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Abstract—The problem of blind source separation (BSS) is
investigated. Following the assumption that the time-frequency
(TF) distributions of the input sources do not overlap, quadratic
TF representation is used to exploit the sparsity of the statistically
nonstationary sources. However, separation performance is shown
to be limited by the selection of a certain threshold in classifying
the eigenvectors of the TF matrices drawn from the observation
mixtures. Two methods are, therefore, proposed based on recently
introduced advanced clustering techniques, namely Gap statistics
and self-splitting competitive learning (SSCL), to mitigate the
problem of eigenvector classification. The novel integration of
these two approaches successfully overcomes the problem of artifi-
cial sources induced by insufficient knowledge of the threshold and
enables automatic determination of the number of active sources
over the observation. The separation performance is thereby
greatly improved. Practical consequences of violating the TF or-
thogonality assumption in the current approach are also studied,
which motivates the proposal of a new solution robust to violation
of orthogonality. In this new method, the TF plane is partitioned
into appropriate blocks and source separation is thereby carried
out in a block-by-block manner. Numerical experiments with
linear chirp signals and Gaussian minimum shift keying (GMSK)
signals are included which support the improved performance of
the proposed approaches.

Index Terms—Gap statistics, self-splitting competitive learning
(SSCL), time-frequency (TF) representation, underdetermined
blind source separation (BSS).

I. INTRODUCTION

THE problem of underdetermined blind source separa-
tion (BSS) has received considerable research interest

over the last decade due to potential applications in various
areas including digital communications, financial time series
analysis, and medical imaging [4]–[6]. Given a set of linear
mixtures, which is typically picked up by an array of sensors,
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the aim of BSS is to extract the underlying source signals from
the mixtures without explicit prior knowledge of the transmis-
sion channels and original sources. Mathematically, denote

as the vector of source signals
and as the received signals
from the sensor array. The instantaneous mixing process as a
function of discrete time, denoted by , is written as

(1)

where is a mixing matrix, the column
vector is the steering vector corresponding to the source
and is the possible additive noise. In the standard BSS
problem, the following three assumptions are conventionally
required.

A1) The input sources are statistically mu-
tually independent.

A2) At most one source has Gaussian distribution.
A3) The mixing matrix has full column rank.
Assumption A1 is the cornerstone of the so-called ap-

proach of independent component analysis (ICA). To restore
independence that is lost after linear mixing by (1), a sepa-
rating or unmixing matrix is introduced at the
sensor outputs. The recovered source signals, denoted by

, can be written as

(2)

Ideally, when , will be a perfect estimation of
, where represents an identity matrix. Practically, however,

there exists inherent scaling and permutation ambiguities in ICA
as a consequence of restoring the independence of the sources.
That is, the unmixing solution becomes

(3)

where is a permutation matrix and is a diagonal scaling
matrix. These ambiguities can be easily explained, as any finite
nonzero constant multiplying the sources can be cancelled out
by dividing the corresponding column of the mixing matrix by
the same constant. At the same time, it is not possible to prede-
termine the order of the sources when both the sources and the
mixing matrix are unknown.

Assumption A2 is a direct consequence of assumption A1, for
the sum of any two Gaussian sources can be represented by an-
other Gaussian source with composite coefficients. Assumption
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A3 can be interpreted as a requirement regarding the number of
measurement sensors and that the sources are generated from
spatially distinct locations. That is, in a multiple-input, mul-
tiple-output (MIMO) system, . Many successful ap-
proaches have been developed for the standard BSS problem
such as the well-known JADE algorithm [1], FastICA [6], In-
formax algorithm [2] and natural gradient algorithms [3]. For
more references, readers are referred to research monographs
or review papers such as [4]–[9].

In many practical applications, however, the assumption of
is difficult to satisfy. Noticing the significance of such

concern, in this paper, we are particularly interested in the pos-
sibility of separating more sources than mixtures , i.e.,
the problem of underdetermined (or overcomplete) BSS. Com-
pared with the standard BSS problem, underdetermined BSS is
more difficult due to the following two reasons. First, in a
sources and sensors system , the rank of the spa-
tial correlation matrix of the received signal cannot exceed

, which leads to difficulty if we wish to apply the conven-
tional approach of whitening and rotation as in standard BSS.
Second, even if the mixing matrix is successfully estimated, the
estimation of the input sources in underdetermined BSS is not
as straightforward as that when the number of sensors is suffi-
cient, since there is no unique inverse of the mixing matrix or
the inverse may not even exist.

Most of the available approaches resort to exploiting the
temporal sparsity inherent to input sources. For example, in
[12]–[16], an overcomplete signal representation (also see
[11]), which is essentially based on the assumption that the
signals have a sparse distribution such as a Laplacian distribu-
tion, is exploited for underdetermined BSS. Signal separation is
accomplished by an operation in two steps, i.e., the estimation
of the basis vectors and then the estimation of the sources.
However, with this method, the estimation of the basis vectors
may not be very accurate. Similarly, in [17], the mixing matrix
is adaptively estimated with a gradient type algorithm, or the
k-means clustering method. The difficulty of there being an
infinite number of solutions in inversion is tackled by selecting
the sparse solution with minimum 1-norm. For sources that
are not sufficiently temporally sparse, the author suggested
the usage of wavelet packets so that sparsity in the transform
domain can be exploited rather than the time domain. This
type of minimum 1-norm estimation of input sources is also
suggested in [18].

These approaches attempt to estimate both the mixing matrix
and the input sources. In comparison, the focus of some other
literature is on the estimation of either the mixing matrix or the
input sources, but not both. For example, the FOCUSS algo-
rithm [23] exploits the temporal sparsity of the input sources by
assuming that at any time only one source is present. The in-
verse matrix is estimated as the one that maximizes the sparsity
of the unmixing outputs. In the case that this sparsity assumption
does not hold, the solution will, however, not be unique. Several
improved FOCUSS-based algorithms were designed to solve
the underdetermined inverse problem in [24] and [25]. Unfortu-
nately, only a locally optimal solution can be obtained with this
approach and also solutions are not unique. Assuming perfect
knowledge of the mixing matrix, different probabilistic source

sparsity models are suggested in [19] for the identification of the
transmitting source. In contrast, methods proposed in [20] and
[21] concentrate on the estimation of the mixing matrix by de-
composing a set of fourth-order cumulants tensors into rank-1
matrices with an eigenvalue decomposition, based on the rank
of a fourth order tensor potentially being much higher than the
number of input sources. A frequency domain approach based
on similar ideas can be found in [22].

The techniques of TF representation for underdetermined
BSS are exploited in [26]–[31]. Most of these approaches
assume that the TF representations of input sources do not
overlap in the transform domain. In [26]–[28], for example, the
orthogonality assumption is exploited to separate an arbitrary
number of sources from two mixtures. In [31], however, this
assumption is suggested for separating nonstationary signals
in a quadratic TF domain. But a major drawback of the sug-
gested algorithm is that it often leads to phantom sources being
identified because of the approximate classification technique
employed. Thresholding in the later stage therefore becomes
crucial and its operation requires the number of active sources
to be known a priori. In [37] and [38], advanced clustering
approaches have been proposed for active source selection in
underdetermined BSS. In this paper, these approaches will be
further developed and explored in more detail. We will show
for the first time that, by using relatively recent advanced
clustering techniques, the aforementioned drawback in [31]
can be removed and therefore the separation performance be
significantly improved. The situation when the orthogonality
assumption of the TF distributions of sources is violated is
moreover addressed. A new block-based robust approach is
proposed by relaxing the TF orthogonality assumption, [39].

The remainder of this paper is organized as follows. Quadratic
TF representation of signals is briefly introduced in Section II.
An analysis of the orthogonality assumption of TF distribu-
tion of sources required for underdetermined BSS is given in
Section III. The downside of an approach exploiting this as-
sumption is also highlighted in this section. In Section IV, we
present two new algorithms for active source selection required
for performing underdetermined BSS in the sense of TF rep-
resentation. These algorithms are developed on the basis of two
advanced clustering techniques, i.e., the methods using Gap sta-
tistics and SSCL. The violation of the orthogonality assumption
and the corresponding solutions are detailed in Section V. Fi-
nally, the performance of the proposed approaches is examined
in Section VI and the conclusions are given in Section VII.

II. QUADRATIC TF REPRESENTATION AND SIGNAL

NONSTATIONARITY

TF representation provides a useful signal processing tool for
characterizing signals in both time and frequency planes. De-
pending on whether it satisfies the linear superposition principle,
it can be classified as linear or quadratic (bilinear) [36] TF rep-
resentation. For linear transforms such as the short-time Fourier
transform and the wavelet transform, the linear superposition
principle holds, i.e., the transform of the linear combination of
two signal components is equal to the
same linear combination of the transform of each component,
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where are constants and is a multicomponent
signal [36], [41]. For a quadratic TF representation such as the
Wigner distribution [36], however, the transform of is given
by

(4)

where is the transform of signal component , the
term is the cross TF representation of the two signal
components and , and the notation denotes the
complex conjugate operation. The quadratic distribution pro-
vides a natural way of representing the energy (or correlation)
of signals, which is also a quadratic signal representation [36].

However, a major issue of quadratic TF representation comes
from the interference due to the cross TF term , as the
two signal components may be buried among the interference.
To improve the concentration of the signal components, various
kinds of kernel functions have been introduced to reduce the
amount of interference. Among which, we will employ Cohen’s
class of TF distribution due to its desirable property of TF shift
invariance [32]. That is, if the signal is delayed in time and/or
shifted in frequency, its TF representation will be shifted by the
same time delay and/or modulation. The discrete-time form of
Cohen’s class of TF representation for vector sensor signals
is given by [10]

(5)
where is a matrix whose th entry is the
kernel associated with the th and the th measurement sensor
output and denotes Hermitian transpose. According to (1),

relates to the transform of the input sources, for a
noise-free situation, by

(6)

where

is the TF matrix of the input sources.
In this paper, we will highlight the statistical nonstationarity

of signals by the exploitation of spatial TF representation. As
aforementioned, TF representation provides a powerful tool to
exploit the signal nonstationarity for achieving source separa-
tion. The statistical nonstationarity of signals makes it possible
to identify the TF regions where the underdetermined issue is
converted into an exactly or overdetermined case, which is not
possible to realize for stationary signals. Therefore, the exploita-
tion of TF representation and signal nonstationarity paves a way
for solving the underdetermined BSS problem, as verified by our
paper.

III. EXPLOITING TF ORTHOGONALITY IN

UNDERDETERMINED BSS

To exploit source nonstationarity in underdetermined BSS, a
crucial assumption for using the TF representation as in [31], is
that the TF supports of different sources, and , for ex-
ample, are orthogonal (without overlap between each other),
i.e. , , where and are source indexes.
A direct consequence of this assumption is that, for all time
and frequency combinations , only one diagonal entry of

will be different from zero. Hence, if at the point
, only source- is present, is a rank-1 matrix

which can be expressed as

(7)

where is the TF distribution of source- at
and it can be estimated as the principle eigenvalue of

. The eigen decomposition of is given
by

(8)

where is a unitary matrix whose column vectors
are eigenvectors, and is a diagonal matrix

whose diagonal elements are the corresponding eigenvalues.
Comparing (7) and (8), it is clear that there is only a phase
difference between and , which can be mitigated
by a rotation operation to such that its first element
becomes a real scalar [31]. For two different TF points,
and , for example, if they are associated with the same
source, , it is straightforward to deduce from (7), that the
steering vectors associated with matrices and

are actually the same, i.e. . This implies that
the separation problem can be converted into the problem of
grouping the TF points which correspond to the same normal-
ized principal eigenvectors (subject to a phase mitigation). The
source signals can then be synthesized with the estimator of

, by using suitable source synthesis
methods such as [41].

A crucial problem in this approach is the classification of the
set of eigenvectors obtained at different TF points. In [31], two
normalized vectors and drawn from two TF
points are allocated into different classes if the angle between
them is larger than a certain threshold, i.e.,

(9)

where and its
Euclidean norm . However, there is no avail-
able guideline to select . As indicated by the authors [31], this
approach often gives more classes than the number of sources.
This inevitably leads to artificial sources. Further thresholding
is therefore suggested and its operation requires the a priori
knowledge of the number of active sources in the system. As
such information is likely to be unavailable in many applica-
tions, better classification techniques are required. To this end,
the contribution in this work is to identify advanced clustering
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techniques which mitigate the problem of phantom sources and
ideally are able to operate in the environment when the number
of active sources is unknown.

IV. ADVANCED CLUSTERING TECHNIQUES FOR

UNDERDETERMINED BSS

The problem of classification refers to the issue of detecting
the particular hidden structure in some data set . In our applica-
tion of underdetermined BSS, is formulated as the collection
of eigenvectors obtained by eigen decompo-
sition of the TF matrices at different . For a
MIMO system of active sources, we expect these eigenvectors
to be partitioned into subsets and that each of these subsets
is associated with the TF representation of one active source.
Various clustering methods can be applied for this scenario if
is known a priori, such as the widely used k-means algorithm
(see, e.g. [42], [43]), which allows all the eigenvectors to be it-
eratively classified into subsets.

When the value of is not known, however, relatively few ap-
proaches have been reported in the open literature. One of the re-
view articles is given in [33]. Generally speaking, there are two
types of methodology for tackling this problem. For the first one,
the clustering procedure is repeated for many different num-
bers of clusters. By noticing that although the error measure1

decreases monotonically as the number of clusters increases, if
the reduction of error measurement becomes much slower at a
certain value, it suggests that a natural number of clusters has
been reached. In comparison, the second approach is a split-
ting procedure. A cluster is split in two when a certain condi-
tion is satisfied. In correspondence with these two approaches,
we introduce two active source selection algorithms for under-
determined BSS, both of which are based on advanced clus-
tering techniques, namely the method using Gap statistics [34]
and SSCL [35]. For notation simplicity, we denote these two
advanced clustering-based underdetermined BSS algorithms as
Algorithm I and Algorithm II, which will be elaborated upon
in the following two subsections, i.e., Section IV-A and Sec-
tion IV-B, respectively.

A. Algorithm I

In Algorithm I, a set of TF matrices is computed
at different TF points. For computational simplicity, we only
consider the admissible TF set

, where is an easily defined threshold, as will be shown
in the simulation section, for ensuring sufficient signal en-
ergy and denotes the Frobenius norm. The matrices

are subsequently decomposed into
a set of rank-1 matrices as in (7), resulting in the data set of
eigenvectors . In order to find
out the number of active sources in the mixture, we introduce
the technique of Gap statistics which enables the automatic
identification of .

For two vectors and in , their similarity
is measured by . Assume the data set

1The “error measure” is used to characterize the dispersion within each
cluster, such as the averaged pairwise distance defined in (10).

is partitioned into clusters , where is the set
containing the member indexes of the th cluster. The average
pairwise distance within the cluster is given by

where and are different indexes contained in , and is
the number of vectors within this cluster. Taking all the clus-
ters into account, the error measure in Gap statistics is defined
as

(10)

The logarithm of the error measure is compared with
that computed from a reference data set which is drawn from
an appropriate distribution. The natural number of clusters is
then estimated as the value at which falls the farthest
below the reference curve, as the word Gap in the name sug-
gests. To generate the reference distribution which is crucial
for the Gap test, we employ the scheme as in [34] to form a
uniformly distributed reference feature according to the direc-
tion of the principal component of the data . The justifica-
tion of this approach is given by [34, Theorem 1 and 2], where
more detailed implementations can be found. For ease of imple-
mentation, we summarize the whole algorithm (Algorithm I) in
Table I, where in step 4 are the error measurements of the
reference data, and for each , is calculated via (10).

Upon the introduction of Gap statistics in underdetermined
BSS, not only the drawback of phantom sources in [31] is over-
come but also the TF separation algorithm is now operating in a
completely blind fashion, without the knowledge of the number
of sources. The disadvantage of the proposed approach lies in
the required additional computational complexity.

B. Algorithm II

In Algorithm II, the TF orthogonality assumption is also
required, but the set of eigenvectors is partitioned by SSCL.
A set of prototypes , which are defined to characterize the
clusters (sources in our problem) are competing to win as every
member of is included in the examination. Ideally, each
cluster is associated with a prototype at its center. Hence, the
problem of estimating the right number of sources is effec-
tively the process of determining the number of prototypes.
However, it is difficult to know a priori the number of sources
(or prototypes) in our data set. If the number of prototypes is
less than that of sources, at least one prototype might represent
more than one source. As a result, none of the sources could
be correctly identified. To avoid this problem, we employ the
SSCL algorithm [35] in which an asymptotic property vector
(APV) is introduced to guide the learning of prototypes ,
so that each prototype will locate only one natural cluster even
when the prototypes outnumber the clusters.

Suppose at some moment during the learning of , the
member selected from is . According to [35], the
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TABLE I
ALGORITHM I: GAP STATISTICS

update rules of the APV and the prototype can be easily
given as

(11)

(12)

Here is written as

(13)

The function is used to characterize whether
or not the input vector is inside the neighborhood of

, i.e.,

if
otherwise.

(14)
The quantity , as in (11), is the winning counter of and it
can be updated by

(15)

The learning rules guide to shift toward the , if and
only if is in the neighborhood of . According to (13),
the member will have little influence on the learning of

if it is far from the neighborhood of , since will thus
approach to zero. Upon convergence of , asymtotically ap-
proaches , with no more members within the data set eligible
for the learning of [35].

Without the help of , is actually trying to take all the clus-
ters it wins, and will locate, in the manner of an oscillation, at the
center of these clusters [35] (thereby failing to locate at any one
of these clusters). This implies that although finally locates at
only one cluster with the help of , there exists an extra cluster
trying to pull from its located cluster to the center. To quantify
how much is attracted by this extra cluster, a center property
vector (CPV) is defined [35], which simply takes the exact
arithmetic mean of the input data points for which a prototype

has so far been the winner and is then updated with the -means
algorithm. The criterion, whether , is then used
to determine when one of the prototypes should be split into
two to generate the extra cluster, where is a threshold. For
non-Gaussian distributed clusters, if is of dimension ,
a simple way to determine is
[35], where is the scale of the th coordinate (i.e. ) in the

-dimensional feature space. When one prototype splits into
two, one stays in its current location and the other is initialized
at a distant location to avoid unnecessary competition between
these two in the new learning. This is ensured by introducing
a distant property vector (DPV) [35]. Its update equation is
given by

(16)

where is the learning counter for and is given by

(17)

This learning procedure algorithm continues until no further
source is suggested by the splitting criterion. In summary, the
essential steps of the Algorithm II for active source selection in
underdetermined BSS are listed in Table II.

Compared with Algorithm I, the advantage of Algorithm II
is in its capability of automatically determining the number of
clusters in the data set and moreover its computational sim-
plicity when dealing with a large data set. However, if the size
of data set is small, Algorithm I is more applicable, as it
avoids the procedure of adaptive learning as in Algorithm II.
More specifically, if the size of is denoted as , the required
computation (multiplications and additions) for Algorithm I is
approximately (without the
operations for generating the data set ), and for Algorithm II,
approximately . The performance evaluation
of these two new algorithms will be given in Section VI.
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TABLE II
ALGORITHM II: SSCL

V. ON THE VIOLATION OF THE TF ORTHOGONALITY

ASSUMPTION

The assumption of TF orthogonality is employed in
Section IV to facilitate the solution for underdetermined
BSS. This orthogonality assumption is in fact commonly re-
quired in most of the underdetermined bss methods that exploit
sparsity in the TF domain [26]–[31]. In a more general case,
however, it is likely that there exists an overlap between the TF
distributions of different sources. As will be demonstrated in
Section VI for the GMSK signals, even if the carrier frequency
is well separated, overlap in the TF domain prevents successful
source separation when multiple sources are simultaneously
present in the system. In this sense, we are motivated to search
for more practical algorithms.

Note that the importance of the TF assumption lies in the
fact that it enables the quadratic representation to be
written as a rank one matrix. That is, if only source- is present
at in the system, can be written as a rank
one matrix, i.e. (7). The principal eigenvector coincides with
the steering vector subject to a random phase difference. But in
the violation of the assumption, the TF matrix is no
longer a rank one matrix as in (7) and the principal eigenvector
of the matrix is no longer colinear with the steering
vector . Partitioning the set of principle eigenvectors into
clusters therefore becomes meaningless and therefore leads to
failure of source separation.

In this paper, we relax the TF orthogonal assumption as
follows.

Assumption 1: At any time instant, the number of ac-
tive sources does not exceed the number of antennas, i.e.,

.2

Following the relaxation of the orthogonality assumption,
is no longer a rank-1 matrix. As there is no clear

relationship between the eigenvectors of and the

2We do not consider the case d > m in this work as this has already been
demonstrated in, for example, [17], [18], [45], [46], to cause algorithm break-
down.

steering vectors, using singular value decomposition (SVD)
on , the only information obtained is the number
of active sources at that specific point. But which out of
sources are active is difficult to identify. However, in many
applications, it is reasonable to assume that a signal is likely
to exist in the system for a certain minimum length of time
once detected. In other words, we assume certain temporal
continuity of the input sources. This can be justified for ex-
ample in communications applications, where the sources are
nonstationary in the sense of their sudden arrival or departure.
Thus in a short time interval, a fixed number of sources is
present in the system and this number does not exceed the
number of the antennas . Based upon this property, the basic
idea of our approach is to cluster the neighboring TF points
that correspond to the same active sources. As a result, the
whole TF plane is partitioned into a certain unknown number of
blocks. In each block, at most sources exist and the adjacent
blocks contain different numbers of sources. The important
point here is that, within the same block, the active sources
remain unchanged. Signal processing can therefore be carried
out in a block-by-block manner. Moreover, since there are at
most sources present in each block, the problem of underde-
termined BSS is transformed into exactly or over determined
blind source separation, for which there are known solutions. It
is of interest to note that Assumption 1 is implicitly guaranteed
with the help of the block-based operation and the exploitation
of the introduced advanced cluster techniques, which make the
block-based operation possible. This assumption also agrees
with some application scenarios, as verified for communication
signals examined in our simulations. In contrast to the widely
used sparsity assumption, our assumption is less restrictive in
the sense that we do not assume any probability distribution
models of the sources.

In practice, one of the major difficulties is in the
way that the TF plane is partitioned. Consider a three
sources and two antennae system as an example. With
an SVD applied to every TF point , we obtain
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TABLE III
ALGORITHM III: BLOCK-BASED TF PARTITIONING APPROACH

set and
. It is, how-

ever, difficult to partition and into appropriate blocks,
each of which is contributed to by the same set of active sources.
For example, a subset of may be contributed to by source-1
and source-2, while another subset of may be contributed to
by source-2 and source-3. As it is nearly impossible to know
the number of such subsets a priori, when grouping the neigh-
boring TF points using classification methods, an advanced
clustering technique which does not require the knowledge of
the number of clusters is needed. The methods based on Gap
statistics and self-splitting competitive learning are, therefore,
suitable candidates for the operation.

With these advanced clustering techniques, the TF plane
is expected to be divided into blocks, during which the same
sources are present. A conventional BSS algorithm can subse-
quently be applied for each block. There are various choices
for the conventional BSS algorithm. For example, here the
JADE algorithm [1] is applied. The active sources in every
time interval are estimated together with the associated steering
vectors. However, due to the inherent permutational ambiguity
of BSS algorithms, the problem of lining up the blocks that
correspond to the same source is raised. To tackle this problem,
notice from (1) that each source is associated with a
steering vector , which is assumed unchanged for the whole
observation period. Hence, by classifying the set of estimated
steering vectors using, for example, the conventional k-means
algorithms, the permutational problem is solved. To summa-
rize, our proposed robust algorithm (denoted as Algorithm
III) considering the TF orthogonality assumption violation in
underdetermined BSS is conducted as in the steps listed in
Table III.

With our block-based algorithm, not only the sources with
overlap between their TF distributions can be separated, but the
problem of phantom sources is mitigated. An additional merit is
that the algorithm performs totally blindly without the knowl-
edge of the number of active sources. However, a disadvantage
of our approach is the computational complexity introduced
by the TF representation and block-based operation. Addition-
ally, although the orthogonality assumption has been relaxed,
our proposed algorithm should be applied with the restriction
of Assumption 1 for the achievement of good separation per-
formance. Another issue should be clarified that due to the ad-
vanced clustering techniques being introduced, the boundaries
of the blocks are automatically determined and vary with dif-
ferent blocks. It is unlikely to be able to manually select a fixed
boundary suitable for all TF blocks, and in a real problem a fixed
boundary would be prohibitive. It is therefore an advantage to
introduce the advanced clustering techniques for the automatic
determination of the boundaries of these blocks, which thereby
enhances the feasibility of the proposed block-based algorithm.

It should be noted that there exist other interesting approaches
for tackling the underdetermined BSS problem, such as the min-
imum -norm approach [45], geometric approach [46], and al-
gebraic approach [18]. A common feature with these approaches
is that the mixing matrix and source signals are estimated
separately or in an iterative procedure, where is estimated
under the help of a distribution model (e.g. the assumption of
Laplacian prior) of the original sources captured from the ob-
served mixtures, and is estimated through the maximum a pos-
teriori probability (MAP) approach [45]. One of the attractive
properties with these approaches is their relative ease of im-
plementation [46]. However, the geometric approach requires
a relatively large number of iterations for convergence [46], the
algebraic approach requires the assumption that the dimension
of is known [18], and the separation performance for dif-
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TABLE IV
NUMBER OF CLUSTERS FOUND VERSUS THE VALUE OF THRESHOLD FOR THE LINEAR CHIRP SIGNALS

TABLE V
NUMBER OF CLUSTERS FOUND VERSUS THE VALUE OF THRESHOLD FOR THE GMSK SIGNALS

ferent mixing matrices is not always stable [45]. In contrast,
our approach exploits the nonstationarity of sources without
the requirement of prior probability distribution knowledge of
sources. Additionally, due to its block operation, the problems
of instability caused by the mixing matrices and requirement of
long data samples for convergence are likely to be overcome
with our approach. Due to the different framework being taken,
we compare our algorithms with that of [31] since it is also a TF
representation-based approach.

VI. NUMERICAL EXPERIMENTS

A. Performance Evaluation of Algorithm I and II

Here, the performance evaluation of the proposed approaches
will be compared with the method in [31] (see also the discus-
sion in Section III). A MIMO system with three sources
and two sensors is assumed. A mixing matrix is as-
sumed of the form

(18)

Additive white Gaussian noise at a level of 20 dB signal-to-noise
ratio (SNR) is assumed. It should be noted that the purpose of
adding a certain level of noise in the mixtures is to demon-
strate the reasonable robustness obtained with our proposed al-
gorithms. This property is a result of the exploitation of the
TF representation, where the source energy is effectively local-
ized with the noise power spreading over the whole TF plane
[10]. However, the focus of this work is to demonstrate the
feasibility of our proposed approaches, more extensive evalu-
ations on different levels of noise using SNR, Eb/N0 (normal-
ized SNR), or bit-error-rate (BER) are therefore discounted in
this study. Instead, TF plots are used in common with many
published works in the field, such as [31]. To reduce the cross
term interference, the quadratic TF representation is selected as
the Choi-William distribution [44], which belongs to the cate-
gory of Cohen’s Class of TF distribution [32]. We use the TF
toolbox for MATLAB [40] to generate the TF representation of
signals. In the initialization, we set to a random location in

Fig. 1. Simulation with linear chirp signal. (a) Source-1. (b) Source-2.
(c) Source-3. (d) Received mixture-1. (e) Received mixture-2.

the input space, to ensure is far away from
, , , and . To obtain admissible

TF set , we set the threshold to be 10. Two types of signals
are used in the experiments, i.e. linear chirp signals and GMSK
modulated signals, respectively.

1) Linear Chirp Signals: For a linear chirp signal, its instan-
taneous frequency varies linearly with time. At time , a mono-
component linear chirp signal can be expressed as

(19)

Here, we assume that at time , the instantaneous frequency
of is , is the initial phase and the instantaneous fre-
quency is given by , where is a linear
slope parameter. The TF representations of the source signals
and the two received mixtures are shown in Fig. 1 where the fre-
quencies are normalized, and this style of plot is used throughout
this section. Using the method in [31], when the value of , in
(9) is gradually reduced from 0.4 to 0.05, the number of clusters
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Fig. 2. Unsuccessful separation using simple classification method with linear
chirp signals. (a) Unmixing output-1. (b) Unmixing output-2. (c) Unmixing
output-3.

found is shown in Table IV. Note that, Table IV, and the subse-
quent Table V are all the simulation results by using method
[31] to demonstrate that it fails either to give the right number
of sources (resulting in phantom sources) or to give successful
separation of the sources. However, since Algorithm I and II can
give exactly the right number of sources and successful sepa-
ration for all the thresholds in the tables, similar tables are
omitted without ambiguities. The results show that when is
selected as 0.2, three clusters are suggested. This matches the
natural number of the input sources. However, source separation
is not successful, as depicted by the TF representation of the un-
mixing outputs in Fig. 2. In particular Fig. 2(b) shows successful
extraction of source-1, but both Fig. 2(a) and (c) demonstrate
failure to extract source-2 and source-3. For successful source
separation, the threshold value should decrease (e.g.,
in Table IV), which, however, leads to the unavoidable artificial
sources (e.g., in total 23 sources were found). The simulation
results of using advanced clustering techniques are shown in
Fig. 3. Successful source separation is confirmed in the simula-
tions. Comparing the separation results, we know that although
both the -means algorithm and the algorithm in [31] assume the
true number of clusters is known, the former appears to perform
much better than the latter one. Moreover, with the -means al-
gorithm, the threshold value in (9) does not need selecting
and the drawback of phantom sources is overcome. In practical
situations, the number of clusters is often unknown a priori.
This problem can be effectively removed by the proposed ad-
vanced clustering methods. For Algorithm I, the Gap statistics
method is applied before using the -means algorithm. The nat-
ural number of clusters is reached when the gap between the ac-
tual data and the reference data is largest. This can be confirmed
in Fig. 4. Twenty copies of reference data, i.e., , are gen-
erated in the simulation. The corresponding unmixing outputs
are shown in Fig. 3(d)–(f). The separation results of Algorithm
II are shown in Fig. 3(g)–(i). The algorithm capability of sep-
arating more sources than sensors is therefore confirmed even
when the number of active source is unknown to the observer.

Fig. 3. Successful source separation with linear chirp signal. (a)–(c) Unmixing
signals with the k-means algorithm. (d)–(f) Unmixing signals with Algorithm
I without knowing the number of sources. (g)–(i) Unmixing signals with
Algorithm II without knowing the number of sources.

Fig. 4. Gap statistics in clustering with linear chirp signals. In this case, the
largest gap happens when the number of clusters equals to 3.

2) GMSK Signals: The monocomponent linear chirp signals
employed in the simulations are the simplest nonstationary sig-
nals in the sense that their instantaneous frequency content con-
sists of only a single frequency. Therefore, provided that the
instantaneous frequencies of the input sources differ, the TF
orthogonality assumption required in underdetermined BSS is
readily satisfied even though all sources might be simultane-
ously present within the measurements.

For a GMSK modulated source, which is used in a GSM com-
munication system, its spectrum is no longer a single frequency
component but a portion of frequencies whose bandwidth de-
pends on the signal data rate and normalized bandwidth of the
Gaussian filter. As a result, although this kind of signal is praised
for its compact spectrum (i.e., the side lobes of the GMSK are
low and the main lobe is narrow compared with that using a
rectangular pulse), when multiple sources are present within the
measurements at the same time, the TF supports of the sources
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Fig. 5. GMSK modulated signals. (a) Sampled data. (b) In-phase data of
GMSK modulated signal.

are likely to be overlapped if the gap between the carrier fre-
quencies is small. This possible overlap in the TF domain vi-
olates the orthogonality assumption and may lead to failure in
source separation, since the principle eigenvector of the matrix

is no longer the steering vector of a source (i.e., not a
column vector of the mixing matrix ). Simulation results under
this scenario will be demonstrated next.

Assume that the data rate of the sources is 1000 bits/s and
the sampling rate is 10 ksamples/s. Some of the data samples
from source-3 are shown in Fig. 5(a). The corresponding
in-phase data channel of the GMSK modulated signal is shown
in Fig. 5(b). The normalized bandwidth of the Gaussian filter is
selected as 0.3. In the first simulation, we assume that the input
sources are presented in the measurements at different time
intervals. The carrier frequency is 3 kHz, which is the same for
all three sources. Note that, compared with the realistic GSM
system, where the bit rate at the physical layer is 270 Kb/s and
the carrier frequency is 900 or 1800 MHz, the relatively low
data rates and radio frequencies are chosen in our experiments
for the reduction of the run-time and computational cost of the
simulations. The algorithm was developed without constraints
on frequency range, which means the results for higher fre-
quencies and data rates would essentially be the same as we
have shown here. With the same mixing matrix as in (18), the
source signals and the received mixtures are shown in Fig. 6.
By choosing different values of the threshold , the number of
clusters obtained is shown in Table V. The simulations results
are similar to those of linear frequency modulated signals.
The sensitivity in the selection of the threshold value is once
again confirmed. In comparison, empirical selection of such a
threshold is overcome by Algorithm I and Algorithm II, both
of which are capable of extracting all three sources without
the knowledge of the number of active sources. The results are
depicted in Fig. 7. The Gap statistics, which are employed in
Algorithm-1, are shown in Fig. 8. The number of active sources
in the system is correctly identified. From these simulations,
it follows that the proposed Algorithm I and Algorithm II
outperform the existing approach with the TF orthogonality
assumption. For the violation of this assumption, experimental
results we obtained agree with the theoretical formulations in

Fig. 6. Simulation with GMSK. (a) Source-1. (b) Source-2. (c) Source-3.
(d) Received mixture-1. (e) Received mixture-2.

Fig. 7. Successful source separation with GMSK signal. (a)–(c) Unmixing
signals with Algorithm I without knowing the number of sources.
(d)–(f) Unmixing signals with Algorithm II without knowing the number
of sources.

Section IV which suggest that all the algorithms examined in
this section cannot successfully separate the sources.

B. Implementation Example of Algorithm III

The simulation is put into the context of blind beamforming.
Assume a three GMSK source and two sensor system. The two
measurement sensors are separated by half of the wavelength.
The directions of arrival (DOAs) of the three sources are as-
sumed to be 0, , and , respectively. The mixing matrix
is thus written as

(20)
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Fig. 8. Gap statistics in clustering with GMSK modulated signals.

TABLE VI
DESCRIPTION OF THREE NON-STATIONARY SOURCE SIGNALS

Note that, the mixing matrix was selected to be in common
with the standard formulation of DOA estimation, where the
first sensor has been implicitly set as the origin of the linear
array, and the amplitude response has been omitted for the sake
of simplicity. However, there is no restriction with the form of
mixing matrix which can have all complex entries since our al-
gorithm has been developed for general mixing matrices (there
is only one phase difference for complex numbers as discussed
in Section III). The data rate is 1000 bits/s and the sampling
rate is 10 ksamples/s. The carrier frequencies of the three sig-
nals are set to 3000, 3500, and 4000 Hz. The active times of
different source signals are summarized as in Table VI and their
TF representations are shown in Fig. 9(a)–(c). The two received
mixtures are shown in Fig. 9(d) and (e). It can be observed
that the overlap regions will be over time interval 2001–4000 s,
5001–5500 s, and 8000–10 000 s. By testing the rank of the
TF matrices at different TF points, the regions at which two
sources are present are successfully identified and shown in
Fig. 10(a). The corresponding nonoverlap regions are also suc-
cessfully identified, as shown in Fig. 10(b). To estimate the input
signals and the associated steering vectors, first we consider the
overlap regions. By classifying the TF points that are associated
with the presence of two active sources using the SSCL algo-
rithm, the overlap region in Fig. 10(a) is partitioned into three TF
blocks. They are described, respectively, in Fig. 11. In the sim-
ulation, for the block in Fig. 11(a), the estimated time interval
is 8020–10 000 s. The estimated time interval for Fig. 11(b) is
2020–4020 s and that for Fig. 11(c) is 5021–5521. Recall from

Fig. 9. In the violation of time-frequency orthogonality assumption.
(a) Source-1. (b) Source-2. (c) Source-3. (d) Received mixture-1. (e) Received
mixture-2.

Fig. 10. Separation of overlap and nonoverlap regions.

the simulation setting that there are three individual time inter-
vals, namely 2001–4000 s, 5001–5500 s, and 8000–10 000 s, in
which two out of three sources (we do not know which two yet)
are present. The experimental results are all in close agreement
with the actual boundaries. In this sense, if the nonstationarity
of the sources is in their sudden arrival and departure, it is pos-
sible to divide the whole observation time into appropriate time
intervals with the help of the TF information. After successful
identification of the overlap regions, the conventional JADE al-
gorithm is applied to estimate the corresponding steering vec-
tors and the input sources in each block. For TF block shown in
Fig. 11(b), with the JADE algorithm, the two steering vectors
are estimated as

(21)
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Fig. 11. Separation of three sets at which two sources are present. (a) Source-1
and source-3 are active. (b) Source-1 and source-2 are active. (c) Source-1 and
source-2 are active.

Fig. 12. Time-frequency distribution of the separated signals in the overlap
blocks. (a) Estimated signal of source-1. (b) Estimated signal of source-2.
(c) Estimated signal of source-1. (d) Estimated signal of source-2. (e) Estimated
signal of source-1. (f) Estimated signal of source-3.

The estimation of the block in Fig. 11(c), leads to

(22)

Notice that in these two TF blocks, source-1 and source-2 are
present. The resulting estimates are fairly accurate. For the block
in Fig. 11(a), the two estimates of steering vectors are shown.

(23)
They are also very close to the actual steering vectors of
source-3 and source-1 and the overlap also contains these two
sources. The TF distributions of the unmixing outputs for each
individual block are shown in Fig. 12. The results confirm that
successful signal separation is achieved in those overlap blocks

Fig. 13. Separation of the three sets at which only one source is present.
(a) Source-1 is active. (b) Source-2 is active. (c) Source-3 is active.

Fig. 14. Successful source separation. (a) Unmixing-1. (b) Unmixing-2.
(c) Unmixing-3.

using the JADE algorithm. For the nonoverlap TF blocks,
three clusters have been found using the SSCL algorithm.
The centers of the clusters are the estimated steering vectors,
which are given by (24) at the top of the next page. Signals
in those regions are also successfully separated, as shown by
the TF distributions of the unmixing output in Fig. 13. With
the signal separated in each TF block, the steering vectors in
(21)–(24) are gathered together. The DOA is computed and
used as the input to the k-means algorithm in order to remove
the permutation ambiguity. The unmixed signals in the whole
observation period are depicted in the TF domain, as shown
in Fig. 14. Successful source separation with fewer sensors
is achieved. Notice that the synthesis operation from the TF
domain to time domain is no longer required. The signals are
well retrieved in the time domain with the proposed method.
The unmixing output-2, i.e., source-1, during the interval 2500
to 2600 s is shown in Fig. 15(b). It is in close similarity to
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(24)

Fig. 15. Time domain signals. (a) Source-1 samples. (b) Unmixing output-2
during the same time interval.

the source-1 signal as shown in Fig. 15(a). Successful source
separation is, therefore, achieved.

VII. CONCLUSION

The problem of underdetermined blind source separation was
investigated. The nonstationarity of the input sources was ex-
ploited via quadratic TF representation. Under the assumption
of TF orthogonality, advanced classification techniques based
on Gap statistics and self-splitting competitive learning were
introduced to overcome phantom sources. Source separation is,
therefore, able to operate in a completely blind fashion without
the priori knowledge of the number of sources. The issue when
the TF orthogonality assumption is violated was moreover
addressed. The TF orthogonality assumption was therefore
relaxed to yield a new block-based underdetermined blind
source separation algorithm by using the advanced clustering
algorithms to partition the TF plane into appropriate blocks.
Improvements due to the proposed algorithms were supported
by the simulations.
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