412,357 research outputs found

    Multiple input control strategies for robust and adaptive climate engineering in a low order 3-box model

    Get PDF
    A low-order 3-box energy balance model for the climate system is employed with a multivariable control scheme for the evaluation of new robust and adaptive climate engineering strategies using solar radiation management. The climate engineering measures are deployed in three boxes thus representing northern, southern and central bands. It is shown that, through heat transport between the boxes, it is possible to effect a degree of latitudinal control through the reduction of insolation. The approach employed consists of a closed-loop system with an adaptive controller, where the required control intervention is estimated under the RCP4.5 radiative scenario. Through the online estimation of the controller parameters, adaptive control can overcome key issues related to uncertainties of the climate model, the external radiative forcing and the dynamics of the actuator used. In fact, the use of adaptive control offers a robust means of dealing with unforeseeable abrupt perturbations, as well as the parametrization of the model considered, to counteract the RCP4.5 scenario, while still providing bounds on stability and control performance. Moreover, applying multivariable control theory also allows the formal controllability and observability of the system to be investigated in order to identify all feasible control strategies

    Fast Adaptive Robust Differentiator Based Robust-Adaptive Control of Grid-Tied Inverters with a New L Filter Design Method

    Get PDF
    In this research, a new nonlinear and adaptive state feedback controller with a fast-adaptive robust differentiator is presented for grid-tied inverters. All parameters and external disturbances are taken as uncertain in the design of the proposed controller without the disadvantages of singularity and over-parameterization. A robust differentiator based on the second order sliding mode is also developed with a fast-adaptive structure to be able to consider the time derivative of the virtual control input. Unlike the conventional backstepping, the proposed differentiator overcomes the problem of explosion of complexity. In the closed-loop control system, the three phase source currents and direct current (DC) bus voltage are assumed to be available for feedback. Using the Lyapunov stability theory, it is proven that the overall control system has the global asymptotic stability. In addition, a new simple L filter design method based on the total harmonic distortion approach is also proposed. Simulations and experimental results show that the proposed controller assurances drive the tracking errors to zero with better performance, and it is robust against all uncertainties. Moreover, the proposed L filter design method matches the total harmonic distortion (THD) aim in the design with the experimental result

    Model reaching adaptive-robust control law for vibration isolation systems with parametric uncertainty

    Get PDF
    Adaptive control has been used for active vibration isolation and vehicle suspensions systems. A model reference adaptive control law is used for the plant to track the ideal reference model. In a model reaching adaptive control approach, the ideal of a skyhook target without using a reference model is achieved. In this paper, a novel approach, a model reaching adaptive-robust control law is studied for active vibration isolation systems. A dynamic manifold for ideal system is defined using the ideal of a skyhook target model system parameters. First, a new Lyapunov function is defined. Based on the Lyapunov stability theory, a model reaching adaptive and a robust control laws are derived for the uncertain system to reach the ideal manifold. Parameters and upper bounding functions are estimated as a trigonometric function depending on the relative displacements, velocities and the defined manifold. The developed adaptive and the robust compensators are combined and this combination is proposed as an adaptive-robust control law. After that, the controller is applied to a vehicle suspension system and the ideal of a skyhook target without using a reference model is achieved. The results also show that the proposed robust control law can increase the comfort of the vehicle active suspension systems and the ride comfort is remarkably increased

    Robotic Manipulator Control in the Presence of Uncertainty

    Get PDF
    openThis research focuses on the problem of manipulator control in the presence of uncertainty and aims to compare different approaches for handling uncertainty while developing robust and adaptive methods that can control the robot without explicit knowledge of uncertainty bounds. Uncertainty is a pervasive challenge in robotics, arising from various sources such as sensor noise, modeling errors, and external disturbances. Effectively addressing uncertainty is crucial for achieving accurate and reliable manipulator control. The research will explore and compare existing methods for uncertainty handling such as robust feedback linearization , sliding mode control and robust adaptive control. These methods provide mechanisms to model and compensate for uncertainty in the control system. Additionally, modified robust and adaptive control methods will be developed that can dynamically adjust control laws based on the observed states, without requiring explicit knowledge of uncertainty bounds. To evaluate the performance of the different approaches, comprehensive experiments will be conducted on a manipulator platform. Various manipulation tasks will be performed under different levels of uncertainty, and the performance of each control approach will be assessed in terms of accuracy, stability, and adaptability. Comparative analysis will be conducted to highlight the strengths and weaknesses of each method and identify the most effective approach for handling uncertainty in manipulator control. The outcomes of this research will contribute to the advancement of manipulator control by providing insights into the effectiveness of different approaches for uncertainty handling. The development of new robust and adaptive control methods will enable manipulators to operate in uncertain environments without requiring explicit knowledge of uncertainty bounds. Ultimately, this research will facilitate the deployment of more reliable and adaptive robotic systems capable of handling uncertainty and improving their performance in various real-world applications.This research focuses on the problem of manipulator control in the presence of uncertainty and aims to compare different approaches for handling uncertainty while developing robust and adaptive methods that can control the robot without explicit knowledge of uncertainty bounds. Uncertainty is a pervasive challenge in robotics, arising from various sources such as sensor noise, modeling errors, and external disturbances. Effectively addressing uncertainty is crucial for achieving accurate and reliable manipulator control. The research will explore and compare existing methods for uncertainty handling such as robust feedback linearization , sliding mode control and robust adaptive control. These methods provide mechanisms to model and compensate for uncertainty in the control system. Additionally, modified robust and adaptive control methods will be developed that can dynamically adjust control laws based on the observed states, without requiring explicit knowledge of uncertainty bounds. To evaluate the performance of the different approaches, comprehensive experiments will be conducted on a manipulator platform. Various manipulation tasks will be performed under different levels of uncertainty, and the performance of each control approach will be assessed in terms of accuracy, stability, and adaptability. Comparative analysis will be conducted to highlight the strengths and weaknesses of each method and identify the most effective approach for handling uncertainty in manipulator control. The outcomes of this research will contribute to the advancement of manipulator control by providing insights into the effectiveness of different approaches for uncertainty handling. The development of new robust and adaptive control methods will enable manipulators to operate in uncertain environments without requiring explicit knowledge of uncertainty bounds. Ultimately, this research will facilitate the deployment of more reliable and adaptive robotic systems capable of handling uncertainty and improving their performance in various real-world applications

    Design of Adaptive Sliding Mode Fuzzy Control for Robot Manipulator Based on Extended Kalman Filter

    Get PDF
    In this work, a new adaptive motion control scheme for robust performance control of robot manipulators is presented. The proposed scheme is designed by combining the fuzzy logic control with the sliding mode control based on extended Kalman filter. Fuzzy logic controllers have been used successfully in many applications and were shown to be superior to the classical controllers for some nonlinear systems. Sliding mode control is a powerful approach for controlling nonlinear and uncertain systems. It is a robust control method and can be applied in the presence of model uncertainties and parameter disturbances, provided that the bounds of these uncertainties and disturbances are known. We have designed a new adaptive Sliding Mode Fuzzy Control (SMFC) method that requires only position measurements. These measurements and the input torques are used in an extended Kalman filter (EKF) to estimate the inertial parameters of the full nonlinear robot model as well as the joint positions and velocities. These estimates are used by the SMFC to generate the input torques. The combination of the EKF and the SMFC is shown to result in a stable adaptive control scheme called trajectory-tracking adaptive robot with extended Kalman (TAREK) method. The theory behind TAREK method provides clear guidelines on the selection of the design parameters for the controller. The proposed controller is applied to a two-link robot manipulator. Computer simulations show the robust performance of the proposed scheme

    DEVELOPMENT OF CONTROLLER AND OBSERVER FOR CONTINUOUS STIRRED TANK REACTOR VIA STATE SPACE APPROACH

    Get PDF
    iii ABSTRACT This paper describes the designing, simulation and analysis of controller and observer for a continuous stirred tank reactor via state space approach. Many industries uses the conventional control system approach, as opposed to the modern control approach commonly used in aerospace industries. Conventional controls possess several drawbacks, for example PID controllers are not adaptive and not robust. Thus, qualities such as robustness, optimality and adaptivity could have been overlooked. This project is looking at modern control approach for plant control which is expected to be better in terms of the system’s controllability and stability. The entire project involves understanding the process control and state space, grasping the concept of system identification as well as mastering the function of MATLAB and Simulink for controller and observer design and simulation. Extensive utilization of MATLAB and Simulink were involved in several experiments and simulations. Results from the project indicate the practicality of modern control in plant process control system. This project successfully achieved the theoretical implementation of modern control engineering in plant process control systems, paving way for a possible design of a new controller and observer strategy that are robust, optimal and adaptive via modern control approach
    • …
    corecore