6,725 research outputs found

    Coarse-grained reconfigurable array architectures

    Get PDF
    Coarse-Grained Reconfigurable Array (CGRA) architectures accelerate the same inner loops that benefit from the high ILP support in VLIW architectures. By executing non-loop code on other cores, however, CGRAs can focus on such loops to execute them more efficiently. This chapter discusses the basic principles of CGRAs, and the wide range of design options available to a CGRA designer, covering a large number of existing CGRA designs. The impact of different options on flexibility, performance, and power-efficiency is discussed, as well as the need for compiler support. The ADRES CGRA design template is studied in more detail as a use case to illustrate the need for design space exploration, for compiler support and for the manual fine-tuning of source code

    The Chameleon Architecture for Streaming DSP Applications

    Get PDF
    We focus on architectures for streaming DSP applications such as wireless baseband processing and image processing. We aim at a single generic architecture that is capable of dealing with different DSP applications. This architecture has to be energy efficient and fault tolerant. We introduce a heterogeneous tiled architecture and present the details of a domain-specific reconfigurable tile processor called Montium. This reconfigurable processor has a small footprint (1.8 mm2^2 in a 130 nm process), is power efficient and exploits the locality of reference principle. Reconfiguring the device is very fast, for example, loading the coefficients for a 200 tap FIR filter is done within 80 clock cycles. The tiles on the tiled architecture are connected to a Network-on-Chip (NoC) via a network interface (NI). Two NoCs have been developed: a packet-switched and a circuit-switched version. Both provide two types of services: guaranteed throughput (GT) and best effort (BE). For both NoCs estimates of power consumption are presented. The NI synchronizes data transfers, configures and starts/stops the tile processor. For dynamically mapping applications onto the tiled architecture, we introduce a run-time mapping tool

    FPGA implementations for parallel multidimensional filtering algorithms

    Get PDF
    PhD ThesisOne and multi dimensional raw data collections introduce noise and artifacts, which need to be recovered from degradations by an automated filtering system before, further machine analysis. The need for automating wide-ranged filtering applications necessitates the design of generic filtering architectures, together with the development of multidimensional and extensive convolution operators. Consequently, the aim of this thesis is to investigate the problem of automated construction of a generic parallel filtering system. Serving this goal, performance-efficient FPGA implementation architectures are developed to realize parallel one/multi-dimensional filtering algorithms. The proposed generic architectures provide a mechanism for fast FPGA prototyping of high performance computations to obtain efficiently implemented performance indices of area, speed, dynamic power, throughput and computation rates, as a complete package. These parallel filtering algorithms and their automated generic architectures tackle the major bottlenecks and limitations of existing multiprocessor systems in wordlength, input data segmentation, boundary conditions as well as inter-processor communications, in order to support high data throughput real-time applications of low-power architectures using a Xilinx Virtex-6 FPGA board. For one-dimensional raw signal filtering case, mathematical model and architectural development of the generalized parallel 1-D filtering algorithms are presented using the 1-D block filtering method. Five generic architectures are implemented on a Virtex-6 ML605 board, evaluated and compared. A complete set of results on area, speed, power, throughput and computation rates are obtained and discussed as performance indices for the 1-D convolution architectures. A successful application of parallel 1-D cross-correlation is demonstrated. For two dimensional greyscale/colour image processing cases, new parallel 2-D/3-D filtering algorithms are presented and mathematically modelled using input decimation and output image reconstruction by interpolation. Ten generic architectures are implemented on the Virtex-6 ML605 board, evaluated and compared. Key results on area, speed, power, throughput and computation rate are obtained and discussed as performance indices for the 2-D convolution architectures. 2-D image reconfigurable processors are developed and implemented using single, dual and quad MAC FIR units. 3-D Colour image processors are devised to act as 3-D colour filtering engines. A 2-D cross-correlator parallel engine is successfully developed as a parallel 2-D matched filtering algorithm for locating any MRI slice within a MRI data stack library. Twelve 3-D MRI filtering operators are plugged in and adapted to be suitable for biomedical imaging, including 3-D edge operators and 3-D noise smoothing operators. Since three dimensional greyscale/colour volumetric image applications are computationally intensive, a new parallel 3-D/4-D filtering algorithm is presented and mathematically modelled using volumetric data image segmentation by decimation and output reconstruction by interpolation, after simultaneously and independently performing 3-D filtering. Eight generic architectures are developed and implemented on the Virtex-6 board, including 3-D spatial and FFT convolution architectures. Fourteen 3-D MRI filtering operators are plugged and adapted for this particular biomedical imaging application, including 3-D edge operators and 3-D noise smoothing operators. Three successful applications are presented in 4-D colour MRI (fMRI) filtering processors, k-space MRI volume data filter and 3-D cross-correlator.IRAQI Government

    Online self-repair of FIR filters

    Get PDF
    Chip-level failure detection has been a target of research for some time, but today's very deep-submicron technology is forcing such research to move beyond detection. Repair, especially self-repair, has become very important for containing the susceptibility of today's chips. This article introduces a self-repair-solution for the digital FIR filter, one of the key blocks used in DSPs

    Reference signal generator for active power filters using MGP-FIR filter designed by evolutionary programming

    Get PDF
    This paper describes a high-performance reference signal generator for active power filters extracting the fundamental signal component from distorted current signals. In order to achieve high-quality output as well as computationally effective algorithm, the generator employs an adaptive and predictive MGP-FIR (Multiplicative General Parameter) bandpass filter designed by evolutionary programming. Detailed procedures of MGP-FIR filtering and evolutionary optimization are first discussed; theoretical conclusions are verified by illustrative simulation results.reviewe

    Baseband analog front-end and digital back-end for reconfigurable multi-standard terminals

    Get PDF
    Multimedia applications are driving wireless network operators to add high-speed data services such as Edge (E-GPRS), WCDMA (UMTS) and WLAN (IEEE 802.11a,b,g) to the existing GSM network. This creates the need for multi-mode cellular handsets that support a wide range of communication standards, each with a different RF frequency, signal bandwidth, modulation scheme etc. This in turn generates several design challenges for the analog and digital building blocks of the physical layer. In addition to the above-mentioned protocols, mobile devices often include Bluetooth, GPS, FM-radio and TV services that can work concurrently with data and voice communication. Multi-mode, multi-band, and multi-standard mobile terminals must satisfy all these different requirements. Sharing and/or switching transceiver building blocks in these handsets is mandatory in order to extend battery life and/or reduce cost. Only adaptive circuits that are able to reconfigure themselves within the handover time can meet the design requirements of a single receiver or transmitter covering all the different standards while ensuring seamless inter-interoperability. This paper presents analog and digital base-band circuits that are able to support GSM (with Edge), WCDMA (UMTS), WLAN and Bluetooth using reconfigurable building blocks. The blocks can trade off power consumption for performance on the fly, depending on the standard to be supported and the required QoS (Quality of Service) leve
    corecore