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ABSTRACT

DESIGN OF ADAPTIVE SLIDING MODE FUZZY CONTROL 
FOR ROBOT MANIPULATOR BASED ON EXTENDED KALMAN FILTER

Abdelrahman M. Aledhaibi 
Old Dominion University, 2000 
Director: Dr. Jen-Kuang Huang

In this work, a new adaptive motion control scheme for robust performance 

control o f robot manipulators is presented. The proposed scheme is designed by 

combining the fuzzy logic control with the sliding mode control based on extended 

Kalman filter. Fuzzy logic controllers have been used successfully in many applications 

and were shown to be superior to the classical controllers for some nonlinear systems. 

Sliding mode control is a powerful approach for controlling nonlinear and uncertain 

systems. It is a robust control method and can be applied in the presence of model 

uncertainties and parameter disturbances, provided that the bounds of these uncertainties 

and disturbances are known. We have designed a new adaptive Sliding Mode Fuzzy 

Control (SMFC) method that requires only position measurements. These measurements 

and the input torques are used in an extended Kalman filter (EKF) to estimate the inertial 

parameters o f the full nonlinear robot model as well as the joint positions and velocities. 

These estimates are used by the SMFC to generate the input torques. The combination of 

the EKF and the SMFC is shown to result in a stable adaptive control scheme called 

trajectory-tracking adaptive robot with extended Kalman (TAREK) method. The theory 

behind TAREK method provides clear guidelines on the selection o f the design 

parameters for the controller. The proposed controller is applied to a two-link robot
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manipulator. Computer simulations show the robust performance o f the proposed 

scheme.
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1

CHAPTER I

Introduction

The use o f robotics manipulators has had an immeasurable effect on industry and 

manufacturing world-wide. Robots can perform very efficiently and economically the 

simple repetitive tasks that human workers hate to do. Other tasks where the use of robots 

is especially beneficial include those that are conducted in hazardous environments. 

These typically include painting, welding and dangerous material handling or removal. 

With the recent advance vision and force-torque sensor integration, manipulators have 

been able to accomplish relatively difficult assembly and inspection tasks. These 

improvements make robotic systems more flexible and enable them to carry out a wide 

variety of tasks. To take advantage of this versatility, the robotic controller must be able 

to operate with precision at high speeds while not being affected by changing loads and 

disturbance. It is very difficult to obtain all these qualities without introducing 

burdensome computations to the control algorithm. Classes o f  controllers that offer an 

excellent compromise use the theories o f fuzzy logic and sliding mode. Controllers that 

use the theory o f fuzzy logic and sliding mode are commonly called Sliding Mode Fuzzy 

Controllers (SMFC).
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Fuzzy logic has been around since 1965 when L.A Zadeh52 1 laid the foundation 

of the so-called linguistic model. Fuzzy sets theory was proposed by L.A. Zadeh to 

provide a tool to help solve ill-defined problems. Fuzzy sets theory provides a systematic 

framework for dealing with different types of uncertainty within a single conceptual 

framework. In papers published in 1973 and 1974, L.A. Zadeh outlined the basic ideas 

underlying fuzzy control. Among those outlined are the concept o f  linguistic variables, 

fuzzy IF-THEN rules, fuzzy algorithms, the compositional rule o f inference and the 

execution of fuzzy instructions. One o f the most active areas o f fuzzy sets theory is the 

field o f the Fuzzy Logic Control (FLC). Fuzzy logic control has many advantages which 

makes it a very attractive area. First, it is suitable for both linear and nonlinear systems. 

Second, it allows for imprecise mathematical models and measuring sensors. Third, it is 

more robust than classical controllers. Fourth, it can combine both linguistic and crisp 

information in the same framework.

Sliding Mode Control (SMC) is a special type o f control technique that is capable 

of making a control system very robust with respect to system parameter variations and 

external disturbances. In addition, the technique provides an easy way to design the 

control law for a plant, linear or nonlinear. It was pioneered in the Soviet Union in the

early 1950's by S. V. Emelyanov and his cohorts . The technique did not receive wide 

attention in the Western world until recently. In the 1970’s, researchers discovered 

additional attractive properties of sliding mode control and have developed methods for 

control law design. The feasibility o f  the technique has not only been predicted by theory, 

but has also been demonstrated by numerous computer simulations and hardware

1 Journal mode used for this dissertation is AIAA
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3

experiments. Therefore, sliding mode control technique has become mature and ready to 

be applied. However, the major disadvantage o f this technique is the chattering problem 

that may cause fatigue, mechanical failure and loss o f energy.

In their previous works, a new method called sliding mode fuzzy control (SMFC)

which combines SMC with FLC was introduced103. The goal is to reduce the chattering 

o f SMC. In SMC the phase plane is divided by the switching manifold and the coordinate 

axes into mutually exclusive regions. These regions constitute a group of crisp sets for 

each of which a control law is defined. Chattering occurs when feedback gains are chosen 

improperly. On the other hand, SMFC treats these regions as fuzzy sets. The systems 

state may partially belong to one region or another so that several control laws may 'fire' 

at the same time. The final control signal will result from the compromise o f these fired 

control laws. Using this strategy, the chattering o f SMC can be reduced, while its 

robustness is retained.

1.1 Objective

Most of the fuzzy robot controllers with nonlinear multi-input multi-output 

(MIMO) systems are designed with a two-dimensional phase plane in mind. In this 

dissertation, the performance and the robustness o f  this kind o f robot controller, which 

arises from their property o f driving the system into the so-called sliding mode (SM), is 

shown. This method will make the controlled system is invariant to parameter 

fluctuations and disturbances. In addition, near the switching line, the continuous 

distribution of the control values in the phase plane causes a behavior similar to that o f a 

sliding mode controller (SMC) with a boundary layer (BL). Even in the presence o f high
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model uncertainties, this gives assured tracking quality. Then, the boundary layer at the 

fuzzy controller is introduced to obtained further improvement. Furthermore, the stability 

o f the closed-loop system can be obtained when using the principle o f the SMC for the 

fuzzy controller.

In addition, a new adaptive motion control scheme for robust performance control 

o f robot manipulators is presented. The proposed scheme is designed by SMFC based on 

extended Kalman filter. The new design adaptive SMFC method requires only position 

measurements. These measurements and the input torques are used in an extended 

Kalman filter (EKF) to estimate the inertial parameters o f the full nonlinear robot model 

as well as the joint positions and velocities. These estimates are used by the SMFC to 

generate the input torques. The combination of the EKF and the SMFC is shown to result 

in a stable adaptive control scheme and is called trajectory-tracking adaptive robot with 

extended Kalman (TAREK) method. The theory behind TAREK method provides clear 

guidelines on the selection o f the design parameters for the controller. The proposed 

controller is applied to a two-link robot manipulator. Computer simulations show the 

robust performance o f both proposed schemes.

1.2 Dissertation Outline

Chapter II discusses the dynamics o f robotic manipulators. The dynamic model of 

a two-link manipulator is formulated using rigid-body dynamic theory.

Chapter III briefly introduces the proportional Integral Derivative (PID) control. 

Then, the Computed Torque Control method is used to design the PID controller.
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Chapter IV explains the details o f sliding mode control. The theory of sliding 

mode control is first illustrated with a simple example. Then, it is expanded and used to 

design a controller. The steps in the design of the sliding mode controller are clearly 

explained along with the design assumptions. In addition, a summary o f the published 

literature on previous research in the area o f sliding mode control is introduced. Finally, 

we give a comprehensive derivation o f an effective sliding mode control algorithm used 

to control a robotic manipulator.

In chapter V, a Fuzzy logic controller is considered in detail. Basic definitions and 

basic fuzzy mathematics required in implementing FLC are presented. The structure of 

FLC and its design parameters are also considered in this chapter.

In chapter VI, fuzzy robot controllers with nonlinear multi-input multi-output 

(MIMO) systems are designed with a two-dimensional phase plane in mind. In this 

chapter, the performance and the robustness of this kind of robot controller as it arises 

from its property of driving the system into the so-called sliding mode (SM) is shown. 

Therefore, this chapter clarifies the details o f sliding mode fuzzy control (SMFC). In 

section 6.1, a background on sliding mode fuzzy control is discussed. In section 6.2, we 

give a short review of the ordinary SMC with BL. In section 6.3, we describe the 

diagonal form FLC and derive the similarities between the control law o f a diagonal form 

SMFC and the control law o f an SMC with BL, which will describe the design o f the 

control law o f an SMFC for the tracking control problem. In Section 6.4, we show that 

we can derive a higher order FSMC from a higher order SMC with BL. Finally, we apply 

the design method o f SMFC to MIMO robotics system.
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Chapter VII gives an overview of the simulation and discussion of results and 

shows the selection o f the values for all the controllers parameters. It also shows the 

stability performance of the Sliding Mode Fuzzy Controller.

Chapter VIII introduces linear and nonlinear system identification. Then, a 

derivation of nonlinear type system identification called Extended Kalman Filter (EKF) is 

presented.

Chapter IX presents a new adaptive motion control scheme for robust 

performance control o f robot manipulators. The proposed scheme is designed by SMFC 

based on extended Kalman filter. The new design adaptive SMFC method requires only 

position measurements. A combination of the EKF and the SMFC is shown to result in a 

stable adaptive control scheme called trajectory-tracking adaptive robot with extended 

Kalman (TAREK) method.

Chapter X discusses the conclusion that can be drawn from the result o f all 

methods used in this dissertation along with recommendations for future work in the area 

of Sliding Mode Fuzzy Control.
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CHAPTER II 

Dynamics of a Two-Link Manipulator

The dynamics o f the robot arm deals with the mathematical formulations o f the 

robot arm equations o f  motion. The dynamic equations o f motion o f a manipulator are a 

set of mathematical equations describing the dynamic behavior o f the manipulator. These 

kind of equations o f motion are useful for computer simulation of the robot arm motion, 

the design of suitable control equations for a robot arm and the structure o f a robot arm. 

This chapter describes the dynamics of manipulators for the control purpose. Maintaining 

the dynamic response o f  a computer-based manipulator is the purpose o f manipulator 

control in accordance with some prespecified system performance and desired goals. In 

general, the dynamic performance of a manipulator directly depends on the efficiency of 

the control algorithms and the dynamic model o f the manipulator. The control problem 

consists o f obtaining dynamic models o f the physical robot arm system and then 

specifying corresponding control laws or strategies to achieve the desired system 

response and performance.

By using known physical laws such as the laws o f  Newtonian mechanics and 

Lagrangian mechanics, the actual dynamic model o f a robot arm can be obtained. This 

leads to the development o f  the dynamic equations o f motion for the various articulated 

joints of the manipulator in terms o f specified geometric and inertial parameters o f the 

links. Conventional approaches like the Lagrange-Euler (L-E) and Newton-Euler (N-E) 

formulations could then be applied systematically to develop the actual robot arm motion 

equations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8

Various forms of robot arm motion equations describing the rigid-body robot arm 

dynamics are obtained from these two formulations, such as Uicker's Lagrange-Euler

equations1-2, Hollerbach’s Recursive-Lagrange (R-L) equations3 , Luh's Newton-Euler

equations4 and Lee’s generalized d'Alembert (G-D) equations5 . These motion equations 

are "equivalent" to each other in the sense that they describe the dynamic behavior o f the 

same physical robot manipulator. However, the structure of these equations may differ as 

they are obtained for various reasons and purposes.

2.1 Lagrange Form ulation

A manipulator's equations o f motion are essentially a description of the 

relationship between the input joint torques and the motion of the arm linkage. This 

relationship is needed in a robotic simulation because the control system only specifies 

the torques that should be applied to the joints o f the manipulator. The exact motion that 

results from the application of the torques needs to be found to insure an accurate 

simulation. Unfortunately, the precise model o f a manipulator can never be found. 

However, as long as the major dynamic effects are included, a reasonable estimation is 

sufficient.

A common approach to finding the equations o f motion o f a dynamic system is

the Lagrangian formulation6-7. The Lagrangian L is defined as the difference between 

the kinetic energy K  and the potential energy P o f the system

L = K - P  (2.1)
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and the equations o f motion of the system are given by

d (  d L \  dL
(2.2)

d t{ 8 q ,)  dq,

where

<7 , = generalized coordinate o f  the robot arm

qt -  first tme derivative o f  the generalized coordinate, q,
r, = generalized force (or torque) applied to the system at joint i to drive link /.

This method will be applied to the simple model o f a two-link manipulator shown 

in Figure 2.1. The mass o f each link, mn is lumped at the end o f a massless rod o f length

/,. The links are connected to each other and to the base via a revolute joint. The

generalized coordinates, q, , describe the position o f each of the revolute joints, and the

generalized torques, r , , are applied at the joints by servomotors which are not modeled.

ZZZZZZ2ZZ21

8

Figure 2 .1 Schematic representation o f  a two-link manipulator

The joint variable for the two-link manipulator is
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? = [0, 0 ,] (2.3)

and the generalized force vector is

r  = [ r, r 2] (2.4)

with r, and r, torques supplied by the actuators.

2.1.1 The Kinetic and Potential Energy

For link I the kinetic and potential energies are

(2.5)

Pt =mxglx sin(0 ,). (2.6)

For link 2.

x2 =/, cos(0,) + /2 cos(0, + 0 ,) (2.7)

y 2 =/, sin(0,) + /2 sin(0, + 02) (2.8)

x, = (0,) s in (0 ,) - /2 (0, + 02) sin(0, + 02) (2.9)

y 2 = - /, (0,) c o s (0 ,) - /2 (0, + 0 ,)  cos(0, +0 ,), (2.10)

so that the velocity squared is

v:2 = x; + y 2 = / 20f + /,2(0, + 02)2 +2/1/2(0f +0,0,) cos(02). (2.11)

Therefore, the kinetic energy for link 2 is

K2 = |m 2v2 = { W |20 2 +ym ,/2(0, + 0 ,)2 + m2/1/2(02 +0,0’,)  cos(02) . (2.12) 

The potential energy for link 2 is

^ 2  =miSyi = sin(0|) + /2 sin(0, +0,)]. (2.13)

2.1.2 Lagrange's Equations

The Lagrangian for the entire arm is

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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L = K - P  = K l + K 2- P l - P 2 

= +m2)r-d; + \m-yl; (0, + 0 ,)  + m2l j 2 (0 2 + 0,0,) cos(0 ,)

- ( m x+m2)g lx sin( 0 , ) - m2gl2 s in (0 ,+ 0 ,) .

From equation (2.2). the torque at joint one is equal to

d  dL dL
dt 00, 00,

where

—-  = (mx + m2 )/,20, + m2i; (0, +0,1 + m2l j 2 (20, + 0 ,)  cos(0 ,) 
00,

~  = ( m \ + m i ) + m ^Ji i + ®:) + m 2V: (-®i + ®:) cos (®:)

- m 2l j 2 (20,0, +0*i) sin (0 ,)

= + m ,)g /, cos(0 ,)~ m 2gl2 co s(0 ,+ 0 ,).
00,

After substituting (2.17) and (2.18), equation (2.15) can be rewritten as

r, = £(/w, + m2 )/,2 + m2l\ + 2m,/,/,cos (0, )]0,

+ \_m2l2 + m,/,/,cos(0, ) ]0 : -  m2l\l2 (20,0, +0,2) sin(0 ,) 

+ (m, +m2)g lx cos(0,) + m,g/, cos(0, + 0 : )-

The torque at joint two is equal to

d  dL dL
T, =

dt d6 , 00,

where

00,

d  dL 
dt 00,

= m j;  (0, + 0 ,)  + /n,/,/,0, cos (0 ,)

= m2l; (0, + 0 ,) ' + m2lxl2d[ cos (0 ,)  -  /n,/,/,0,0, sin (0 ,)
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~  = -n u lxU (flf + 0 ,0 ,)  s in (0 ,) -m ,g /, cos(0, + 0 ,) . (2.23)
<30,

After substituting (2.22) and (2.23), equation (2.20) can be rewritten as

r 2 = \jn2l; + m,/,/, cos(02)]0, + m2l;Q2 + m2lxl2 sin(02)

+ m2gl2 co s(0 ,+ 02)

Therefore, the arm dynamics are two coupled nonlinear differential equations.

(2.24)

2.1.3 Manipulator Dynamics

The equations of motion for the two-link manipulator are most conveniently 

written in matrix form. In this form, the dynamic effects are divided into inertial and 

interaction parts as shown in equation (2.25).

(mx + m2) /,: + m2l; + 2m2l j 2 cos (02) m2l; + m2/,/2 cos (02) 

m2l: + m2/,/2 cos (02) m2l;
0,
0,

+
m2l j : (20,0, + 02 ) sin(02) 

m2lxl2 sin(02)

(m, + m2) g/,cos(02) + m2gl2cos(Ql + 02) 

m2g/2cos(0, + 02)
(2.25)

r,

These Manipulator dynamics are in the standard form

M ( q ) q  + V(q,q)  + G( q)  = r (2.26)

with M{ q)  the inertia matrix, V(q,q)  the Coriolis/centripetal vector and G{q) the

gravity vector. Note that M(q) is symmetric.

To obtain the general robot arm dynamical equation, we determine the arm kinetic 

and potential energies, then the Lagrangian, and then substitute into Lagrange’s equation

(2.4-24) to obtain the final result 9-11
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2.2 Complete Manipulator Model

The dynamic equations derived so far only include the torques that arise from 

rigid body mechanics. A class o f torques that are not yet included is due to friction. In 

reality, a robot arm is always affected by friction and disturbances. Therefore, we shall 

generalize the arm model by writing the manipulator dynamics as

with q the joint variable n-vector and t  the n-vector o f generalized forces. M(q) is the 

inertia matrix. V(q. q)  the Coriolis/centripetal vector, and G(q) the gravity vector. We 

have added a friction term

with Fr the coefficient matrix o f viscous friction and Fd a dynamic friction  term. Also 

added is a disturbance xd , which could represent, for instance, any inaccurately modeled 

dynamics.

Since friction is a local effect, we may assume that F( q)  is uncoupled among the 

joints, so that

with f  (•) known scalar functions that may be determined for any given arm. We have

defined the vec {•} function for future use.

The viscous friction may often be assumed to have the form

M ( q ) q  + V( q, q)  + F( q)  + G( q)  + xd =x (2.27)

F( q)  = Fvq + Fd (2.28)

(2.29)

fn{qn)

F,q = vec{v,qt} (2.30)
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14

with v, known constant coefficients. Then Fv = diag{v(| , a diagonal matrix with entries 

i’, . The dynamic friction may often be assumed to have the form

^ /( ^ )  = vec{ î sgn(<7,)}’ (2.31)

with ki known constant coefficients and the signum function defined for a scalar x by

sgn (x) =

+1, x > 0
indeterminate x = 0 (2.32)

-1 x <0.

Then.

sgn (x) = vec (sgn (x ,)}. (2.33)

A bound on the friction terms may be assumed of the form

\\FA + + k (2.34)

with v and k known for a specific arm and | | |  a suitable norm.

Since the arm equation has a disturbance term i j ,  we shall assume that it is bounded so 

that

| | t j < d .  (2.35)

where d is a scalar constant that may be computed for a given arm and ||-|| is any suitable

norm. Friction is not an easy term to model, and indeed it may be the most contrary term

to describe in the manipulator dynamics model. Some more discussion on friction may be

found in 12-13.

We shall sometimes write the arm dynamics as

M ( q ) q  + N(q , q )  + rd =x,  (2.36)
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where

N{q)q  = V(q ,q)  + F(q)  + G(q)  (2.37)

represent nonlinear terms.

There are other dynamic effects which are not included in this model. Examples 

include factors such as the torque due to the flexibility o f the links and disturbances 

resulting from backlash in gear trains. Effects like these are extremely difficult to model 

and in reality may not contribute as much to the dynamics as the effects that have been 

included.
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CHAPTER III 

PID Computed Torque-Control

3.1 PID Control

3.1.1 Introduction

When future historians write the history o f Engineering in the twentieth century, 

they certainly will conclude that Proportional-Integral-Derivative (PID) controllers were 

the most popular controllers o f the century. Many thousands o f Instrument and Control 

Engineers worldwide use such controllers in their daily work. According to a survey held

in 1977. 34 out of 37 listed industrial analogue controllers were o f the PID type14. The 

same is true until today and well over ninety percent o f existing control loops involve

PID controllersi5*16. These controllers will remain dominant in the next century because 

of their remarkable effectiveness, simplicity o f implementation and broad applicability.

Although these controllers became commercially available in the 1930s17, interest in 

their design remains very high even today. Early PID controllers were pneumatic and 

gained widespread industrial acceptance during the 1940s. Their electronic counterparts 

entered the market in the 1950s. Over the past thirty years, an enormous amount o f effort 

has been expended in designing these controllers. Hundreds o f research papers, a number

of M.S./Ph.D. thesis and books18-19 have been written on this subject during the period.

Despite these advancements and the popularity o f this approach, the design of 

PID controllers is still a challenge for engineers and researchers. Since the 1940s, many
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methods for tuning single-loop and multi-loop/multivariable PID controllers have been 

proposed, but every method has some limitations.

3.1.2 Proportional -Integral-Derivative (PID) Structure

About 90 to 95% of all control problems are solved by the PID controller20, 

which comes in many forms. It is packaged in standard boxes for process control and in 

simpler versions for temperature control. It is a key component o f all distributed systems 

for process control. Specialized controllers for many different applications are also based 

on PID control. The PID controller has gone through many changes in technology. The 

term PID is widely used because there are commercially available modules that have

knobs for the user to turn to set the values o f each of the three control types 21.

In some industrial control applications, good results are achieved despite a poor 

knowledge of a process model. The widely used proportional-integral-derivative (PID) 

controller can be tuned to give good performance results based on knowledge of 

dominant system time constants. This fact does not affect the idea that good models are

required; it simply reinforces the point that models should fit their intended purpose ~ .

The development o f the feedback control o f industrial processes has become 

standard. This field o f feedback control, characterized by processes that are not only 

highly complex but also nonlinear and subject to relatively long time delays between 

actuator and sensor, developed the proportional-integral-derivative (PID) control. The

PID controller was first described by Callender et al. in 1936 22. This technology was 

based on largely experimental work and simple linearized approximations to the system 

dynamics. It led to standard experiments suitable to applications in the field and
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eventually to satisfactory "tuning" of the coefficients o f the PID controller. The PID 

controller is the result o f combining the PI and PD controller (as shown in Figure 3.1). 

The transfer function o f this controller is:

E(s) s

E.(s)E(s)

Figure 3.1 PID controller

In explaining the PID, it has been assumed that the plant to be controlled is 

completely known to us. In practice, this is not always the case. It may still be possible to 

obtain good performance o f the closed-loop system by introducing a PID controller as 

shown in the block diagram of Figure 3.1. The arithmetic difference between a 

commanded input, the set-point, and the current output represents an error: how far the 

output must move to be at the commanded value. This error is called the proportional or 

P term. The time derivative o f the error is the derivative or D term, and the integral o f the 

error over time is the integral or I term. Each o f  these three terms is amplified by 

individual gains, the results are summed, and the sum is applied as the input to the 

controlled system.
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The input to the plant consists o f three components: (1) kpE  which is 

proportional to the error; (2) kt which is proportional to the integral o f the error, and

(3) kjsE  which is proportional to the derivative of the error. The first component

increases the loop gain of the system and thereby reduces its sensitivity to plant 

parameter variations. The second component increases the order o f system and reduces 

the steady-state error. The last component tends to stabilize the system by introducing the 

derivative term. The values o f the gain constants kp,kt and kd can often be determined by

trial and error if  G^{s) is not known exactly. If the parameters o f the plant are subject to 

large variations, the gain constants can be adjusted to improve the performance.

3.1.3 Example of PID Control

To illustrate the stability performance o f the PID control we will use an example

of DC motor21:

Lets consider a DC motor with the following gains: K= 5, Td= 0.0004, 77= 0.01. A (the 

speed)= 10, and B (the load torque)= 50. t t  (the electrical time constant)= 1/60, and t 2  

(the mechanical time constant)= 1/600. We will discuss the effect o f proportional, PI-, 

and PID control on the response of the system.

Figure 3.2 illustrate the effects o f proportional, PI, and PID feedback on the step 

disturbance response o f the system. Note that adding the integral term increases the 

oscillatory behavior but lowers the error and that adding the derivative term reduces the 

oscillation while maintaining a low error.
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The response o f the system to a reference step input is shown in Figure 3.3. It 

shows the presence o f the steady-state offset for proportional control and no steady-state 

errors for PI or PID control. Note the reduction o f the oscillatory behavior due to the 

addition of the derivative term.

These responses were computed using MATLAB. As an example, for the PI 

controller the transfer function from the disturbance input to the output is

_______________ I B s _______________
W (5 ) T[xix2s} + T, (r, + x2)s l + T, (l + >f/f).y + AK

and from the reference to the output is

n * ) _ ____________ AK(T,s  + l)____________
R(s) Tlxlx1si +T, (x, + t 2) s 2 +T, ( l  + A K )s  + AK

Proportional
PI
PID

£  0.6

0.4

0.2

- 0.2
0.10.080.060.040.02

time (sec)

Figure 3.2 Transient response to step disturbance input
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Proportional
PI
PID

■oraL. 0.6

0.4

0.2

- 0.2
0.04 0.06 0.080.02

time (sec)

Figure 3.3 Transient response to step reference input

3.2 PID Computed-Torque Control

Through the years researchers have proposed many sorts o f robot control 

schemes. A more sophisticated scheme in which the magnitude o f nonlinear disturbing 

and loading torques is computed using the dynamic equations to compensate these

disturbances by means o f a feedforward scheme may by employed . This method is the 

"computed torque controller" or "nonlinear control" method. Computed torque, at the 

same time, is a special application o f feedback linearization o f nonlinear systems, which

has gained popularity in modem systems theory1AJ15. Computed-torque control allows us 

to conveniently derive very effective robot controllers while providing a framework to 

bring together classical independent joint control and some modem design techniques.
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3.2.1 Derivation of Inner Feedforward Loop

The robot arm dynamics are

U ( q ) g * V ( g , q )  + F,q + FJ {g) + G(q)  + TJ =T (3.4)

or

M ( q ) q  + N(q ,q)  + T j =T  (3.5)

with the joint variable q( t )  e  R", r (/) the control torque and xd (() a disturbance.

Suppose that a desired trajectory qj ( t )  has been selected for the arm motion

according to the discussion in 26. To ensure trajectory tracking by the joint variable, 

define an output or tracking error as

e ( 0 = ? . / ( 0 - ? ( 0 -  (3-6)

To demonstrate the influence o f the input z(t) on the tracking error, differentiate twice to 

obtain

e = qd - q  (3.7)

e = q d -'q. (3.8)

Solving now for q in and substituting into the last equation yields

e = q d + M~' ( N + r d - r ) .  (3.9)

Defining the control input function

u = qd + M - x(N- - c )  (3.10)

and the disturbance function

w = M~'xd, (3.11)

we may define a state x[t )  e  R 2" by
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x = (3.12)

and write the tracking error dynamics as

d e 0 I e 0 0
------- ss + u +
dt e

oo

e I I
ir (3-13)

This is a linear error system in Brunovsky canonical form consisting o f n pairs of 

double integrators 1/s2, one per joint. It is driven by the control input u(t) and the 

disturbance w(t). Note that this derivation is a special case o f the general feedback

linearization 24-25-27.

The feedback linearizing transformation (3.10) may be inverted to yield

r  = M(cjj  - / / )  + N.  (3.14)

We call this the computed-torque control law. The importance o f these manipulations is 

as follows. There has been no state-space transformation in going from (3.4) to (3.13). 

Therefore, if we select a control u(t) that stabilizes (3.13) so that e(t)goes to zero, then the

nonlinear control input r  (t )  given by (3.14) will cause trajectory following in the robot

arm (3.4). In fact, substituting (3.14) into (3.5) yields

Mq + N + Td = M ( q j - u )  + N  (3.15)

or

e = u + M~l xu, (3.16)

which is exactly (3.13).

The stabilization o f (3.13) is not difficult. In fact, the nonlinear transformation 

(3.10) has converted a complicated nonlinear controls design problem into a simple
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design problem for a linear system consisting of n decoupled subsystems, each obeying 

Newton's laws.

I-------------------------------------------------------------------- 1

Nonlinear
inner
loop

Linear
system

Arm

Outer loop 
feedback

Figure 3.4 Computed-torque control scheme showing inner and outer loops

The resulting control scheme appears in Figure 3.4. It is important to note that it consists 

of an inner nonlinear loop plus an outer control signal u(t). We shall see several ways for 

selecting u(t). Since u(t) will depend on q(t) and q( t ) , the outer loop will be a feedback 

loop. In general, we may select a dynamic compensator H(s) so that

U(s )  = H ( s ) E ( s ) ,  (3.17)

H(s) can be selected for good closed-loop behavior. According to (3.16), the closed-loop 

error system then has transfer function

T( s )  = s 2I - H ( s ) .  (3.18)

It is important to realize that computed-torque depends on the inversion o f the

robot dynamics, and indeed is sometimes called inverse dynamics control. In fact, (3.14)
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shows that z(/) is computed by substituting qd - u  for q in (3.5); that is, by solving the

robot inverse dynamics problem. The caveats associated with system inversion, including 

the problems resulting when the system has non-minimum-phase zeros, all apply here. 

(Note that in the linear case, the system zeros are the poles o f the inverse. Such non- 

minimum-phase notions generalize to nonlinear systems.) Fortunately, the rigid arm 

dynamics are in minimum phase.

There are several ways to compute (3.14) for implementation purposes. Formal 

matrix multiplication at each sample time should be avoided. In some cases the 

expression may be worked out analytically. A good way to compute the torque r(/) is to

~fO
use the efficient Newton-Euler inverse dynamics formulation- with qd - u  in place of

3.2.2 PID Outer-Loop Design

Selecting proportional-plus-integral-plus derivative (PID) feedback for the 

auxiliary control signal «(/) results in the PID computed-torque controller

e = e (3.19)

u = - K ve - K pe - K , s . (3.20)

Then the overall robot arm control input becomes

(3.21)

A block diagram o f the PID computed-torque controller is shown in Figure 3.5.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



26

q q

Robot
Arm

Figure 3.5 PID computed-torque controller

The closed-loop error dynamics are

e + Kve + Kpe + Kte = w (3.22)

or in the state space form

d_
dt

The closed-loop characteristics polynomial is

Ac(s)  = \s}I + Kvs2 + Kps + K \.

e 0 i 0

e = 0 0 I

e r K‘ -« P ~K V

e 'o '

e + 0 w
e I

(3.23)

(3.24)

3.2.2.1 Choice of PID Gains
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Taking the n x n  gain matrices diagonal is the usual choice for control gains, so

that

Kv =di ag{Kv ], Kp = diag^Kp }, and K,=diag{K, } .  (3.25)

Then,

A c (s )  = F I ( -y3/ + s2 + Kr,s + ’ <3 -2 6 )
i=!

and the error system is asymptotically stable as long as the Kv , Kp and K, are all 

positive. Therefore, as long as the disturbance w(t) is bounded, so is the error e(t). Thus 

boundedness of vv(/) is equivalent to boundedness o f xu ( f ) .

It is important to note that although selecting the PID gain matrices diagonal 

results in decoupled control at the outer-Ioop level, it does not result in a decoupled joint- 

control strategy. This is because multiplication by M(q) and addition of the nonlinear 

feedforward terms \ r(q,q)  in the inner loop scrambles the signal u(t) among all the

joints. Thus, information on all joint positions q( t )  and velocities q(t)  is generally 

needed to compute the control r ( f )  for any one given joint.

The standard form for the third-order characteristic polynomial is

p  ( 5 ) = s3 + (a  + 2C,(on) s 2 + (2aC,(on + co; ) s + aco; (3.27)

with a  the real root, £ the damping ratio, and to,, the natural frequency. Therefore,

desired performance in each component o f the error e(t) may be achieved by selecting the 

PID gains as

K, = clou] , k p = 2a£o)„ + a ] , k v = a +  2£g)„ (3.28)
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with £ and con the desired damping ratio and natural frequency for joint error i. It may

be useful to select the desired responses at the end o f the arm faster than near the base 

where the masses that must be moved are heavier.

It is undesirable for the robot to exhibit overshoot since this could cause impact if. 

for instance, a desired trajectory terminates at the surface of a workpiece. Therefore, the 

PID gains are usually selected for critical dam ping Q = 1. In this case

By using the Routh test it can be found that for closed-loop stability we require that

that is, the integral gain should not be too large.

3.2.2.2 Selection of the Natural Frequency

The natural frequency con governs the speed o f response in each error component.

It should be large for fast responses and is selected depending on the performance 

objectives. Thus the desired trajectories should be taken into account in selecting £o„. We 

discuss now some additional factors in this choice.

o
There are some upper limits on the choice fora>„ . Although the links o f most

industrial robots are massive, they may have some flexibility. Suppose that the frequency 

o f the first flexible or resonant mode o f link / is

(3.29)

(3.30)

(3-31)
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with J  the link inertia and kr the link stiffness. Then, to avoid exciting the resonant

mode, we should select (on < « r/2 .  Of course, the link inertia J  changes with the arm

configuration, so that its maximum value might be used in computing o)r . Another upper

bound on co„ is provided by considerations on actuator saturation. If the PID gains are

too large, the torque x(t) may reach its upper limits.

Also, the choice of the PID gains is provided from error-boundedness 

considerations as follows. The transfer function of the closed-loop error system in (3.22) 

is

(3.32)

or if Kr, Kp and K,

w(s)  = H ( s ) w ( s ) (3.33)

(s) = s H ( s ) w ( s ) (3-34)

( s ) = s 2H  ( s ) w ( s ). (3-35)

We assume that the disturbance and M '1 are bounded, so that

HI - IH il IM - md (3.36)

with m and d  known for a given robot arm. Therefore,

(3-37)

(3.38)
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IK (Oil *  ||j 2t f ( j )|| I N I s  I K m * ) I H -  ( 3 -3 9 )
Now selecting the Li -norm, the operator gain | / / ( j ) | ? is the maximum value of 

the Bode magnitude plot o f H(s). For a critically damped system

sup ||ff(/<o)||2 = 1 /^  .

0)

Therefore.

and

0)

so that

Moreover.

sup ||ya): Ff(y©)|2 = \fkv , 

co

so that

(3.40)

M')||; - md/K (3-41)

(3.42)

M o l l ,  *  md!kP, • <3 -43)

(3.44)

IK (0 ||, -  md/k ,  • (3.45)

Thus, in the case o f critical damping, the position error decreases with kp , the velocity 

error decreases with kv, and the steady-state error decreases with .

The reader is referred to 29-31 for a complete discussion relative to the PID 

computed-torque control.
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CHAPTER IV 

Sliding Mode in Variable Structure Systems

This chapter is divided into two parts. The first part clarifies the details of 

Variable Structure System theory with sliding mode control and summarizes the previous 

research done on Variable Structure Control (VSC) with Sliding Mode Control (SMC). 

To clearly explain the theory of Variable Structure Systems, a detailed discussion is given 

in the first section of this part. The second section shows how the Variable Structure 

System theory can be used to design a Sliding Mode Controller. The design method is 

demonstrated through a simple example, which clearly defines the steps and the 

assumptions that are made. The last section o f this part discusses the comprehensive 

research that has been published on Variable Structure Control in the last fifteen years. 

The purpose o f the second part of this chapter is to clearly explain the derivation o f an 

effective Sliding Mode Control algorithm and to show how this algorithm is applied to a 

two-link robotic manipulator.

4.1 Background of Variable Structure Systems

4.1.1 Variable Structure System (VSC) with Sliding Mode

Variable structure control (VSC) with sliding mode is a special type o f control 

technique that is capable o f making a control system very robust with respect to system 

parameter variations and external disturbances. In addition, the technique provides an 

easy way to design the control law for a plant, linear or nonlinear.
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VSC was pioneered in the Soviet Union in the early 1950's by S. V. Emelyanov

and his cohorts33. The technique did not receive wide attention in the Western world 

until recently. This was mainly due to a number of problems, including the lack o f a

practical design procedure, existence o f chattering in the system, need o f measuring all

state variables and scarcity o f literature in this area in English. Since the late 1970's, 

researchers have discovered additional attractive properties o f VSC and have developed 

methods for control law design. The feasibility of the technique not only has been 

predicted by theory but also has been demonstrated by numerous computer simulations 

and hardware experiments. As a result, VSC technique has become mature and ready to 

be applied.

To explain the theory o f Variable Structure Systems, a simple example will be 

discussed. Consider the second-order system,

x - ^ . r  + 4/.x = 0, £ > 0  (4.1)

where T  is changed discontinuously according to

f a  if xs > 0
4  ̂= -| a  > 0  (4.2)

[ - a  if xs < 0

and the switching line, s, is given by the following relationship 32:

s = .i+ c x .  (4.3)

If ¥  = a , the state-space trajectory behaves as an unstable focus; if T' = -a, then 

the state-space trajectory is hyperbolic. Both o f these systems are unstable individually. 

However, if the state-space is divided up and portions o f each trajectory are used, the 

combination can be stable. Figure 4.1 shows the state space trajectories o f a stable
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Variable Structure System where c, the slope o f the switching line, is less than the slope 

o f the stable asymptote o f the hyperbola.

xs > 0

xs > 0

5 = 0

xs <0

Figure 4.1 Variable structure state-space trajectories

To insure that the phase plane trajectories are directed towards the switching line, 

5 = 0. the following inequalities must be satisfied:

l im i> 0  and lim i< 0 . (4.4)
i —m-0 s-* + Q

These inequalities are based upon the following Lyapunov function, ^(5 ), which ensures 

that 5 will be equal to zero in a finite time.

r ( 5 )  = | r  (4.5)

which leads to
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This condition maintains the robustness o f the system because, once the trajectory 

reaches the switching line, it is forced to remain on it and stay in sliding mode. After 

integration, equation (4.6) also guarantees that the time it takes to reach the switching 

line. tr, is bounded according to

\s(t = 0)1
tr <'— ------ 4  . (4.7)

H

4.1.2 Sliding Mode Control

A Sliding Mode Controller can be designed using the principles shown above. 

Consider the following second-order system.

x = f  + u (4.8)

where u is the control input and x  is the system variable10. The dynamics, f  are not

exactly known and estimated by / .  The estimation error on / i s  assumed to be bounded

by some known function F  = F ( .r , i )  with the constraint

\ f - j \ < F .  (4.9)

In order for the system to track a desired position and velocity, xd and xd respectively, a 

sliding surface is defined as

s = e + ke,  (4.10)

where

e = x -  xd and e = x - x d . (4.11)
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Taking the derivative o f equation (4.10) with respect to time and making a substitution 

for e yields

s = x - X j + k e  = f  + u - X j + X e .  (4.12)

When in ideal sliding mode, both s and s are equal to zero. The best approximation of 

the control law that would achieve s = 0 is obtained from equation (4.12) as

u = - f  + xd - k e .  (4.13)

In order to satisfy the sliding condition given by equation (4.6) despite uncertainty in the 

dynamics input f  a discontinuous term is added to u to make up the total control input, u,

u = u - b s g n ( s )  (4.14)

where b = b(x .x)  is a variable gain for the discontinuous part o f the control input and 

sgn(s) is the signum function defined as

\ s \
sgn(.s) = — . 5 * 0 .  (4.15)

s

Using equations (4.12) to (4.14) the discontinuous term gain, b, can be chosen 

such that the sliding condition is guaranteed,

ss = s [ f - f - b  sgn( 5 )] = ( / - / ) 5 - k |s| < - r j \s\ (4.16)

so that

b > F + r ] . (4.17)

As F, which represents the disturbances and parameter variations in the model, 

increases, the discontinuity in the control input must be increased by increasing the gain, 

b. A Sliding Mode Controller designed in this fashion assures that the system will reach 

the sliding surface and remain in sliding mode. This, in turn, assures that the position and 

velocity errors approach zero asymptotically.
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The major problem with the above analysis is that it assumes that are ideal sliding 

mode can be realized. In reality, no switching mechanism could change the state of the 

control input fast enough to keep the system trajectory exactly on the sliding surface and 

in sliding mode. There is a certain switching delay that allows the state trajectory to cross 

the sliding surface before the control input is changed to force it back on to the sliding 

surface. This causes the trajectory to chatter along the sliding surface, and as a result, the 

trajectory only stays within the ideal sliding mode. Figure 4.2 shows a typical phase plane 

trajectory for a Sliding Mode Controller. The first portion of the trajectory is the reaching 

phase which begins at the initial condition (/.C.) and ends when the sliding surface, 

s = 0 . is reached. From this point on the system is in sliding mode and will continue 

towards the origin until the position and velocity errors, e and e respectively, become 

zero. Figure 4.2 also illustrates the chattering effect along the sliding surface. The system 

trajectory appears to bounce from one side o f the sliding surface to the other until the 

origin is reached.

e

j > 0

— ►  e

Reaching
Phase

Sliding
Mode

5 < 0

s =  0

Figure 4.2 Typical SMC phase plane trajectory
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In order to insure that the system remains stable, the sliding condition must be 

met in the neighborhood of the sliding surface that the trajectory chatters inside. This is 

the reason equation (4.6) is bounded by -r j|s | and not zero, which is customary for

Lyapunov functions. By having the more stringent constraint, sliding mode with its 

inherent chattering remains stable.

Chattering can pose problems for Sliding Mode Controllers used on robotic 

manipulators. The reason for concern is that manipulators can have high natural 

frequencies which might be excited by a control signal which chatters when in sliding 

mode. If those natural frequencies are excited, the controller will make the system 

unstable instead of keeping it stable. Since chattering is so undesirable, a lot o f effort has 

been made to find ways to eliminate it. The various methods that have been used will be a 

large part o f what is explained in the following section.

4.1.3 Summary of Previous Research

The theory o f Variable Structure Systems was first developed in the U.S.S.R. 

during the 1950’s. Most o f that work has not been translated and remains in the Russian 

language. Today we must rely on survey articles that assemble and report on what was 

learned during that time. V. I. Utkin has written three such papers. His first survey was

published in 197 7 32 and sums up most o f what was known about Variable Structure 

Systems up to that point. He begins with the basic principles o f VSS and applies them to 

time-invariant and time-varying plants as well as multi-input systems. Utkin proves the 

disturbance rejection properties o f Variable Structure Systems and the existence o f a

33sliding mode. In Utkin's second survey, published in 1983 , more time is spent on the
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mathematical aspects o f the description o f Variable Structure Systems with emphasis on 

recent research trends. Only a few applications are mentioned because he states that he 

wanted to stimulate new ways o f approaching VSC and not give simply a list o f results. 

A third article by Utkin, published in 198 7 34, sketches the entire scope of scientific 

problems within the framework of sliding mode control theory. He reviews the most 

important research trends in the field o f Variable Structure Control and shows its promise 

for a wide range of applications.

A survey published in 1988 by DeCarlo, et al. 35 is similar to Utkin's articles in 

the way disturbance rejection and sliding modes are proven and areas o f needed research 

are pointed out. The difference, however, is in the way the authors lay out the steps 

involved in designing a Variable Structure Controller. In addition to proving that the 

favorable qualities of Variable Structure Control exist, ways to take advantage o f these

attributes are given. This ideal is taken a step further by Walcott and Zak36 in an article 

that describes four experiments which demonstrate the fundamental principles o f VSC 

and can be repeated in a senior/graduate level controls laboratory course.

The first time Variable Structure Systems theory was applied to the control o f a

robotic manipulator was in 1978 in an article by BC. D. Young37. This was an important 

step because the complexity o f manipulators makes them difficult to control. In the 

absence of friction and other disturbances, the dynamics o f  a n degree-of-freedom 

manipulator can be written as n coupled second-order nonlinear differential equations.

Variable Structure Control had already been used for a wide range o f applications 

in the steel, power, chemical and aerospace industries and was valued for being a very 

robust strategy that does not require accurate modeling. For these reasons, it showed
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great potential for use on robotic manipulators, so Young designed a Variable Structure 

Controller for a two-joint manipulator and simulated point-to-point indexing on a hybrid 

analog-digital computer. His simulation demonstrates the applicability of the Variable 

Structure Control approach to manipulator control design as well as its ability to 

eliminate nonlinear dynamic interactions o f the manipulator joints by introducing sliding 

modes. Young concludes that VSC is much easier to implement than existing methods 

and requires less a priori knowledge of the manipulator dynamics. It is also mentioned 

that the Variable Structure Controller produces a rapidly changing discontinuous control 

signal that might adversely affect the physical hardware of the manipulator. Young, 

however, does not indicate how to remedy the high frequency control activity. He only 

states that the simulated manipulator must have filtered out a lot o f the high-frequency 

behavior because the joint position trajectories were smooth.

The next paper to address the application o f  Variable Structure Control to robot 

manipulators was written in 1983 by Slotine and Sastry38. The authors begin by 

discussing discontinuous differential equations and proving sliding mode existence, 

giving reference to earlier work reported in the Soviet literature. The design with sliding 

mode control is illustrated for single and multiple input, linear and non-linear tim e- 

varying systems. The designs are proved to be robust assuming an ideal sliding mode. 

Due to switching delays, ideal sliding cannot be achieved in reality so the authors use a 

continuous control law to approximate ideal sliding more closely. Instead of using the 

discontinuous signum function they use an interpolation called the saturation function 

defined as,
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sa t( j ')  =
y  if H  ^  1

sgn(y) if |y| > 1.
(4.19)

Equation (4.14) now appears as,

u = ii -  k sat£ (4.20)

where 2 0  is the boundary layer thickness of the control input. Graphically, the control 

input would appear as shown in Figure 2.3 with u = u when 5 = 0.

Boundary 
layer

► s

Figure 4.3 Control input interpolation 

The saturation function results in a boundary layer surrounding the sliding line 

which is illustrated in Figure 4.4. One half o f the boundary layer width, e, represents the 

maximum error during approximate sliding mode, expressed as equation (4.21), where X 

is the slope o f the sliding line:

i I\e < — r = fi­l l  i  n - l
(4.21)
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Slotine and Sastry used their Continuous Sliding Mode Control theory to simulate 

a two-link manipulator during trajectory control. They found that the disturbance 

rejection properties o f SMC were preserved while not generating the undesirable 

chattering phenomenon that was apparent when the control input was discontinuous. The 

sacrifice for interpolating the discontinuous control signal is that the tracking accuracy 

can only be guaranteed to lie within half o f the boundary layer width, s. The advantage is 

that the control torques are smooth and do not excite the unmodeled high-frequency 

dynamic modes of the manipulator.

e

Boundary
layer

5 = - 0

Figure 4.4 Sliding line boundary layer 

An alternative to using a boundary layer to make the control input continuous, is

the "conti" function which has been used to approximate the signum function39-41. A 

small positive constant, 8, is used which distorts the discontinuity according to

conti (s) = |-r^—  (4.22)
|sj+5
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If 5 = 0 then conti(s) = sgn(s). A drawback to this method of smoothing is that there is no 

physical meaning for 8. It is simply a distortion parameter with no units.

Sliding Mode Control design is not limited to the method discussed in Section 

4.1.2. That method is called the equivalent control method because the control law 

consists o f two elements. One element is the (equivalent) non-linear compensation part 

which is of low frequency and would keep the trajectory on the sliding surface in the 

absence of parametric variations and disturbances. The second element, by being 

discontinuous, provides the high frequency part o f the control input and overcomes any 

effects o f estimated or incomplete dynamic modeling.

All Sliding Mode Controllers use the theory o f sliding surfaces to insure that 

position and velocity errors approach zero. In order to make sure the attractiveness o f the 

sliding surface. Lyapunov's method is most often used. However, it is not the only 

method that can be used. Morgan and Ozguner42 used the regulated derivative control 

algorithm and showed it to be effective for the control o f a robotic manipulator. The 

objective o f this control algorithm is to regulate the derivative of the switching variable, 

s . to a constant R. To accomplish this, the following law is implemented.

i  = - ^ s g n (s ') ,  f l> 0  (4.23)

It can be seen that ss < 0 will always be satisfied, assuring the attractiveness o f the 

sliding surface and existence o f sliding mode. A boundary layer was not used by Morgan 

and Ozguner or by Choi and Jayasuriya4 j, in a similar implementation, to ease the 

chattering action. Therefore, considerable chattering was evident and alternate methods to 

reduce it were not proposed.
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A drawback common to all of the methods discussed so far has been the need to 

take the inverse o f the manipulator's inertial matrix when computing the discontinuous 

gains to suppress disturbances. This is a problem because the terms of the inertial matrix 

are complicated functions o f the manipulator's position and having to take the inverse of 

the matrix can raise the number o f operations exponentially. Although this does not affect 

the computation done by the controller at each control interval, it makes the design of the 

controller much more difficult than is needed. By choosing a Lyapunov function equal to,

F ( s ) = | / A / ( 0 ) j  (4.24)

w'here M( 0 )  is the inertial matrix o f the manipulator and s r is the transform of the vector 

o f sliding surfaces. s(t), defined as,

s{t) = C e(r) + e(t )  (4.25)

where C = diag(A,,A, A„), and A, > 0  are the slopes o f the sliding surfaces for each

o f the individual joints o f the manipulator52. The derivative o f the Lyapunov function is,

—  = ± s tM ( 9 ) s  + s tM ( 9 ) s  (4.26)
dt

and must satisfy the following inequality to insure the attractiveness of each o f the sliding 

surfaces:

d V
—  < s rK s <  0, (4.27)
dt

where K  = diag( A,, and A, > 0  represent the gains that increase the speed of

approach to the sliding surface in the reaching phase.

The simple insertion o f the inertial matrix into the Lyapunov function makes the 

design of the control algorithm exceedingly simple compared to other approaches.
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especially in the case o f multi-link manipulators whose inertial matrix is extremely 

difficult to invert. There are two examples in literature o f the implementation o f this

design technique that do not use a boundary layer around the sliding surfaces 44-45. The 

impressive accuracy and robustness o f the controller to varying loads is shown although

tfT l-t (
chattering is apparent. When a boundary layer is used , the control input is 

completely smooth while maintaining excellent disturbance rejection characteristics. 

Similar to previous results, however, the presence of the boundary layer effects the 

accuracy because the trajectory is only guaranteed to stay within the boundary layer 

width.

A convenient way to make sure the accuracy provided when a boundary layer is 

not used, while suppressing most o f the chattering in sliding mode, is to alter the 

boundary layer width. If the boundary layer width shrinks to zero as the origin is

approached, then the best of both situations can be preserved 48-49. An illustration o f this 

altered boundary layer is shown in Figure 4.5.

e

slope =
*  5 = 0  
slope = —a

Figure 4.5 Altered sliding line boundary layer
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To create a boundary layer of this type, the saturation function o f equation (2.19) 

is used in the control law as,

u = u - k  sat (4.28)

where the variable boundary layer half thickness, n, changes according to,

#i = W|e|, 0 < ;V <A . (4.29)

A boundary layer of this kind cannot suppress chattering at the state plane origin. 

However, if a small amount o f  chattering can be tolerated, the average steady-state error 

will be smaller than the steady-state error if the boundary layer width was constant. This 

method of boundary layer design was used with the enhanced Lyapunov function,

Equation (4.24), by Yeung and Chen50. They showed the implementation o f this design 

method for use in a set-point regulation problem for a two-link robotic manipulator. The 

controller proved to have all o f  the favorable qualities that Sliding Mode Controllers can 

possess without the harmful tendency to chatter while in the transient sliding mode. 

Chattering was unfortunately found in the steady-state about the set-point resulting from 

the absence o f a boundary layer. The authors mention that the chattering could be

eliminated by using Slotine's approach51 discussed earlier. By suggesting the use o f  the 

"balance condition," Yeung and Chen effectively defeat the purpose o f  using the altered 

sliding line boundary layer which they recommend.

4.2 Sliding Mode Controller Design

In Part 4.1, an overview was given o f the various types o f Sliding Mode 

Controllers that have appeared in past literature. All o f  the methods were proven
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successful applications o f the theory of Variable Structure Systems with sliding mode. 

The strategies that possess the best design are the ones that do not require taking the 

inverse o f the manipulator’s inertial matrix. In Chapter Two, the dynamic model o f a two- 

link manipulator was derived and shown to be a highly non-linear, coupled, second-order 

system. These types o f complicated systems are the most challenging ones to control. The 

purpose o f this part is to clearly explain the derivation o f  an effective Sliding Mode

Control algorithm, first published in 1988 by Chen, et al . 46, and to show how this 

algorithm is applied to a two-link robotic manipulator.

4.2.1 Development of the Control Algorithm

The first step in the design of any controller is the formulation of the dynamic 

model of the system that is to be controlled. This task was completed in the previous part 

and the results will be carried over into this part. The purpose o f designing a Sliding 

Mode Controller is to show that the theory o f Variable Structure Systems with Sliding 

Mode can be used in controller design. The proof is in the successful simulation. To 

make the simulation as realistic as possible, two different manipulator models will be 

used. The most complete model will be used in the integration to find the movement of 

the arm due to the applied torques. The second, a rather approximate model, will be used 

in the design of the controller. This is done because the exact model o f  an actual 

manipulator can never be found and used in the design o f a controller.

The model that will be used for the development o f the control algorithm is given 

below as equation (4.30). It is shown in the typical form for manipulator models and has 

approximate values for the masses.

(4.30)

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The cap. . denotes the assumed value and the delta, 'A', denotes the estimating error.

The sliding surface is defined as equation (4.30) and depends on the vector of 

position and velocity errors, e and e , and the slope matrix, C.

s(t)  = C e(t)  + e(t) (4.32)

where

e ( r ) = 0 ( / ) - 0 , ( O

e { t ) = 9 ( t ) - e j (t) (4.33)

C = diag(A,,A, A„), and A, > 0 .

If the manipulator inertial matrix, T /(0 ) is multiplied by the derivative of equation 

(4.32). and a substitution is made for e,  the result is

M ( Q ) s  = M  ( 0 ) 0 -  M  ( d ) 9 j + M ( 6 ) C e ( t ) .  (4.34)

Equation (4.30) can be used to substituter -  Af (0 ,0 ) , for M (0 )0 giving,

M  (0 ) i  = r  -  N  (0 ,0 ) -  M  (0) 0j  + M  (0 ) Ce ( t ). (4.35)

When in ideal sliding mode, both s and s are equal to zero. The best approximation of 

the control law that would achieve i  = 0 is obtained from equation (4.35) as,

x =MQd -  MCe + 1ST. (4.36)

A discontinuous signum function and a proportional term are subtracted from the 

"equivalent control torque" o f  equation (4.36) to make up the complete control torque 

defined as equation (4.37).
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v = x - Q  s g n ( s ) - P s  (4.37)

where

sgn(s) = — ,

Q = diag(ql,q2,... ,q„)

P = d iag(p„

The discontinuous and proportional terms are included in the control torque to insure that 

the manipulator's joint trajectories converge onto the sliding surface, despite parametric 

variations and disturbances. The control gain matrices, Q and P. are chosen using 

Lyapunov theory. A candidate Lyapunov function, V(s), is shown below. M  (0) is the

manipulator inertial matrix and s r is the transpose o f the sliding surface.

r ( j )  = -V /A f(e ) j (4.38)

Inertial matrices are by definition positive definite. With the inclusion of M  (0 )

and the s' terms, equation (4.38) will always remain positive definite which is a

requirement for a Lyapunov matrix function. A favorable consequence o f including the 

inertial matrix in the candidate Lyapunov function and in the derivation o f the 

"equivalent control torque", (4.36), is that the inverse o f the inertial matrix does not need 

to be found. This is an important advantage because the inverse o f the inertial matrix can 

be very difficult to compute.

It should be noted that the inverse o f the inertial matrix is needed for the 

integration scheme discussed in chapter 2. Integration, however, is only necessary during 

a simulation and not required for the use o f a Sliding Mode Controller on an actual 

manipulator.
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According to Lyapunov’s theorem, if the following condition is maintained. s(t) 

will always approach zero, guaranteeing the existence of sliding mode and the stability of 

the controller.

dV
——< - s K s  (4.39)
dt

where

K  =diag(fr,,fc3, . andk,  > 0 . (4.40)

Taking the derivative o f the Lyapunov function gives

—  = \ s rM ( 9 ) s  + s rM ( 9 ) s .  (4.41)
dt  ‘

Using equation (4.35) in a substitution for M (9 ) s  yields

—  = ±s rM  (9 )s  + /  f r  -  iV -  MQj + MCe 1. (4.42)dt - l  J

Equations (4.36) and (4.37) are. then substituted into the previous result giving,

—  = 4 / M  ( 9 ) s + /  f  MB' -  MCe + /V -  O sgn (s) -  Ps 
dt - v ’ L ~ (4.43)

- N  -  M9j  + MCe]

Grouping the exact and assumed terms allows a substitution with the estimating error 

terms of equation (4.31) resulting in

^  = W M ( B  )s  + /  [ ( U - M ) C e - ( M  - « ) 0 '  - ( N - -v)

- Q  s g n ( s ) -P s ] .

Substituting equations (4.31) yields

—  = (0 ) s + 5r [ AMCe -  &M9U - A N - Q s g a ( s ) - P s \  (4.45)
dt ~ -*
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The final result will be divided into two parts and must collectively satisfy condition 

(4.39) as follows:

dV_
dt

= \ s rM ( 9 ) s - s TPs + s TJ^AiV/Ce-AiV/0j - A A ^ - s 7̂  sgn(s)

—  = V[ + K < - s r Ks 
dt

(4.46)

where

F i= - s r [ P - | A / ( 0 ) ] s < / £ s  

V, = /  [AMCe -  AMdj  -  AjV] -  s T0  sgn (s) < 0.

(4.47)

(4.48)

Using equation (4.37) and the Gerschgorin theorem62, the elements of P should be 

chosen as

p . - i ^ r n   n/-i
(4.49)

where

A /;“  >|M,y|. (4.50)

This insures that the following matrix, which is equal to [ / 5- :V /(0 ) /2 ] , is always 

positive definite and greater than or equal to K, satisfying condition (4.47).

M p A/,I n

Mu f  Mn , /c .Min.
1

AT,n l r '  1 nj M .
■ + k _
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Using equation (4.48) the elements o f 0  should be chosen as

q, = £ { A A / maxC} |ey| +  ̂ m“ +AyV,raax (4.51)
j =i ''

where

A M .-a I AMI,

lFm3X > |AiV/m“ 0Jux | (4.52)

AiV,max >|A/V,|

Once these conditions for choosing the control gain matrices, O and P. are met, 

conditions (4.47) and (4.48) will always be true, which in turn assures that the original 

condition (4.39) is satisfied. It can be seen from this development that the joint control 

torques of equation (4.37) will force the manipulator joint trajectories onto the sliding 

surface despite parametric variations within the given limits. This means that the joints of 

the manipulator will follow the desired joint paths given by vectors 6d ( t ), 0d {t) and

0 ,( 0 -

The few requirements that need to be fulfilled are the existence o f an approximate 

model of the manipulator and an estimate o f the amount o f error in the approximation. In 

addition, bounds must be placed on the maximum velocity and acceleration for each joint

o f the manipulator. This need for a priori knowledge o f the manipulator is minimal and

characteristic o f the information required by the majority o f controllers used today.

4.2.2 Chattering Suppression

A conclusion that can be drawn about the chattering effect, discussed in Part One, 

is that chattering appears as a result o f the discontinuous part o f  the control torque.
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Therefore, every technique that has been used to eliminate chattering and does not 

involve the use of observers shares one characteristic in common, a boundary layer, 

surrounding the sliding surface, to smooth the discontinuity across it. A few 

implementations have used varying widths for the boundary layer while most have kept 

the controller simple and used a constant width. For the control algorithm developed in 

this chapter, a constant boundary layer width will be used. Therefore, instead o f  the 

discontinuous signum function used in the control torque equation (4.37), a smooth 

saturation function, defined as equation (4.53), will be used.

(4.53)

where the boundary layer half-width, n. is defined as

]r , and n, > 0. (4.54)

The control torque equation now appears as

r  = MQj -  MCe + N - Q  sat( s / n ) -  Ps. (4-55)
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CHAPTER V 

Fuzzy Logic Control

Fuzzy logic control (FLC), which is based on fuzzy logic theory, has become one 

o f the most important fields in artificial intelligence. Since the foundation o f fuzzy logic

by Zadeh in 196 5 52, many theoretical and experimental researches in the area o f fuzzy 

control have been performed. Fuzzy logic, on which fuzzy control is based, is much 

closer to the human thinking and natural language than the traditional logical systems. 

Basically, it provides an effective means of capturing the approximate, inexact nature of 

the real world. The essential part o f FLC is a set o f linguistic rules related by the dual 

concepts of fuzzy implication and compositional rule of inference. Therefore, it provides 

an algorithm which can convert the linguistic control strategy based on expert knowledge 

into an automatic control strategy.

The methodology of the FLC appears very useful when the process under control 

is very complex for analysis using the conventional mathematical modeling. Many 

industrial systems are o f this nature, however, they can be controlled by human operators 

without knowing their underlying dynamics. So, fuzzy logic control may be viewed as a 

step toward a rapport between conventional precise mathematical control and human-like 

decision making. Experience shows that the FLC are superior to conventional control 

methods for ill-defined systems or for systems where no mathematical model have been 

developed. The structure o f the FLC which is nonlinear and its ability to deal with 

imprecise data makes it more robust than the linear controllers.
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There are several advantages o f using fuzzy control over classical control 

methods. As Lotfi Zadeh, who is considered the father o f  fuzzy logic, once remarked: “In 

almost every case you can build the same product without fuzzy logic, but fuzzy is faster 

and cheaper.” Therefore, this chapter clarifies the details of fuzzy logic control (FLC). In 

section 5.1. a background on fuzzy logic control is discussed with some application o f its 

use. To clearly explain the theory o f fuzzy logic control, a detailed discussion is given in 

section 5.2. which presents the basic definitions and the basic fuzzy mathematics required 

for implementing FLC. In section 5.3, the structure o f FLC with the main parameters of 

the FLC is discussed in detail and the algorithm o f FLC is given. Finally, in section 5.4 

conclusions and comments are given on the FLC.

5.1 Background of Fuzzy Logic Control

Fuzzy logic was first proposed by Lotfi A. Zadeh o f the University o f  California 

at Berkeley in a 1965 paper52. He elaborated on his ideas in a 1973 paper that introduced 

the concept of "linguistic variables," which in this chapter equates to a variable defined as 

a fuzzy set. Other research followed, with the first industrial application is a cement kiln 

built in Denmark in 1975. Fuzzy systems were largely ignored in the US because they 

were associated with artificial intelligence (AI).

The Japanese interest in fuzzy systems was sparked by Seiji Yasunobu and Soji 

Miyamoto of Hitachi. In 1985, they provided simulations that demonstrated the 

superiority o f fuzzy control systems for the Sendai railway; their ideas were adopted and 

fuzzy systems were used to control accelerating, braking and stopping when the line 

opened in 1987. In addition, in 1987 the international meeting o f fuzzy researchers in
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Tokyo helped promote interest in fuzzy systems. In that year, Takeshi Yamakawa 

demonstrated the use o f fuzzy control (through a set o f simple dedicated fuzzy logic 

chips) in an "inverted pendulum" experiment. The experiment was a classic control 

problem in which a vehicle tries to keep a pole mounted on its top by a hinge upright by 

moving back and forth.

During the last decade, there has been a rapid growth in the number and variety of 

applications o f fuzzy logic. Applications range from consumer products such as washing 

machines, cameras and microwave ovens to industrial process control, the subway system 

in the city o f Sendai. Japan53, automobile transmission control54-55 , air conditioner 

control56, robot control (Hirota Laboratory at Hosei University)57, speech recognition 

(Ricoh)57, control o f cement kiln processes 58, fuzzy control o f a model car59, elevator 

control60, nuclear reactor control61-62, fuzzy logic controlled hardware systems63-64 , 

fuzzy computers65 and the Old Dominion University wireless mobile Lego robot 

(WLMR)66.

5.2 Fuzzy Sets and Fuzzy Logic

5.2.1 Fuzzy Logic

Fuzzy logic is the logic on which fuzzy control is based; it is much closer to the

67human thinking and natural language than the traditional logical system . It can be 

viewed as a multi-level logic in comparison with the two levels [0,1] logic, so fuzzy logic 

is the best way to represent imprecise ideas easily.

5.2.1.1 Fuzzy Sets Versus Crisp Sets
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The central concept o f fuzzy logic is the fuzzy sets which provide basis for

z o
systematic way for manipulation o f vague and imprecise concepts . In particular, we 

can employ fuzzy sets to represent linguistically defined data such as cold, hot, etc. 

temperatures. Fuzzy sets differ from the conventional crisp sets in the idea o f degree of 

membership function /uh- . For example, the set of cold temperatures in Norfolk it defined 

between [10,30]°F.

ColdCold

TemperatureTemperature 
— ►

30103010
Crisp Set Fuzzy Set

Figure 5.1 Crisp and fuzzy sets

The crisp set defining this linguistic variable {Cold Temperature} is defined as:

1, Temperature 6 [10,30]

0, Temperature € [10,30]

i.e.. in crisp sets the degree o f membership function takes only 0 or 1. On the other hand, 

the fuzzy set defining this linguistic variable has a degree o f membership function which 

takes values between [0,1] and has the certain distribution:

Mf = ,/h. (Temperature).
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It is now apparent how fuzzy logic is identical to the human thinking in which there is no 

crisp definitions of variables rather than fuzzy.

5.2.1.2 Fuzzy Set and Term inology67-68 

Definitions

1. Universal o f discourse [Uj: Is the collection o f elements denoted generically b(u) and 

represents the domain of variables.

2. Fuzz)’ set [F]: A fuzzy set F on U is characterized by a membership function, n F, 

which takes values between [0,1]. It can be viewed as a generalization o f the concept of 

an ordinary (crisp) set whose membership function takes only 0 or I. Thus a fuzzy set F in 

U is represented as:

i.e.. a set o f  ordered pairs o f u and its degree o f membership as either a discrete or 

continuous function.

3. Support, Crossover, Fuzzy Singleton: The support o f a fuzzy set F is the crisp set of 

all points u in U such that: p F >Q.  The point at which n F(u) = 0.5 is called the

crossover point, and the fuzzy set whose support is a single point in U is referred to as 

fuzzy singleton.

4. Fuzzy N um ber: A fuzzy number F e U  is a fuzzy set which is normal and convex;

i.e.:

1 -  max p F (u) = 1; NormalueU
2 -  iiF(ku\  + (l-2 .)w ,)> m in (ju F( u ,) ,^ F (u ,)); Convex 

where; ux, u2 e  U; k  e  [0, l]
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5. Linguistic Variable: A linguistic variable is defined by the {u , T ( u ) , U , R , S } in

which U  is the variable name; T(u) is the term set o f u or the set o f  names o f the linguistic 

values with each value being a fuzzy number defined on U\ R is a syntactic rule for 

generating the names o f u and S  is the semantic rule for associating with each value its 

meaning.

For example, if temperature is interpreted as a linguistic variable, then its term set 

T’ftemp.) could be {Cold; Comfortable; Hot}, where each term in 7(temp.) is 

characterized by a fuzzy number in a universe o f discourse C/=[0,50] ; these terms are 

given by the shown triangular fuzzy sets.

Comfortable HotCold
1

Temperature 
 ►

0 25 5010 40
Figure 5.2 Linguistic variables

5.2.2 Fuzzy Mathematics

Let A, B be 2 fuzzy sets in U  with membership function (xA , (xB respectively, the 

set operations of union, intersection and complement o f fuzzy sets are defined via their 

membership functions as:

1. Union:
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Ai u  5 )  =  max (w )} ;

2. Intersection:

n ( A n B )  = min{nA( u ) , nB(u)}-,

3. Complement:

h (A' )  = { \ - ^ a {u)}-,

4. C artesian Product:

If .4, A„ are fuzzy sets in UX, U U n respectively, then the Cartesian

product o f .4,........4„ is a fuzzy set in the product space L \ x . . . * U n with the membership

function:

I. («, <“: ••••“„) = mill (« ,) M.Jn («„)}; Minimum

^ M - A Z . - A n  ( " l  • 'U 2 - ■ ■ - U n )  =  { M , ,  ( “ . )  *  H a 2  ( « 2  )  ’ ”  *  M * .  K  ) }  !  P r o d u c t

5. Fuzzy Relation:

An n-array fuzzy relation is a fuzzy set in x £ /,... x Un and is expressed as:

= ) ’ Mr (up W? . .,un ))|(w,,... ) 6 Ul,. . . ,U n |

6. Fuzzy Algorithm:

A group of rules collected together with the O R operator to form an algorithm; 

the relational matrix for the complete algorithm is found using the union operator o f the 

whole m rules:

^  =  ^ , = 1,2... ,m  ’ ^ m }  »

7. Compositional Rule of Inference:

If R is a fuzzy relation 1 /x F  and A is a fuzzy set in U, then the fuzzy set B in V 

include by A is given by:
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B = A*R;  i.e. [A compositionR).

A well known special case is Zadeh's compositional rule o f inference which uses the 

max-min operator with the membership function:

HB(V)  = m a x { m i n [ ^  { u ) , n a (v)]}

and the max-product operator:

HB( V )  =  max A e l !

5.3 Fuzzy Logic Control (FLC)

5.3.1 FLC S tructural Issues

The basic FLC configuration shown in figure (5.3) comprises four main principal 

components; Fuzzification, Knowledge Base, Decision Making Logic, and 

Defuzzification.

1. The fuzzification involves two main functions, scaling the crisp controller inputs

and converting them into the corresponding linguistic values.

2. The Knowledge base (KB) contains the necessary fuzzy sets definitions and the

rule base which contains the rules characterizing the control policy.

3. The decision making logic (fuzzy algorithm) is responsible o f inferring fuzzy

control action based on the input fuzzy sets. It has the capability o f simulating 

human decision making.

4. The defuzzification yields a non fuzzy (crisp) output based on the output fuzzy

sets and scale it to the corresponding universe o f  discourse.
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Crisp Controller Inputs

Fuzzy Inputs

Fuzzy Outputs

RULES

FUZZY
SET

FUZZIFIER

FUZZY LOGIC

DEFUZZIFIER

PR O C ESS

KB

Crisp Controller Output

Figure 5.3 Basic fuzzy logic structures

5.3.2 Design Parameters o f FLC69

The main design parameters o f any FLC are the following:

1. Fuzzification operator.

2. Database:

a) Discretization levels and normalization.

b) Definition o f fuzzy sets.

3. Rulebase:

a) Choice o f input variables and output variables o f fuzzy control rules.

b) Derivation o f control rules (source).

4. Decision making logic:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



62

a) Fuzzy implication operator (Mamadani or Larsen).

b) Inference operator.

5. Defuzzification strategies.

Now, we discuss each o f the design parameters:

1. Fuzzifiaction:

In this step, a mapping o f the observed crisp inputs into fuzzy sets is performed 

since all the operations o f the FLC are based on fuzzy sets. In control application, the 

fuzzification operator is usually a fuzzy singleton; hence, no fuzziness is introduced in 

this case. This strategy has been widely used due to its simplicity; it interprets a crisp 

input e0 as a fuzzy set E with the membership function (e) equals to zero except at the

point e0 at which it equals 1.

Other fuzzification operators have been used to put into consideration the 

randomness in the input crisp variables if they are noisy. An isosceles triangle was 

chosen to be a fuzzification operator for such cases with the vertex o f this triangle at the 

mean value, while the base is twice the data standard deviation.

2. Data Base:

The Knowledge base (KB) of a FLC consists o f two components namely a data 

base and rule base. The data base contains the necessary data for data manipulation in the 

FLC such as scaling factors, mapping functions, discretization levels and fuzzy sets 

definition.
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a) Discretization/Normalization of universe of discourse:

Usually, the measured input data is transformed into a normalized universe of 

discourse (usually [-6,6]) using the mapping function:

where Gt, is the /-th input scaling factor. The mapping function F  may be linear or 

nonlinear.

Sometimes the universe o f discourse is discretized (quantized) into certain number of 

levels, for which the fuzzy sets are defined discretely. For this case, a look up table based 

on the discrete universes, which defines the output o f the controller for all possible 

combinations of the input signals, can be implemented by off-line processing o f the fuzzy 

algorithm in order to shorten the running time of the controller.

The choice of the number o f quantization levels has an essential influence on how fine a 

control can be obtained.

b) Fuzzy Sets

The selection o f the number o f linguistic terms which describe the input and 

output variables and the shape o f the membership function is a heuristic cut and trial 

operation in FLC cannot be found optionally with a definite method. However, these 

parameters are very flexible in their selection and can be related to the physics o f the 

system.

The membership function can be defined discretely for discretized universes or 

functionally for continuous universes. Many shapes for the fuzzy sets have been used in 

control applications such as:

- Triangular
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- Trapezoidal

- Gaussian (exponential)

- Sinusoidal.

For simplicity, triangular fuzzy sets with seven linguistic terms (NB, NM, NS, ZO, PS, 

PM, PB) are used in this dissertation for the input and output variables o f FLC

ZO
PBNM NS PS PMNB

CE

60 4■2 2-46

Figure 5.4 Fuzzy sets

where these terms have the following meaning: 

NB negative big

NM negative medium

NS negative small

ZO zero 

PS positive small

PM positive medium
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PB positive big

3. Rule Base:

The important part o f any FLC is that it linguistically defines the control policy 

o f the controller. Fuzzy control rules are usually in the form o f conditional statements:

I f  <(antecedent)> Then <(consequent)> 

which are easy to implement by fuzzy conditional statements in fuzzy logic.

a) Choice of Control Variables of Fuzzy Control Rules:

Fuzzy control rules are more conveniently formulated in linguistic rather than 

numerical terms. The proper selection o f process state variables o f the antecedent and 

consequent of fuzzy rules is essential to the characterization to the operation of the fuzzy 

controller. Experience with the controlled process plays an important role in the selection 

of the input and output variables. The controller input variables are usually chosen as the

state, state error, state error derivative, state error integral etc.

For example, the fuzzy PD controller has control rules in the form:

If error is E, and change in error is CE, then control input is U, 

where E,, CE, and U, are linguistic variables for the system error, change in error and 

control input respectively.

b) Source of Control Rules:

The derivation o f the fuzzy rules is the most important part in FLC design and 

implementation. There are four main techniques for the derivation o f the control rules,
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and the best method depends on the system under consideration. They also can be used in 

combination.

1. Technique Based on Control Engineering Knowledge:

Fuzzy control rules can be derived heuristically based on some knowledge of the 

controlled process or by analyzing the behavior o f the controlled process in the time 

domain, such that the deviation from the desired trajectory is minimized at each point.

For example, if we consider the second order process time response shown in figure 

(5.5), a control rule can be generated at each point to follow the set point as follows:

c

Time

Figure 5.5 2nd order process time response 

point (a): E is NB & CE is ZO then U is PB 

point (b): E is ZO & CE is PB then U is NB 

point (c): E is PB & CE is ZO then U is NB

point (1): E is ZO & CE is NS Then U is PS
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A generalized PI Control rules for minimizing error and error integral was derived by 

Mac Vicar-Whelan. Using this method, we can find the effect o f individual rules on the 

system performance measures such as overshoot, rise time...etc. O f course this method 

will not be effective for every system and there must be another systematic methods for 

rules generation.

u Error Intej;ral
Error NB NM NS ZO PS PM PB

NB PB PB PB PB PM PS ZO
NM PB PB PM PM PS ZO NS
NS PB PM PS PS ZO NS NM
ZO PM PM PS ZO NS NM NM
PS PM PS ZO NS NS NM NB
PM PS ZO NS NM NM NB NB
PB ZO NS NM NB NB NB NB

Table 5.1 Generalized PI control rules

2. Technique Based on Operators Control Action:

In many industrial man-machine control systems the input-output relations are not 

known with sufficient precision to make it possible to employ classical control theory for 

modeling and simulation. Yet, skilled human operators can control such systems quite 

successfully without having any quantitative models in mind. In effect, a human operator 

employs a set o f control rules. This is the main advantage o f FLC that it can incorporate 

in the same structure both linguistic data from skilled human operator and also crisp data 

from the observed process input-output data.

This also gives the FLC its popularity in industrial control o f very complex systems for 

which no mathematical models exist but which can be controlled by an expert human.
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3. Technique Based on Learning Algorithms:

For many systems the two techniques mentioned earlier fail to give the desired 

performance, especially for multi-input multi-output (MIMO) systems and also for higher 

order systems. This leads to the adding of human learning capabilities to FLC by adding 

another set o f meta rules which exhibit human-like learning ability to create and modify 

the general rule base based on the desired overall performance o f the system.

4. Technique Based on Fuzzy Models of the Process:

For any process a fuzzy model can be generated from the input output observed 

data and some knowledge about the system. Based on these fuzzy models we can 

generate a set of fuzzy control rules for attaining optimal performance of a dynamic 

system. The set o f fuzzy control rules forms the rule base o f a FLC. Although this 

approach is somewhat more complicated, it yields better performance, especially for low 

order systems, and provides a more systematic method for generating the optimal rules 

and the theoretical analysis for FLC. However, this approach will be inapplicable if the 

system order is higher than second order.

4. Decision Making Logic:

a) Fuzzy Implication (composition) Operator:

By fuzzy implication function we mean the function that constraints the relations 

between the antecedents and consequents o f a conditional fuzzy statement. The 

membership function value for each rule for a given controller input is calculated by

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



69

fuzzy implication (composition). Let us take the following example where the rule R, is 

expressed as:

Rt : If e is E, then u is U,

Then the fuzzy implication is expressed as the Cartesian product of the antecedent (s) and 

consequent (s): /?, = £, x U,

There are several definitions for implication, the most widely used in control applications 

are M inimum  (Mamadani) and the Product (Larsen):

jiKl(e,w) = min Minimum

(«)}; Product

b. Fuzzy Inference

By inference we mean obtaining the controller output fuzzy set from the 

controller input and the control rules by compositional rule o f inference.

The two main operators, defined before, are the max-min (Zadeh) and the max-product. 

The fuzzy reasoning algorithm (implication and inference) for a set of control rules can 

be performed in two ways, either by rule matrices or rule by rule.

In the first method, which is suitable for discrete universes, the rule matrix for each rule

R1

El

I

R2

A

CE1

E2

A
CE2

ce

U1

-A
U2

Output Set

U
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R, is obtained throughout fuzzy implication. Then, the final control rule for the whole 

algorithm is obtained using the Union of all the matrices R,. Finally, the output fuzzy set 

is obtained by the compositional rule o f inference. In comparison, in the second, rule by 

rule method, figures (5.6) and (5.7), the membership function for each rule and the 

corresponding output fuzzy set is first obtained using either min. or product implication 

operators. Then, the final output fuzzy set is obtained using the union (max.). This 

method is more general since it is suitable for both discrete and continuous universe o f 

discourse.

Figure 5.6 Graphical interpretation for rule by rule fuzzy decision making 

using Min. fuzzy implication

CE1

R1

CE2

R2

cee

U1

Output Set

U2

u

Product

Figure 5.7 Graphical interpretation for rule by rule fuzzy decision making 

using Product fuzzy implication
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5. Defuzzification Method:

Basically, defuzzification is a mapping from a space o f fuzzy control actions 

defined over an output universe o f discourse into a non fuzzy (crisp) control actions as 

required by the process. A defuzzification strategy is aimed at producing a non fuzzy 

control action that best represents the output fuzzy set resulting from fuzzy implication 

and composition. The most commonly used methods are the max. criterion, the mean of 

maximum and center o f  area, 

a) The max. method:

The max. method produces the point at which the output fuzzy set reaches the maximum 

value. If more than one value exists, it takes the min. control action point on the universe 

of discourse.

b. The mean of maximums method (MOM):

The MOM method generates the control action which represents the mean value 

o f all local control actions whose membership function reaches the maximum, 

c) The center of area method (COA):
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This method produces the control action which represents the center o f the output 

fuzzy set. It is noted that when the MOM is used the FLC is similar to the multi level 

relay system, while the COA yields smooth results like the conventional PID controllers.

MAX MOM

M

COA

Figure 5.8 Defuzzification strategies

5.3.3 FLC Algorithm:

In the previous section, we considered the parameters o f  any FLC in detail. In this 

section, we give the algorithm used in implementing FLC with some comments on the 

scaling and mapping functions.
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Without loss of generality we consider the PD FLC in which the controller inputs 

are the error (e) and error derivative (ce) [ce = e(k) - e(k-l)], and the controller output is 

the process input (u).

The control rules are in the form:

If e is E, and ce is CE,then u is U,

where E, , C £,, U, are linguistic terms of error, change in error and process input 

respectively. Then, the scaling factors which scale the real universe of discourse into the 

normalized universe are Ge. Gee, Gu with:

e* = F*(e*G e),

cen = Fm(ce*G ee); input scaling

where Fm is the mapping function which is usually linear or nonlinear logarithmic, to 

improve the control quality around the set point.

u = un *Gu; Output scaling

The selection of the scaling factors plays a very important role in the performance o f the 

FLC; however, there is no systematic method to find the optimal scaling factors.

There are some guidelines which help the in the selection of the scaling factors 

such as the maximum error, maximum change in error and the maximum (available) 

control action and their maximum normalized values. In a final form, the FLC algorithm 

can be given as shown in Figure 5.9.
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Total Output Fuzzy 
Set Using Uiion

Degree of Membeship 
Determination 
For each input

Fuzzy Implication 
Min. or Product

Output Fuzzy Set 
For Each Rule

Output Scaling

Read Input 
Variables

Scalling & 
Normalization

Fuzzification

Fuzzy Inference and 
Composition

Figure 5.9 FLC Functional block diagram

5.4 Conclusion:

Having performed the previous studies in this chapter, the following main 

conclusions about fuzzy control are drawn:

1. Fuzzy control is capable o f dealing with Systems without requiring detailed dynamic 

model by employing an approach which is close to the human decision making 

algorithm.

2. Fuzzy logic controllers are nonlinear controllers which involve some heuristic in their 

design, many o f the design parameters depend on the characteristics o f the process 

under control. However, there is no systematic method to find the optimal parameters 

rather than using simulation results.
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Fuzzy logic control is not a replacement o f classical control techniques; it requires the 

same kind o f feedback loops required in classical control theory. However, fuzzy 

controllers are more robust than linear controllers and are capable o f combining both 

crisp and linguistic data in the same frame work to find a suitable control strategy.
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CHAPTER VI 

Sliding Mode Fuzzy Control

Most o f the fuzzy robot controllers with nonlinear multi-input multi-output 

(MIMO) systems are designed with a two-dimensional phase plane in mind. In this 

chapter, the performance and the robustness o f this kind of robot controller, which arises 

from their property o f  driving the system into the so-called sliding mode (SM), is shown. 

This method will make the controlled system invariant to parameter fluctuations and 

disturbances. In addition, near the switching line the continuous distribution o f the 

control values in the phase plane causes a behavior similar to that o f a sliding mode 

controller (SMC) with a boundary layer (BL). Even in the presence o f high model 

uncertainties, this gives assured tracking quality. Then, we introduce the boundary layer 

at the fuzzy controller to obtained further improvement. Furthermore, the stability of the 

closed-loop system can be obtain when using the principle of the SMC for the fuzzy 

controller. The choice o f the scaling factors for the crisp inputs and outputs can be guided 

by the comparison o f the fuzzy controller with the sliding mode controller and with the 

modified sliding mode controller, respectively.

Therefore, this chapter clarifies the details o f sliding mode fuzzy control (SMFC). 

In section 6 .1, a background on sliding mode fuzzy control is discussed. In section 6.2, 

we give a short review o f the ordinary SMC with BL. In section 6.3, we describe the 

diagonal form SMFC and derive the similarities between the control law o f a diagonal 

form SMFC and the control law o f an SMC with BL which will describe the design o f the
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control law of an SMFC for the tracking control problem. Finally, we apply the design 

method of SMFC to MIMO robot manipulator.

6.1 Background of Sliding Mode Fuzzy Control

In the classical control theory, controllers are designed based on mathematical 

descriptions and system models. However, in the real world, as systems become more 

complex, it is more difficult to describe them mathematically and design model-based 

controllers to control these ill-defined systems. As an alternative to these model-based 

control schemes, fuzzy control (FC) research was initiated by Mamdani7 0  based on the

fuzzy set theory that Zadeh3 2  proposed to enable people to formulate the qualitative 

linguistic characters apparent in our daily life. A comprehensive review of the classical 

design and implementation o f the fuzzy logic controller can be found in the previous 

chapter. In this chapter, fuzzy control is combined sliding mode control. Several papers

have been proposed on the relationship and combination o f FC and SMC. Kim and Lee 7 1

•}*}
proposed to design a fuzzy controller with the fuzzy sliding surface. Wu and Liu " 

formulated FC to become a class o f SMC and developed a method to determine best

values for parameters in FC rules by using sliding modes. Lin et al . 7 3  proposed a fuzzy 

sliding mode control scheme that improved SMC with the aid o f FC.

6.2 Sliding Mode Control with Boundary Layer74

The remarkable property o f the SMC is that the sliding mode occurs on the 

switching surface, and while in this mode, the system remains insensitive to parameter
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uncertainties and external disturbances. In this section, we shall assume a dynamical 

system described by the nonlinear differential equation:

xln) (t)  =  f[ x ,x ,.. . ,x l" ~ l)v} + u(t )  + d ( t )  (6 . 1)

that can be expressed in a vector form as

x (n) (t )  = f ( x , t )  + u(t )  + d ( t ) ,  (6.2)

where x (f) = (.Y,.r........ .rtn' u j is the state vector, u(t)  is a control variable and d{ t )  is

the disturbance. We shall use the continuous mode because the theory o f VSS was

developed predominantly for such continuous systems. The function is generally

a nonlinear function of the state vector and time. It is assumed that the model f ( x , t )  of

this function (plant) is known with some uncertainty A /( x .r ) :

/ ( ^ 0 = / ( ^ 0 +A/ U - 0  (6-3)

Let furthermore. A/, d  and (r) have the upper bounds with known values 

F, D and u :

|xin,( 0 | - u (0 -  (6-4)

In a typical control problem the aim of the control system is to track (especially to

■p
converge asymptotically to) a given desired state vector (r) = . We

shall denote the tracking error between the current and desired state vector by vector 

£  = (e .e ,...,e ln“1)j .where

£  = x ( f ) - £ / (/)- (6.5)
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We shall also define the so-called generalized error s as a linear function of the 

coordinates o f the error vector e :

( d  V"-l)
s { l ' t )=  — + A. I e: w ith A > 0 . (6 .6 )

\ d t  )

The surface

s {x , t )  = 0 , (6.7)

will be called the sliding surface in the state space.

Starting from the initial conditions

c(0)  = 0 (6.8)

the tracking problem x = Xj can be considered as the state vector e remaining on the 

sliding surface s (x .r)  = 0for all r > 0 .  A sufficient condition for this behavior is to 

choose the control value so that

w ith rj> 0 . (6.9)

Considering s 2 (x, t )  a Lyapunov function, it follows from equation (6.9) that the

system controlled is stable. Looking at the phase plane we obtain: The system is 

controlled in such a way that the state always moves towards the sliding surface. The 

sign o f the control value must change at the intersection o f state trajectory ef t )  and

sliding surface. In this way, the trajectory is forced to move always towards the sliding 

surface as in Figure (6.1). A sliding mode along the sliding surface is thus obtained. By 

remaining in the sliding mode o f equation (6.9), the system is invariant despite model 

uncertainties, parameter fluctuations and disturbances. However, sliding mode causes
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high control activities which is an evident drawback for technical systems. Returning to 

equation (6.9), one obtains the conventional notation for sliding mode

or alternatively i-sgn(.y) < - 7 7 . (6 . 1 0 )

In the following, without loss o f universality, we focus on 2nd order systems. Hence, 

from equation (6.7) follows

s = Ae + e and i  = ke + e = ke + x - x d.

K,

-►
sgn(u) = - l -<t>

-K,

5=0
sgn(w) = +1 J =

Figure 6.1 Sliding mode principle with boundary layer 

From this and equation (6.2) follows

5 - i  = j-(A e + f ( x , t )  + ii + d - x u)<-ri-\s\ .  (6 . 1 1 )

Rewriting this equation leads to

[ / U > 0 + £ /+ ^ - - ^ ] ‘ssn (-y) + u ' ssn (s ) - “ ri- (6-12)

To achieve the sliding mode o f  equation (6.10) we choose u so that

u = ( - / -A e j-^ ( x , / ) * s g n ( j ) w i th / f ( x ,r ) > 0 ,  (6.13)
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where { - f - k e )  is a compensation term and the 2nd term is the controller. With this, 

equation (6 . 1 2 ) can be written as

(6-14)

Installing the upper bounds o f equation (6.4) in equation (6.14) one obtains finally

F + D + v +  r]. (6.15)

To avoid drastic changes o f the manipulated variable mentioned above, we substitute

( * \function sgn (s)by  sat — I in equation (6.13), where

[ x i f |x |< l  
sat (x)  = < . . . !

[sgn(.r) if |x |> l

This substitution corresponds to the introduction o f a boundary layer (BL) |s |< O a s  in 

Figure (6 .1). Thus, we have

( s \
u = - f - k e - K ( x . t )  sat — where <h>0 : > 0 . (6.16)

J  V—  /m a x  \  /  —  'm a x  v

From this follows with equation (6.11) and equation (6.14) the filter function

i  + * : ( x , t ) ~  = A / + < /-x i/ (6.17)

for unmodelled disturbances, model fluctuations and the acceleration of the desired 

values Xj for the input. The output s o f the filter is the distance to the switching line. With

the slope k  o f the switching line s = 0  one obtains the guaranteed tracking precision

0 = —. (6.18)
k

The break frequency of filter (6.17) yields
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K ( x , t )
i<D = v~ (6.19)

cD

On the other hand, even equation (6.7) is a filter with s as input and e as output. Hence, 

the break frequency X of this filter should be, like v0 , small compared to unmodelled

frequencies v(U:

X<zvm. (6 .20)

Furthermore, should be less than or equal to the largest exceptable X. From equation 

(6.19) we obtain the balance condition

K(x . t )
vO = — - ,nax = X, (6.21)

cD

i.e., critical damping. Finally, the design rule for X with regard to sample rate vwmplc and 

time constant tpUm, o f the plant [Slotine 85] can be denoted as

X < — ,— -------- -. (6.22)
9 .(1 + / .v )

\  plant sample f

6.3 Sliding M ode Fuzzy Control

Using the theory of sliding mode control (SMC) with boundary layer (BL) and 

comparing it with a fuzzy control whose rules have been derived from the phase plane as

it appears in 7 5 - 8 6  , leads to a new method called sliding mode fuzzy control (SMFC),

which is an extension of sliding mode with boundary layer. Rewriting equation (6.13) to 

be used in this new method, results in the following equation

u = -F ft(e,<?,A)-sgn(j), (6.23)
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where u is the control output and Fhz is a non-linear non-continuous and positive

function of e.e and A , the error, change in error and the frequency, respectively. The

rules are, in general, so conditioned that above the switching line a negative control 

output is generated and a positive one below it, similar to the SMC. Figure (6.2) shows an

Q-)
example ~ where close to the sliding surface (switching line) control outputs are smaller 

than at a larger distance. So, five steps should be followed to construct the SMFC before 

designing its rule modification:

1. Obtain the universe of discourse by normalizing the error vector e into es

2. Predefine membership functions of the components o f  es. through 

fuzzification o f es to

3. Predefine membership functions of the normalized control output uv and

fuzzy rules through calculation o f the fuzzy output n u

4. Defuzzification o f juu onto a normalized us,

5. Denormalizing of u v onto a  physical control output u .

Normalization as mentioned in 68, is a state transformation. The actual control 

processing of fuzzy rules takes place within the normalized phase plane. The switching 

line s = 0  has to be transformed as follows:

Within the non-normalized phase plane we have A - e + <? = 0 . In the normalized plane, we 

obtain A v • es + es = 0 . Tf we summarize the relationship o f the parameters e v and es as 

es = e-N/ ,  eN - e - N e; iV.,;V. -  normalization factors
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NBNBNBNB

P-positive
N-negative
Z-zero
S-small
M-medium
B-big

NBNB NBNB
PB X *jS NM NB NB NB NB
PB P S \ N S  NM NM NB NB
PB PM P S \ N Z NS NM NB NB
PB PM P z \ NZ NS NB NB
PB PB PS PZ \ N Z  NM
PB PB PM PS P Z \ N S  NM NB
PB PB PM PM P S \N S NB
PB PB PB PB PM P S \ NB

PBPB PB PB PB PBPB PB

NB N. PS P

Figure 6.2 Rules in the normalized phase plane

A will be formulated as

A = Av . (6.24)
v /V,

From design rule (6.20) for A one obtains the following rule

v f -  « v , .  (6.25)

Hence, from equation (6.25) we have obtained the break frequency above which all 

frequencies o f the unmodelled dynamics and disturbances are located. After choosing the 

upper bound o f Av ■ N j N i , we design the rules with respect to the normalized phase 

plane as follows:

Rule 1: u v should be negative above the switching line and positive below it
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Rule 2: as the distance grows between the actual state and the switching line, |«v| should 

increase

Rule 3: as the distance grows between the actual state and the line perpendicular to the 

switching line, |« v| should increase, for the following reasons:

- to avoid the discontinuities at the boundaries o f the phase plane 

speed up the arrival o f the central domain o f  the phase plane 

Rule 4: the maximum values In v I should be used to cover the normalized states ev,e v
I I max

that fall out o f the phase plane with the respective sign of uy .

The difference between the SMFC o f equation (6.23) and the SMC of equation (6.13) is 

the compensation part. If there is no sufficient model o f  the nonlinear part f ( x , t )  the

upper bound of f ( x , t )  has to be modified:

F  = | / ( s > ') _ |-

Thus, we obtain

F j  > F  + D +v  + ri (6.26)r- (max ‘

for the maximum of Ff . . From this, the denormalization factor Mu can be calculated from 

the maximum FF.g o f  in the normalized phase plane. Ff.r , is obtained by

defuzzification = Defuzz ) .  From this and = K  ' ^V;v

denormalization factor ;Vu follows directly:

F,,|
F - maxN.. =■

This will lead to a partial compensation for the SMFC in the form
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u = - k e - F h:(e ,e ,k) - sgn(s)  (6.27)

which is a conventional compensation strategy and fuzzy control in a hybrid version. 

Also, from equation (6.27), one automatically obtains a type o f boundary layer (BL) due 

to the interpolation property of the fuzzy algorithm. However, this BL depends strongly 

on the number and size of the membership functions used in the fuzzy rules. Then, the 

SMFC generates a piecewise linear function u = f ( s ) ,  as in Figure (6.3). Yet, with an

increasing number o f membership functions u = f ( s )  becomes more and more linear94.

Hence, similar to (6.17) we obtain the following filter function for the i-th segment

i  + — - 5  = 1/, -sgn(.s) + f ( x , t )  + d - X j  (6.28)

with

k • ! ' '>,vf “*V*lTV
v » l 

0

kv.<pv > 0 ; / = l , 2 , . ..,« ; = " -n u m b e r o f segments.

Equation (6.28) is a state dependent filter with different break frequencies8 5  £ ,/$ ,. With

the current state at a larger distance from the switching line, the approach velocity to the 

line can be larger. Since at a large distance any unmodelled frequencies are not able to

87cause a change of sign o f the manipulated variable, condition

^ - < k  (6.29)

has to be fulfilled only for f=l. The tracking quality is guaranteed by the maximum 

values FP \ and d> as long asF- lmax °
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Figure 6.3 Nonlinear operating line

However, if we have a special plant with upper bounds

Fk +Dk +vk < + Dmax + v max,

we are in the position to define a F™ * Ff L  ( , so that

FFdc>Fk +Dk +vk +r].

From this we obtain the corresponding O* for plant Pk. Furthermore, using the SMFC 

for different systems P, with

Ff-- +

one obtains for each system Pt a special domain O ,.

A sliding mode fuzzy control is faster and more robust with respect to changes of system 

parameters than a sliding mode control with boundary layer for the following reasons:
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The frequency X is obligatory for all systems Pt considered. From equation (6.29) 

one obtains a guaranteed for all systems P,. In addition to this, for each system Pt a 

O, < <Dmax can be ensured if the upper bounds F„Dt and u, are predefined. Furthermore,

the manipulated variable r  varies with the distance of the state vector from the line 

perpendicular to the switching line. This achieves a smooth transition behavior of the 

control output at the boundaries o f the phase plane. Finally, the variation o f the slope of 

the operating line u = f ( s )  permits a fast approach of the state vector to the switching

line combined with smooth behavior close to the line.

On the other hand, a sliding mode control with boundary layer is designed for 

only one system and its upper bounds, and within the BL the approach velocity of the 

state vector to the switching line is constant. Therefore, disturbances in the control loop 

and fast changes o f the desired values require a longer settling time than under sliding 

mode fuzzy control.

Based on equation (6.30), domains | j |< 0 ,  for systems P, have been formulated. If 

equation (6.29) is not satisfied, the system becomes more sensitive to unmodelled 

frequencies. At sufficient distance d> from the switching line, this fact does not affect the 

system's behavior that much since no sign change of the manipulated variable u can be 

caused. However, in the neighborhood o f the switching line undesired fast sign changes 

o f u can occur especially close to the boundary o f the normalized phase plane. It is 

therefore useful to build a boundary layer (BL) also for the sliding mode fuzzy control 

(SMFC). According to equation (6.16) and (6.27), the modified SMFC with BL has the 

property:
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u = - k - e - F , :.(e,e,k)-sat(s/<&).  (6.31)

This gives the advantages:

1. Crisp changes o f u can be avoided at the boundary o f the (en,en) -plane.

2. Condition (6.29) is fulfilled if O is chosen as follows: Let IwJ be the
v '  I n I max

maximum value o f the crisp (defuzzified) value o f un which will occur inside 

(en,en) -plane and close to the switching line. Then O has to be <D = |max/ A.

3. With this design one is able to reduce the number o f rules, i.e. one can choose 

a minimum set o f rules generating; however, a relatively rough gradation of 

un. This can be remedied by a BL, serving as interpolation agent.

The SMFC with BL provides adaptive tracking quality even under changing 

process parameters. It achieves this both inside and outside the layer together with a 

filtering of unmodelled frequencies. A well-designed SMFC with BL gives a smoother 

control than the SMC with BL. Obviously, once this framework has been determined, the 

number and shape o f the membership functions of the controller must be optimized.

6.4 Design of SM FC for Robot M anipulator

Let the basic equation describing the motion o f  a  robot arm be

r = M ( q ) - q  + N ( q , q ) ,  (6.38)

where
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q is a (k x 1 ) position vector.
q is a (k x 1 ) velocity vector,

q is a (k x 1 ) acceleration vector,

iV/ ( q ) is a (A x &) matrix of inertia (invertible),

N (q , q )  is a (k x 1 ) vector o f damping, centrifugal, coriolis, gravitational forces, 

r  is a {k x I) vector o f  torques.

Furthermore, let the system (6.38) have k degrees o f freedom (d.o.f.). Normally, 

k = 6.  so that the number o f d.o.f. in the Cartesian space Rkx is equal to the number o f

d.o.f. in the joint space Rk. The control problem is to follow a given trajectory Qd (t ) and

to produce a torque vector r  such that the tracking error approaches 0 as t —> oo. The

control design steps are as follows:

1. Introduction of the overall control law,

2. Choice o f  the fuzzy values for the normalized controller inputs slS, and the controller 

outputs r ;,.i V.

3. Design o f the fuzzy rules for each link,

4. Choice o f the slopes A, of the sliding lines st = 0 ,

5. Choice o f the normalization factors AT and N, fore,, and eu .
H i  H i

6 . Choice o f the upper bounds from Section 6.4,

7. Design |F;,,|max.

For a two-link robot manipulator, the values and could be calculated

when we apply the equation o f motion as follow:
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M ( q ) - q  = - N ( q , q )  + z. (6.39)

In this equation

M ( q )  =
mu mn 

ymlx mn

(mx + m2) / ,2  + m j;  + 2 m-,/,/, cos (0 2) /w2 / 2 + m,/,/, cos (0 ,)  
m j 2 + m j xl2 cos(0 2) m2 / 2

(6.40)

and

iV(q,q) =
n.

\ n2.

m,/,/, ( 2 0 ,0 , + 0 2 ] sin (0 ,)  + (/«, + m2 )g/,cos(0 2) + wi2 g/2cos(0 , + 0 , )  + K0 , ( 0 1) 

m2lxl2 sin ( 0 ; ) + m2gl2cos (0 , + 0 ,)  + AT0 , (0 ,)
,(6-41)

where AT0, and K62 are the damping coefficients for the coordinates qx and q2 

respectively.

Calculation of the maximum values FXP. I and F,.-_ I
Imax -  Imax

The inverse o f M  (q ) in the control law (6.38) is given as

(  - |  - l \
m \\ m n  

m,, 22 j

m j ;  / D -m 21\ + m,/,/, cos (0: ) /D

-m 2l2 +m2lxl2 cos[62) / D (mx +m2)l{ + m2l; + 2m,/,/, cos(0 2 )/D^
(6.42)

Then we have

A r ‘ (tf)AAf =
m,- ,1 -Aw, mx2A-n2'  

ym2X -Aw, nt i ' &t b j
(6.43)

where Aw, = w,, -  w, and Aw, = nd2 -  w,. We obtain the (m j1 )f (/w,) for />  j  as follows:
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m,, ={m\ \ • ' ” 12 + mV -Mr

\ = ( >m„ = (my2 • mu +nu\ -m

2 2 ) ’ 

* )•

-j•
For the ( m,~’) • (m,) we obtain

/n,„ = (/n ‘l - in,,

m,(,=(m,~,1 • mI2 + /w22l -Wj,).

From (6.45) we establish /3,min and jS"

p r  -  (mu -mu +m2i p r

/3T  < (m ,"2 ■ mu + m ^ - m 22)< (3™

Then we fix G, as

C , = G-, =■jpr-pr ’ ' slvr-Pi
and /3, as

8=  E l . B =  K
1 ^  ( ) “ ■ ’ ; ^  (J,"

Then, the control torque r  can easily be obtained as

r  =
m,, m12

Vm:i m2 2 y vr :y

where

f ,= G , - ( r . - ^ L - s g n ^ , ) )  

^ = G 2 -(r 2 - F 2 Fr|miix-sgn(s2))

and where
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r i — Q\J ^  ‘ 0̂ 1 ’
^ 2  ~ 1 J  ^  * ^ 0 2 ’

Sx= h  ’ ^ 0 1  — ̂ 0 |>

S i  = A 'Sgj _  ̂ 02"

In addition we have to determine the upper bounds F,.U ,,M ir and Q  (/,_/' = 1,2)

!A A |<^; |a / 2 |< F 2;

|rt| < C/,; |t , | < £ / 2.

From (6.45) we obtain

and finally

. - i -imu mn + m2l m2 < iV/p,

\m\2 ' mi2 + W22 ‘ m21 i < -̂21'

e\J <Qx,

^ < < 2 2 -

Then, we obtain the maximum values F,:.\ and F ,,J  as
l r -  m ax - Imax

IF: > A M I - A ‘, ) ' 7 > £ cv s . - 0 ,->-nl

-■ • m ax * •
F: + (i._ p ;■' ).r2 + J ] Gr  B„- QJ + rj 2

7*'
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CHAPTER VII 

Simulation and Discussion of Results

In Chapter Two, the dynamic model o f a two-link manipulator was discussed. 

Chapter Three, Four, and Six presented the derivation and implementation o f PID 

Controller. Sliding Mode Controller, and Sliding Mode Fuzzy Controller for the 

following two-link manipulator. This chapter gives an overview of the simulation and 

discussion of results and shows the selection of the values for the controllers' parameters.

7.1 Robot Simulation and  Selection of Controllers' param eters

The purpose of a robotic simulation is to mimic an actual manipulator and to 

show the effectiveness o f  each controller. In order for the simulation to yield results as 

close to the real situation as possible, two measures must be taken. The first one relates to 

the accuracy of modeling. Since the actual model o f  a manipulator can not generally be 

obtained for use in the design o f the controller, that luxury will not be utilized in the 

simulation. Therefore, a more precise model will be used in the integration scheme than 

the one used in the controller, as was discussed in Chapter Two. The second measure 

comes from the fact that when the control torques are applied to the joints of a real 

manipulator, the resulting movement is continuous even though the control torques are 

calculated at discrete intervals.

In the following subsections we will show the selection o f the robot manipulator 

parameters. In addition, we will work with each controller and show the selection o f its 

parameters.
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7.1.1 Selection of the Robot Manipulator Parameters

In order to use the control torque equation in a simulation o f the two-link 

manipulator examined in Chapter Two, parameter values for the estimated and exact 

manipulator models must be assumed. The limits placed on the maximum velocity and 

acceleration o f both joints are 1 radian/second « 57.3 degrees/second and 1 

radian/second2 ~ 57.3 degrees/second2. The parameter values chosen are shown in Table 

(7.1). where ml are the masses, /, are the link lengths parameters for links one and two.

Parameter Exact Estimated Maximum error

»*i i ks ) 3 2.5 0.88

m2{kg) 2 2.5 0.76

l\ i m ) 0.375 0.375 0

/,(m ) 0.25 0.25 0

Table 7.1 Manipulator Parameters

The exact manipulator model will be used in the robot arm dynamics while the 

estimated model will be used in the controller.

7.1.2 PID Computed Torque Controller

To have a robust and more stable controller, we first work in the simulation for 

the PID Computed Torque Controller which was the first controller that we discussed in 

Chapter Three. The selected parameters for this controller are shown in Table (7.2). 

Those parameters were chosen after several rims of the simulation program. In sense, we

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96

try reducing the position and velocity error as close to zero as possible in order to have a 

more precise and robust controller.

PID

Gains

Gain Values During Simulation Tests
Test 1 Test 2 Test 3 Test 4 Test 5

K 100 150 200 250 300

kj 20 30 40 50 60

K 500 750 1000 1250 1500

Table 7.2 PID Gains Values

7.1.2 Sliding Mode C ontroller

The only parameters that are unknown for the sliding mode controller at this point 

are Ai, A2, m. n2, ki and k2. These parameters represent the slope o f the sliding surfaces, 

the boundary layer half-widths, and the attractiveness of the sliding surfaces. The values 

for these unknowns must be found by trial and error when the controller is being used. 

The constants that have the greatest effect on the performance of the controller are the 

slopes and boundary layer widths. For this reason, the decisions to assign these values are 

more important than the others. To aid in the decision making process, a study o f the 

performance o f the controller, while varying the values o f the parameters, is conducted.

Testing of the performance index can be used to choose the optimal value for the 

sliding surface slope and boundary layer width o f each joint. Before this can be done, a 

control bandwidth must be chosen. The factors to consider in this decision are accuracy 

and implementability. The higher the control bandwidth, the more accurate the controller 

is. After testing, the highest control bandwidth that can reasonably be used is 400 Hz for
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joints one and two. This will therefore be used to aid in the decision of selecting the 

parameter values. For joint one, the sliding surface slope is 250 and a boundary layer 

width is 0.025. For joint two, the sliding surface slope is 250 and a boundary layer width 

is 0.030. These are the parameter values that will be used in all subsequent simulations 

including the selection o f remaining unknown parameters.

The last parameter values to be chosen are ki and ki, the attractiveness parameters 

o f the sliding surfaces. To aid in this decision a test was made of the performance index 

versus the attractiveness parameter for joints one and two. There exists a peak in the 

performance index for joint one at an attractiveness value o f about five. Once past that 

peak, however, the performance index appears to drop off exponentially. Due to this 

decay, there is not an appreciable decrease in the performance index past an 

attractiveness value equal to 120. Chattering in joint one was not seen at all during the 

analysis. Therefore, the chattering boundary is assumed to lie somewhere above 200. 

Using these observations, the attractiveness parameter for joint one is chosen as 120. The 

test o f the performance index for joint two is very different from joint one. There is a 

minimum found in the performance index at an attractiveness value o f 70 while the 

chattering boundary was located at an attractiveness value about equal to 100. 

Consequently, the attractiveness parameter is chosen as 70 for joint two. These parameter 

values, along with the values found earlier, are shown in the parameter summary table 

below and are used in the simulation program to yield the results discussed in the 

following sections.
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Parameter Joint One Joint Two

Sliding Surface Slope, A 250.0 250.0

Boundary Layer Width, n 0.025 0.030

Attractivness, k 120.0 70.0

Table 7.3 Sliding Mode Controller Parameters

7.1.3 Sliding Mode Fuzzy Controller

In order to find the parameters for the sliding mode fuzzy controller o f a two-link 

robot, one must follow the steps described in chapter six. Therefore, the following results 

were obtained.

Choice of upper bounds and design : Now we determine the bounds of the

right hand side o f (6.53). From that the maximum values o f KlF. and KlF; that suffice 

for a stable motion of the robot within the fuzzy regions are determined by the 

restrictions o f position and velocity profile. Table (7.4) shows the calculated values 

m„i • "L: • " V  m;/, A / , A/, o f (6.47-6.50) for the lower and upper bounds o f the parameter

estimates and the lower and upper restrictions o f q, and q, (t = 1,2).

From these values

l /n j  = 0.9012, \ m j  =0.456, |m„, I = 0 .9 0 l2 ,|m J  =0.456,
I "U m ax  I "M m m  I " - I m a x  I " - I m in

= 2 ,|m l = 5,|A/| = 64,1a/ ,  I =64,
Imax I ' 'Im a x  1 • ' 'Im a x  ■ - '- I m a x

\m

so that

ft“  - K L  = o .4 5 6 ,f i r  - K L  = 0-9012’ 

A”  = k , L  = 0 - 4 5 6 , = k , L  = 0-9012-
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<7i -17.5 -17.5 -10 0 0 0 + 10 +17.5 +17.5

q  2 -17.5 -17.5 -10 0 0 0 + 10 +17.5 + 17.5

;̂rlmax 0.9012 ft.9012 0.9012 0.9012 0.9012 0.9012 0.9012 0.9012 0.9012

^  u 1mm 0.456 0.456 0.456 0.456 0.456 0.456 0.456 0.456 0.456

w„:mo.x 0.9012 0.9012 0.9012 0.9012 0.9012 0.9012 0.9012 0.9012 0.9012

^ u l  min 0.456 0.456 0.456 0.456 0.456 0.456 0.456 0.456 0.456

" W
2 2 0 2 2 2 0 2 2

^  jimin -2 -2 _2 0 0 -2 _2 0 _2

5 5 5 5 5 5 5 5 5

-5 -5 -5 -5 -5 -5 -5 -5 -5

4 / 1 max 64 32 58 32 5 29 5 -3 13

4 / l m n i •  J j -5 -32 -5 -29 -52 -29 -52

4 /  2 m a \ 64 29 -5 43 48 -5 64 29 -5

4 / : m , n 5 -29
O

O1
1 -48 -55 5 -29 I O

O

Table 7.3 Values o f  muX,mul,m

From j3, and |3: we obtain

C, = G : =1.56. 

j3, = /32 = 1.406.

Further, from last part of section 6.5

Fx = F2 = 64.

A/,: = 2.iV/21 = 5.

Then, choose furthermore

q dx = q t =  0, 
a  = 250,

Hi = r?2 =U

Imax
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Then we have

U, =  £/, = 1 0 .

Finally, we choose

0 1 =Q2 =1-

With that we obtain from

Ku,: L  > 1.406(64+ (1 -0 .7 1!)• 10 +1.56-2-1+ l) = 150.4,

£ ; ,4 nax>l-406(64 + ( l-0 .7 1 l)-1 0  + l.56-5-l + l) = l 5 r

Again, it has to be emphasized here that the transfer characteristics of the pure SMFCs 

for links 1 and 2 are chosen to be identical.

7.2 Simulation and Discussion of Results

7.2.1 A Simple Trajectory

The trajectory that was used during the performance study in the previous work

for reference28 was a "simple trajectory" that required both joints to move smoothly 

from 15 to 75 degrees in three seconds. The desired velocity and acceleration were 

obtained by taking the first and second derivatives o f the desired position with respect to 

time. Because o f its simplicity, we ignore this testing in order to challenge all three types 

o f controllers with a difficult trajectory.

7.2.2 A Difficult Trajectory

This section shows that the manipulator joints, when using the control parameters 

for each of the controllers, can follow a more complicated trajectory. The "difficult 

trajectory" that is used has five changes in direction that require the manipulator joints to

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



101

stop and rotate the opposite way. The desired joint positions and velocities are shown as 

Figures (7.1). (7.5), and the actual position and velocity are shown as Figures (7.2), (7.3), 

(7.4), (7.6), (7.7) and (7.8) for PIDC, SMC, and SMFC respectively. By requiring both

joints to follow the same path; the interactions between them are magnified. This can be

understood by imagining that if  joint one changes direction, the tendency is for joint two 

to whip back and rotate in the reverse direction.

The equations for the desired position, velocity and acceleration are shown below 

as equations (7.1) to (7.3). The desired velocity and acceleration are obtained by taking 

the first and second derivatives o f the desired position with respect to time.

0 j ( / )  = 15 + 5(cos(/) + cos(3t)) (7.1)

0j  ( 0  = - 5 (sin (r) + 3 sin (3r)) (7.2)

0i/(/) = -5 (co s(/)  + 9cos(3r)) (7.3)

Desired Position for Difficult Trajectory
30

Joint One 
Joint Two

25

20

15

10

5

0

Time (sec)

Figure 7.1 Desired Position for Difficult Trajectory
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Actual Position for Difficult Trajectory (PID-CTC)
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Figure 7.2 Actual Position for PID 

Actual Position for Difficult Trajectory (SMC)
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Figure 7.3 Actual Position for SMC
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Actual Position for Difficult Trajectory (SMFC)
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Figure 7.4 Actual Position for SMFC

Desired Velocity for Difficult Trajectory

Joint One 
Joint Two

Oa) <n
8**o
>*
o
o0)>

-10

-15

-20

Time (sec)

Figure 7.5 Desired Velocity for Difficult Trajectory
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Actual Velocity for Difficult Trajectory (PID-CTC)
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Figure 7.6 Actual Velocity for P1DC
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Figure 7.7 Actual Velocity for SMC
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Actual Velocity for Difficult Trajectory (SMFC)
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Figure 7.6 Actual Velocity for SMFC

The Sliding Mode Controller (SMC) and the Sliding Mode Fuzzy Controller 

(SMFC) are successful at keeping the manipulator's joint trajectories close to the desired 

trajectories. If the actual joint positions and velocities, calculated by the simulation 

program, were shown along with the desired positions and velocities, plotted on the 

previous pages, the lines would overlap and they could not be distinguished from each 

other. However, the PID Controller shown an overshoot in its velocity plot. A better way 

to show the accuracy o f the PIDC, SMC and SMFC are the plots o f position and velocity 

errors versus time for joints one and two, shown as Figures (7.9), (7,10), (7.11), (7.12), 

(7.13) and (7.14). The maximum position error in PIDC is -1 .9 x l0 "2 degrees for joint 

one and -6 .1x  10-2 degrees for joint two, while the maximum velocity errors is found to
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be -0.179 degrees per second for joint one and 0.511 degrees per second for joint two. 

For The SMC, the maximum position error in is -2.41x 10~2 degrees for joint one and 

-1 .5 8 x l0 '2 degrees for joint two, while the maximum velocity errors is found to be 

0.095 degrees per second for joint one and 0.215 degrees per second for joint two. On 

the other hand, the maximum position error in SMFC is -2.41 x 10'2 degrees for joint one 

and -1 .58x 10"2 degrees for joint two, while the maximum velocity errors is found to be 

0.095 degrees per second for joint one and 0.215 degrees per second for joint two.

Position Errors for Difficult Trajectory (PID-CTC)
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0.04

0.02
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Figure 7.9 Position Errors for PID
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Position Errors for Difficult Trajectory (SMC)
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Figure 7.I0 Position Errors for SMC

Position Errors for Difficult Trajectory (SMFC)
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Figure 7.11 Position Errors for SMFC
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Velocity Errors for Difficult Trajectory (PID-CTC)
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Figure 7.12 Velocity Errors for PIDC
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Figure 7.13 Velocity Errors for SMC
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Velocity Errors for Difficult Trajectory (SMFC)
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Figure 7.14 Velocity Errors for SMFC

It is also important to closely examine the values that are calculated by the control 

torque equation and applied to the manipulator joints for SMC and SMFC. The torque 

curve should ideally be smooth, although in reality, spikes cannot be completely avoided. 

This is because it takes less energy to keep an object in motion than it does to start or stop 

that motion. If Figure (7.13) and (7.14), the control torques versus time is examined, 

spikes can be seen exactly when the motion begins and ends. It is interesting to note that 

the torques do not go back to zero when the trajectory ends. This is because small errors 

are present which the SMC and SMFC controllers try to reduce. However, the torque for 

the PIDC as in Figure (7.15) started increasing with each movement o f joints one and 

two. This is means that the robot must have larger motor than the other controllers in
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order to follow the desired trajectory. So, this might consider one of the disadvantages for 

using PID controller.

Joint Torques for Difficult Trajectory (SMC)

Joint One 
Joint Two

or

-10

-20

Time (sec)

Figure 7.15 Joint Torques for SMC

Except for the PID controller, the results from the difficult trajectory show that 

the errors are the greatest when the desired motion starts or stops and when the desired 

velocity changes sign. These excitations cause the control torque to jum p and occur at 

0.00. 1.15, 2.00, 3.14.4.29, 5.14 and 6.28 seconds.
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Joint Torques for Difficult Trajectory (SMFC)
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Figure 7.16 Joint Torques for SMFC
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Figure 7.17 Joint Torques for PIDC
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The smaller jumps in the velocity error and control torque that appear between the 

large ones described above are caused by sign changes in the desired acceleration. These 

sign changes in the acceleration arise when a maxima exists in the desired velocity. All of 

these excitations occur despite the fact that smooth trajectories are specified. If the 

desired trajectories were not smooth, these difficulties would only be compounded.

If we compare the performance of all three controllers, we will conclude the 

following. Even though the PID controller is simple to design, it has larger errors than the 

SMC and SMFC. So, we might say robustness and stability o f the PID controller is not 

guaranteed. If we try to increase the gains value this might has its effect in the 

performance o f the PID controller, but this will not be fare comparison with the other 

controllers. Because o f this, we did not include the PID controller in the second test.

Both SMC and SMFC preformed very well in comparison to the PID controller 

regarding position and velocity errors. In addition, we limited their torques because 

limitation of drive torques offers some advantages, such as a reduction in energy 

consumption or avoidance o f overheating o f D.C. motors. Then we might say stability 

and robustness in both o f these controllers are guaranteed. So, we will check for their 

performance again in the second test.

7.2.3 Test of Payloads

The simulation results presented up to this point have all assumed that the joint 

sensors had no error. One aspect o f real manipulators that is not included in the 

simulation at this time is the fact that the robot will carry some sort o f payload. This will 

be simulated in the program by increasing the mass o f link two in the integrator model by
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2.3 kg at 2.0 seconds, making the mass o f link two equal to 4.3 kg. This will simulate the 

robot picking up an object that is three times the weight o f the uncertainty designed into 

the controller. To simulate the object being placed down, the mass o f link two will go 

back to the original mass o f 2 kg when time is equal to 5.0 seconds. The resulting plots of 

the position and velocity errors for both SMC and SMFC are shown on the next page as 

Figures (7.18), (7.19), (7.20) and (7.21), while the control-torques are shown as Figures 

(7.22) and (7.23) respectively.

No deterioration can be seen in the positional accuracy of the manipulator joints. 

In fact, the load added to the link seem to have disturbed both controllers and given them 

the nudge it needed to overcome gravity and Coulomb friction and eliminate the steady- 

state errors. Unfortunately, the same disturbances that help eliminate the steady-state 

errors introduce a small amount of chattering. This can be seen by the extra jitters found 

in the velocity errors o f  Figures (7.20) and (7.21) when compared to the original velocity 

errors o f Figures (7.13) and (7.14).

Another indication of the payload's presence is the slightly larger magnitude of 

chattering found in the control torque. This can be seen in Figures (7.22) and (7.23) by 

comparing the torques during the period when the payload is present, from two to five 

seconds, to the torques during the period when the payload is not present.
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Position Errors for Difficult Trajectory (SMC) Payload
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Figure 7.18 Position Errors for SMC (Payload)
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Figure 7.19 Position Errors for SMFC (Payload)
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Velocity Errors far Difficult Trajectory (SMC) Payload
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Figure 7.20 Velocity Errors for SMC (Payload)
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Figure 7.21 Velocity Errors for SMFC (Payload)
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Joint Torques for Difficult Trajectory (SMC) Payload
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Figure 7.22 Joint Torques for SMC (Payload)
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Figure 7.23 Joint Torques for SMFC (Payload)
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If we try to compare the performance of SMC and SMFC controllers after the 

sensor noise and payloads test, we will conclude the following. Even though the SMC 

controller is simple to design, it has larger errors than the SMFC controller. So, we might 

say robustness and stability of the SMC controller is not guaranteed during this test. If we 

try to increase the boundary layer value, this might has its effect in the performance of 

the PID controller, but this will not be fare comparison with the SMFC controller. In 

contrast. SMFC controller preformed very well in comparison to the SMC controller 

regarding position and velocity errors. In addition, it uses less torque to follow the desired 

trajectory. Then we might say stability and robustness in the Sliding Mode Fuzzy 

Controller is guaranteed. This will make us recommended that SMFC could be used as 

robot controller but still not adaptive controller.
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CHAPTER VIII 

Extended Kalman Filter

8.1 System Modeling and Identification

Mathematical modeling is one of the most fundamental areas in science and 

engineering. A system model is a very useful and compact way to describe the 

knowledge about the system. Models can be used in many applications such as 

prediction, control, state estimation, simulation and analysis. Models for many systems 

can be derived based on the physical laws which require knowledge and insight about the 

process being modeled. From a mathematical point o f view, the obtained model equations 

are generally in the form of linear or nonlinear algebraic, ordinary or partial differential 

equations. The advantage of this approach is that the variables and parameters obtained 

have a physical interpretation. However, if the system is too complex to allow physical 

modeling or the models obtained are not simple enough to be used, system identification 

is the solution.

System Identification, o f which Professor Huang at Old Dominion University is 

one o f the unique scholars in the area, is an extremely important and diverse field that 

spans many disciplines, e.g., signal processing, communications, control systems, 

statistics and many others. It deals with the problem of building mathematical models of 

dynamical systems based on observed input-output data. This approach does not depend 

on establishing rigorous mathematical models based on first principles; rather, it tries to 

establish a relationship between the input and output variables which does not depend on 

any physical or chemical laws.
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Generally, the process of system identification can be divided into four steps: 

collecting input-output data, selecting model structure, estimating the parameters of the 

selected model structure and model validation to determine how "good" the developed 

model is. Thus, system identification can be thought o f as determining the "best" model 

which describes the given data set among a set o f candidate models. If  the identified 

model is not acceptable according to model validity tests, a new model structure has to be 

tried. This shows that system identification is an iterative process and many trials might 

be needed before arriving at an acceptable model.

Since a mathematical description o f a process is often a prerequisite to analysis 

and controller design, the study o f system identification techniques has become an 

established branch o f control theory. When choosing a nonlinear process model structure 

for control implementation, the following points have to be taken into account

• The parameter estimation methods should be applicable to the nonlinear 

process model.

• The nonlinear process model should be linear in the unknown parameters so 

that these parameters can be estimated.

• The process model should be sufficiently comprehensive to include all 

information about the process necessary to describe the input-output behavior 

for control purposes.

• The nonlinear process model should be suitable for derivation o f nonlinear 

control algorithm.

While the theory o f identification o f  linear dynamic systems has been already well 

established, e.g .,87-90, the theory o f identification of nonlinear systems is not yet
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satisfactory. The need for nonlinear system models comes from the fact that most o f the 

physical systems encountered in practice are nonlinear to some extent. Also, the linear 

models can only be used under limited conditions and special assumptions and are often 

found to be inadequate and might give rise to misleading results. Therefore, introducing 

nonlinear models is a necessity, especially for systems were accurate modeling is critical. 

The problem of proper descriptions o f nonlinear systems is still under discussion. This 

can be attributed to the complexity and diversity o f nonlinear systems. Thus, in the field 

o f nonlinear system identification there is an obvious need for new ideas, methods and 

algorithms, and further research is required to develop improved identification 

techniques. Moreover, if these methods are to be used in control systems applications, 

they should be simple enough to allow the use o f standard controller design methods.

8.2 Choice of Unique M ethod

The problem of identification o f nonlinear systems can be divided into two 

groups: identification o f deterministic systems (noise free situation) and stochastic 

systems (existence o f plant and observation noise). The latter can be solved by means of 

the Extended Kalman Filter method in which the system is linearized along the reference 

trajectory, then transformed into a discrete-time equivalent form.

A combined parameter and state estimation procedure is then used. The Extended 

Kalman Filter method assumes validity o f linearization, which makes it similar to 

Bellman's quasilinearization method.
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8.3 Kalman Filters

In 1960, R.E. Kalman published his famous paper describing a recursive solution 

to the discrete-data linear filtering problem. Since that time, due in large part to advances 

in digital computing, the Kalman filter has been the subject o f extensive research and 

application, particularly in the area o f autonomous or assisted navigation.

The Kalman filter is a set o f mathematical equations that provides an efficient 

computational (recursive) solution o f the least-squares method. The filter is very pow­

erful in several aspects: it supports estimations o f past, present and even future states, and 

it can do so even when the precise nature o f the modeled system is unknown.

In nature, however, most physical problems or processes are nonlinear. 

Consequently, the nonlinear systems must be linearized (that is, approximated) before the 

linear filter theory can be applied. Specifically, the problem of combined state and 

parameter estimation was originally posed as a nonlinear state estimation problem using 

the Extended Kalman Filter (EKF). Since this requires a linear approximation of a 

nonlinear system about the current estimate, divergence may result if  the initial estimate 

is poor. Moreover, not much is known about the convergence properties of the EKF, and 

the conditions for acceptability o f the solution are vague. In the following subsections, 

we briefly state well-known formulations and results for Kalman filters and extended 

Kalman filters.

8.3.1 Continuous-Time Kalman Filter

The following results are taken from reference91. Let a system state x (r) be generated 

by the following model:
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x (t) = F ( t ) x ( t )  + G{ t )w( t ) .  (8.1)

For which we can observe

z (/)  = f f ( /)x ( r )  + i;( /) , (8 .2 )

where w(t)  and v ( t )  are independent random processes with the following statistics:

E{W( 0 }E {o ( / ) } = 0

cov{w (/),w (r)} = 0 ( r ) 5 o ( / - r )  

cov{u (/),u (r)}  = R( t ) 8D( t - v )  

co v {w (/).u (r)j = co v (w (r),w (/0)} = cov{u(f),.t(t)}  = 0 .

The optimal estimate of .r(/) using z(r)for /„ < r  <t  is .t(r) and is given by the filter:

where P{t)  is given by the error variance algorithm:

^  = F ( l ) P { , )  + P ( l ) F r [ l ) + G { , ) Q ( l ) 0 T( l ) - P ( l ) H r (<)*-' ( i ) H ( i )P ( i ) (8.5)
a t

for which the initial conditions are:

.r (r0 ) = E {*(/„)} P(t0) = var {.r(r0 )}. (8 .6 )

8.3.1 Continuous-Time Extended Kalman Filter

Because the applications made in the following chapter deal with observations 

which are constant linear combinations o f the states, the observation matrix H  (/) is not a

function time, thus H( t )  has been replaced by H . The filtering technique described in

the previous subsection can be extended to consider nonlinear system models and the 

observations:
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x(/) = /[x(0,/](0 + C[*(0’']w(') (8J)

z (t) = Hx(t)  + v ( t ) ,  (8 .8 )

where w(r) and u(t)  are independent random processes with their statistics given by

(8.3). If the value of / [ . t ( r ) , f ]  can be approximated by

] = / [ . r ( r ) , r ] + ^ [ . v ( / ) - x ( r ) ] ,

where terms of order higher than one in the series expansion are neglected, the following 

filter can be used:

^ d  = / [ x ( » ) . / ] + />(l )ffr ( ( ) * - ' ( * ) { z ( 0 - « ( ' ) }  <8-91

^  = ^ P ( ' )  + P ( t ) ¥ r + G [ x ( t ) , , } 0 ( < ) G T[ * ( t ) , t ] - P ( t ) H r ( t ) R- ' ( ! ) HP( t ) (8.9)

x{t0) = E{x{t0) \P{t0) = var{x{tQ)} (8.10)

The reader referred to 9 2 - 1 0 2  for more information about this new method.
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CHAPTER IX 

TAREK Method

In this chapter, a new adaptive motion control scheme for robust performance 

control o f robot manipulators is presented. The proposed scheme is designed by 

combining the fuzzy logic control with the sliding mode control based on extended 

Kalman filter. Fuzzy logic controllers have been applied successfully in many 

applications and were shown to be superior to the classical controllers for some nonlinear 

systems. Sliding mode control is a powerful approach for controlling nonlinear and 

uncertain systems. It is a robust control method and can be applied in the presence of 

model uncertainties and parameter disturbances provided that the bounds of these 

uncertainties and disturbances are known. In the previous chapters, a control scheme 

called sliding fuzzy logic control (SMFC) is proposed, in which the principles o f fuzzy 

logic control and sliding mode control are combined. The main advantage o f SMFC is the 

system stability. Therefore, we design a new adaptive SMFC method that requires only 

position measurements. These measurements and the input torques are used in an 

extended Kalman filter (EKF) to estimate the inertial parameters o f the full nonlinear 

robot model as well as the joint positions and velocities. These estimates are used by the 

SMFC to generate the input torques. The combination of the EKF and the SMFC is 

shown to result in a stable adaptive control scheme called trajectory-tracking adaptive 

robot with extended Kalman (TAREK) method. The theory behind the TAREK method 

provides clear guidelines on the selection o f the design parameters for the controller. The 

proposed controller is applied to a two-link robot manipulator. Computer simulations 

show the robust performance of the proposed scheme.
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9.1 Robot Model Revisited

In this section, the dynamic model for the robotic manipulator is developed. This 

model is based on the assumption that the links are rigid bodies. As we derived in chapter 

two in equation (2.27), the manipulator’s model can be formulated using Lagrangian 

dynamics as:

T = M { q ) q  + V(q,q)  + F ( q )  + G{q),  (9.1)

where q,q.  and q are the manipulator joint position, velocity and acceleration vectors 

respectively. M ( q )  is the inertia matrix, V(q,q)  Coriolis and centrifugal force vector, 

G(q)  the gravitational force vector, F ( q)  the vector function of frictional forces and r  

is the output torque vector applied by the motor to the robot joints. Since this equation is 

linear in the parameters 9 2 - 9 4  , we have

z = Y ( q , q , q ) e .

Also, the manipulator acceleration is given by

q = M - l ( q ) { r - F ( q ) - V ( q , q )  + G(q)}.  (9.2)

In equation (9.1), one assumes that all the parameters are known, but in practice this 

might not be true. One can form a parameter vector 0 which includes the unknown 

parameters (e.g., mass o f the load, viscous friction coefficient, inertia and mass of the 

links). The parameter 0 vector is treated as constant vector so 0 = 0 . Let us define a state

vector .t = [<7 r ,^ r ,0 r ]  and the input M(r) = r  so that:
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x = f ( x , u )  = M - x{ q , Q ) { u { t ) - F {q , e ) - V { q , q , Q) - G { q , Q )}

0

(9.3)

These equations represent a system where there is no input disturbances and no 

change in the parameters. If we want to take into account the possibility of input 

disturbances and parameter variations, u should be replaced by u + w, and Q = 0  by 

9 = u\ where w, and w, are random variables. This is the Bayesian approach where

time-variant parameters are modeled as random walk processes95. This results in:

x  = f ( x , u )  + G ( x ) w  (9.4)

G (.t) =

0  O'

A T 'fa .fl) 0  

0  /

w = [w,r w'2J .

(9.5)

(9.6)

An extended Kalman filter will be applied to this model. Thus, a perturbation 

model will be needed. This perturbation model is based on first order Taylor series 

expansion of the system model with respect to an estimated trajectory x . Let us define:

x  = / ( x , u )  (9.7)

d f ( x , u )
OX 3: ---- i----- -5 x  + G (x)

with

dL
dx

dx

0 / 0

M O  M O  M O  
0 0 0

W (9.8)

(9.9)

and
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(9.10)

(9.11)

(9.12)

where all the partial derivatives are evaluated along the estimated trajectory. These 

equations can be written as a linear time-variant system:

Equation (9.13) describes a linearization o f the nonlinear manipulator dynamics about the 

estimated trajectory. Therefore, one can use the model dynamics in Equation (9.13) to 

derive the extended Kalman filter.

9.2 TAREK M eth o d 1 0 3

The new method, Trajectory-tracking Adaptive Robot with Extended Kalman is 

an indirect adaptive controller. The control is based on the Sliding Mode Fuzzy Control 

(SMFC) using position, velocity and parameter estimates. Therefore, the control torque 

vector is given by

use of the estimated values of q,q,  and 6 . The estimates are provided by the application 

of the continuous-time extended Kalman filter described in chapter 8  by Equations (8.7)- 

(8-10) to the robot model based on Equations (9.4)-(9-12) with position measurements

5.t = F ( t)S x  + G (/)w . (9.13)

r  = M ( q ) [ q d +2k(qj  -  + (qd - q ) ]  + v ( q ,q )  + G(q)  + F(q) ,

(9.14)

where 2 A and A2 is part o f the sliding surface s = qd + 2 Aq + k 2q and the hats denote the
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only. The controller structure is shown in Figure (9.1) where SMFC denotes the Sliding 

Mode Fuzzy Control method and EKF the extended Kalman filter. The EKF has two 

purposes: to provide estimates o f the parameters and to reconstruct the velocity from

position measurements ( / /  = [ /  0 0]). The stochastic interpretation o f the Kalman 

filter will allow us to select R(t )  and 0 { t )  (the covariance matrices) from practical 

considerations.

<1j
►

EKF

ROBOTSMFC

Figure 9.1 TAREK method controller structure

A modification will be introduced in order to improve the robustness o f the 

system. This modification uses a priori bounds on the unknown parameters:

9 < 9 < 9  .mm max

When0 satisfies these bounds, M  (q)  is guaranteed to be positive definite. This is not

very restrictive since from physical considerations these bounds can be easily selected for 

most parameters (e.g.. mass and inertia are positive and their maximum possible values 

can be easily guessed).
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This modification can be considered as a cr-modification that uses a priori bounds 

on the unknown parameters. The state equations for the modified model are

x = / ( x ,« )  +

where <x (0 ) is a vector function given by

0

0

<y(0)

cr, (0) =
-a (Q  - 0  ) if 0  < 0^  i m i n  /  i i

o

if 0,<0,
i f  S . m i n  < 0 -

where 0,min and 0,max are the known bounds on the /-th parameters and a > 0 .  This 

modification, when it is included in the filter, preserves the positive definiteness of

.V/ (q ) and avoids parameter drift by using

f ( x . u )  = f { x . u )  +
0

0

cr(0 )

dJ L J L +
dx dx

0 0 0
0 0 0

dar (0 ) 

00
0  0

where do{Q)/dQ is a negative semi-definite diagonal matrix with:

0CT, (0)

0 0 .

- a  i f  Q '  < 0 .m,n

0 if 0imi„ <0, <0imax
- a  if 0 . < 0 __

Hence, this modification will come into effect when at least one parameter is outside the 

a priori bounds; thus, no parameter can increase without bounds since they are stabilized
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as soon as they cross the bounds. The higher a  is chosen, the lower the depth o f the

penetration of 0  across the boundaries defined by

<0  < 0.

This modification uses the same a priori information as the resetting rule o f 

Craig's method 1 0 4  and is similar to the cr-modification used in 105.

9.3 Choice of Design Parameters

9.3.1 Selection of EKF initial condition

From filtering theory the initial filtered state estimates are the expected values o f these 

states at the beginning o f control. Hence, for the robotic manipulator starting at rest and 

at a known position (up to the accuracy of the resolver), the initial filtered states are:

s ( 'o ) ‘
0  

0 n

where : ( t0) is the first measurement of position and 0 O the best estimate available o f the

unknown parameters.

Accordingly, the initial covariance matrix, is given by

Pn =

P„ 0  0

0

0

^  0
0 Pa

where P is a diagonal matrix o f the estimated variances o f  the respective measurements 

(these values are lower bounded by the accuracy of the analog-to-digital A/D converters 

used to measure position), Pq is a diagonal matrix o f the variances representing the
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confidence that we have that the robot is indeed starting to operate from rest, and finally 

P0 is the estimated values o f the covariance of the possible errors in the estimated 

parameters. The higher P0 is, the less we are sure of the accuracy of our initial estimates.

9.3.2 Selection of O(t)  and R(t)

The matrices 0 ( t )  and R(t )  are other parameters that must be defined to 

simulate the robot model when using the extended Kalman filter. These matrices should 

be representative o f the noise content o f the measurements and control inputs100.

• R(t )  is simply a diagonal matrix for the measurement variances.

• O(t)  is composed of two diagonal matrices^, (t ) 0 2 (t).

o ( 0  =
Q, ( 0  o 

0 Q:(0

Oy ( t) reflects the magnitude of the disturbances caused by unmodeled 

dynamics, hence the confidence in our model. It also includes the 

effect of the truncation error in the series expansion, hence Qx (t) > 0.

Ox (t ) represents the speed at which the parameter vector is estimated 

to vary in a random walk fashion.

9.4 Simulation and Results

In Figure (9.2), a structure o f a two-link robot manipulator that will be used in the 

simulation o f this controller. Defining the parameters:
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A = mx (cf + o f) + /, + m2l{ 

p 2 = m2(c; + 0 ; )  + /,

A  = /w2 /,c,
A  = m2lxo2

and applying Lagrange's equation to the system yields:

M{q)  =

V { w )  =

pl + p 1+2 pi cosq2- 2 p Asinq2 sym 

p 2 + p 2 cos q2- p A sin q2 p 2

- (  p } sin q2 + p 4 cos <7 ,)  q2 ( 2 qx + q2) 

(p 3 s in ^ 2 + a 4 cos^2) a

g(<?) = ^ ( ? )  = o.

The same robot parameters presented in chapter seven will be used here, hence

0 = [0.24 0.06 0.09 O fkgm 2.

All simulation will be started with the parameter estimates:

0 =[0.3 0.2 0.1 O fkgm 2.

The desired path given in chapter seven will be used together with all parameters o f the 

SMFC controller. The simulation will be with both cases without measurement noise. In 

both cases, the covariance matrices were set as

R( k)  = 0.00017, (?,(£) = 0.01/, 0 2{k) = 0.00251, P{0)  = 0.00017.

After we run the simulation for the sliding mode fuzzy control based on extended 

Kalman filter, we come up with the following result as shown in figure (9.3) and (9.4). 

This result indicated that TAREK method could work almost like SMFC and guaranteed 

its stability performance.
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m,

Figure 9.2 Robot Structure for SMFC with EKF

Filtering position errors: SMFC-EKF
0.015

Joint O ne 
Joint Two0.01

0.005

-0.005

- 0.01

-0.015
1 0 2 3 5 61 4 7

Time (sec)

Figure 9.3 Filtering position errors: qx - q x = solid line, q1- q 1 = dashed line
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Filtering velocity errors: SM FC -EK F
0.15

Jo in t O ne  
Jo in t Two

0.05

-0.05
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Figure 9.4 Filtering velocity errors: <7 , -q^ = solid line, q, - q 2 = dashed line
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CHAPTER X 

Conclusions and Future Work

A new adaptive motion control scheme for robust performance control of robot 

manipulators is presented. The proposed scheme is designed by combining the fuzzy 

logic control with the sliding mode control based. Fuzzy logic controllers have been 

applied successfully in many applications and were shown to be superior to the classical 

controllers for some nonlinear systems. Sliding mode control is a powerful approach for 

controlling nonlinear and uncertain systems. It is a robust control method and can be 

applied in the presence o f model uncertainties and parameter disturbances, provided that 

the bounds of these uncertainties and disturbances are known. In this work, a control 

scheme called sliding mode fuzzy logic control (SMFC) is proposed in which the 

principles o f fuzzy logic control and sliding mode control are combined.

In addition, a new adaptive motion control scheme for robust performance control 

of robot manipulators is also presented. The proposed scheme is designed by SMFC 

based on extended Kalman filter. The new design adaptive SMFC method requires only 

position measurements. These measurements and the input torques are used in an 

extended Kalman filter (EKF) to estimate the inertial parameters o f the full nonlinear 

robot model as well as the joint positions and velocities. These estimates are used by the 

SMFC to generate the input torques.

Through computer simulation and results, we prove that Sliding Mode Fuzzy 

Control is a stable and robust controller that can be used with application to robot 

manipulators. Compression between PID Controller, Sliding Mode Controller (SMC),
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and Sliding Mode Fuzzy Controller (SMFC) showed that SMFC gives better performance 

than the other controllers. Even with increase o f the payload, the SMFC gives better 

performance than the SMC.

Moreover, the combination of the EKF and the SMFC is shown to result in a 

stable adaptive control scheme, called trajectory-tracking adaptive robot with extended 

Kalman (TAREK) method. The theory behind TAREK method provides clear guidelines 

on the selection o f the design parameters for the controller. When it is applied to a two- 

link robot manipulator, computer simulations show the robust performance of proposed 

schemes.

Sliding Mode Fuzzy Controller shows that it is a promising controller to be used 

with robotics systems. Its error free validity can be reached in the near future. With new 

technology, this robot controller can be implement to perform brain surgery. This can not 

be done without experimental research and high tech facilities.
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