8,667 research outputs found

    A new approach to global control of redundant manipulators

    Get PDF
    A new and simple approach to configuration control of redundant manipulators is presented. In this approach, the redundancy is utilized to control the manipulator configuration directly in task space, where the task will be performed. A number of kinematic functions are defined to reflect the desirable configuration that will be achieved for a given end-effector position. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. An adaptive scheme is then utilized to globally control the configuration variables so as to achieve tracking of some desired reference trajectories. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The control law is simple and computationally very fast, and does not require the complex manipulator dynamic model

    Method and apparatus for configuration control of redundant robots

    Get PDF
    A method and apparatus to control a robot or manipulator configuration over the entire motion based on augmentation of the manipulator forward kinematics is disclosed. A set of kinematic functions is defined in Cartesian or joint space to reflect the desirable configuration that will be achieved in addition to the specified end-effector motion. The user-defined kinematic functions and the end-effector Cartesian coordinates are combined to form a set of task-related configuration variables as generalized coordinates for the manipulator. A task-based adaptive scheme is then utilized to directly control the configuration variables so as to achieve tracking of some desired reference trajectories throughout the robot motion. This accomplishes the basic task of desired end-effector motion, while utilizing the redundancy to achieve any additional task through the desired time variation of the kinematic functions. The present invention can also be used for optimization of any kinematic objective function, or for satisfaction of a set of kinematic inequality constraints, as in an obstacle avoidance problem. In contrast to pseudoinverse-based methods, the configuration control scheme ensures cyclic motion of the manipulator, which is an essential requirement for repetitive operations. The control law is simple and computationally very fast, and does not require either the complex manipulator dynamic model or the complicated inverse kinematic transformation. The configuration control scheme can alternatively be implemented in joint space

    A hyper-redundant manipulator

    Get PDF
    “Hyper-redundant” manipulators have a very large number of actuatable degrees of freedom. The benefits of hyper-redundant robots include the ability to avoid obstacles, increased robustness with respect to mechanical failure, and the ability to perform new forms of robot locomotion and grasping. The authors examine hyper-redundant manipulator design criteria and the physical implementation of one particular design: a variable geometry truss

    Stiffness modeling of non-perfect parallel manipulators

    Get PDF
    The paper focuses on the stiffness modeling of parallel manipulators composed of non-perfect serial chains, whose geometrical parameters differ from the nominal ones. In these manipulators, there usually exist essential internal forces/torques that considerably affect the stiffness properties and also change the end-effector location. These internal load-ings are caused by elastic deformations of the manipulator ele-ments during assembling, while the geometrical errors in the chains are compensated for by applying appropriate forces. For this type of manipulators, a non-linear stiffness modeling tech-nique is proposed that allows us to take into account inaccuracy in the chains and to aggregate their stiffness models for the case of both small and large deflections. Advantages of the developed technique and its ability to compute and compensate for the compliance errors caused by different factors are illustrated by an example that deals with parallel manipulators of the Or-thoglide famil

    Stiffness Analysis Of Multi-Chain Parallel Robotic Systems

    Get PDF
    The paper presents a new stiffness modelling method for multi-chain parallel robotic manipulators with flexible links and compliant actuating joints. In contrast to other works, the method involves a FEA-based link stiffness evaluation and employs a new solution strategy of the kinetostatic equations, which allows computing the stiffness matrix for singular postures and to take into account influence of the external forces. The advantages of the developed technique are confirmed by application examples, which deal with stiffness analysis of a parallel manipulator of the Orthoglide famil

    Compensation of compliance errors in parallel manipulators composed of non-perfect kinematic chains

    Get PDF
    The paper is devoted to the compliance errors compensation for parallel manipulators under external loading. Proposed approach is based on the non-linear stiffness modeling and reduces to a proper adjusting of a target trajectory. In contrast to previous works, in addition to compliance errors caused by machining forces, the problem of assembling errors caused by inaccuracy in the kinematic chains is considered. The advantages and practical significance of the proposed approach are illustrated by examples that deal with groove milling with Orthoglide manipulator.Comment: Advances in Robot Kinematics, France (2012

    Characterization and control of self-motions in redundant manipulators

    Get PDF
    The presence of redundant degrees of freedom in a manipulator structure leads to a physical phenomenon known as a self-motion, which is a continuous motion of the manipulator joints that leaves the end-effector motionless. In the first part of the paper, a global manifold mapping reformulation of manipulator kinematics is reviewed, and the inverse kinematic solution for redundant manipulators is developed in terms of self-motion manifolds. Global characterizations of the self-motion manifolds in terms of their number, geometry, homotopy class, and null space are reviewed using examples. Much previous work in redundant manipulator control has been concerned with the redundancy resolution problem, in which methods are developed to determine, or resolve, the motion of the joints in order to achieve end-effector trajectory control while optimizing additional objective functions. Redundancy resolution problems can be equivalently posed as the control of self-motions. Alternatives for redundancy resolution are briefly discussed

    A Framework to Illustrate Kinematic Behavior of Mechanisms by Haptic Feedback

    Get PDF
    The kinematic properties of mechanisms are well known by the researchers and teachers. The theory based on the study of Jacobian matrices allows us to explain, for example, the singular configuration. However, in many cases, the physical sense of such properties is difficult to explain to students. The aim of this article is to use haptic feedback to render to the user the signification of different kinematic indices. The framework uses a Phantom Omni and a serial and parallel mechanism with two degrees of freedom. The end-effector of both mechanisms can be moved either by classical mouse, or Phantom Omni with or without feedback

    Joint-space tracking of workspace trajectories in continuous time

    Get PDF
    We present a controller for a class of robotics manipulators which provides exponential convergence to a desired end-effector trajectory using gains specified in joint-space. This is accomplished without appeal to the use of discrete inverse-kinematics algorithms, allowing the controller to be posed entirely in continuous time

    Kinematic calibration of Orthoglide-type mechanisms from observation of parallel leg motions

    Get PDF
    The paper proposes a new calibration method for parallel manipulators that allows efficient identification of the joint offsets using observations of the manipulator leg parallelism with respect to the base surface. The method employs a simple and low-cost measuring system, which evaluates deviation of the leg location during motions that are assumed to preserve the leg parallelism for the nominal values of the manipulator parameters. Using the measured deviations, the developed algorithm estimates the joint offsets that are treated as the most essential parameters to be identified. The validity of the proposed calibration method and efficiency of the developed numerical algorithms are confirmed by experimental results. The sensitivity of the measurement methods and the calibration accuracy are also studied
    corecore