography (EEG) 

[109], functional magnetic resonance imaging (fMRI) [30] and magnetoencephalography 

(MEG) [14,47] as well as real time robot audition [1 1 2 ], digital watermark attacks [48] 

and financial time series analysis [13].

During nearly two decades, a great number of papers have been published for study­

ing blind source separation problems. The earliest approach traces back to [76] which 

tried to separate an instantaneous linear even-determined mixture of non-Gaussian in­

dependent sources. In this work, Hérault and Jutten  proposed a solution that used a 

recurrent artificial neural network to separate the unknown sources, with the crucial 

assumption being that the underlying signals were independent. This early work led to 

the pioneering adaptive algorithm of [8 8 ]. In [99] unsupervised learning rules have been 

proposed that maximize the average mutual information between the inputs and out­

puts of an artificial neural network. M utual information was the most natural measure 

of independence and showed that maximizing the non-Gaussianity of the source signals 

was equivalent to minimizing the mutual information between them. A blind source 

separation algorithm called Infomax is developed in [20], which is similar in spirit to 

that of Linsker and uses an elegant stochastic gradient learning rule that was proposed 

by Amari, Cichocki and Yang in [7]. The idea of non-Gaussianity of sources was used 

by Hyvarinen in [81] to develop their fast ICA algorithm. As an alternative approach 

to mutual information based separation method, [65] proposed maximum likelihood es­

timation, an approach elaborated by Pham, Garrat and Ju tten  in [126], although the 

Infomax algorithm and maximum likelihood estimation are essentially equivalent.
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The early years of BSS research concentrated on solutions for even-determined and 

over-determined mixing processes. In all of the approaches of solving the BSS problem, 

ICA [44, 80] is the most fundamental one, as it provides a robust solution based on 

an ideal environment (the easiest case, i.e., instantaneous and even-determined case) 

and assumption of sources (independent, at least decorrelated). However, to solve 

this problem with realistic conditions, especially in underdetermined case, additional 

information or constraints (e.g. sparseness) need to be considered. This is still an open 

problem since there are an infinite number of solutions in an underdetermined system 

in which the number of known mixed signals is smaller than the number of unknown 

source signals.

2.4.2 U nderdeterm ined Blind Source Separation and D ictionary Learn­

ing based Techniques

Underdetermined blind speech separation is an ill-posed inverse problem, due to the 

lack of sufficient observations, i.e. the number of unknown speech sources to be sepa­

rated is greater than the number of observed mixtures. Several approaches have been 

developed to address this problem, such as the higher order statistics based method 

in [45], the clustering techniques in [10,100], the method combining the techniques of 

ICA and ideal binary mask (IBM) [123], and m atrix and tensor decomposition based 

methods [115], [43,46,145]. The DUET [87,167] method attem pts to solve the under­

determined speech separation problem using a time-frequency masking technique based 

on the assumptions of W-disjoint orthogonality (WDO) between the speech signals and 

the short distance between the microphones. The binary mask based technique com­

bined with a K-means clustering algorithm was presented in [10]. The methods in [78] 

and [11] are also based on the clustering technique. However, the majority of methods 

to solve underdetermined BSS problem is based on sparse signal representation which 

is a powerful framework even when the independence assumption is dropped. Good re­

views on using sparse component analysis for source separation can be found in [72,143]. 

Zibulevsky and Pearlmutter [168] proposed a method for the selection of signal priors 

from a signal dictionary assuming that the sources can be sparsely represented. The 

sources are then estimated under the maximum a posteriori (MAP) [21] framework.
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In [28], a two-stage approach was developed which consists of estimating the mixing 

system by a clustering technique and separating sources by solving a low-dimensional 

linear programming problem for each of the data points. There are also some bench­

mark literatures [71,98,151] to present sparsity-based underdetermined BSS method.

As discussed in the above sections, having an appropriate dictionary is essential for 
the sparse representation of a signal. There has been increasing interest emerging in

blind source separation methods on using dictionary learning based techniques. For 

example, in morphological component analysis (MCA) [142], source separation is ad­

dressed by decomposing the images into different morphological components in terms 

of sparsity of each component in a signal dictionary. The MCA has also been ex­

tended to multichannel case as multichannel MCA (MMCA) [26] and generalized MCA 

(GMCA) [26]. In MMCA, each source is assumed to be sparse in a specific transform 

domain. However, in GMCA, each source can be represented by the linear combination 

of morphological components and each component has a sparse representation by a spe­

cific dictionary. Recently, MMCA is also adapted to Blind Multichannel Morphological 

Component Analysis (BMMCA) [1] based on learned dictionary for separating mixed 

images. This method is also motivated by the idea of image denoising using a learned 

dictionary from corrupted images in [60], which in principle extends the denoising prob­

lem to BSS. The BMMCA method is interesting in that the dictionary is directly trained 

from the mixtures, alleviating the issue of requiring training data, and as a result the 

algorithm can still be performed in a blind manner. However, the BMMCA method 

trains multiple dictionaries for different sources, and in each iteration only updates one 

atom, rendering a potentially ineffective sparse representation of the image sources and a 

computationally inefficient procedure. Overall, these methods take advantages of both 

morphological diversity and sparsity, using recent sparse overcomplete or redundant 

signal representations and dictionary learning techniques.

2.5 Other R elated M odels/M ethods

2.5.1 N on-negative M atrix Factorization

Non-negative m atrix factorization (NMF) [96] developed by Lee and Seung in 1999 

was inspired by the evidence of parts-based representation in neural network. NMF
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decomposes a non-negative matrix V  into the product of two non-negative matrices W  

and H  and allows only additive but subtractive operations, in contrast to other matrix 

factorization methods. The formulations can be described below:

V  =  W H  (2.12)

If we apply NMF to a database of facial images, a linear combination of basis images can 

be learned from the image database to represent a face. The dimensions of the m atrix 

W  and H  are m x d  and d x n , respectively. The d columns of W  are basis images. Each 

column of H  consists of the coefficients to represent the face by a linear combination 

of basis images. In vector quantization (VQ), each column of H  is constrained to be a 

vector in which one element equals to unity and the other elements equal to zero. In 

principal components analysis (PCA), the columns of W  are orthonormal and the rows 

of H  are orthogonal to each other, which relaxes the unitary constraint of VQ. In ICA, 

the variables are assumed to be statistically independent and non-Gaussian. This is 

in contrast to NMF which assumes that the variables are non-negative, but makes no 

further assumptions about their statistical dependencies. Therefore, NMF practically 

has the potential to separate the correlated sources. Apart from image processing 

applications, NMF can also be applied to audio signals. In this situation, the music 

or speech data are usually transformed to non-negative spectrogram which can be used 

in NMF algorithms, such as in music transcription [140] and audio source separation 

applications [63,139,155,156].

2.5.2 Analysis Sparse M odel

D ata model is at the heart of signal processing as well as being fundamental for practical 

applications such as compression, separation, sampling, inverse problems and other 

related tasks. Essentially, a model poses a set of mathematical properties that the data 

is assumed to satisfy. During the past decade, in sparse representations, the synthesis 

model for representing signals has been extensively studied. Such a model assumes that 

the signal can be decomposed as a linear combination of a few atoms from a given 

dictionary. However, there is a counterpart viewpoint called analysis model [131] tha t
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did not receive equal attention. The analysis model relies on a linear operator f t  as the 

analysis dictionary whose rows are analysis atoms. Comparing to the synthesis model 

y  =  D x  in which the signal y  is the multiplication by the dictionary D  and the sparse 

coefficients vector x, in the analysis model, the analysis representation vector x  =  Oy 

is expected to be sparse. There are some emerging algorithms [131] [113] developed 

recently to learn the analysis dictionary O from a set of training signals. The objective 

is to find a suitable dictionary so that the analysis coefficients O y are sparse. When the 

analysis dictionary is a square matrix i.e. invertible, the analysis model is equivalent 

to the synthesis model as =  D. In this case, the general dictionary learning 

method e.g. K-SVD can be used to train the analysis dictionary f t .  However, the more 

general case for using analysis model is the redundant case in which the number of 

rows is greater than the number of columns of f t ,  which is similar to the overcomplete 

dictionary case in the synthetic model. This is a challenging problem, which has begun 

to attract increasing attention [113,121,125,166] in recent years.

2.6 Summary

In this chapter, we review one of the key problems in signal processing ‘modeling the 

data in sparse representation’ and discuss benchmark sparse coding approaches such 

as basis pursuit (BP), the least squares method LILS, matching pursuit (MP) and 

orthogonal matching pursuit (OMP). Moreover, we introduce the basic concept and 

theory of compressed sensing which is used in this thesis as a signal recovery tool to 

solve the underdetermined blind source separation problem. Then we investigate the 

dictionary learning problem and related methods, especially the benchmark algorithms 

such as the method of optimal directions (MOD) algorithm, K-SVD algorithm and the 

greedy adaptive dictionary algorithm. The blind source separation (BSS) problem is 

also reviewed comprehensively including its background, foundations, applications and 

the state-of-the-art methods. The underdetermined BSS case is surveyed independently 

and the sparsity based method motivated us to develop the proposed multi-stage BSS 

algorithm in this thesis. Finally, the related method non-negative matrix factoriza­

tion (NMF) and the state-of-the-art analysis sparse model are summarized in the last 

subsection of this chapter.



Chapter 3

Simultaneous Codeword 

Optimization (SimCO) for 

Dictionary Learning

3.1 Introduction

In this chapter, similar to MOD and K-SVD methods, we focus on the dictionary up­

date step for generic dictionary learning. A novel optimization framework is proposed, 

where an arbitrary subset of the codewords are allowed to be updated simultaneously, 

hence the term simultaneous codeword optimization (SimCO). This work was done in 

collaboration with Dr. Wei Dai from Imperial Collage London and my main contribu­

tions include algorithm implementation and experiment design. Specifically, I found an 

important phenomenon during the experiments e.g. the singular point rather than the 

local minimum is the key issue for algorithm convergence, which has led us to modify 

the original SimCO framework to the regularized version. The proposed framework has 

the following characteristics.

• SimCO generalizes MOD and K-SVD. We show that the MOD algorithm is in fact 

an inexact Newton’s method under the proposed framework while K-SVD can be 

viewed as a special case of SimCO where only one codeword is selected for update

25
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at each iteration. The SimCO framework is general and flexible. This chap­

ter presents two possible algorithmic implementations; one is based on gradient 

descent and the other uses a Newton’s method.

• The proposed optimization framework allows the discovery of the bottleneck of dic­

tionary update. As opposed to traditional formulations, in the SimCO framework, 

the objective function involves only the dictionary by treating sparse coefficients 

as a function of the dictionary. In this way, the gradient can be easily computed 

and analyzed. Surprisingly, against the traditional belief that local minima are the 

major problem, we empirically discover that singular points are the bottleneck.

• Regularized SimCO is introduced to mitigate the singularity problem. To avoid 

the singularity problem, an additive regularization term is introduced. The re­

sulting objective function is differentiable. Significant improvement in empirical 

performance is observed. This, from another angle, verifies that singularity is the 

bottleneck.

The remainder of the chapter is organized as follows. Section 3.2 introduces the SimCO 

optimization framework, with particular emphasis on the motivations for regularized 

SimCO. Section 3.3 discusses the relation of SimCO to MOD and K-SVD, and the 

possibility of extending MOD and K-SVD to the regularized versions. Section 3.4 

provides necessary preliminaries on manifolds and shows that dictionary update can 

be cast as an optimization problem on manifolds. The algorithmic details on how to 

apply the first and second order methods to solve the SimCO optimization problem 

are presented in Section 3.5. In Section 3.6, we rigorously prove the deep connection 

between SimCO and K-SVD. Numerical results of SimCO algorithms are presented in 

Section 3.7. A fast version of SimCO via codeword clustering and hierarchical sparse 

coding is discussed in Section 3.8. Finally, the chapter is concluded in Section 3.9.

3.2 The O ptim ization Framework of SimCO

Dictionary learning is a procedure to find an over-complete dictionary that best repre­

sents the training signals. As we reviewed in Chapter 2 , dictionary learning algorithms
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usually consist of two stages: sparse coding and dictionary update (see Algorithm 1). 

The focus of this chapter is on the dictionary update stage. Instead of directly solving 

the joint optimization problem in (2.7), we view the sparse coefficients as a function of 

the dictionary so that the optimization is only over the dictionary. Furthermore, our 

framework allows one to simultaneously update an arbitrary subset of codewords and 

the corresponding coefficients. This characteristic gives rise to the term simultaneous 

codeword optimization {SimCO).

In our formulation, we assume that the dictionary matrix D  contains unit ^2-norm 

columns and the sparsity pattern of X  remains unchanged. Define

V

where H-jlg is the ^2-norm and the set [d] =  {1,2, - - ,d}. This is the set of all feasible 

dictionaries. Represent the sparsity pattern of X  by the index set D C  [d] x [n] which 

contains the indices of all the non-zero entries in X: that is, X i j  ^  0 for all {i,j)  G fl 

and X i j  — 0 for all {i,j)  ^ ft. Define

A (fi) =  { x  e  ; X ij  =  0 , V (i.i)  n }  . (3.2)

This is the set of all feasible X  given sparsity pattern ft. The dictionary update problem 

is formulated as

inf /  (D) =  inf inf ||Y  -  D X | | l . (3.3)
D€î> D e v  Xe%(n)

'-------------V------------ '
/(D )

To evaluate / ( D )  for a given D, the least squares problem infxe%(p) ||Y  -  D X ||^  

needs to be solved. Denote the optimal X  by X  (D), which can be viewed as a function 

of D. An update in D  results in an update of X  (D). In other words, both D  and X  

are simultaneously updated.

One may notice that the optimal X  that solves the least squares problem above may not 

be unique. Non-unique solutions happen only when D  is singular, formally defined as 

follows. For a given sparsity patten ft, let ft ( :,/)  =  (z : (%,/) G D}. Let D. j) be the 

sub-matrix of D  containing the columns indexed by ft (:, j ) .  A dictionary D  is singular
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under sparsity patten if there exists j  G [n] such that the columns of D. are 

linearly dependent, i.e., D. j) does not have full column rank. At a singular point, 

X  (D) is not uniquely defined. This can be solved by arbitrarily choosing one of the 

multiple solutions as the choice of X  (D) does not affect the value of /  (D).

The singularity problem brings several algorithmic problems.

1. Severe performance deterioration in dictionary update. Our empirical experiments 

(detailed in Section 3.7.1) show that, when the dictionary update procedure fails 

in finding a globally optimal solution, most likely it converges to a singular point,

i.e., an ill-conditioned dictionary.

2. Slow convergence in dictionary update. Let Amin (D. j) )  be the minimum sin­

gular value of the m atrix D. j ) .  When it is close to zero, the curvature (Hessian) 

of /  (D) is large and the gradient changes significantly in the neighborhood of a 

singular point. Optimization algorithms typically suffer from a very slow conver­

gence rate.

3. Instability in the subsequent sparse coding stage. When Amin (D, is close to 

zero, the solution to the least squares problem inf ||Y :j — D.

becomes unstable: small changes in Y, j  often result in very different least squares 

solutions Xq^. y  It is well known that the stability of sparse coding relies on the 

so called restricted isometry condition (RIP) [35], which requires that the singular 

values of submatrices of D center around 1. An ill-conditioned D violates RIP 

and hence results in sparse coefficients that are sensitive to noise.

To mitigate the singularity problem, we propose to add a regularization term into the 

objective function:

inf̂  U (D) = ||Y -  DXf^ + , ||X1||, (3.4)
'--------------------V--------------------'

where // >  0 is a properly chosen constant. Hereafter, we refer to (3.3) and (3.4) as 

primitive SimCO and regularized SimCO  respectively. Note that when /i =  0 , regu­

larized SimCO reduces to primitive SimCO. In practice, one may consider first using
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regularized SimCO (/x >  0 ) to obtain a reasonably good dictionary and then reduce 

the regularization constant p  to zero to refine the dictionary further. This two-step 

procedure often results in a well-conditioned dictionary that fits the training data. See 

the simulation part (Section 3.7) for examples.

The effect of the regularization term is to remove the singular point. Let Y; j  be the 

column of Y . Let Xp(. be the sub-vector of X ;j formed by the entries indexed by 

ft (:, j ) .  Let m j = |0  (:,/)] be the number of non-zeros in the column of X . Define

f i  =
’  Y,,- ■

, D j =  D._n(:j), and D j =
D=,n(:j)

Omj y /r  ’ Imj
(3.5)

where Omj is the zero vector of length m j,  and 1^^ is the m j  x m j  identity matrix. 

Then

U  (D) =  l|Y -  DXII^ +  fi ||X ||^

n

=  I Z  ^ ll^:J “  D.,n(:j)Xn(:j)j||2 +  P ||Xp(:J)j||2

ÿ j  -  D jX n ( .j) j  . (3.6)=  T  inf

When p >  0, the m atrix in the atomic function { p i j  has full column rank. 

The objective function fp  (D) is always continuous and contains no singular points. The 

algorithmic details for solving the regularized SimCO are presented in Section 3.5.

So far, we have considered only the case where all the codewords and the corresponding 

nonzero coefficients are simultaneously updated. It is worth noting that SimCO accom­

modates the case of simultaneously updating an arbitrary subset of codewords and the 

corresponding nonzero coefficients. More precisely, let X C [d] be the index set of the 

codewords to be updated. That is, only codewords D, / s ,  i G X, are to be updated while 

all other codewords D= ’̂s, i ^ X ,  remain constant. Let D= % denote the sub-matrix of 

D  formed by the columns of D  indexed by X. Let Xi^, denote the sub-matrix of X
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consisting of the rows of X  indexed by X. Define

Y r = Y - D : , i c X i c , ,  (3.7)

where is a set complementary to X. Then Y  — D X  =  Y r — D;_iXx,:- Replacing 

the Y , D  and X  in (3.3) and (3.4) by Y^, D:,% and X j,, respectively, the optimization 

framework developed for the full set [d], i.e., (3.3) and (3.4), can be readily applied to 

the case X C  [d]. For this reason, the discussions hereafter will center around the full 

set [d] case (the subscript X will be dropped).

Finally, we would like to comment on the column-norm constraint imposed on the 

dictionary in (3.1). This constraint appears in K-SVD but not in MOD. Theoretically, 

the performance of a given dictionary is invariant to the column norms: a scaling in 

columns of D  can be compensated by an inverse scaling in the corresponding rows of 

X . On the other hand, the constraint on the column norms has certain advantages:

1 . A normalized dictionary D G X> is required in regularized SimCO. The regulariza­

tion term p  ||X ||^  is useful only when the column norms of D are fixed. Otherwise, 

the regularized objective function (3.4) can be reduced simply by scaling up the 

columns of D.

2. A normalized dictionary D G X> plays an important role in identifying singular 

points. As detailed in Section 3.7.1, the gradient of the objective function /  (D) 

is used to distinguish between singular points and local minimizers. Since scaling 

the columns of the dictionary results in scaling in the gradient (see (3.19) for more 

details), a normalization is necessary.

3. A normalized dictionary D G X> is preferred in the sparse coding stage. Sparse 

coding algorithms rely heavily on the magnitudes of the coefficients X f j’s, (%,j) G 

[d] X [n], which are affected by the column norms of D. It is a standard practice 

to normalize the columns of D before applying sparse coding algorithms.
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3.3 R elation to  the State of the Art

In this section, we discuss how primitive SimCO is related to two benchmark algo­

rithms MOD and K-SVD. Furthermore, as regularization substantially improves the 

performance (motivated in Section 3.2 and empirically demonstrated in Section 3.7), 

we regularize MOD and K-SVD as well. Here, we would like to emphasize that the regu­

larization technique is designed to handle the singularity problem, which is observed via 

the SimCO framework. We are not aware of regularized versions of MOD and K-SVD 

in the literature.

In MOD, the dictionary update involves iteratively performing two steps: first fix D and 

solve X for infxe%(p) |1 Y — DX||^; then fix X and solve D for inf^g^T^xd || Y — DX||^. 

Both steps involve only solving a least squares problem. Denote the dictionaries before 

and after an iteration by D and D' respectively. Then the updated sparse coefficients 

are X (D) and the updated dictionary is given by D' =  YX"  ̂(D) (X (D) X”̂ (D))

MOD can be viewed as an inexact Newton’s method to solve the primitive SimCO 

problem without the column norm constraint. After dropping the column-norm con­

straint, the optimization problem in SimCO becomes inf /  (D) where /  (D) =

infxGA'(fi) IIY — DXjj^. Consider the Newton iteration for dictionary update, where 

the gradient and the Hessian are given by V /  (D) =  - 2  (Y — DX (D)) X^ (D) and

V 2/(D ) =  2(VD)X(D)X'^(D) (3.8)

-f 2D (VX (D)) X'  ̂(D) -f 2DX (D) (VX (D))"  ̂ (3.9)

respectively (see Section 3.5.2 for more details on how to compute Hessian). Note that 

the computation of VX (D) is complicated. To reduce the computational complex­

ity, one may approximate V^/ by omitting the terms involving VX(D), i.e., approx­

imate V^/ by 2 (VD) X (D) X"̂  (D). Following from this approximation, the objec­

tive function at the neighborhood of a given dictionary D q can be approximated by 

/(D )  % IIY — DX (Do) 11̂ . The optimal dictionary with respect to the approximated

objective function is then given by D' = YX^ (Do) (X (Dq) X'  ̂(Do)) which coin­

cides with the update rule in MOD.
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Using a similar approximation for the corresponding Hessian matrix, MOD can be 

adapted to solve the regularized SimCO problem. We refer to it as regularized MOD. It 

again iteratively performs two steps: first fix D and solve X for infxeAf(P) IIY — DX||^4- 

p ||X||^; then fix X and solve D for infoçRmxd ||Y  -  DX||^. Substantial improvement 

in empirical performance can be observed in Section 3.7.

The relation between SimCO and K-SVD is straightforward. Consider the SimCO 

where only one codeword and the corresponding sparse coefficients are updated. The 

resulting objective function is the same as that of K-SVD. More specifically, suppose 

that only the codeword and the corresponding sparse coefficients are updated. Let 

Y r  = Y  -  D. iqcX pjc .. Then both SimCO and K-SVD aim at solving

inf inf (3.10)

In K-SVD, singular value decomposition (SVD) is used to solve the above optimization 

problem.

Nevertheless, it is not clear how to extend K-SVD to the regularized case. Let mi = 

|D (z, :)|. W ith the regularization term, the optimization problem becomes

inf inf

=  inf 
d:

inf
, =  1 X

(Yr):,n(i,:) _ d

OfTti

Ÿr,i d

(3.11)

(3.12)

where O ^. is the m{ x mi zero matrix, E is an all-one vector, and we have 

simplified the notations D; * and X^ ^ p .) to d  and x  respectively. If we apply SVD to 

(Yr). the solution is exactly identical to that in the original K-SVD. If we apply 

SVD to the left singular vectors are not of the form d: the last m* entries of the 

left singular vectors are always zero. In either case, in contrast to the original K-SVD, 

SVD cannot solve the joint optimization problem. In the numerical comparison part 

of this chapter, we use regularized SimCO with X =  { z }  C  [d] to solve this optimiza-



3.4. Preliminaries on Manifolds 33

tion problem, and refer to the resulting algorithm as regularized “K-SVD” although it 

involves no SVD.

3.4 Prelim inaries on M anifolds

Our approach for solving the optimization problem in Equation (3.3) and (3.4) relies on 

the notion of Stiefel and Grassmann manifolds. In particular, the Stiefel manifold Um,i 

is defined as Um,i =  {u G : u^u = l}  • The Grassmann manifold Qrn,i is defined 

as Qrn,i = {span (u) : u G Um,i} ■ Here, the notations Um,i and Grn,i follow from the 

convention in [49,59]. Note that each element in ZYm,i is a unit-norm vector while each 

element in 0^,1 is a one-dimensional subspace in R"^. For any given u G it can

generate a one-dimensional subspace ^  G Qm,i- Meanwhile, any given ^  G Qrn,i can 

be generated from different u G if ^  =  span (u), then ^  = span (—u) as well.

W ith these definitions, the dictionary D can be interpreted as the Cartesian product of 

d many Stiefel manifolds Um,i- Each codeword (column) in D is one element in Um,i- 

It looks straightforward that optimization over D is an optimization over the product 

of Stiefel manifolds.

W hat is not so obvious is that the optimization is actually over the product of Grass­

mann manifolds. For any given pair (D,X), if the signs of D,  ̂ and X̂ ,̂ change simul­

taneously, the value of the objective function ||Y — DX||^ stays the same. Let D =  

[D;,l, • • • ,D; i_l,D; i,D; i+1, ' ' ' ,D; d] UndD' =  [D; 1 , • • • —D:,i,D: i+1, • • • ,D; J.

Then it is straightforward to verify tha t (D) =  f̂ l̂] (D')- In other words, it does 

not m atter what D  ̂ is; what matters is the generated subspace span(D;^^). As shall 

become explicit later, this phenomenon has a significant impact on algorithm design 

and analysis.

It is worth noting that the performance of a given dictionary is invariant to the perm uta­

tions of the codewords. However, how to effectively address this permutation invariance 

analytically and algorithmically remains an open problem.
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3.5 Im plem entation D etails for SimCO

This section presents the algorithmic details on how to solve the optimization problems 

in Equation (3.3) and (3.4). As the primitive SimCO is a special case of regularized 

SimCO where p =  0, the descriptions below center around regularized SimCO. One 

of the key properties of SimCO is that the objective function (D) only involves the 

dictionary. To minimize this objective function, derivatives of this function need to 

be evaluated. First and second order optimization procedures can be implemented. 

Note that first order methods are often conceptually easier to understand but slower in 

convergence rate, while second order methods are typically faster in convergence rate 

but more complicated in the computation of the search direction. In this section, we 

first outline the proposed algorithms, then give details on the computations of the first 

and second order derivatives, and finally discuss the line search path that satisfies the 

column norm constraint.

3.5.1 Outline o f A lgorithm s

A natural choice of first order optimization procedures is the gradient descent line 

search method. Algorithm 2 summarizes one iteration of the proposed procedure. The 

computational details of the gradient V/^ and line search path D (t) are presented in 

Sections 3.5.2 and 3.5.3 respectively, where t  is the step size. For proof-of-concept, we 

use the method of golden section search’- (see [129] for a detailed description). The idea 

is to use the golden ratio to successively narrow the search range of t inside which a local 

minimum exists. To implement this idea, we design a two-step procedure in Algorithm 

2 : in the first step (Part A), we increase/decrease the range of t, i.e., (0 ,^4 ), so that 

it contains a local minimum and the objective function looks unimodal in this range; 

in the second step (Part B), we use the golden ratio to narrow the range so that we 

can accurately locate the minimizer. Note that the proposed algorithm is by no means

^Algorithm 2 looks more complicated than popular gradient descent methods in standard textbooks, 
e.g., [117]. We choose this implementation because it mimics the ideal gradient descent with infinites­
imal steps more authentically than other optimization methods of which the step size may be so large 
that local minimizers or singular point may not be seen. In the simulation part, we use Algorithm 2 
to catch the singular points.
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A lg o rith m  2  One iteration in a gradient descent line search algorithm.
In p u t:  Y , D, X 
O u tp u t:  D ' and X '.
P a ra m e te rs : > 0: initial step size, pmin >  0: the threshold below which a gradient
can be viewed as zero.
In itia liza tio n : Let c =  (\/5  — l)  /2.

1. Let t i  = 0. Compute ^  (D) and V /,, (D). If ||V /,J |^  <  gmin ||Y ||^ , then D ' =  D, 
X ' — X, and quit.

2. Set line search direction H  =  — Vf^. Let tg =  ct^ and ^2 =  (1 ~  c) 4̂ .

P a r t  A: the goal is to find (4  >  0 s.t. /  (D (ti)) >  /  (D ( 2̂ )) > /  (D (tg)) <  /  (D (24)), 
where D  (t) is defined via (3.25). Iterate the following steps.

3) If /  (D (ti)) <  /  (D ((2 )), then t^ = t2 , ts = ct^ and ^2 =  (1 -  c) 4̂ .

4. Else if /  (D (Z2)) < /  (D (tg)), then (4  =  tg, tg =  (2 and ^2 =  (1 -  c) (4 .

5. Else if /  (D (tg)) >  /  (D (24)), then tg =  tg, tg =  ^4 and ^4 =  tg/c.

6 . Otherwise, quit the iteration.

P a r t  B: the goal is to shrink the interval length ^4 — t\  while keeping /  (D (U)) >
/  (D ( 2̂)) >  /  (D (tg)). Iterate the following steps until (4  — t \  is sufficiently small.

7) If / ( D ( i i ) )  >  /  (D (tg)) >  / (D ( tg ) ) ,  then h  =  2̂ , ^2 =  h  and tz = ti +
c ( t4 -  ti).

8 . Else t4 = tg, tz = t2 and t 2 = ti + (1 — c) (^4 — ti).

O u tp u t: Let t* = arg min /  (D (£)). Set D  =  D  (£*) and compute X ' according to

(3.18)._________________________________________________________________________

optimal. Other ways to do a gradient descent efficiently can be found in [117, Chapter 

3].

For second order optimization methods, we choose line search Newton - Conjugate 

Gradient (LSNCG) method [117, Chapter 7]. (It turns out that the trust region method 

[117], another popular second order optimization method, is not quite numerically stable 

under certain conditions.) It is worth noting that LSNCG, which uses the exact Hessian, 

typically exhibits faster convergence rate than MOD, where an approximate of the 

Hessian is employed.

Before discussing the details, let us first understand the ideas behind LSNCG. Let 

D  and D ' be the dictionaries before and after a line search step. In Newton methods.
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D '- D  =  -  (V^f^) Vf;,. However, note that the Hessian is an (m x d) x (m x d)

matrix with entries d'^f^/ [dDijdDk^e)- Computing it explicitly and taking the inverse 

are computationally expensive. The main idea of LSNCG method is to use the conjugate 

gradient method [117, Chapter 5] to avoid explicit computation of the Hessian and its 

inverse. The steps of LSNCG are based on the concept of directional derivative. Let 

H  G be a matrix of the same dimension of D . The directional derivative of

along direction H  is defined as

=  (3.13)

Instead of computing the Hessian, LSNCG only involves directional derivative of the 

gradient, i.e..

Note that both V /;, and V r V /;, are m x d matrices^ and admit closed forms (com­

putation details are given in Section 3.5.2). The computational complexity is greatly 

reduced. Algorithm 3 summarizes one iteration of the LSNCG procedure for dictionary 

update, where (A,B) represents the inner product of matrices A and B.

3.5.2 C om putation of the First and Second Order Derivatives

We now compute V /;, and V hV /;,. Prom the decomposition = YljSu-d derived in 

(3 .6 ), it is clear that

3

For any given H  G define LLj =  H.,p(..j). It can be verified that

V r V /;, =  V h  (3.16)

=  E  ^  V n , V /;.,r  (3.17)

^The entries of V A  G are d A /d D «j and those of V h V /,, are V h (d A /d D ij) .
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A lgorithm  3 One iteration in the LSNCG algorithm 
Input: Y , D , X  
O utput: D' and X'.
In itia liza tio n : Set ^  0  € R(°) =  H(°) =  -R (o), and J  = 0. Define
tolerance e =  min (0.5, \ / ||V /; , |l^ )  1|V/;,||^. Define shrink constant p G (0,1).
Part A: the goal is to find the Newton direction H  using conjugate gradient method.
Perform the following iterations.

1. If (V/y ,̂ Vjj(j) V/;,) > 0, set H  =  and quite the iterations.

2 . Set =  (R('^),R ('^))/(H ('^), VH(v)V/y,), Z(^+^) =  and
R(J+i) _  R(J) +  a(-^)VH(j)V/;,.

3. If <  e, set H  =  and quit the iterations.

4. Set =  (R('^+i),R ('^+^))/(R('^),R('^)),
and then J  =  J  +  1.

Part B: Line search along H.

5) Start with £ =  1 and repeat setting t = pt until (D (£)) < (D). Set t* = £,
D ' =  D  (t*) and compute X ' according to (3.18).

As a result, it suffices to compute V/y^j and Vw-V/y^j for each atomic function.

The atomic function for regularized SimCO, defined in (3.6), is of the form /y^j =  

ÿ j  -  DjXj (D j)
2

where
2

X; (f>,) =  D]ÿ,- = (d J d ^ '  (3-18)

Again, let m j  =  |Q(:,jf)|. Then D j G Note that, can be regarded

as a function of either D j or D j. We first compute V/y,j G i.e.,

the gradient of / y , j  with respect to Dj, and then obtain V (Dj) G i.e., the

gradient of f ^ j  with respect to Dj from V/y,^ ^Dj^ The gradient with respect to Dj
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is given by^

dB ,
I

D. d i) i

=  - 2  (ÿ j -  D j X j )  x j  -  2D J ( f j  -  ÛjKj'j
dx.j
d S .

Note that ÿ j — DjXj =  ÿ j — D jD ^ÿj is orthogonal to the columns of D j. One has

D J  [ f j  — D j X j ^  = 0 .  As a result,

^ ~  (ÿ j ~  ^ j ^ j ) (3.19)

Prom the definition of D j in (3.5), D j is a sub-matrix of D j, and therefore V/y,,j (Dj) 

is also a sub-matrix of V/y,,y(Dj), i.e., V/y,,j (D j) =  fv /y ,,j(D j))

A similar procedure is used to compute the second order derivative V h  ̂V/y, (D j). For a
~ r n T

given H j G  ̂ (jefine H j =  H J , Om^ E , where 0^^- is the m j  x mj

zero matrix. By the definition of D j and directional derivative, it can be verified that

VH, V //x(D j) =  (V g.V /y , ( O j ) )  . We compute Vjj.V /y, (O j)  as follows: For
\  ̂ \  / /   ̂ \ /

any H j,

=  ( '^ f t b j )  XjxJ +  Dj (vH .X j) xJ  -  (ÿj -  DjXj) ( V g .X j /  . (3.20)

It is clear that V g  D j =  H j. To compute the other term Vjj^Xj, note that Xj is 

a function of D j involving matrix inversion. To proceed, we use the fact that for any 

invertible m atrix A, it holds VA~^ =  —A ” ’̂ (VA) A “  ̂ (derived by differentiating both 

sides of A  • A “  ̂ =  I). As a result, one has V ^  Xj =  V ^^D jÿ j where Vÿ^.Ôt is given

^Note that the term OXi I olJ
dff .̂i I ôxj . 

Id is a product of a vector and a tensor defined as J2k { j

where (xj)f.  is the element of the vector xj .
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by

= -  ( ô f D j ) ”’ (DjDj)  (f)jD j)“’ D j  

+  ( D j D A ’ V f t P J  

= -  (ô jD j)" ' (V àjD j) DjD]. -  D» (V g b j)  D» 

+  ( D j D j ) - 'V ô P J  

= (D jD j)"‘ i i j  (l -  DjDj) -  DjiijD].

Define fe,j = f j  ~  DjXj. Then,

=  ( D jD j )  H j  (ÿ j -  D jX j) -  D tH jX j 

=  ( D j D j / ’ Hjÿe,j -  ( D j D j ) - ’ DjHjXj 

=  ( D j D j ) " ’ (H jÿ e ,j -  D jH jX j)  . (3.21)

Substitute (3.21) into (3.20). One is able to compute Vjj .̂ V/y, ( ô j ^ , and hence Vn^ V/y, (D j), 

and VnV/y,.

3.5.3 Line Search Path

The line search mechanism used in this chapter is significantly different from the stan­

dard one due to the column norm constraint in (3.1). In a standard line search algorithm, 

the iteration outputs an updated dictionary D^^) via

jy(k) ^  j3 (fc-i) +  i . H , (3.22)

where t G R"’" is a properly chosen step size and H  G is the line search direc­

tion. Common choices for the search direction include H  =  —Vf), for the gradient

descent method and H  =  — (V'^fy,)  ̂Vf), for the Newton method. However, a direct

application of (3.22) generally results in a dictionary D  ^ X?.

The line search path in this section is restricted to the product of Grassmann manifolds.
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This is because, as has been discussed in Section 3.4, the objective function /y, is indeed 

a function defined on the product of Grassmann manifolds. On the Grassmann manifold 

Qm,ii the geodesic path plays the same role as the straight line in the Euclidean space: 

given any two distinct points on Gm,ii the shortest path that connects these two points is 

geodesic [59]. Specifically, let ^  E Gm,i be a one-dimensional subspace and u  E Um,i be 

the corresponding generator m atrix (not unique)."^ Consider a search direction h  G 

with llhjlg =  1 and h ^ u  =  0. Then the geodesic path starting from u  along the direction 

h  is given by [59]

u  (£) =  u  • co st-t-h  • sin£, £ G R. (3.23)

Note that u  (£) =  —u  (£ -f tt) and hence span (u (£)) =  span (u (£ +  tt)). In practice, one 

can restrict the search path within the interval £ G [0, t t ).

For the dictionary update problem at hand, the line search path is defined as follows. 

Let H  G R"i^^ be the search direction. (H  =  —V/y, for the gradient descent method 

and H  =  — (V^/y,)  ̂V/y, for the Newton method.) Let h, be the column of H . 

Define

hj =  hj -  D,,jD;^jhj, Vi e I,  (3.24)

SO that ii, and D=, are orthogonal. The line search path for dictionary update, say 

D  (t), £ > 0, is given by [59]

D:j(£) =  D:j if | |h i ||2  =  0,

D:,i(£) =  D :jC os(l|h i|l2 £) +  ( h i / | |h i | |2) s in ( ||h i |l2 £) (3.25)

if l |b i ||2  #  0 .

3.6 Convergence of Prim itive SimCO

The focus of this section is on the convergence performance of primitive SimCO when 

the index set I  contains only one index. The analysis shows deep connections between 

primitive SimCO and K-SVD. It is clear that the optimization formulations of primitive 

SimCO and K-SVD are exactly the same when |%| =  1 . However, the methods used 

to solve the optimization problem are quite different: primitive SimCO uses standard

*The generator matrix u is a vector in this case.
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optimization methods while K-SVD employs SVD. The question is whether these two 

different approaches will give the same solution eventually. Theorem 1 of this section 

shows that a gradient descent finds a global optimum with probability one. Hence, 

when |X| =  1 , primitive SimCO and K-SVD are the same in terms of ultimate learning 

performance. Note that, even though the general case where |I |  >  1 is more interesting, 

it remains open which point SimCO will converge to in this case.

When |J | =  1, the rank-one m atrix approximation problem arises in both primitive 

SimCO and K-SVD. Formally, let A  G be a matrix, where m >  1 and n  > 1 are

arbitrary positive integers. W ithout loss of generality, assume that m  < n. Suppose 

that the sorted singular values satisfy Ai > A2 > Ag > • • • > A^. Define

/  (u) =  mm IIA — uw'^ll^, Vu G Um,i- (3.26)

The rank-one m atrix approximation problem can be written as the following optimiza­

tion problem

min /  (u ) . (3.27)
UGWm.l

The performance of gradient descent is analyzed in Theorem 1 for the rank-one m atrix 

approximation problem. To avoid numerical problems that may arise in practical im­

plementations, we consider an ideal gradient descent procedure with infinitesimal step 

sizes. (Note that true gradient descent requires infinitesimal steps.)

T h e o rem  1. Consider a matrix A  G R"^^^ and its singular value decomposition. Em ­

ploy the gradient descent procedure with infinitesimal steps to solve (3.26). Suppose the 

starting point, denoted by uq, is randomly generated from the uniform distribution on 

Um,i- Then the gradient descent procedure finds a global minimizer with probability one.

The proof is detailed in Appendix A.I.

Remark 2. The notion of Grassmann manifold is essential in the proof. The reason is 

that the global minimizer is unique up to the subspace spanned by u; if u G R”  ̂ is a 

global minimizer, then so is u' for all u' such tha t span (u') =  span (u).

Remark 3. According to the authors’ knowledge, this is the first result showing tha t 

a gradient search on Grassmann manifold solves the rank-one m atrix approximation
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problem. In the literature, it has been shown that there are multiple stationary points 

for the rank-one matrix approximation problem [2, Proposition 4.6.2]. Our results show 

that a gradient descent method will not converge to any other stationary points than 

global minimizers. More recently, the rank-one decomposition problem where A2 =  

A3 =  • ■ • =  Am =  0  was studied in [49]. Our proof technique is significantly different 

as the effects of the eigen-spaces corresponding to A2 , • • • , Am need to be considered for 

the rank-one approximation problem.

3.7 Empirical Tests

In this section, we numerically test the proposed primitive and regularized SimCO. 

In the test of SimCO, all codewords are updated simultaneously, i.e., X =  [d]. In 

Section 3.7.1, we show that MOD^, K-SVD, and primitive SimCO may result in an 

ill-conditioned dictionary while regularization can mitigate this problem. Learning per­

formance of synthetic and real data is presented in Sections 3.7.2 and 3.7.3 respectively. 

A running time comparison of different algorithms is conducted in Section 3.7.4.

It is worth noting that Algorithm 2 (gradient descent) is used for the analysis of singular 

points in Section 3.7.1 because of the reasons explained in Footnote 1. Algorithm 3 

(LSNCC) is employed for synthetic and real data tests in Sections 3.7.2 and 3.7.3 due 

to its fast convergence rate. Both regularized “K-SVD” and regularized MOD are based 

on second order optimization methods to ensure a fair comparison.

3.7.1 Ill-conditioned D ictionaries

In this subsection, we handpick a particular example to show that MOD, K-SVD and 

primitive SimCO may converge to an ill-conditioned dictionary. In the example, the 

training samples Y  G are computed via Y  — DtrueXtrue, where Dtme E

Xtrue E R32x78, each column of X  contains exactly 4 nonzero components. We

®In the tested MOD, the columns in D  are normalized after each dictionary update. This extra step 
is performed because many sparse coding algorithms require a normalized dictionary. Furthermore, our 
preliminary simulations (not shown in this chapter) show that the performance of dictionary update 
could seriously deteriorate if the columns are not normalized.
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# of iterations

I

I

Figure 3.1: Starting with the same point, the convergence behaviors of MOD, K-SVD, 
primitive SimCO and regularized SimCO are different. In this particular example, only 
regularized SimCO avoids converging to a singular point.

assume that the sparse coding stage is perfect, i.e., the true sparsity pattern  Qtrue is 

available. We start with a particular choice of the initial dictionary T>o e  V . The 

regularization constant p  is set to 0 and 0.01 for primitive and regularized SimCOs 

respectively. Define the condition number of a dictionary D  as

K (D) — m ^  '^max (D j) /  Amin (D j) ,
l<J<n

where D j =  The numerical results are presented in Figure 3.1, where f^ -o ,

l|V//^=olli? /  iiY ||^, and k (D) are compared from the left to the right. Note tha t in this 

example, k (Dtme) =  3.39.

The results in Figure 3.1 show that

1. When the number of iterations exceeds 50, MOD, K-SVD and primitive SimCO 

stop improving the training performance. Surprisingly, the gradient hi 

these methods does not converge to zero. This implies that these methods do not 

converge to a local minimizer. A more careful study reveals that these algorithms 

converge to singular points where K (D) becomes large (/< (D) > 10 for MOD, 

K-SVD, and primitive SimCO).

2. By adding a regularization term and choosing the regularization constant properly, 

regularized SimCO avoids the convergence to an ill-conditioned dictionary, hence 

improves the performance.

It is worth noting that the SimCO formulation is crucial for distinguishing between
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singular points and local minimizers. In the SimCO formulation, the objective function 

only involves the dictionary, and the gradient of the objective function can be easily 

computed via (3.15) and (3.19). If the search process converges to a local minimizer, 

the gradient should converge to zero. When the gradient does not vanish and changes 

rapidly in a neighborhood, the convergence point must be a singular point.

We also observe th a t the singular points, rather than  the local minima, are the bottle­

neck. Towards this end, we randomly pick converged dictionaries in MOD, K-SVD, and 

primitive SimCO (from the case where there is no noise and fitrue is priorly known). 

Surprisingly, we found th a t these algorithms either converge to a global minimizer or a 

singular point. Among the randomly picked converged dictionaries, no local minimizer 

has been found yet. Furthermore, as we will show in the next subsection, by adding 

the regularization term  and forcing the search path away from singular points, substan­

tial performance improvement can be achieved. All these suggest that singular points 

tend to be the major obstacle preventing these algorithms from converging to a global 

minimizer.

3.7.2 E xperim ents on Synthetic D ata

The setting for synthetic data  tests is summarized as follows. The training samples are 

generated via Y  =  DtrueXtrue- Here, the columns of Dtme are randomly generated from 

the uniform distribution on the Stiefel manifold Um,i- Each column of Xtrue contains 

exactly S  many non-zeros; the position of the non-zeros are uniformly distributed on 

the set ([^) =  {{zi, • • • ,%g} : 1 < ik  7  ̂H < d}]  and the values of the non-zeros are 

standard Gaussian distributed. In the tests, we fbc m  =  16, d =  32, and 5  =  4, and 

change n, i.e., the number of training samples. Generally speaking, the fewer training 

samples there are, the more challenging the dictionary update is. In our experiments, 

we intentionally choose the challenging case with small n.

We first focus on the performance of dictionary update by assuming tha t the true 

sparsity pattern  Otrue is available. In regularized methods, the regularization constant 

p  is sequentially reduced to zero: the total number of iterations is set to 400; we change 

p  from le  — 1 to le  — 2, le  — 3, and le  — 4, for every 100 iterations. Experiments for
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m=l 6. d=32, S=4, # of realization=200. # of iterations=400

n : # of training samples

1=16, d=32, S=4, # of reall2ation=200. # of iterations=400

I Regularized SimCO 
•+ • RegularizediMOD 

- + -  • Regularized "K-SVD"

n : # of training samples

(a) Noiseless case. (b) Noisy case: SNR of training samples is 20 dB. 
Note that there always exists a floor in the recon­
struction error which is proportional to noise.

Figure 3.2: Performance comparison of dictionary update (no sparse coding step).

both noiseless and noisy cases are performed. Note that in the noiseless case, the sparse 

representation distortion ||Y  -  D X ||p  /n  can approach zero. It is more indicative to 

use success rate rather than distortion: a success is claimed when ||Y  -  D X ||^  /n  < 

10“ ’̂ and a failure is claimed otherwise. For the noisy case, there always exists a 

floor in the representation distortion that is proportional to noise. The normalized 

distortion ||Y  — D X ||^  /n  serves as a good performance measure. The simulation results 

are presented in Figure 3.2. It is evident that regularization signiflcantly improves 

the performance and that among all the regularized methods, regularized SimCO is 

consistently better than others.

Then we evaluate the overall dictionary learning performance by combining the dic­

tionary update and sparse coding stages. For sparse coding, we adopt the OMP algo­

rithm [150] as it has been used for testing the K-SVD method in [5,60]. The overall 

dictionary learning procedure is given in Algorithm 1 . We refer to the iterations be­

tween sparse coding and dictionary learning stages as outer-iterations, and the iterations 

within the dictionary update stage as inner-iterations. In our tests, the number of outer- 

iterations is set to 50, and the number of inner-iterations of is set to 1. Furthermore, 

in regularized SimCO, the regularized constant is set to // =  le  — 1 during the first 30 

outer-iterations, and ^  =  0 during the rest 20 outer-iterations. The normalized learning 

performance ||Y  -  D X ||p  / n  is depicted in Figure 3.3. Again, the average performance
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of regularized SimCO is consistently better than that of other methods.

n=16, d=32, S=4, # of re3lization=50. # of iteratk>ns=50

R^ularized SimCO

n : # of training samples

Figure 3.3: Performance comparison of dictionary learning using OMP for sparse coding.

3.7.3 Num erical R esults for Im age Denoising

As we mentioned in the introduction, dictionary learning methods have many applica­

tions. In this subsection, we look at one particular application, i.e., image denoising. 

Here, an image corrupted by noise was used to train the dictionary: we take 1,000 (sig- 

nihcantly less than 65,000 used in [60]) blocks (of size 8 x 8) of the corrupted image as 

training samples. The number of codewords in the training dictionary is d =  256. For 

dictionary learning, we iterate the sparse coding and dictionary update stages 10 times. 

The sparse coding stage is based on the OMP algorithm implemented in [60]. In the 

dictionary update stage, different algorithms are tested and the number of iterations in 

dictionary update is set to 50. The regularization constant is set to p =  0.05. After the 

whole process of dictionary learning, we use the learned dictionary to reconstruct the 

image. The reconstruction results are presented in Figure 3.4. The Peak Signal-to-Noise 

Ratio (PSNR) is used as a measurement of the reconstruction quality. Better quality 

leads to higher PSNR. It is dehned as, PS'IVR =  201ogio(:^^), where MAX indicates 

the maximum possible pixel value of the image. While all dictionary learning methods 

significantly improves the image PSNR, the largest gain was obtained from regularized 

SimCO.
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Original clean Image Noisy image, 20.1595dB

Denoised by Regularized SimCO, 30.6825dB Denoised by Regularized MOD, 30.0781dB Denoised by Regularized "K-SVD" , 30.6725dB

Figure 3.4: Example of the image denoising using dictionary learning. PSNR values in 
dB are given in sub-figure titles.

3 .7 .4  C o m m en ts  on  th e  R u n n in g  T im e

This subsection compares the computational complexity of MOD, K-SVD, and SimCO. 

As detailed in Sections 3.3 and 3.5, MOD uses an approximation to the Hessian while 

Algorithm 3 is based on the exact Hessian (without explicitly computed). As a result, 

the complexity of MOD and SimCO is on the same level: the computational cost for 

each MOD iteration is less than that for each SimCO iteration, but the number of 

iterations required for convergence in MOD is larger than that in SimCO. As opposed 

to MOD and SimCO where all codewords are simultaneously updated, K-SVD updates 

codewords individually. Despite the fact that a closed form solution can be obtained 

for each update via SVD, the speed of K-SVD is often slower than MOD and SimCO 

because of the individual update. The actual running time in practice is compared 

for different algorithms in Table 3.1. The numerical comparison is consistent with the 

qualitative analysis above.
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Table 3.1: Comparison of running time (in seconds) for dictionary learning. Note that 
sparse coding step was included in producing Figures 3.3 and 3.4.

MOD K-SVD Prim.
SimCO Reg. MOD Reg.

“K-SVD”
Reg.

SimCO
Fig. 3.2(a) 2.4 X  10̂ 2.0 X Ih ’ 5.1 X  10̂ 5.9 X  10̂ 2.0 X 10̂ 2.3 X lO""
Fig. 3.2(b) 2.3 X  10̂ 1.9 X 10*̂ 5.0 X  10̂ 6.3 X 10̂ 8.6 X lO'" 2.1 X 10̂

Fig. 3.3 1.5 X 10̂ 3.7 X  lO'̂ 3.1 X  10̂ 4.2 X 10̂ 9.7 X 10“̂ 8.7 X lO'̂
Fig. 3.4 - - - 7.50 18.13 14.68

3.8 A Fast Version of SimCO via Codeword Clustering and 

Hierarchical Sparse Coding

3.8.1 The Proposed M ethod

The dictionary learning process of SimCO framework is achieved by alternate iterations 

between sparse coding and dictionary update. The learning process, however, may in­

volve a higher computational complexity, rendering the algorithms to be less practical 

in computation extensive applications, for example, when dealing with large scale or 

high-dimensional data. We propose a new method to improve the computational effi­

ciency of dictionary learning algorithms based on codeword clustering and hierarchical 

sparse coding, based on the original SimCO presented in above sections. The details of 

the proposed method, i.e. fast SimCO, are given as follows.

When developing the SimCO algorithm, we use the OMP algorithm by Pati in [122] 

for the sparse coding stage, which aims to solve the optimization problem: Given data 

matrix Y , find a sparse coefficient matrix X  to minimize ||Y  — D X ||^  for a given 

overcomplete dictionary D . In OMP, this is achieved by finding the column vector 

in D  which most closely resembles a residual vector r, which is initialized to y, then 

adjusted at each iteration to take into account the vectors previously chosen. In the 

proposed fast SimCO algorithm, we propose to make the following improvements to 

the SimCO algorithm. First, the dictionary atoms obtained in the dictionary update 

stage of SimCO are clustered using a K-means algorithm. The cluster centers represent 

a high-level representation of the dictionary, with the atoms in their neighborhoods 

representing the low-level dictionary. In the sparse coding stage, the closest centroid 

from the higher level dictionary to the signal under consideration is found, and their
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neighbors are then used to code this signal with a dimension reduced OMP, based on 

the nearest neighbor search. A tree structure with the multi-level dictionary, obtained 

by multi-level K-mean clustering, is applied for sparse coding process. We call this 

new algorithm as the tree-OMP (TOMP) method, summarized in Algorithm 4. The 

atoms of the dictionary are organized by a tree structure to improve the computational 

efficiency in the coding stage. In each iteration, the atom that is closest to the residual 

vector, is selected from the cluster centroids of the atoms in the dictionary, instead of 

all the atoms in the dictionary, and the coding is performed in the neighborhood of 

each centroid. Simulations are given in Section 3.8.2 to demonstrate its advantage in 

computational efficiency.

We have also tested an approximate version of TOMP, called the centralized OMP 

method (COMP), where only the centroid that is closest to the residual vector is selected 

in each iteration. The only difference is that the sub-optimization problem in step (4) 

of TOMP is now replaced by using the centroid directly in COMP. This apparently 

improves the computational efficiency but may degrade the sparse coding performance, 

as shown in the next section.

3.8.2 Sim ulation R esults for Fast SimCO

Firstly, we evaluate the proposed fast SimCO algorithm (i.e. using TOM P in the sparse 

coding stage, but the same dictionary update stage as the original SimCO algorithm) 

on synthetic data. We compare TOMP with OMP and COMP in the coding stage. 

As in [52], we refer to the iterations between sparse coding and dictionary learning 

stages as outer-iterations, and the iterations within the dictionary update stage as 

inner-iterations. In our tests, all results are averaged over 50 realizations with a ran­

dom initialization for each realization. The numbers of outer-iterations are set to 20 

for all of three algorithms, and in each outer iteration, the numbers of inner-iterations 

of all the algorithms are set to 1. Furthermore, in dictionary update stage, the reg­

ularized constant, as in [52], is set to /r =  le  — 1 during the first 10 outer-iterations, 

and 1-1 = 0 during the remaining 10 outer-iterations. The average running time by 

OMP, TOMP and COMP respectively is shown in Figure 3.5. The approximation error
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A lg o rith m  4 TOMP
Task: To find the sparse representation X  from the data sample matrix Y .
Input: The initial m * d dictionary D, the m * n m atrix Y , and the sparsity L.
O utput: The d * n coefficient matrix X
Initialize: The residual fq — y, the index set A is empty and the iteration counter

Do:

1. Cluster the atoms in dictionary D by K-means algorithm to obtain the centroids 
of the atoms d ^ , d c ^ ,  and e is the number of centers.

2. Find the index of one of the centers C(, that solves the optimization problem
Cb =  argmax^=i g  | < rj_i, d ,̂ >  |.

3. Find the index Xj that solves the sub-optimization problem Xj =
argm axj | <  rj_i,dc^ > |.

4. Combine the index set and the chosen atom: Aj =  Aj_i (J {Aj} and D j =  
[Dj_idAj.

5. Solve the least squares problem to obtain a new coefficient estimate: Xj =  
argm axx ||y  -  D jx ||2 .

6 . Calculate the new approximation of the data and the new residual ÿ j  = Dj X j,

=  y j -  Y r

7. Increase j  and return to Step (2) if j  is smaller than L. This leads to the search 
of another best centroid.
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||Y  -  D X ||^  / n  versus n  are depicted in Figure 3.6.

m=64, d=512, S=5, #  of realization=50, #  of iterations=20
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. Figure 3.6: Average approximation error
Figure 3.5: Average ranniiig time c o i i i p a r i - b e t w e e n  fast SimCO and the
________ 1     i    1_ 0 1  / r  /  » ^  ^  ^  X  L-. ./-V Vx a-v y-s I « ■*"son between fast SimCO and the baselines. baselines.

It can be observed tha t TOM P improves computational efficiency over OMP, while 

maintaining a similar reconstruction performance, and COMP, despite being most effi­

cient, gives the worst performance among the three algorithms. Secondly, we test the 

fast SimCO algorithm for image denoising, and compare it with the original SimCO. 

All parameters setting of this experiment is the same as in Section 3.7.3. The TOM P 

instead of OMP algorithm is used in the sparse coding stage in the proposed fast SimCO 

algorithm which offers a similar PSNR 30.7949 dB for image denoising application but 

only needs 11.56 seconds, as opposed to 14.68 seconds required by the original SimCO.

3.9 Summary

We have presented a new framework for dictionary update. It allows not only a si­

multaneous update of all codewords and the corresponding coefficients but also the 

observation tha t singular points rather than local minima are the bottleneck for the 

dictionary update. To mitigate the effects of singularity, regularized SimCO has been 

proposed. First and second order optimization procedures have been implemented. Nu­

merical experiments verify that regularization substantially improves the performance. 

A fast SimCO algorithm has also been developed to further improve the computational 

efficiency of SimCO.
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Chapter 4

Multi-stage Under deter mined Blind 

Speech Separation Based on Sparse 

Signal Recovery with Learned and 

Predefined Dictionaries

4.1 Introduction

Over the past two decades, BSS has attracted a lot of attention in the signal processing 

community, owing to its wide range of potential applications, such as in telecommunica­

tions, biomedical engineering, and speech enhancement [42,80]. BSS aims to estimate 

the unknown sources from their observations without or with little prior knowledge 

about the channels through which the sources propagate to the sensors. The instanta­

neous model of BSS, which is the focus of this chapter, can be described as:

Z =  A S - f V  (4.1)

where A G is the unknown mixing m atrix assumed to be of full row rank,

Z G is the observed data m atrix whose row vector Zj is the ith  sensor signal

having T  samples at discrete time instants t = 1 , ..., T, S G R ^^ '^  is the unknown source

53
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matrix containing N  source vectors, and V  G is the noise matrix containing M

noise vectors. The objective of BSS is to estimate S from Z, without knowing A  and V. 

A classical example for BSS is the so called “cocktail party problem”, where a number 

of people are talking simultaneously in a cocktail party, and each one can distinguish 

the others’ speech in this sound mixing environment, but it is difficult for machines to 

replicate such capabilities.

Many algorithms have been successfully developed for blind source separation, especially 

for the exactly or over determined cases where the number of mixtures is no smaller 

than that of the sources. ICA is a well-known family of BSS techniques based on the 

assumption that the source signals are statistically independent. However, ICA does 

not work in the underdetermined case, where the number of mixtures is smaller than 

that of the sources. Although several approaches [105] have been developed to address 

this problem, it remains an open problem. In this underdetermined case, we propose 

an approach to improve the separation performance for speech signals by using sparse 

signal recovery with adaptive dictionary learning.

It is worth noting that the cocktail party problem is often addressed by a convolu- 

tive BSS model for which many algorithms have been published such as some recent 

works [6,84,93,108,133]. Although the convolutive BSS model is not the focus of this 

chapter, the methods developed here can also be used in convolutive speech separation 

algorithms. For example, in many frequency domain BSS algorithms, the convolutive 

model is transformed into the frequency domain, leading to multiple instantaneous but 

complex-valued BSS problems to be solved. This is subject to permutation alingnment 

and scale ambiguity correction, along the frequency channels [138,157].

In this chapter, sparse coding, based on various types of dictionaries (both learned and 

predefined), is used to solve the problem of underdetermined blind speech separation. 

In particular, we propose a novel algorithm in which the BSS model is reformulated to a 

sparse signal recovery model. As a result, any of the state-of-the-art sparse signal recov­

ery algorithms could be incorporated into this model to solve the underdetermined blind 

speech separation problem, with various separation performance and computational effi­

ciency. Several signal recovery algorithms have been examined in the proposed system.
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We then extend this approach to a multi-stage method for enhancing the separation 

performance by incorporating adaptive dictionary learning algorithms for the signal re­

covery and incorporating a blocking process to improve its computational efficiency. 

In other words, the predefined transform traditionally used is replaced by an adap­

tive transform containing a group of atoms trained from the speech data. Under the 

adaptive transform, a speech signal can be decomposed as a linear combination of only 

a few atoms, i.e. it has a sparse representation. This sparse representation not only 

captures important features from the speech data, but also has the potential to reduce 

the effects of noise. We will also evaluate the performance of the proposed algorithm 

systematically and compare it with the state-of-the-art.

The results show that the separation performance obtained by using the adaptive dic­

tionary is more robust in noisy environments as compared with the fixed dictionary 

obtained, for example, by the discrete cosine transform (DOT). Among the dictionary 

learning algorithms compared, SimCO [52], described in Chapter 3, is used for the 

first time in an underdetermined speech separation application, offering the best perfor­

mance as compared with others. To further improve the computational efficiency and 

enhance the system performance, we employ a block processing stage in the front-end of 

our system. The proposed algorithm will be compared with the recent methods in the 

source separation evaluation campaign SiSEC2008 [152] using the same datasets and 

evaluation approach. Results of this work have been presented in [160-162].

The remainder of the chapter is organized as follows. The proposed multi-stage method 

with clustering, dictionary learning, blocking, separating and reconstruction stages is 

presented in Section 4.2. Experimental results are given in Section 4.3. Finally, conclu­

sions and future work are summarized in Section 4.4.

4.2 The Proposed M ulti-stage System

For underdetermined BSS, i.e. M  < A , one has to estimate A  first, then the sources S. 

However, in this case, even if A  is available, the solution to S is not unique. To address 

this problem, we reformulate the BSS model into a sparse signal recovery model with 

an adaptive dictionary learned from training data. As a result, the proposed method is
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a multi-stage procedure. To explain the concept, we omit the noise V  when necessary 

in the following sections. It is worth noting that the designed algorithm works well for 

noisy mixtures according to our numerical results.

To demonstrate the proposed multi-stage approach, we typically consider the underde­

termined case of M  =  2 and jV =  4 in the model (4.1). However, the approach can be 

readily extended to other underdetermined cases with various numbers of sources and 

mixtures. As depicted in Figure 4.1, the proposed method using sparse signal recov­

ery and dictionary learning for underdetermined blind speech separation (SDUBSS in 

short) is composed of the clustering stage, the dictionary learning stage, the blocking 

stage, the separating stage, and reconstruction stage. Note that, the dictionary learn­

ing stage can be replaced by a predefined transform, such as the DOT transform, if a 

fixed dictionary is applied. The segments of the signals obtained by the blocking stage 

will be used only in the separating and reconstruction stages, while the clustering and 

the dictionary learning stages are still performed for the whole signal, and A  and $  

obtained in these stages will be shared by all the segments in the separating stage. The 

details of all the stages are given in the following subsections.

ReconSlruêliohBlocking

Figure 4.1: The flow chart of the proposed system for separating four speech sources 
from two mixtures.

4 .2 .1  E s t im a t in g  t h e  M ix in g  M a t r ix  b y  C lu s te r in g

In the clustering stage, we use the standard technique as in [168] to estimate the mixing 

matrix A  by using the K-means clustering algorithm based on the STFT coefficients of 

the mixtures. Assuming the sources are sparse, i.e. ideally only one source has nonzero
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value at each time instant, some lines in the scatter plot of the mixtures can be clearly 

identified, and the number of lines should be equal to that of the columns of A. For 

example, when M  =  2 , at any time instant, the point on the scatter plot of z i versus 

Z2 should lie on the line that can be represented by one of the column vectors in A, as 

there exists only one source in this time instant. The vector of the plotted points is a 

product of a scalar and one of the column vectors in A. When all the data  points are 

plotted, some lines in the coordinate plane can be clearly identified, and the number of 

lines should be equal to that of the columns of A. In practice, however, the sparseness 

assumption is seldom satisfied, due to the observation noise in real data. The lines 

are usually broadened especially in the time domain, as shown in Figure 4.2(a). It has 

been observed that the audio mixtures become sparser if they are transformed into the 

frequency domain. As a result, it becomes easier to observe the distributions of the 

data points in the scatter plot, as shown in Figure 4.2(b).
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Figure 4.2: An example of the scatter plots for two mixtures of four speech sources in 
the time (a) and frequency (b) domain. Note that, the absolute values of the mixtures 
and their STFT coefficients are plotted.

Therefore, to estimate the mixing matrix, we apply the K-means algorithm to the speech 

data in the frequency domain obtained by the STFT. The algorithm can be summarized 

in Algorithm 5.

4.2.2 Separating Sources by Sparse Signal Recovery
In the separating stage, with the estimated mixing m atrix A, we formulate the un­

derdetermined blind speech separation problem as a sparse signal recovery problem.
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A lg o rith m  5 K-means algorithm for mixing m atrix estimation_____________________
Task: estimate the mixing m atrix for the following stages in SDUBSS 
In p u t:  Z.
O u tp u t:  Â.

• Apply the STFT to each mixture signal in Z to obtain a spectrogram of this 
mixture signal then reshape it to a vector as the coefficient vector in Z, i.e. the 
time-frequency representation of Z.

• Normalize the vectors in Z to move all the points to a unit semi-circle for the 
K-means algorithm to be applied.

• Choose the starting points for the K-means algorithm, and divide Z to four parts 
(equals to the number of sources) and compute the mean values of each part as 
the initial centres.

• Run the K-means clustering algorithm to update iteratively the four centres until 
convergence, and compute the column vectors of the estimated mixing m atrix A 
as the final cluster centres.

Equation (4.1) can be expanded as:

\  Z M J

ail aiN

\  CLMl • • • CLMN / \ S N  J

(4.2)

where z*(% =  1, ...,M ) are the mixtures, Sj{j =  1, are the sources, and aij is the

ij-th. element of the mixing m atrix A . We can further write the above equation as 

follows,
f  Zl(l) \  f  »l(l) \
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where T  is the length of the signal, Aÿ G is a diagonal m atrix whose diagonal

elements are all equal to Uij. Let b  =  vec(Z^), f  =  vec(S^), where vec is an operator 

stacking the column vectors of a m atrix into a single vector. Equation (4.3) can be 

written in a compact form as:

b  =  M f (4.4)

The above equation can be interpreted as a sparse signal recovery problem in a com­

pressed sensing model, in which M  is the measurement m atrix and b  is the compressed 

vector of samples in f. Therefore, a sparse representation in the transform domain can 

be employed for f:

f  =  $ y  (4.5)

where $  is a transform dictionary and y  contains the weighting coefficients in the $  

domain. It is noted that the transform dictionary $  is different from the transform 

dictionary D  in chapter 3, because $  is for decomposing the reformulated vector f 

which is concatenated by N  source signals. Combining (4.4) and (4.5), we have

b  — M $ y  (4.6)

In equation (4.6), if y  is sparse, the signal f  can be recovered from the measurement 

b  using an optimization process. This indicates that source estimation in the underde­

termined problem can be achieved by computing y  in (4.6) using sparse signal recovery 

(i.e. sparse coding) methods in Section 2.1.

The performance of these signal recovery methods will be studied in Section 4.3. Based 

on the reformulation of the speech separation problem to the problem of signal recovery 

as shown from Equation (4.3) to (4.6), the proposed speech separation algorithm is 

summarized in Algorithm 6 . We would like to note that basis pursuit (BP), matching 

pursuit (MF), the least squares method LILS used in Algorithm 6  are just examples of 

many sparse signal recovery algorithms, which, including the recent method FISTA [19], 

can all be used for reconstructing the sources.
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A lgorithm  6  Separating speech sources
Task: separating speech sources from each block based on signal recovery method 
Input: z f, i = 1,2, p = 1 ,...,P . (z f is one of the blocks of mixtures, which are 
generated from blocking stage to be discussed in Section 4.2.5), Â. $ .
O utput: s^, jf =  1,..., 4, p =  1,..., P.
Initialization: p= l.
Repeat:

• Form the measurement vector by concatenating Zj with Zg.

• Multiply M  which is formed from A (obtained from the clustering stage i.e. the 
output of Algorithm 5), with the dictionary $  (which can be obtained by dictio­
nary learning stage or a pre-defined DOT transform).

• Use the signal recovery methods such as BP, MP or LILS to find the sparsest 
coefficients yP from and b^.

• Compute fP according to equation (4.5).

• Compute the source vectors Sj from fP.

• p = p - h i -

4.2.3 The Adaptive Dictionary Learning Algorithms

Sparse decompositions of a signal, however, highly rely on the degree of the fit between 

the data and the dictionary, which leads to another important problem, i.e. the issue 

of designing dictionary $ .  As discussed in chapter 3, two main approaches are usually 

used: the analytical approach and the learning-based approach. In the first approach, 

a mathematical model of the data is given in advance so that the dictionary can be 

generated by fast Fourier transform (FFT), DCT, wavelet transform, etc. The second 

approach applies machine learning techniques to train the dictionary from a set of data 

so that its atoms can represent the features of the signal.

In this chapter, instead of using a predefined transform such as the DCT to obtain 

the dictionary matrix D , dictionary learning algorithms will be applied to obtain an 

adaptive dictionary. The model for dictionary learning is given below.

T  =  D G  (4.7)

where T  is a matrix in which each column contains one of the training samples, D
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A lg o rith m  7 Adaptive dictionary learning
Task: find the best dictionary to represent the training speech data 
In p u t:  T.
O u tp u t: D.
In itia liza tio n : Set the initial dictionary and j  = 1- 
R e p e a t until convergence (use stop rule):

• Sparse coding stage: Fix the dictionary and update using some sparse 
coding technique, such as OMP.

• Dictionary update stage: Update and Ĝ -̂ ) as appropriate, using e.g. SimCO 
dictionary update.

• j  =  i  +  1 -

is the dictionary obtained from the training process, and G  is a matrix consisting of 

the sparse coefficient vectors. Three recent dictionary learning approaches, namely the 

K-SVD [5] algorithm, the GAD [83], and the SimCO algorithm [52], are used to learn 

the dictionary D  on the signal frames extracted from speech data (either mixtures or 

speech sources).

The dictionary learning algorithm in SDUBSS is summarized in Algorithm 7. Note 

that, T  can be formed from speech mixtures Z or original speech sources S, while D  

needs to be learned from T. Then Ds constitute the transform dictionary $  by different 

manner as discussed below.

4.2.4 Dictionary Learning Strategies

It is an important practical issue [162] on how to train the dictionary from training data. 
We examine two different training strategies. To this end, we first expand Equation (4.5)
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into two mixtures and four sources case as follows.
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The first strategy called the source-trained dictionary (STD) is depicted in Figure 4.3 

where DL represents dictionary learning which can be achieved by any of the algorithms 

described in Section 2.3.2. In this method, for each source, we train a dictionary. 

Therefore four different dictionaries D i, D 2, D 3 , D4 are trained from the four original 

sources respectively. They are then combined to form a single dictionary m atrix $  for 

separating the sources in the following stages. For example, D i in Equation (4.8) is 

trained from the source y%. Firstly, the speech source vector is reshaped to a speech 

sample matrix which contains consecutive speech frames (each frame has L  samples) 

from the source vector with an overlap of F  samples (to ensure a sufficient number of 

signals in the sample matrix). Therefore, the sample matrix has L  rows and [(T — 

L )/{L  -  F)J +  1 columns, where [.J rounds the argument to its nearest integer. The 

dictionary is then computed by one of the three learning algorithms described in Section 

2.3.2 as an L X L matrix. Finally, the dictionary m atrix is arranged in a diagonal form 

with an overlap of F  samples until the T  x T  dictionary D i is filled in. By using this 

block diagonal operation we essentially split the signal in small vectors and there will 

typically be a block boundary issue, i.e. a discontinuity between the joining area of two 

adjacent blocks, causing undesired artifacts in the coefficients. To avoid this we can 

multiply the vector by a window function (e.g. the Hamming window), thus smoothing
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D L
Combinîng.

Figure 4.3: The flow chart of the STD strategy.

the signal at the boundaries. Some information may be lost because of the windowing, 

and hence overlapping between blocks is used to eliminate this problem. The other 

dictionaries D2, D 3 , D 4 can be generated in the same way. The flnal single dictionary 

matrix $  is formed by arranging these four dictionaries along the diagonal of $  without 

overlaps. Ideally, the order of the dictionaries D{(i = 1, ...,4) should be consistent with 

the order of sources y^. According to our experiments, when a mismatch of the orders 

occurs, the separation performance may be degraded. The reason that this happens 

could be that the feature of a speech source is better captured by its corresponding 

dictionary rather than the dictionary obtained from another source.

M ixture-trained D ictionary

The second strategy, namely the mixture-trained dictionary (MTD), is illustrated in 

Figure 4.4. The two mixtures Zi(i = 1,2) used to train the dictionary are segmented 

with an overlap of F  samples (each frame has L  samples) to form the sample m atrix 

which has L  rows and ([(T  — L )/{L  — F)J +  1) x 2 columns. The dictionary is then 

computed by the dictionary learning algorithms such as the K-SVD, GAD or SimCO as 

an L  X  L  matrix. Finally, the dictionary is arranged in a diagonal form with an overlap 

of F  samples until the T  x T  dictionary Dm  is filled in. In this method, D i, D 2 , Ds, 

and D 4 in Equation (4.8) are all identical to Dm  which is trained from the mixtures 

by the same methods as used for the first strategy. In comparison, as shown in the

DL Combining

Figure 4.4: The flow chart of the MTD strategy.
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experiment section, STD has the best performance among the two different dictionary 

training strategies. This suggests that the dictionary trained in this way best matches 

the original speech source. However, this approach requires the sources to be available 

a priori when training the dictionary. Although in BSS, the sources are assumed to be 

unknown, the STD method shows the performance benchmark that could be achieved by 

a dictionary learning approach. In MTD, the sources are estimated in a blind manner, 

as the dictionary is trained directly from the mixtures. Nevertheless it captures the 

features less accurately from each source as compared with STD. However, MTD will 

be used in our experiments for fair comparison. It is worth noting that mixture signals 

can be regarded as noisy signals (corrupted by the interfering signals). Therefore, using 

mixture signals as training data is reasonable. Similar training methods could be found 

in [60].

4.2.5 Blocking and Reconstruction

According to Equation (4.3), the microphone signals of full length are stacked into a 

single vector. This could result in a large size of measurement matrix for a long speech 

signal. The optimization process for the source recovery can become computationally 

demanding. To alleviate this issue, we propose to process the speech mixtures on a 

block-by-block basis before running the separating stage i.e. split Zj into z? where 

i =  1,2, p =  1, ...,P . The estimated sources from each block are concatenated to re­

construct the full signals. Therefore, the front-end processing stages (i.e. blocking and 

reconstruction) will be included in our proposed system to improve its computational 

efficiency. As shown in Section 4.3, compared with processing the whole signal, the 

block-based processing considerably improves the computational efficiency of the algo­

rithm without degrading its separation performance. It is worth noting that we have 

already applied windowing and overlapping when learning the dictionary atoms. Al­

though the length of the atoms can be different from the block length, the atoms become 

smoother due to the application of smoothing windows during the dictionary learning 

process. Using such atoms, the discontinuities between the reconstructed blocks be­

come negligible. Hence, we do not apply any further overlapping when reconstructing 

the full-length signal. Informal listening tests also confirm that the blocking artefacts
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A lgorithm  8 SDUBSS_________________________________________________________
Task: Separate the four speech sources from the two speech mixtures 
Input: Z.
Output: S.

• Clustering stage: obtain the estimated mixing m atrix A  from the mixture matrix 
Z by Algorithm 5.

• Dictionary learning stage: learn the dictionary $  from the mixture matrix Z by 
Algorithm 7.

• Blocking stage: segment mixtures Zj, i = 1,2 to blocks z?, p =  1,..., P .

• Separating stage: separate speech sources s |,  j  =  1 ,...,4 , p =  1,..., P  from each
mixture block z^, z =  1 ,2, p =  1,..., P  by Algorithm 6 .

• Reconstruction stage: reconstruct the speech source m atrix S including the four 
whole sources sj, j  = 1,..., 4 by concatenating together all the blocks of estimated 
source components s^, j  = 1,..., 4, p =  1,..., P .

are mostly inaudible.

4.2.6 The W hole System

The whole system of the proposed SDUBSS algorithm can be summarized in Algorithm

8 . Note that, for comparison purpose, in the dictionary learning stage of SDUBSS, 

dictionary matrix $  will also be computed from a pre-defined transform such as DCT 

and/or STFT, as considered in our experiments.

4.3 Experim ental Results

4.3.1 Evaluation Dataset and Performance Metrics

In the first three subsections, we evaluate the proposed algorithm by performing 50 ran­

dom experiments for each type of comparisons based on the Acoustic-Phonetic Contin­

uous Speech Corpus database TIMIT. Twelve speech signals from the TIM IT database 

are chosen as our signals’ pool, from which four signals are randomly selected to be 

original speech sources in each test. The mixing matrix is randomly generated for each
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test so that two mixtures are obtained by this mixing matrix and the speech sources 

randomly picked from the pool. Note that the same random seed is used for all the ex­

periments, which means that each experiment has the same 50 random mixing matrices 

and 50 groups of random speech sources. All the results in the first three subsections 

are the average values for the 50 tests. Each speech signal has a duration of 5 seconds, 

sampled at 10 kHz. That is, each signal has 50000 samples.

In the final subsection, another database (‘dev2’) from the signal separation evaluation 

campaign (SiSEC 2008^) and the database from Stereo Audio Source Separation Eval­

uation Campaign (SASSECOT^) are used for making comparison between the proposed 

algorithm and the state-of-the-art methods [28,69,70] for this underdetermined blind 

speech separation task. The original sources are also available for the evaluation with 

each having a duration of 10 seconds, sampled at 16 kHz. That is, each signal has 

160000 samples.

For the fair comparison of blocking, dictionary learning and separating stages, the true 

random mixing matrices are used in the first three subsections i.e. the K-means clus­

tering stage is excluded from the proposed multi-stage method. In the last subsection, 

the full stages of the proposed method are used to compare with the state-of-the-art 

algorithm.

For objective quality assessment, we use the three performance criteria defined in the 

BSSEVAL toolbox [153] to evaluate the estimated source signals. These criteria are the 

signal to distortion ratio (SDR), the signal to interference ratio (SIR) and the signal to 

artifacts ratio (SAR), defined respectively as

S D R  =  lOiosio li -------- |i2 (4.9)
I I  ^ in te rf  T  ^noise  i  G-artif  I I

S I R  =  lOiogio ' (4.10)
I I  Winter f  | |

^Accessed from http:/ / wwiwirisa.fr/ metiss/SiSECOS/ 
^Accessed from http://www.irisa.fr/metiss/SASSEC07/

http://wwiwirisa.fr/metiss/SiSECOS/
http://www.irisa.fr/metiss/SASSEC07/
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SAR = lOiogio" WinterJ + e„oise f  (4.II)
II ^ a r t i f  II

where starget{ t )  is an allowed deformation of the target source Si{ t ) ,  e in t e r f i t )  is an al­

lowed deformation of the sources which accounts for the interference of the unwanted 

sources, 6noise{t) is au allowed deformation of the perturbation noise (but not the 

sources), and Cartifit) is an artifact term that may correspond to artifacts of the sep­

aration algorithm such as musical noise, etc. Therefore, the estimated source s{t) can 

be decomposed as follows:

^(^) — ^target(f^ T  W i n t e r T ^noiseif) ^artif(f') (4.12)

According to [153], both SIR and SAR measure local performance. SIR mainly mea­

sures how well the algorithm does for the suppression of interfering sources, while SAR 

measures how much artefact is within the separated (target) source. SDR is a global 

performance index, which may give better assessment to the overall performance of the 

algorithms under comparison. For this reason, we will focus more on the interpretation 

of SDR results in subsequent analysis, as opposed to the SIR and SAR results.

4.3.2 Separation Results with Fixed Dictionary

Com parison o f Different Signal R ecovery A lgorithm s for Separation

One advantage of the proposed system is that any of the state-of-the-art signal recovery 

techniques can be employed in the separating stage. Therefore, we compare the effect of 

the different signal recovery algorithms on the separation performance of the proposed 

system. To this end, we replace the adaptive dictionary by the predefined dictionary 

obtained by the DCT transform (which can obtain the best result among the fixed 

dictionaries). We use the whole speech signal as a single block, that is, P  =  1. We 

then vary the algorithms used in the separating stage for signal recovery. The methods 

BP, MP and LILS discussed in Section 2.1 are used in the experiment. Specifically, we 

use the following three algorithms in our experiments, i.e. SPGLl (Spectral Projected 

Gradient for LI minimization) [22,23], the solveMP in SparseLab [57] and LILS solver
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for i l  regularized least squares problem [90,91], which are the typical implementations 

of the three signal recovery methods. To balance the performance and the running 

speed of the algorithms, the parameters used in the three algorithms are optimized on 

the basis of extensive tests. In BP, the optimality tolerance parameter was set to 0.01. 

In MP, the maximum number of iterations^ parameter maxlters was set to 1000 and 

the stop condition parameter lambdastop was set to zero. In LILS, the regularization 

parameter lambda was set to 0.01 and the relative target duality gap was set to 1. W ith 

this set up, the computational time required by these three algorithms is 1234 seconds, 

8169 seconds and 4531 seconds respectively. The separation performance evaluated by 

SDR, SIR and SAR is shown in Table 4.1.

We also perform a paired Student’y (-test of the null hypothesis that the results from 

different methods are significantly different. All the (-tests in this work have been carried 

out at 5% significance level. If the p-value is greater than 0.05 (i.e. 5% significance 

level), the difference between the results is statistically insignificant. Otherwise, if the 

p-value is less than 0.05, the results are statistically significant, which means that the 

performance difference between these methods is significant. The first letter of these 

methods is used to represent the p-value between them. For example, in Table 4.1, 

B /M  is used to denote the p-value obtained by comparing the results from BP and 

MP respectively. It can be observed that the p-value between different methods in 

the following tables are almost all smaller than 0.05, suggesting that the performance 

difference between these methods is statistically significant. The only exceptions are 

the p-values for K /G  in Table 4.3, and S /F  in Table 4.2, which are both greater than 

0.05, suggesting that their difference is statistically small. We have also calculated the 

confidence intervals in each (-test performed in Tables 4.1, 4.2 and 4.3 respectively, and 

the results are shown in Tables B .l, B.2 and B.3 in the Appendix.

It can be seen from Table 4.1 that BP performs better for sparse signal recovery in our 

separation task. Therefore, we will use it as the default signal recovery algorithm in the

^By increasing the number of iterations, the MP algorithm is likely to offer improved results, with 
however a considerably increased computational cost. Note that the parameters used in our experi­
ments, including those for BP and LILS, are by no means optimal despite the fact that every attempt 
has been made in order to find the parameter sets that give the best possible performance for each 
algorithm under comparison. In practice, however, we have also taken into account the computational 
complexity of these algorithms to ensure fair comparisons among them.
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BP MP LILS p-value
B /M B/L M /L

SDR 6.52 0.73 4.88 0.0000 0.0000 0.0000
SIR 9.98 19.07 6.43 0.0000 0.0000 0.0000
SAR 10.65 1.70 12.11 0.0000 0.0000 0.0000

Table 4.1: Average SDR, SIR, SAR (in dB) measured for four estimated speech sources 
and p-values from the (-test between the methods, where B — BP, M =  MP, L =  LILS.

following experiments.

Effect o f B locking on System  Perform ance

In this section, we perform experiments to evaluate the effect of the block size on the 

computational efficiency and separation performance of the proposed algorithm. We 

use the BP algorithm in the separating stage and the DCT transform to obtain the 

fixed dictionary $ .  The relation of the computational cost to the block length is shown 

in the upper subplot of Figure 4.5, while the separation performance (measured by 

the SDR) versus the block length is shown in the middle subplot. Each result on the 

plots is a value averaged over the four estimated speech sources. From this figure, 

it can be observed that the algorithm becomes computationally more efficient when 

reducing the block lengths, with the separation performance getting slightly worse. For 

example, for the block size equal to 512 samples, it takes only 151 seconds to run 

the algorithm, however, the separation performance in terms of average SDR becomes 

4.58 dB. For the block size equals to 2048 samples, the algorithm takes 302 seconds 

to run which is less efficient as compared to the use of a smaller block size, however it 

provides an average SDR for up to 5.67 dB. Compared with processing the full-length 

signal as a single block which takes 1234 seconds for the algorithm to finish running, 

using the block size of 2048 samples is reasonably fast. In this case, the block-based 

algorithm is approximately 5 times faster than  the algorithm without blocking. Figure

4.5 suggests th a t there are only slight changes in the separation performance for a certain 

range of block lengths. Based on these observations, we will use the block size of 2048 

samples in the following experiments. It appears from the upper subplot of Figure 4.5 

that, as opposed to a very short block length, longer block lengths do not vary the
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Figure 4.5: The effect of different block length on the computational efficiency and 
separation performance of the proposed algorithm. The cost-benefft (i.e. computing 
time divided by the output SDR) is also shown.

required runtime considerably. This observation can be related back to the motivation 

for introducing the blocking process in the proposed method. We found tha t the BP 

algorithm can take enormous amount of time to converge for a long input signal, and 

can eventually become computationally prohibitive. When processing the whole signal 

on a block-by-block basis, this algorithm converges much faster. As a result, the overall 

time for processing the whole number of short blocks is still shorter than  processing the 

full-length signal as one long block. W ith the test results for different block lengths, 

we attem pt to find empirically an appropriate block length around which the pursuit 

algorithm converges efficiently, and at the same time, the separation performance does 

not deteriorate. In fact, if the number of iterations in BP is fixed, the blocking process 

may increase the computational time. In our method, the BP algorithm terminates 

iterations once a criterion is satisfied (using a threshold). For shorter signals, the pursuit 

algorithm tends to take much shorter time to find the solution (using a smaller number 

of iterations). The runtime or the number of iterations taken by the pursuit algorithms 

to converge varies with respect to several factors including the length of blocks, the
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nature of the signal, numerical artefacts, and the hardware used for running the tests. 

Recall that each result in Figure 4.5 is an average of 50 random tests, with each taking 

a different number of iterations to converge. As a result, some longer block lengths do 

not vary the required runtime considerably.

4.3.3 Separation Perform ance w ith  Adaptive D ictionary

C om parison o f D ifferent Strategies for Learning the D ictionary

From the mixtures, we can recover the four speech sources using the DCT, STFT, 

MDCT dictionaries as presented in Sections'^ 4.3.2 and 4.3.2. Alternatively, we can 

train the adaptive dictionaries based on the STD and MTD methods. The dictionary 

learning algorithm applied here is SimCO due to its performance advantages shown 

in the following section where the setup of the parameters is also given. The average 

results for 50 random tests are presented in Table 4.2.

learned dictionary fixed dictionary p-value
STD MTD DCT STFT MDCT S/M S/D S/F S/C

SDR 7.85 5jG 6.87 6.00 5.14 0.0000 0.0001 0.0000 0.0000
SIR 12.43 8.94 10.86 9.37 9 j# 0.0000 0.0003 0.0000 0.0000
SAR 10.36 8jW 9.86 10.19 8ffi8 0.0000 0.0073 0.3507 0.0000

Table 4.2: Average SDR, SIR, SAR (in dB) measured for four estimated speech sources 
by using adaptive dictionary with different learning strategy and compared to using 
fixed dictionary i.e. DCT, STFT, MDCT. The right four columns present the p-values 
from the (-tests between STD and other four methods, respectively MTD, DCT, STFT 
and MDCT, where S =  STD, M =  MTD, D -  DCT, F =  STFT, C =  MDCT.

From this table, we can observe that the separation performance using the STD trained 

dictionary is considerably better than using the fixed dictionary. However, it is not 

surprising that the MTD method i.e. using the dictionary learned from the mixtures 

offers lower performance than the STD method. These results suggest that the properly 

learned dictionaries outperform the pre-defined dictionary in underdetermined speech 

separation.

'̂ The parameters were set to be the same for DCT, STFT, and MDCT, for example, the window 
(block) lengths were all set to 2048 samples.



72 Chapter 4. Multi-stage Underdetermined Blind Speech Separation Based on Sparse

Signal Recovery with Learned and Predefined Dictionaries

Com parison o f D ifferent D ictionary Learning A lgorithm s for Separation

In this section, we compare the results of using different learning algorithms in the 

dictionary learning stage of the proposed system. As above, the BP algorithm is used 

in the separating stage, and the same mixtures are used in these random experiments. 

The parameters used in the dictionary learning algorithms are also optimized to balance 

the performance and the running speed of the algorithms. The number of trained atoms 

was set to 512, the length of each atom i.e. L  to 512, the sparsity parameter to 10 and 

the number of iterations to 30 for both SimCO and K-SVD. In GAD, only the size of the 

dictionary needs to be set, which is 512. Note that in the first 15 iterations, SimCO was 

run with the regularization parameter p set to 0.1, and in the following 15 iterations, 

to 0. The average results over 50 random tests are given in Table 4.3. It shows that 

the separation performance obtained by using SimCO is better than using K-SVD and 

GAD.

SimCO K-SVD GAD p-value
S/K S/G K /G

SDR 5^2 3.99 2.93 0.0000 0.0000 0.0000
SIR 8.94 6.25 6.19 0.0000 0.0000 0.8079
SAR 8.80 9jK 7.08 0.0001 0.0000 0.0000

Table 4.3: Average SDR, SIR, SAR (in dB) measured for four estimated speech sources 
by using the dictionaries learned with different learning algorithms. The right three 
columns present the p-values from the (-tests between these methods, where S =  SimCO, 
K =  K-SVD, and G =  GAD.

4.3.4 Separation in N oisy Case

In this section, we examine the performance of adaptive dictionaries for noisy mixtures. 

To this end, we add white Gaussian noise to the speech mixtures with a SNR =  20 dB. 

The dictionary is trained from the noisy mixtures and the sources are separated from the 

same noisy mixtures using the proposed algorithm. The set up of the proposed system 

is identical to the one for the noise-free case. Table 4.4 shows the results measured by 

SDR for the noise-free mixtures, noisy mixtures, and the difference between them (i.e. 

the performance degradation). Prom this table, it can be observed that using a fixed 

dictionary, the performance degradation based on 50 random tests from noise-free to
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noisy environment is considerably greater than tha t using an adaptive dictionary. This 

indicates tha t the learned dictionary tends to be more robust than a fixed dictionary 

for the separation of noisy speech mixtures.

DCT SimCO K-SVD GAD
Noise-free mixtures 6.87 5.32 3.95 2.93

Noisy mixtures 5.82 5.31 3.81 2.91
Performance degradation 1.05 0.01 0.14 0.02

Table 4.4; Performance comparison (measured by SDR in dB) between the learned 
dictionaries and the predefined dictionary (i.e. DCT) for the noise-free mixtures, noisy 
mixtures, and the performance degradation (i.e. the difference between the results 
obtained from the noise-free mixtures and the noisy mixtures).

4.3.5 Com parison w ith  th e State-of-the-art M ethod

In this section, the proposed algorithm is compared with two related methods, namely, 

[69,70] developed by Gowreesunker and Tewfik and [28] proposed by Bofill and Zibulevsky. 

First, we compare our algorithm with [69,70], which also uses adaptive dictionary for 

speech separation. The results in [69,70] have been reported in the evaluation campaign 

SiSEC 2008. In this method, the mixing m atrix is estimated using peak picking on a 

threshold histogram and separation using coefficient space partitioning with a K-SVD 

trained dictionary. In our proposed method, the techniques used in different stages 

are specified based on the above experimental results. The mixing m atrix is estimated 

by K-means clustering in the clustering stage. The basis pursuit (BP) is used in the 

separating stage for signal recovery. The dictionary update algorithm SimCO and the 

training strategy MTD (for ‘blind’ separation) is used in the dictionary learning stage. 

All the speech mixtures are processed by the blocking stage and the reconstruction stage 

to obtain the final separation performance. The test data  used are the four male speech 

signals from SiSEC 2008 ‘Under-determined speech and music mixtures development 2’ 

database.

In the beginning of the experiment, we used two instantaneous mixtures which were
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obtained by mixing four male speech sources with the following mixing matrix.

0.3338 0.6495 0.8241 0.9397 

0.9426 0.7604 0.5664 0.3420
(4.13)

The Â  obtained from the two instantaneous mixtures by the clustering algorithm (i.e. 

clustering stage of the proposed algorithm) is shown in Equation (4.14). We see that 

the estimated mixing m atrix Â  is reasonably close to the true mixing m atrix A  except 

the perm utation ambiguity.

A  =
0.6312 0.9368 0.8132 0.3532 

0.7756 0.3499 0.5820 0.9355
(4.14)

Based on the estimated mixing matrix, we can then recover the four speech sources 

using the remaining stages of the proposed system. For the mixtures shown in Figure 

4.6, the separation results by the proposed system are shown in Figure 4.7, where the 

adaptive dictionary was learned by SimCO in the dictionary learning stage. It can be 

observed tha t the estimated sources in Figure 4.7 are very similar to the original sources 

in Figure 4.6.

(a) Source 1 (b) Source 2 (c) Source 3 (d) Source 4

(e) M ixture 1 (f) Mixture 2

Figure 4.6: The four male speech sources (a), (b), (c), (d) and the two mixtures (e), 
(f) used in the experiment. The horizontal and vertical axis are the sample indices and 
amplitude respectively, same for those in Figure 4.7.

The average performance of these four separated sources measured by SDR, SIR, SAR
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(a) Estimation 1 (b) Estimation 2 (c) Estimation 3 (d) Estimation 4

Figure 4.7: The four estimated male speech sources.

is shown in Table 4.5, where the results are compared between the proposed method, 

the method by Gowreesunker and Tewfik, and the proposed method without using 

dictionary learning (i.e. using the STFT basis instead).

Proposed method Gowreesunker and Tewfik STFT m ethod
SDR 4.38 2.73 4.77
SIR 7.53 8.15 7.99
SAR 9.02 5.93 9.23

Table 4.5: Average SDR, SIR, SAR (in dB) measured for four estimated male speech 
sources obtained by the proposed m ethod (with the learned dictionary), the m ethod 
due to Gowreesunker and Tewfik, and the proposed m ethod with the STFT dictionary.

We can see that, using the proposed method, there is an approximately 2 dB improve­

ment over the m ethod by Gowreesunker and Tewfik. For this task, the proposed method 

takes 868 seconds while the compared method needs 1200 seconds to separate the speech 

sources.

We have also tested these methods on four female speech signals in the SiSEC 2008 

evaluation campaign, using the exactly same parameters as those for male speech tests. 

Table 4.6 shows the performance of the compared methods measured by SDR, SIR, and 

SAR from these four separated sources. Again, the proposed m ethod offers consistently 

better performance than these baseline methods.

Proposed method Gowreesunker and Tewfik STFT method
SDR 4.04 3.80 4.51
SIR 6.19 8.58 6.86
SAR 9.73 6.60 9.78

Table 4.6: Average SDR, SIR, SAR (in dB) measured for four estimated female speech 
sources obtained by the proposed m ethod (with the learned dictionary), the method 
due to Gowreesunker and Tewfik, and the proposed method with the STFT dictionary.
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To compare our m ethod with another benchmark m ethod by [28], we use the dataset 

in the evaluation campaign SASSEC07, which can be regarded as an earlier version 

of SiSEC 2008. The reason for this choice is tha t the results of the algorithm by 

Bofill and Zibulevsky were reported in SASSEC07, but not in SiSEC 2008. Using 

the data  from the campaign SASSEC07 thus enables us to compare the results of our 

algorithm with those of Bofill and Zibulevsky’s method. Specifically, we used the signals 

from the Instantaneous Mixtures in the ‘Development da ta ’. The algorithm by Bofill 

and Zibulevsky has been used as a benchmark for performance comparison in many 

papers on underdetermined source separation. Even though this m ethod does not use 

an adaptive dictionary, it is one of the early papers tha t implemented the idea of sparse 

coding for underdetermined source separation. In this approach, the mixing matrix 

is estimated by maximizing a potential function which is defined as the sum of the 

individual contributions from each angular direction of all the possible directions along 

the circle of unit length [28]. The maxima of the potential function are considered to be 

the estimated directions of the basis vectors [28]. The average performance measured 

by SDR, SIR, SAR from these four separated sources is shown in Table 4.7, where the 

results for using predefined dictionary STFT are also included for comparison.

Proposed method Bofill and Zibulevsky STFT
SDR 6.15 3.33 6.40
SIR 7.36 7.65 7.75
SAR 9.76 8.50 10.08

Table 4.7: Average SDR, SIR, SAR (in dB) measured for four estimated male speech 
sources.

The results of another test based on four female speech signals are shown in Table 4.8.

Proposed method Bofill and Zibulevsky STFT
SDR 5.52 4.30 5.72
SIR 6.06 8.90 6.64
SAR 10.54 9.20 10.73

Table 4.8: Average SDR, SIR, SAR (in dB) measured for four estimated female speech 
sources.

It is observed from Tables 4.5 and 4.6 that, the reference m ethod [69, 70] performs 

better in terms of SIR and worse in terms of SAR than our proposed method. We
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Figure 4.10: DCT coding coefficients (down sampled at rate 100:1) and their scatter 
plot.

ence. For example, comparing Tables 4.5 and 4.6, we found that the coherence of the 

dictionary learned from the female speech is a little smaller than that from the male 

speech (despite the difference being small), however, the proposed algorithm tends to 

give higher SDR results for male speech. Such a single test may not be sufficient to 

draw an explicit link between the performance variation and the separation results. It 

is however interesting and useful to compare the sparsity level of the learned dictionar­

ies and the predefined dictionaries, together with their coding coefficients (i.e. sparse 

approximation results). This can be assessed by checking the sparsity index as defined 

in Equation (2.9) and the joint scatter plots of the coding coefficients. The sparsity 

index measures the sparsity of an atom. The smaller the sparsity index, the sparser the 

measured atom. The average sparsity indices of the atoms (corresponding to Table 4.9) 

and their coding coefficients are shown in Table 4.10. It can be observed that the dic­

tionary with a lower average sparsity index of the atoms tends to produce higher SDR 

performance. This coincides with the result observed by Jafari and Plumbley in [83].
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Figure 4.9: Coding coefficients obtained using the dictionary learned by SimCO (down 
sampled at rate 100:1) and their scatter plot.

coherence results of the learned dictionaries and the predefined dictionaries (DCT and 

STFT). It is not surprising that the coherence values of the DCT and STFT dictionary 

are very small, as their bases are orthogonal to each other. In contrast, the learned 

dictionary (from either female or male speech) has a much greater coherence value. 

According to [12], only if the mutual coherence of the dictionary is low, the sparse 

coding algorithm OMP, which is used in our SimCO algorithm, will guarantee to obtain 

the right support, i.e. the selection of the atoms, for sparse signal recovery. As a 

consequence, the dictionaries learned from speech mixtures may produce worse results 

than the predefined dictionaries (DCT and STFT), due to the higher coherence. As 

such, increasing efforts are devoted to the learning of incoherent dictionaries from data 

[18,75,101]. Incoherency constraints could be incorporated to our separation system 

in order to further improve the separation performance, which we leave to our future 

work.

Apart from the mutual coherence, sparsity also contributes to the performance differ-
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Figure 4.8: Time domain original female speech mixtures (down sampled at rate 100:1) 
and their scatter plot.

using the predefined dictionary consisting of DCT basis functions, while the dictionaries 

learned from speech mixtures tend to perform worse than the DCT dictionary. The 

difference in separation performance due to the use of these dictionaries can be well 

explained by the difference in their mutual coherences. The mutual coherence of a 

dictionary, i.e. i/($ ), can be defined as the maximum absolute inner product between 

any two different atoms,

i/($ ) =  m ax |(0 i,0 j)|. (4.15)

SimCO (female) SimCO (male) DCT STFT
Coherence 0.16 0.28 5.26e-16 1.37e-16

Table 4.9: M utual coherence of the dictionaries learned from the female and male speech 
mixtures using SimCO, as compared with the DCT and STFT dictionaries. Note that, 
the DCT and STFT atoms (bases) are pre-defined, hence they are kept the same for 
female and male speech in this example.

Using the same speech data as for Tables 4.5 and 4.6, we show in Table 4.9 the mutual
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believe such an effect is mainly caused by the different ways of processing taken in 

these two methods, instead of by parameter tuning. In an ideal situation, one would 

expect an algorithm to be able to suppress the interfering sources as much as possible, 

without introducing artefacts to the separated source (i.e. the source of interest). In 

practice, however, many algorithms may introduce processing artefacts to the source 

of interest when suppressing the interfering sources. Such artefacts may be introduced 

by the separation algorithm due to, for example, time-frequency masking (causing e.g. 

musical noise), filtering operations, or deformations that are not allowed [153]. Such a 

difference (i.e. a higher SIR, but a lower SAR) can also be observed from the results of 

the algorithms reported in the SiSEC 2008 evaluation campaign [152].

The reference method [69,70] used a coefficient space partitioning technique for source 

recovery and separation. Such an approximation is likely to introduce additional arte­

facts despite its ability in suppressing the interfering sources. This may well be the 

situation that is observed here, i.e. giving a higher SIR but a lower SAR, in compari­

son to our proposed method. As shown in [153] and [152], using SDR may give better 

overall performance assessment to the algorithms under comparison, as SDR is a global 

performance index [153].

4.3.6 A dditional Perform ance Analysis

Recent progresses suggest that the performance of dictionary learning algorithms is 

highly dependant on the level of sparsity (of atoms and/or coding coefficients) achieved 

in sparse approximation and the mutual coherence between the atoms [12,18, 52, 75, 

101]. To gain a deeper understanding about the results obtained in above sections, 

we have performed additional experiments and numerical analysis from the following 

two aspects; namely sparse coding effect and mutual atom coherence (either learned, 

or predefined). We perform the analysis based on the SiSEC 2008 campaign data as 

already used in Section 4.3.5. The mixtures both have a length of 160000 samples, and 

the length of each dictionary atom was set to 512.

As shown earlier (e.g. in Tables 4.2, 4.5 and 4.6), using the dictionaries learned from 

the ‘ground tru th ’ speech sources offers significantly better separation performance than
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Figure 4.11: STFT coding coeflicients (down sampled at rate 100:1) and their scatter 
plot.

To obtain the coding coefficients, the signal was first divided into frames with each 

having a length of 512 samples. The DCT coding coefficients were then calculated for 

these frames, with an analyzing length identical to the length of the segments. The 

coefficients of each frame were then concatenated to form a vector of coefficients with 

an equal length to the original mixtures in the time domain. The STFT coefficients 

are obtained in the same way. The coding coefficients based on the learned dictionary 

are obtained by multiplying each frame of signals with the dictionary m atrix obtained

SimCO (female) SimCO (male) DCT STFT
Atoms 20.37 (0.15) 20.36 (0.17) 20.38 (0.14) 20.34 (0.32)

Coefficients 8.29 (0.24) 8.45 (0.25) 8.28 (0.25) 8.72 (0.25)

Table 4.10: The average sparsity indices (and their standard deviations) of all the atoms 
and the coding coefficients from the learned dictionaries (different for female and male 
speech mixtures) and the predefined dictionaries (DCT and STFT, fixed for male and 
female speech mixtures).
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by the SimCO algorithm, which are then concatenated in the same way as the DCT 

and STFT coefficients. For the convenience of visualization, we show the downsampled 

versions of the speech mixtures, and their coding coefficients, with a sampling rate of 

100:1, resulting in a length of 1600 samples along the horizontal axis. We also show the 

joint scatter plots of the original female speech mixtures (Figure 4.8), and their coding 

coefficients using dictionaries learned by SimCO (Figure 4.9), or predefined transforms 

such as DCT (Figure 4.10) and STFT (Figure 4.11). Note that the joint scatter plots for 

male speech are omitted here. From these figures, it can be observed that the learned 

dictionary provides a similar sparsity pattern to those in DCT and STFT. This implies 

that the learned dictionary offers an alternative to DCT and STFT for coding speech 

signals. Similar effects have been observed from the male speech mixtures.

Inspecting the mutual coherence and average sparsity index of a dictionary provides 

some useful clues for interpreting the performance of a dictionary for the task of sepa­

ration. However, the performance of using these dictionaries can be dependant on the 

nature of the data, as well as the objective of the signal processing task. In some cases, 

it may be beneficial to promote the statistical dependency between the atoms, as shown 

in a recent paper [124].

4.4 Summary

We have presented a multi-stage system for underdetermined blind speech separation us­

ing block-based sparse coding with adaptive dictionary learning. Numerical experiments 

have shown the competitive separation performance by the proposed method^, when 

compared with the baseline underdetermined BSS approaches reported in the recent 

source separation evaluation campaign. The proposed method builds a new framework 

for underdetermined BSS, and offers great potential to accommodate the sparse signal 

recovery and adaptive dictionary learning algorithms to the source separation problems. 

This study has also shown the benefit of using learned dictionaries for underdetermined 

BSS, and the advantage of using the block-based processing to improve the compu­

tational efficiency of the signal recovery algorithms. Moreover, the framework of the

^Sound demonstrations may be available at http://personal.ee.surrey.ac.Uk/Personal/W.Wang/demondata.html

http://personal.ee.surrey.ac.Uk/Personal/W.Wang/demondata.html
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proposed method provides a friendly structure to test the performance of other dictio­

nary learning and signal recovery algorithms in source separation applications in the 

future.
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Chapter 5

Joint Blind Source Separation and 

Adaptive Dictionary Learning

5.1 Introduction

In Chapter 4, the multi-stage method takes advantage of dictionary learning to improve 

the separation performance and denoising ability. In this chapter, we perform joint 

dictionary learning and source separation under the same optimization framework as 

presented in Chapter 3. Therefore, the mixing matrix and dictionary m atrix are solved 

simultaneously in an alternating manner by optimizing a compound cost function. The 

benefit of the proposed method is in unifying the stages in Chapter 4 to reduce the 

computational complexity and significantly improve the algorithm performance. This 

work is in collaboration with Dr. Wei Dai, Mr. Xiaochen Zhao, Mr. Guangyu Zhou 

from Imperial Collage London and my main contributions include developing the idea, 

problem model, algorithm implementation and experiment design. I also successfully 

applied this method to blind image separation application and compared it with other 

benchmark approaches to show the performance advantage of the proposed method.

Blind image separation is an interesting problem in signal processing applications. To 

address this problem, several approaches have been proposed in the literature, in­

cluding, for example, the Bayesian approaches based on Markov random field model

85
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(MRF) [89,148], and morphological component analysis (MCA) [142] based on sparse 

representations, as briefly reviewed in Chapter 2.

Inspired by BMMCA [1] which is an extended algorithm of MCA, we propose a new 

method which not only addresses the limitations of BMMCA but also has some inter­

esting new properties (discussed below). The implementation is based on the SimCO 

framework. Numerical experiments for blind image separation show the advantages of 

the proposed method over the ICA, GMCA and BMMCA methods.

The major differences of our proposed algorithm from the existing methods include:

• The BMMCA [1] method uses multiple dictionaries. We assume, however, that 

there is only one dictionary under which different sources have sparse representa­

tions. This can make the algorithm computationally more efficient. The motiva­

tion is that when the dictionary redundancy is large enough, using one dictionary 

to sparsely represent image sources will reach almost the same performance as 

using multiple dictionaries.

• In our joint optimization framework, we adapt the SimCO optimization method 

proposed in Chapter 3 to unify the two stages in the separation process: dictionary 

matrix learning and mixing m atrix estimation. Both stages consist of simultane­

ously updating two variables. The advantage of unifying the two stages is that, in 

practice, the same algorithmic framework and codes can be used for both stages, 

thus significantly reducing the computational effort.

• Another important reason to adapt the SimCO framework is to avoid the possible 

ill-convergence problem existing in the traditional dictionary learning methods, 

e.g., K-SVD and MOD. It was observed that singular points, rather than the local 

minima tend to be the major obstacle preventing the algorithm from converging 

to a global minimizer. By adding the regularization term we are able to force the 

search path away from singular points to achieve improved performance.

In the remainder of this chapter we will introduce some previous methods related to 

our proposed algorithm. Then we present the framework, algorithmic details, and the 

advantages of the proposed method. The comparisons among the proposed algorithm.
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and benchmark methods ICA, GMCA and BMMCA are analyzed and demonstrated in 

the simulation section.

5.2 R elated Work

In this section, we briefly introduce the two mainstream image source separation meth­

ods, i.e. ICA and MMCA. To better motivate the technique that we will use, we also 

introduce an image denoising method based on the dictionary learning framework. Such 

an algorithm is the prototype of a part of our problem formulation. The BMMCA al­

gorithm is included in this section since a similar image denoising model is adapted 

in our work. All these image source models will be later used as baseline methods for 

performance comparison against our proposed algorithm.

5.2.1 Independent Component Analysis

As reviewed in Chapter 2, ICA is a benchmark method to find the independent com­

ponents (latent variables or sources) from signal mixtures by maximizing the statistical 

independence of the estimated components. Such components capture the essential 

structure of the data and can be used in source separation and feature extraction. ICA 

method usually estimates the independent sources by minimizing mutual information 

or maximizing non-Gaussianity (measured through kurtosis or negentropy).

5.2.2 Image Denoising via Dictionary Learning

Elad and Aharon [60] proposed a local sparsity based method for the image denoising 

problem. Consider an image which can be sparsely represented. If it is corrupted by 

additive noise with a known power cr, it is possible to enhance the image by using dic­

tionary learning algorithms. Assume a clean image s is corrupted by additive Gaussian 

noise v and gives the measurement

z =  s -b V. (5.1)
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The measurement z can be denoised by solving

min A llz -  s ||^  +  ||7îs -  D X || |  +  /x ||X ||(,. (5.2)
s,D ,X

Operator TZ takes the overlapped patches from the estimated image s in order to provide 

enough training samples for dictionary learning. The notation ||-||q stands for .^Q-pseudo 

norm which calculates the number of non-zero elements of coding coefficient matrix 

X. Parameter A is determined by the noise power a. Matrix D  is the dictionary 

containing normalized columns (termed as codewords), which is usually initialized as 

an over-complete DCT dictionary. Each patch of s can be obtained by combining very 

few columns of D.

5.2.3 Multichannel MCA for Blind Source Separation

Assume that an image source Si of size VW x y /N  can be represented as a vector 

Si G W hat is known in our formulation includes the observation Z G the

number of sources s and the noise power a. Z contains the mixtures of multiple sources 

S =  [5^ , 82’, obtained by a column normalized mixing m atrix A  G R^^^ in the

presence of a zero mean additive Gaussian noise V.

Z =  AS -b V . (5.3)

In MMCA, each source Sf is assumed to be sparsely represented by different orthogonal 

dictionaries D^s which are known a priori or trained from the sources, such that Si =  

DfXî and hence x^s are sparse. MMCA [26] aims to find the best estimates Â  and S, 

given the observation Z and the dictionaries DjS, written in the following Lagrangian 

form:

m in A ||Z - A S || |  +  f ^ l |s iD f | l „ .  (5.4)
i=l

Here A > 0 is a weighting parameter determined by the noise power a. MMCA offers 

a way of separating the sources under the sparse representation framework when the 

dictionaries for each source are known a priori. In practical applications, however, the 

true dictionaries are usually difficult to obtain.
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W ithout the known dictionaries in advance, the BMMCA [1] algorithm trains dictio­

naries from the observed mixture Z. By using the same hierarchical scheme as MMCA, 

the separation model in BMMCA is split into a few rank-1 approximation problems, 

where each problem targets one particular source

inln A llEi — A;^iSi||^-b ||D iX i — 7?.Si||2-b/r ||Xf IIq (5.5)
A; ,13 j ,Xj

where DjS are the trained dictionaries for representing sources s^s, and is the residual 

which can be written as

Ej =  Z — ^  A ;jS j. (5.6)
jAi

Both MMCA and BMMCA use multiple dictionaries, one for each source. The differ­

ence is that, the dictionaries in BMMCA are adaptively trained by using the K-SVD 

algorithm. Such trained dictionaries are able to better approximate the source sparsely.

5.3 Proposed Optim ization Formulation

In this section, we propose our blind separation scheme. Different from the current 

benchmark image separation algorithms, in our separation model we train only one 

dictionary instead of multiple dictionaries. Another difference is that we adapt regu­

larized SimCO framework to unify the two stages of the algorithm, i.e., both mixture 

learning and dictionary learning stage can be updated by using the same optimization 

framework. Such an algorithm design significantly reduces the computing efforts. More 

importantly, it provides a principled way to better estimate the mixing m atrix and 

avoids the singularity problem in dictionary update.

Denote Sf G as the vectorized image of Si G ]R v^xv^. Denote a binary m atrix

Pfc G The product s* • Pfc is to vectorize the kth  patch of size y/n  x  y/n  taken

from image «%. Denote S =  [ s ^ ,s ^ ,. . .  , s j ] ^ .  Denote a reversable operation P S  =  

{ I k  ® S) • diag (P i, P 2 , . . . ,  P r )  G where 1^ G R^^^ is an all-one vector and K

is the number of patches taken from each image. We estimate P S  by using only one 

dictionary D  G R"^^^ and present our proposed optimization formulation for the BSS
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problem

^m m ^A  ||Z -  A S Ill +  \\p-'^ (DX) -  S ^ | | | , , (5.7)

where the coefficients X  is sparse. The matrix Z denotes the observations generated 

from equation (5.3). V~^ is the reverse operator of P , which recovers the estimated 

patches Dx^ to the estimated vectorized sources. Note that in our model, we found 

that using one dictionary to sparsely represent all the sources will get almost the same 

performance as using multiple dictionaries when the dictionary redundancy ^  is large 

enough. As a result we propose to train only one dictionary for all the sources. One 

most obvious advantage is that the computational cost is irrelevant to the number of 

sources, i.e., compared to using multiple dictionaries, the proposed algorithm offers a 

significant efficiency improvement when the number of sources increases.

To find the solution of the above problem, we propose a joint optimization algorithm 

to iteratively update the following two stages until a minimizer is found. Note that in 

each stage there are two items to be updated simultaneously.

• Dictionary learning stage

mm
D ,X

D X  -  ( P S ) ^ f  , (5.8)

Mixture learning stage

min A IIZ -  A S ||^  +  \\V~^ (DX) -  S^ |l^  . (5.9)

During the optimization, we further constrain the updated A  and D  to be column 

normalized. The explanation is given in subsection 5.4.3. W ith these constraints, we 

do not require the pre-knowledge about the scaling m atrix in front of the true mixing 

matrix [27], as otherwise required in MMCA and GMCA algorithms. In addition, as will 

be shown in our simulations, such an optimization method can result in more accurate 

estimation of the mixing matrix.
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5.4 Algorithm ic D etails

5.4.1 Dictionary Learning Stage

Our model provides an alternating joint update between {D ,X } and (A , S}. In real 

data testing, we found that the regularized SimCO gives better performance than the 

other dictionary learning algorithms (such as K-SVD and MOD) when applied to the 

image denoising problem. For this reason, SimCO is applied in our dictionary learning 

stage. The SimCO framework is designed to simultaneously train the dictionary and 

the sparse coefficients. It works iteratively with sparse coding algorithm which solves 

the following least squares problem under a fixed dictionary

imn ||X||o s.t. D X -  (PS)^ (5.10)

where e is an error bound being proportional to the noise standard deviation. In 
each iteration, sparse coding algorithm outputs the best sparse coefficients X. Then

by fixing the sparse pattern Q = ^  0 } which contains the positions of

non-zero elements in X, SimCO simultaneously update D  and X  via first or second

order numerical optimization methods (Gradient Descent, Newton Conjugate Gradient,

etc. [116]). The convergence analysis of SimCO shows that the failure of finding a global

minimizer is probably due to the singularity of the updated dictionary. For this reason,

in practice a regularized term ||X ||^  is added in the SimCO formulation to improve

its learning performance. Following the convention we denote the feasible set for the

dictionary

=  { u  e  : ||U ,,i ||2  =  1, Vi s  [g]} . (5.11)

where ||- ||2  is the .̂ 2-norm, and [q\ = { 1 ,2 , . . . ,  g} is an integer set. The regularized 

SimCO, as well as our dictionary update stage, is formulated as

mm mm
xen

min min
XEO

D X  -  (P S )^  ^  +  A ||X ||^ , (5.12)

D { V S f
2

(5.13)X - ,

_ \ / / ^  _ 0
F

/ (D )
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where /i >  0 is a regularization parameter. Via equation (5.13) we are able to find a 

succinct expression of the gradient of /(D )  thereby a more sufficient algorithm can be 

obtained.

5.4.2 Mixture Learning Stage

In this stage, we simultaneously update the mixing m atrix A  and the sources S. Con­

sider formulation (5.9), it is comprised by a summation of two terms both with form 

||C i — C 2S ||^  as equation (5.12). Therefore the similar method in SimCO can also be 

used in solving this problem. Referring to 5.13, denote

Z =
\/ÂZ

p t  (DX)
, A  =

VÂA
I

(5.14)

The problem formulation of the mixture learning stage (5.10) can therefore be written 

as

mm mm
A.&4r,s S

Z - A S (5.15)
—
/ (A )

To achieve a simultaneous update of A  and S, we find the general optimal expression 

of S* about A, and then update A  in (5.15) with the substitution of S*.

S* =  À tz , VA G %r,6 (5.16)

where is the pseudo-inverse of A. Therefore we are able to use the same method as 

the one in dictionary update stage to compute the gradient of /  (A).

a /  Is * + ^ g  Is*

I OS

=  - 2  ( z  -  ÀS*) S*^. (5.17)
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5.4.3 Advantage of O ptim ization on M anifolds

For MMCA and CMCA, they assume that the scaling matrix of the mixing matrix A  is 

known a priori and the dictionaries D^s are obtained from the original sources. However, 

for BSS algorithms, these conditions are unknown, therefore a column normalization 

of the mixing matrix and the dictionaries becomes indispensable constraints. In fact 

both BMMCA and our proposed method have added them into mixture learning and 

dictionary learning stage. Here we give a briefly explanation. Consider the noiseless 

case, suppose {A G S, D  G Urn,d, X} to be the optimal solution of the BSS problem

min A ||Z -  ASIlJ. +  (DX) -  S ^ | |p . (5.18)

Since there is no noise, the minimization of (5.18) should be zero. Now if the constraints 

A  G Ur̂ s and D  G Um,d are removed, then for any scaling values {ci,C2 }, the solution 

{ciA ,c/^S ,C 2D , a l s o  gives a zero  solution to (5.18). The same analysis 

applies to the BMMCA problem. As a result, with the constraints we are actually able 

to guarantee that there are only finite solutions in the solution set.

Furthermore, for BMMCA the summation of rank-1 approximation problems in mixture 

learning stage [1] can be finally transformed to

min
\/AEi VÂA.i
DiXi n

=  min
^  A;,iGWr,liSi

Ei — A; .-Si (5.19)

Notice that usually min a
F

and minAGWr.i E,- -  A. iSi do not give a

same solution. One fact is, the scheme (used in BMMCA) that splits miiiA

and column normalization on obtained A  into two separate steps does not give the opti-
2

mal solution of minAew,r,l Ei — A-iSi . This largely affects the accuracy of the mixing

m atrix estimation and decreases the convergence speed. In contrast, our proposed model 

numerically updates A  and keeps the update staying on Ur̂ s- After enough iterations.

we are able to find an A  G Ur̂ s sufficiently close to the solution of minAeL/r,6 Z - A S



94 Chapter 5. Joint Blind Source Separation and Adaptive Dictionary Learning

The mixing matrix error tests in the next section will show the advantage of our method 

for estimating the mixing matrix A.

5 .4 .4  L in e  S e a rc h  P a t h

The gradient descent method is used during the update of both dictionary update stage 

and mixture learning stage. Notice that both dictionaries D  and mixing matrix A  are 

constrained to have unit column norms. Common selection of an updated direction 

probably results in an updated D  ^ Um,d or A  ^ Zlr,s- As discussed in last subsection, 

such results tremendously increase the solution set of the optimal dictionaries and the 

mixing matrix which may cause the failure of the algorithm. Thereafter we refer to 

[49, 59] and restrict the line search path to the product of Crassmann manifolds. To 

reach this, we define a projection operator (•). Let u  G  U m , i -

ÏÏ =  ( l — u u ^ ) h, (5.20)

so that h  and u  are orthogonal. Here u  can be a codeword in dictionary D  or a column 

of mixing matrix A. Vector h  represents V a:,^/, i G [s] in the mixture learning stage 

and Vd. j / ,  j  G [d] in the dictionary learning stage. For a given non-zero direction h  

and a step size t G R, u  is updated as

u  (£) =  u  • cos ( | |h | | 2 1) +  Tjirp • sin ( | |h | | 2 1 ) . (5 21)

5.5 Simulations

In the simulations, two source images were mixed together using a 4 x 2 full rank random 

column normalized mixing m atrix A. Normally, the patch size depends on the size of 

the sources. We chose 8 x 8  patches from the source images with size N  =  128 x 128. 

The overlap percentage of the patches was fixed to 50% for our proposed algorithm in 

both noise and noiseless cases. In order to pursuit a good recovery result, it is better to 

keep the overlap percentage at a high level. For the dictionary learning stage, we would
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A lg o rith m  9 Proposed Joint BSS and Dictionary Learning Algorithm.
In p u t;  Observations Z, patch size n, number of dictionary codewords d, regularization 
parameters A and p, and total number of iterations Imax-
O u tp u t: Dictionary D , sparse coefficients X , separated images S, and estimated mixing 
m atrix A.

1. Set D  to over-complete DCT dictionaries.

2. Set a random column-normalized m atrix A.

3. Compute S =  A^Z.

4. For /c =  1 , 2 , . . . ,  Imax re p e a t  (6) -  (10).

5. X-f-argm in DX — (%S)^|| .
X ' ' F

6. D , X f -  argmin DX -  (%S)' +Mi ixi iy

7. Let Z = [ \/AZ^ ] , À = [ \/XA^ I ]

8. Computes =  À^Z.

9. A 4— argm in  

10. e nd

Z - A S
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like to emphasize again that only one dictionary was generated to sparsely represent 

all source images. The number of atoms of the dictionary was d =  256. We will not 

discuss the optimal dictionary redundancy factor d /m  as it is beyond the scope of this 

chapter. Refer to [52], the parameter p  of the penalty term was fixed to 0.05. For the 

mixture learning stage, the constant parameter A depends on specific noise level of the 

observations. For the proposed algorithm, the total number of iterations Imax was fixed 

to 50. Each iteration consists of one implementation of dictionary learning and five 

implementations of mixture learning. Consequently, all above parameters were fixed in 

the experiments, except for the parameter A.

Table 5.1; Achieved MSEs of the algorithms in noiseless case.

FastICA GMCA BMMCA Proposed method
Lena 8.7489 4.3780 3.2631 3.1346
Boat 18.9269 6.3662 12.5973 6.6555

For the first experiment, we selected two classic images, Lena and Boat as the source im­

ages, which are shown in Fig. 5.2 (a). We compared our proposed algorithm with other 

benchmark algorithms: FastlCA^ [79], GMCA^ [27] and BMMCA [1]. For the noiseless 

case, we calculate the Mean Square Errors (MSEs) to compare the reconstruction per­

formance of the candidate algorithms. The lower the MSE, the better the reconstruction 

performance. MSE is given in M S E  = (1/iV) ||% — %||^, where % is the source image 

and X Is the reconstructed image. For the BMMCA algorithm, we set the total number 

of iterations to be 500 and the overlap percentage was 50%. Table 5.1 illustrates the 

results of four tested algorithms. GMCA and our proposed algorithm had similar results 

for boat. However, for Lena, ours is better than GMCA and BMMCA. The results of 

FastICA is not as good as those three algorithms. For the noise case, we also tested 

those four algorithms. In this case, we added Gaussian white noise with a  equaling to 

10 to the four mixtures, which is shown in Fig. 5.1. The Peak Signal-to-Noise Ratio 

(PSNR) is used as a measurement of the reconstruction quality. Better quality leads 

to higher PSNR. It is defined as, P S N R  = 201ogio(-^ ^ ^ ), where MAX indicates the 

maximum possible pixel value of the image. For a uint-8 image, the MAX equals to 255.

^Available at: http://research.ics.aalto.fi/ica/fastica/index.shtml 
^Available at: http://md.cosmostat.org/Generalized_MCA.html

http://research.ics.aalto.fi/ica/fastica/index.shtml
http://md.cosmostat.org/Generalized_MCA.html


5.5. Simulations 97

t ' t e "  ■ m Æ m

Figure 5.1: Four noisy mixtures with Gaussian noise (<j =  10).

PSNR=27.9018 dB PSNR=22.B487 dB PSNR=27.7434 dB PSNR=30.2880dB

H l\ H P  m
PSNR=25.7998 dB PSNR=22.7819 dB PSNR=25.6044 dB PSNR=27.2300 dB

(a) original (b) GMCA (c) FastICA

3=^; - p ri* h % ..f
(d) BMMCA (e) Proposed method

Figure 5.2: (a) Original Images. Separated images using (b) GMCA, (c) FastICA, (d) 
BMAICA, and (e) the proposed method.

The separation results are shown in Fig. 5.2 (b)-(e). For the BMMCA algorithm, 200 

iterations were set as the stopping criterion and full overlapped patches were selected, 

which increased the computational complexity. All algorithms successfully separated 

the noise mixtures. However, FastICA algorithm fails to denoise and GMCA blurred 

the images. The results of BMMCA are smooth but lost lots of image details. Our 

proposed algorithm offer significant performance improvement in both separation and 

denoising, e.g. Lenars facial details are the most legible among the four. Moreover, it 

is mentioned that the overlap percentage of the patches of our proposed algorithm was 

fixed to 50%. It is sufficient to keep the overlap percentage of patches low. A high 

overlap percentage will give even better separation results.



98 Chapter 5. Joint Blind Source Separation and Adaptive Dictionary Learning

P S N R = 14.1080 dB

f

P S N R = 14.3112 dB

M «
PSNR = 23.7640 dB

Original image 'Lena' Mixed image 1 Mixed image 3 Separated image 'Lena'

PSNR = 7.9715 dB P S N R = 16.4950 dB P S N R = 19.9380 dB

Original image 'Barbara' Mixed image 2 Mixed image 4 Separated image 'Barbara'

Figure 5.3: Separating related human face images by proposed method

Another experiment is performed for separating t'wo human face images ‘Lena’ and 

‘Barbara’, and the results are shown in Fig. 5.3. We can see that the proposed method 

also performs well for separating the images that have similar textures.

It is also worth mentioning about the learned dictionary from the mixtures. After 

applying the SimCO algorithm, the trained dictionary (as shown in Fig. 5.4) looks 

like the initialization in which an over-complete DCT dictionary was used. Similar 

dictionaries are also trained for image denoising solved by SimCO. This is quite different 

from the ones trained via K-SVD algorithm [60]. However dictionaries trained via 

SimCO can represent images with the same sparsity level as the ones trained via K- 

SVD and also reach very similar performance. We are doing more detailed analysis 

on this problem. Note that an over-complete DOT dictionary can already sparsely 

represent images, therefore the trained dictionary from our proposed algorithm is a 

reasonable solution.

At last, we compared the performance of all the methods in different noise levels. We
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0

a »

Figure 5.4: Dictionary trained from the proposed algorithm.

use the mixing matrix error as the measurement of the performance. The mixing matrix
2

error is defined as E \  = A - A , where A is the approximated column normalized

and reformulated mixing matrix. In this experiment, the noise level, which is also the 

noise standard deviation, varies from 2 to 20. The resulted curves are shown in Fig. 5.5. 

The performance of GMCA is better than that of FastICA. The curve for BMMCA is 

not available as the setting for the parameters are sophisticated and varies in different 

noise levels. It is hard to obtain a good result for BMMCA. Our proposed algorithm 

outperforms the compared algorithms at all the tested noise levels.

5.6 Summary

We have presented a new method for jointly learning dictionary and separating sources. 

By unifying the two stages of BSS approach in Chapter 4, the joint optimization frame­

work improves both the algorithm performance and computational efficiency. Only one 

dictionary instead of multiple dictionaries is learned from the data. Moreover, the pro­

posed method can avoid the possible ill-convergence problem and obtain the improved
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I

Proposed Method

10"'
Noise level

Figure 5.5; The performance of the tested algorithms at different noise levels, 

separation performance.



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis, one of the challenging problems in signal processing i.e. ‘dictionary 

learning’ has been studied. We have proposed a new framework where codewords and 

their corresponding coefficients are allowed to be updated simultaneously. The pro­

posed method differs significantly from the existing algorithms in the literature. W ith 

this framework, we have developed two algorithms using the first and second order 

optimization procedures and proved their performance theoretically. Furthermore, we 

observed that singular points rather than local minima are the bottleneck for dictionary 

update. To mitigate the effects of singularity, regularized SimCO has been proposed 

and numerical experiments verify that regularization substantially improves the per­

formance. We have also provided numerical results to show its advantages over the 

K-SVD and MOD algorithms, based on the evaluations of the learning performance 

and the running speed.

Moreover, we extends the SimCO algorithm. First, a tree structure with a multi-level 

dictionary was obtained by the multi-level K-mean clustering. Then, in the sparse 

coding stage, the closest centroid from the higher level dictionary to the signal un­

der consideration was found, and their neighbors were then used to code this signal 

with a dimension reduced OMP, based on the nearest neighbor search. This leads to 

the tree-OMP (TOMP) method, offering improved computational efficiency. We have

101
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also presented a multi-stage system for underdetermined blind speech separation using 

block-based sparse coding with adaptive dictionary learning. Numerical experiments 

have shown the competitive separation performance by the proposed method, when 

compared with the recent underdetermined BSS approaches reported in the source sep­

aration evaluation campaign. The proposed method builds a new framework for under­

determined BSS, and offers great potential to accommodate the sparse signal recovery 

and adaptive dictionary learning algorithms to the source separation problems. This 

study has also shown the benefit of using learned dictionaries for underdetermined BSS, 

and the advantage of using the block-based processing to improve the computational 

efficiency of the signal recovery algorithms. Moreover, the framework of the proposed 

method provides a friendly structure to test the performance of other dictionary learning 

and signal recovery algorithms in source separation applications in the future.

Finally, we have presented a novel method for blind source separation, where a com­

pound optimization has been employed to perform dictionary learning and source sepa­

ration simultaneously. The simultaneous recovery for both mixing m atrix and dictionary 

has an advantage over the standard methods in which the dictionary is often pre-trained 

from data. The remarkable performance improvement of the proposed method com­

pared with other benchmark methods for blind image separation has also been shown 

by numerical experiments.

6.2 Future Work

We analytically show that benchmark algorithms, including MOD, K-SVD and primi­

tive SimCO, cannot always guarantee to converge to a global minimum, which is caused 

by the ill-conditioned dictionaries during the optimization process. The key behind the 

failure is the singularity in the objective function. One can use a weighted technique 

based on the SimCO optimization framework, where weighting coefficients can be ap­

plied to the atomic functions so that singular points are avoided in the optimization 

process. Using such a method in the dictionary learning stage of the underdetermined 

BSS algorithm, we may obtain further improvements for source separation from noiseless 

and noisy mixtures.
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Moreover, the joint BSS and dictionary learning algorithm is currently used for overde­

termined BSS problem. However, the structure and optimization process make this 

algorithm potentially useful in more challenging underdetermined case for both blind 

speech and image separation applications.

We have presented a multi-stage method and a novel simultaneous BSS method for un­

derdetermined blind speech separation in instantaneous case. Numerical experiments 

have shown the improved separation performance and computational efficiency by the 

proposed method, as compared with recent underdetermined BSS approaches. The 

proposed method offers potentials to accommodate new adaptive dictionary learning 

algorithms for obtaining a better dictionary, and for addressing covolutive source sepa­

ration problems.
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Appendix A

A .l  Proof of Theorem  1

The following notations are repeatedly used in the proofs. Consider the singular value 

decomposition A  =  where Ai > A2 >  • • • > Am > 0 are the singular

values, and UA,i and VA,i are the left and right singular vectors corresponding to A* 

respectively. It is clear that the objective function / ( u )  =  inf^eR" || A  — u w ^ | | ^  has 

two global minimizers ± u a , i - For a given u  G ZYm,i, the angle between u  and the closest 

global minimizer is defined as

e  =  c o s “  ̂ | ( u ,  U A , l ) |  .

The crux of the proof is that along the gradient descent path, the angle 9 is mono- 

tonically decreasing. Suppose that the starting angle is less than 7t/2. Then the only 

stationary points are when the angle 9 is zero. Hence, the gradient descent search con­

verges to a global minimizer. The probability one part comes from that the starting 

angle equals to 7t/ 2  with probability zero.

To formalize the idea, it is assumed that the starting point uq  G U m ,i is randomly 

generated from the uniform distribution on the Stiefel manifold. Define a set H C Um,i 
to describe the set of “bad” starting points. It is defined by

B= {ue Um,i : u^UA.i = 0} ,

which contains all unit vectors that are orthogonal to u a , i - According to [50], under

105



106 Appendix A.

the uniform measure on Um,ii the measure of the set B is zero. As a result, the starting 

point uq ^  B with probability one. The reason that we refer to B as the set of “bad” 

starting points is explained by the following lemma.

Lemma 4. Starting from any uq £ B, a gradient descent path stays in the set B.

Lemma 5. This lemma can be proved by computing the gradient of f  at a n E B. Let 

Wu G be the optimal solution of the least squares problem in f  (u) =  infweM'̂  ||A — uw  

It can be verified that W u  =  A^u and V / = —2  (A  — uw^) W u -  It is clear that

V / = —2 (a  — uwj) Wu = —2 (a  — uu^A) A^u 

= -2  ^  Af UA,iUA,iU + 2u (u^AA^u)
i

When uq G B, it holds that (uo ,ua,i) =  0 and (V /(u o ) ,u a ,i)  =  0. Since both uq and 

the gradient descent direction are orthogonal to u a ,1 ; the gradient descent path starting 

from  Uq G B stays in B.

Now consider a starting points uq ^ B. We shall show that the angle 6 is monotonically 

decreasing along the gradient descent path. Towards this end, the notions of directional 

derivative play an important role. View ^ as a function of u G Um,i- The directional 

derivative of 0 at u G U m ,i along a direction vector h G denoted by Vh  ̂ G R , is 

defined as

e - > 0  e

Note the relationship between the directional derivative and the gradient given by 

Vh  ̂ =  (V^,h). W ith this definition, the following lemma plays the central role in 

establishing Theorem 1.

Lemma 6. Consider a u G Um,i such that #(u) := cos“  ̂ ([(u,u a ,i) |)  G (0,7t/2). Let 

h f  = —V / (u) be the gradient of the objective function f  at u. Then it holds Vhy^ < 0.

The proof of this lemma is detailed in Appendix A.2.

The implications of this lemma are twofold. First, it implies that hj = —V / ^ 0 for all 

u such that 6 (u) G (0,7r/2). Hence, the only possible stationary points in Um,i\B  are

T
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«X
span([M A,2, - -  - ,^ A ,m ] )

Figure A.l: Illustration of u, u a ,i , hg and u^ .

u a ,i  and —ua,i- Second, starting from uq G B, the angle 6 decreases along the gradient 

descent path. As a result, a gradient descent path will not enter B. It will converge to 

u a ,i  or —UA,i Theorem 1 is therefore proved.

A .2 Proof of Lemma 6

This appendix is devoted to prove Lemma 6, i.e., Vhy^ <  0. Note tha t =

(hy, V^) =  (—V /, V0) =  V -v ^ /-  It suffices to show that V - v e /  < 0 .

Towards this end, the following definitions are useful. Define s = sign (u ^ u a ,i)-  Then 

the vector s u a ,i  is one of the two global minimizers that is the closest to u .  It can be 

also verified that 6 = cos~^ ( u ,  s u a , i )-  Furthermore, suppose that 9 G ( 0 , 7 t/ 2 ) .  Define

s u a  1 — u  c o s  9 , u  — s u a  1 cos
hg =  ’ . -̂------ , and u x  =  -

smi smi

Clearly, vectors hg and u x  are well-defined when 9 G (0,7t/2). The relationship among 

u, u a ,i, hg and ux  is illustrated in Figure A.I. Intuitively, the vector hg is the tangent 

vector that pushes u  towards the global minimizer sua,i-

In the following, we show that V - v e /  =  V h^/ if we restrict u  G Um,i- By the definition 

of the directional derivative, one has^

V_v6>u =  lim
u  — e'S/9

€->o||u — eV^II '

^The denominator comes from the restriction that u G
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Note that

=  V (cos  ̂ (cos^)) 
1

Since su a ,i =  u  cos ^ +  hg sin 6, one has

=  u (1 +  e cos#/ sin 9) +  eh^.

Substitute it back to V_v6>u- One has V _v 0U =  hg. In other words, if u G Um,ii then 

V _ v e / =  Vhg/.

To compute Vh^/, note that /  (u) =  11A  — u w j

# (u ) =  ||u^A ||2

|u ^ A ||g . Now define

Then clearly V h^/ =  ~^ho9- To proceed, we also decompose A  as follows. Recall the 

SVD of A  given by A  =  Bet U a,±  G Um,m-i contain the left singular

vectors corresponding to A2 , • • • , A^, i.e., U a ,x  =  [ua,2, • • • , nA,n%]. Similarly define 

V a,x- Then,

A  =  [uA,i, U a ,±] diag ([Ai, • • • ,Am]) 

=  [u a ,i ,U a ,±] [w a ,i , W a ,±]^,

''A,!

where WAy =  Â VA,i for i =  1, • • • , m, and W a,±  =  [wa,2 , • • • , WA,m]- It is straight­

forward to verify that w ^ W a ,±  =  0.
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The function g (u) can be decomposed into two parts. Note that 

g { u ) =  u ^ [u a ,i ,U a ,x ] [w a ,i ,W a ,± F  ^

= ||u^UA,lwJ^l||2 +  ||u^Ua,±WX,x||2 

+  2 (u^UA,iwJx> u^U a.xW J^x) 

=  ||u ^ u a ,i Wa ,i ||2 +  ||u ^ U A ,x W i^ x ll^

where the last equality follows from that j^WA =  0 and hence

(u^u a ,iWa ,i . u^U a ,±WJ^x ) =  0-

To further simplify 5f(u), note tha t cos# =  |u ^ u a |-  Furthermore, it is straightforward 

to verify that the projection of u  on span ( U a , ± )  is given by U a , ± U ^  j_u  =  u x  sin # .  

Define u r  = U j  j^ux G Then, \\ur\\ = 1 and

||u^ U a .xW Ï ,x II2

Hence,

= sin2#||uîUA,±Wl,x|l2
=  sin^ #u^diag ( [A ,̂ • • • , A^] ) u^ . 

g (u) =  cos^ # • Ai +  sin^ #ujd iag  ( [A|, • • • , A^] ) u r .

We are now ready to decide the sign of Vh@p. It is straightforward to verify tha t 

VhgCOS# =  Im  ^ ^ ^ = ^ ,S U A , 1^  =  sin#,

and similarly Vh^ sin# =  — cos#. Therefore,

/  u -----cos #5Ua ,1
—

_  hg sin # 4- u  cos # — su a ,i
sin^ #

SUa ,1 — SUa ,1
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and VhgUiî =  Vhg ( u j  j^ux) — 0. Hence, one has

Vhe# =  sin 2$ (Aj -  u jd iag  ( [Ai, • • • , A^] ) u r ) .

Note that

Ufidiag([Ai,--- ,A ^])u i?

< u jd iag  ( [Ai, • • • , Ai] ) Uiî =  A2 <  Ai.

It can be concluded that when 9 £ (0,7t/2), Vho9 >  0 and V h^/ =  —Vhgp < 0. Lemma 

6 is therefore proved.



Appendix B

Tables B .l, B.2 and B.3 below show the confidence intervals that correspond to the p- 

values in Tables 4.1, 4.2 and 4.3 respectively. The p-values and the confidence intervals 

were obtained from the t-test on the results of the compared methods.

Confidence intervals
B/M B/L M /L

SDR (4.71, 6.85) (1.24, 2.02) (-5.14, -3.15)
SIR (-10.63, -7.57) (3.00, 4.08) (11.20, 14.07)
SAR (8.48, 9.44) (-1.71, -1.20) (-10.82, -10.01)

Table B .l: The confidence intervals corresponding to the p-values in Table 4.1 obtained 
from the (-test between the methods, where B =  BP, M =  MP, and L =  LILS.

Confidence intervals
S/M S/D S/F S/C

SDR (2.08, 2.98) (0.52, 1.45) (1.34, 2.35) (2.20, 3.22)
SIR (2.69, 4.29) (0.75, 2.39) (2.25, 3.87) (2.27, 3.93)
SAR (1.20, 1.91) (0.14, 0.87) (-0.19, 0.53) (1.42, 2.15)

Table B.2: The confidence intervals corresponding to the p-values in Table 4.2 obtained 
from the (-tests between the STD and other four methods, respectively MTD, DCT, 
STFT and MDCT, where S =  STD, M =  MTD, D =  DCT, F =  STFT, and C =  
MDCT.

I l l
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Confidence intervals
S/K S/G K /G

SDR (0.95, 1.71) (2.02, 2.75) (0.71, 1.41)
SIR (2.05, 3.31) (2.15, 3.35) (-0.47, 0.60)
SAR (-0.82, -0.28) (1.45, 1.99) (2.04, 2.51)

Table B.3: The confidence intervals corresponding to the p-values in Table 4.3 obtained 
from the (-tests between the methods of SimCO, K-SVD and GAD, where S =  SimCO, 
K =  K-SVD, and G =  GAD.
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