51,223 research outputs found

    Multidisciplinary optimization for engineering systems: Achievements and potential

    Get PDF
    The currently common sequential design process for engineering systems is likely to lead to suboptimal designs. Recently developed decomposition methods offer an alternative for coming closer to optimum by breaking the large task of system optimization into smaller, concurrently executed and, yet, coupled tasks, identified with engineering disciplines or subsystems. The hierarchic and non-hierarchic decompositions are discussed and illustrated by examples. An organization of a design process centered on the non-hierarchic decomposition is proposed

    Regulation and efficiency incentives: evidence from the England and Wales water and sewerage industry

    Get PDF
    This paper evaluates the impact of the tightening in price cap by OFWAT and of other operational factors on the efficiency of water and sewerage companies in England and Wales using a mixture of data envelopment analysis and stochastic frontier analysis. Previous empirical results suggest that the regulatory system introduced at privatization was lax. The 1999 price review signaled a tightening in regulation which is shown to have led to a significant reduction in technical inefficiency. The new economic environment set by price-cap regulation acted to bring inputs closer to their cost-minimizing levels from both a technical and allocative perspective

    Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks

    Get PDF
    The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time. To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm based on the Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path fair resource allocation problem in a distributed SDN control architecture. Our ADMM-based algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances at scale

    Matrix Factorization at Scale: a Comparison of Scientific Data Analytics in Spark and C+MPI Using Three Case Studies

    Full text link
    We explore the trade-offs of performing linear algebra using Apache Spark, compared to traditional C and MPI implementations on HPC platforms. Spark is designed for data analytics on cluster computing platforms with access to local disks and is optimized for data-parallel tasks. We examine three widely-used and important matrix factorizations: NMF (for physical plausability), PCA (for its ubiquity) and CX (for data interpretability). We apply these methods to TB-sized problems in particle physics, climate modeling and bioimaging. The data matrices are tall-and-skinny which enable the algorithms to map conveniently into Spark's data-parallel model. We perform scaling experiments on up to 1600 Cray XC40 nodes, describe the sources of slowdowns, and provide tuning guidance to obtain high performance

    Data-Driven Model Reduction for the Bayesian Solution of Inverse Problems

    Get PDF
    One of the major challenges in the Bayesian solution of inverse problems governed by partial differential equations (PDEs) is the computational cost of repeatedly evaluating numerical PDE models, as required by Markov chain Monte Carlo (MCMC) methods for posterior sampling. This paper proposes a data-driven projection-based model reduction technique to reduce this computational cost. The proposed technique has two distinctive features. First, the model reduction strategy is tailored to inverse problems: the snapshots used to construct the reduced-order model are computed adaptively from the posterior distribution. Posterior exploration and model reduction are thus pursued simultaneously. Second, to avoid repeated evaluations of the full-scale numerical model as in a standard MCMC method, we couple the full-scale model and the reduced-order model together in the MCMC algorithm. This maintains accurate inference while reducing its overall computational cost. In numerical experiments considering steady-state flow in a porous medium, the data-driven reduced-order model achieves better accuracy than a reduced-order model constructed using the classical approach. It also improves posterior sampling efficiency by several orders of magnitude compared to a standard MCMC method
    corecore