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Abstract
The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a

challenging problem particularly when the flows evolve over time. To address this issue, bandwidth sharing techniques that quickly react
to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context,
we propose a distributed algorithm based on the Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path fair
resource allocation problem in a distributed SDN control architecture. Our ADMM-based algorithm continuously generates a sequence
of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual
decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle
large instances at scale.

Index Terms
Software-Defined Networks; Multi-path Resource Allocation; Alpha-Fairness; Alternating Direction Method of Multipliers; Distributed

SDN Control Plane; Distributed Algorithms.

1 INTRODUCTION
Software Defined Networking (SDN) technologies are radically transforming network architectures by offloading the
control plane (e.g., routing, resource allocation) to powerful remote platforms that gather and keep a local or global view
of the network status in real-time and push consistent configuration updates to the network equipment. The computation
power of SDN controllers fosters the development of a new generation of control plane architecture that uses compute-
intensive operations. Initial design of SDN architectures [37] had envisioned the use of one central controller. However, for
obvious scalability and resiliency reasons, the industry has quickly realized that the SDN control plane needs to be partially
distributed in large network scenarios [20]. Hence, although logically centralized, in practice the control plane may consist
of multiple controllers each in charge of a SDN domain of the network and operating together, in a flat [35] or hierarchical
[17] architecture. In Fig. 1, an example of flat architecture is illustrated. In hierarchical architectures, a master controller
is placed on top of domain sub-controllers and keeps global view of the network and the sub-controllers to handle the
message-passing protocols.

In this paper, we study the problem of computing a globally fair (in the sense of α-fairness defined by Mo and Walrand
in [26], see Section 3) multi-path resource allocation in a distributed SDN scenario, where the control plane is distributed
over several domain controllers. In this context, flows transiting in the network typically correspond to traffic aggregates
of a customer or a class of customers. The traffic aggregates can be carried on one path or be split through many different
paths connecting a source to a destination. Indeed, the multi-path traffic engineering can be preferred over single-paths to
ensure routing robustness, low latency, or good load balancing for better performance, as explained in [21].

⋆This is the authors’ edited copy of the article “Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks"
published in IEEE JSAC v.36(12), pp.2655-2666, December 2018.

Fig. 1: Distributed SDN architecture.



In this paper, we study the problem of computing a globally fair (in the sense of α-fairness defined by Mo and Walrand
in [26], see Section 3) multi-path resource allocation in a distributed SDN scenario, where the control plane is distributed
over several domain controllers. In this context, flows transiting in the network typically correspond to traffic aggregates
of a customer or a class of customers. We consider the traffic engineering use case where the size of flows evolves over
time and the bandwidth reserved to each of them has to be quickly adjusted towards the novel fair solution.

In distributed SDN architectures [13][31], each controller has full information about its own domain. Although for fault-
tolerance reasons, they could be composed of master and slave agents that act as a single entity [28], in this paper we only
consider the distribution of the SDN control plane for scalability purposes: the control plane consists of multiple controllers
each in charge of a single domain and a reduced portion of the global workload and operate together as a logically
centralized controller. Therefore, each controller can communicate with adjacent peer controllers and/or with a central,
upper-layer controller entity. However, exchanges between controllers are expensive in terms of communication delay and
overhead [31]. This technological limitation translates directly into an algorithmic constraint: distributed algorithms for
SDN have a limited budget in terms of the number of iterations to reach convergence, i.e. a near-optimal solution.

In distributed SDN architectures, as depicted in Fig. 1, each controller has full information about its own domain.
Moreover, it can communicate with adjacent peer controllers and/or with a central, upper-layer controller entity. However,
exchanges between controllers are expensive in terms of communication delay and overhead [31]. This technological
limitation translates directly into an algorithmic constraint: distributed algorithms for SDN have a limited budget in terms
number of iterations to reach convergence.

A second crucial property for any distributed algorithm for SDN is responsiveness. In fact, the network state may be
affected by abrupt changes, e.g., flow size variation, flow arrival/departure, link/node congestion. In this case, convergence
for the previous network state may not even be attained when a change occurs in the system. For this reason, it is often
preferable to have a quick access to a good quality solution rather than a provably asymptotically optimal solution with
poor convergence rate. Hence, it is crucial that the resource allocation computed by a distributed algorithm is feasible, thus
implementable, at any iteration.

Also, modern SDN controllers [11] rely on grid computing technologies such as Akka [1] or Hazelcast [32], respectively
for the two major open source SDN controllers OpenDayLight [3] and ONOS [2]. As a consequence, massively parallelizable
algorithms for SDN should be preferable as more adapted and better likely to tackle scalability issues.

Also, modern SDN controllers rely on grid computing technologies such as Akka or Hazelcast [32] for compute intensive
tasks. As a consequence, any distributed algorithm for SDN should be massively parallelized.

To recap, we identify two main requirements for a distributed algorithm for fair resource allocation, namely i) converg-
ing to a “good” fair solution in a small number of iterations and ii) producing feasible solutions at all iterations.

To recap, we identify three main requirements for a distributed algorithm for fair resource allocation, namely i) con-
verging to a “good” fair solution in a small number of iterations, ii) producing feasible solutions at all iterations and iii)
being massively parallelized.

We claim that none of the current methods that allocate resources in an SDN scenario is able to achieve the three
aforementioned goals at the same time. Local mechanisms such as Auto-Bandwidth [29] have been proposed to greedily
and distributedly adjust the allocated bandwidth to support time-varying IP traffic in Multi Protocol Label Switching (MPLS)
networks. Auto-Bandwidth successfully tackles goals ii) and iii), but not i), as it neither ensures fairness nor optimizes
resources globally. Also, classic primal-dual algorithms have been proposed to solve the α-fair resource allocation problem
in distributed SDN scenarios, as in [25]. However, primal-dual algorithms are known to fail at providing feasible solutions
at any iteration step, thus they fail at achieving goal ii).

Recently in the optimization research community, the Alternating Direction Method of Multipliers (ADMM) [12] has
captured the attention for its separability and fast convergence properties. We claim that ADMM offers new and yet
unexploited possibilities to tackle concurrently the goals i), ii) and iii). Indeed, in this paper we show how ADMM serves
our purposes, by allowing all controllers to handle their own domains simultaneously, while still converging to a global
optimum in the fashion of a general distributed consensus problem.
Main contributions: We develop Fast Distributed ADMM (FD-ADMM, Algorithm 1) for the multi-path α-fair resource
allocation problem over a distributed SDN control plane. It iteratively produces resource allocations that converge to the
α-fair optimal allocation. Heavy computations, requiring projections on polytopes, can be massively parallelized on a link-
by-link basis (Algorithm 1, line 7) in each domain. This yields a convergence rate (in terms of iteration count) that does not
depend on the partitioning of the network into domains, that can therefore be done independently.

We showed [6] that our FD-ADMM algorithm can function in real-time, as i) close-to-optimal solutions are available
since the very first iterations and ii) feasible allocations are available at all iterations (Proposition 1), a property that standard
primal-dual decomposition methods generally lack. This permits to adjust within very short time the bandwidth of flows
that evolve quickly and need immediate response.
Moreover, we addressed in [5] the problem of the penalty parameter initialization in ADMM that is well-known to highly
condition the convergence speed of the algorithm, by proposing a tuning based on a lower bound for the α-fair resource
allocation problem that we derived.

This article is a synthesis of the two mentioned works [5] and [6] with three novel contributions:

● We extend the model presented in [6] to the setting of multi-path routing. Now, each flow can carry their traffic along
several paths instead of only one.

● We also show that the algorithm can integrate a switching cost in order to address the related relevant problem
of limiting flow reconfigurations. Although we expect FD-ADMM to continuously provide feasible iterates that
respond to traffic variations in real-time, it is practically infeasible to reconfigure all the flows too often without
harming the network stability and the overhead [30]. Therefore, we use ideas of sparse optimization [7] to make
FD-ADMM sensitive to the cost of a reconfiguration of the bandwidth along a path, and hence operate a trade-off
between fairness and switching cost.



● Finally, we evaluate numerically the performance of FD-ADMM over large scale instances made of Barabasi-Albert
and Fat tree networks of up to hundreds of nodes and thousands of links, requests and paths, in a setting where
several SDN domain controllers operate in parallel.

● To the best of our knowledge, we were the first to show how ADMM can help designing real-time distributed
algorithms for computing α-fair resource allocations in distributed settings. We were also the first to address the
penalty parameter tuning of ADMM in this situation. Those results are all extended to the multi-path setting in the
present article.

The remainder of this paper is organized as follows. Section 2 surveys the related work around the fair resource
allocation problem. Section 3 formulates the multi-path α-fair resource allocation problem and recalls the key ideas of
ADMM. Section 4 introduces FD-ADMM, our distributed ADMM-based algorithm that benefits from the distribution of
SDN controllers over multiple domains, that relies on a reformulation of the problem in the fashion of a general distributed
consensus problem. Section 5 extends the model to account for the introduction of the switching cost. Section 6 provides
large scale simulations that validate our approach and finally, Section 7 concludes the paper.

2 RELATED WORK
The concept of fair resource allocation has been a central topic in networking. Particularly, max-min fairness has been the
classic resource sharing principle [10] and has been studied extensively. The concept of proportional fairness and its weighted
variants were introduced in [19]. Later, a spectrum of fairness metrics including the two former ones was introduced in
[26] as the family of α-fair utility functions.

Some early notable works on max-min fairness include [14], where the authors propose an asynchronous distributed
algorithm that communicates explicitly with the sources and pays some overhead in exchange for more robustness and
faster convergence. Later in [33], a distributed algorithm is defined for the weighted variant of max-min fair resource
allocation problem in MPLS networks, based on the well-known property that an allocation is max-min fair if and only
if each Label-Switched Path (LSP) either admits a bottleneck link amongst its used links or meets its maximal bandwidth
requirement (see Definition 4 there of a bottleneck link). The problem of Network Utility Maximization (NUM) was also
addressed with standard decomposition methods that could give efficient and very simple algorithms based on gradient
ascent schemes performing their update rules in parallel. In this context, Voice [38], then McCormick et al. [25], tackle the
α-fair resource allocation problem with a gradient descent applied to the dual of the problem.

In the works described above, no mention is made on the potential (in fact, systematic) feasibility violation of the
sequences generated by those algorithms, which is a crucial matter in distributed SDN settings. Regarding this topic, the
authors of [22] employ damping techniques to avoid transient infeasibility while reaching the max-min fair point, but
cannot guarantee feasibility at all times, especially in dynamic settings. Also motivated by this, more recently the authors
of [36] provide a feasibility preserving version of Kelly’s methodology in [19]. Their algorithm introduces a slave that
gives at each (master) iteration an optimal solution of a weighted proportionally fair resource allocation problem that is
explicitly addressed in only the two cases of polymatroidal and flow aggregating networks. In fact, our paper contributes
to this problem by proposing an efficient real-time version of the slave process, for any topology, preserving feasibility at
each (slave) iteration. Amongst approximative approaches, one can quote the very recent work [24] where a multiplicative
approximation for α ≠ 1 and additive approximation for α = 1 is provably obtained in poly-logarithmic time in the problem
parameters. Moreover, starting from any point, the algorithm reaches feasibility within poly-logarithmic time and remains
feasible forever after. The algorithm described in our paper solves the problem optimally and reaches feasibility as from
the first iteration from any starting point.

The work around ADMM is currently flourishing. The O( 1
n) best known convergence rate of ADMM [18] failed to

explain its empirical fast convergence until very recently in [16], where global linear convergence rates are established in
four scenarios of the strongly convex case. ADMM is also well-known for its performance that highly depends on the
parameter tuning, namely, the penalty parameter λ in the augmented Lagrangian formulation (see Section 3.3 below).
An effective use of this class of algorithms cannot be decoupled from an accurate parameter tuning, as convergence can
be extremely slow otherwise. Thus, in the same paper [16], the authors provide a linear convergence proof that yields a
convergence rate in a closed form that can be optimized with respect to the problem parameters. Therefore, thanks to these
works, we derived in [6] an adaptive tuning of ADMM, and in [5] a satisfactory initialization of the penalty parameter
for the α-fair resource allocation problem. Several papers use the distributivity of ADMM to design efficient distributed
algorithms solving consensus formulations for e.g. model predictive control [27] and resource allocation in wireless virtual
networks [23] but do not address this fundamental detail.

3 MULTI-PATH FAIR RESOURCE ALLOCATION PROBLEM
In this section, we define the multi-path α-fair resource allocation problem and formulate it as a centralized convex
optimization problem. We also introduce the basic principles of ADMM and then present the centralized algorithm it
yields. We will see in what this centralized version does not fit our distributed setting, which motivates the more detailed
decomposition of this article.

3.1 Presentation
We define the network as the set of its links J . Each network link j ∈ J has a total capacity of cj ∈R+.

Let R be a set of connection requests, or shortly, requests, over the network. We regard each request r as a communication
demand between a source node and a destination node of the network, provided with a set Pr of several paths connecting
the two end nodes. We assume the paths are pre-computed once and for all and do not change. In this article, only the



bandwidth allocation along fixed paths is considered and as such, the path computation dimension of the problem goes
beyond the scope of this study. We model the paths as subsets of J , that we assume form a physical path on the network’s
real topology. Thus, in the multi-path setting, the link capacities will be shared by the different requests in R with a
bandwidth allocation along one or many of their paths. Let P ∶= ∪rPr be the set of all established paths. For each path
p ∈ P , we define Jp as the set of links that form p. For example, if the path p contains the set of links j1, j2 and j3, then
Jp = {j1, j2, j3}.

The aim is to compute an optimal bandwidth allocation with respect to the α-fairness metric defined in [26], that we
report below.

Definition 1 ((w,α)-fairness, [26]). Let α ∈ R+. Let F ⊂ Rn
+ be a non-empty feasible set not reduced to {0}. Let w ∈ Rn

+
and y∗ ∈ F . We say that y∗ is (w, α)-fair (or simply α-fair when there is no confusion on w) if the following holds:

∀r ∈ [1, n], y∗r > 0 and ∀y ∈ F,
n

∑
r=1

wr
yr − y

∗
r

y∗αr
≤ 0.

Equivalently, y∗ is (w, α)-fair if, and only if y∗ maximizes the α-fair utility function fα defined over F − {0}:

fα(y) =
n

∑
r=1

fαr (yr),

where

fαr (yr) = {
wr log(yr) if α = 1,

wr
y1−αr

1−α otherwise.

The success of α-fairness is due to its generality: in fact, for α = 0,1,2,∞ it is equivalent to max-throughput, proportional
fairness, min-delay, and max-min fairness, respectively [34]. The introduction of the weight vector w permits to assign to a
request a level of priority: the larger wr , the higher the system’s incentive to allocate the available bandwidth to request r.
In general, wr can model the number of connections of the same type of a connection request r or the amount of backlogged
traffic for this request, for example.
Sharing policy. We define the link-path incidence matrix A ∈R∣J ∣×∣P ∣, and the request-path incidence matrix B ∈R∣R∣×∣P ∣, as
the following:

Ajp = {
1 if j ∈ Jp
0 otherwise , and Brp = {

1 if p ∈ Pr
0 otherwise. (1)

The multi-path α-fair bandwidth sharing policy can be defined as follows. For each request r, the network can attribute
a bandwidth of xp ≥ 0 along one or more of its established paths p ∈ Pr. The path-wise allocation x is then defined as the
vector (xp)p∈P . The aggregate bandwidth of request r, yr ≥ 0, represents the total bandwidth allocated to request r, that is,

yr ∶= (Bx)r = ∑
p∈Pr

xp. (2)

The goal of the network is to find a path-wise allocation x in such a way that the aggregate bandwidth vector y ∶= (yr)r∈R
maximizes the α-fair metric. The path-wise allocation x should also respect the link capacity constraints of the network,
that read:

Ax ≤ c⇔ ∑
p∶j∈Jp

xp ≤ cj ∀j ∈ J . (3)

Therefore, we have the problem definition below:

Definition 2. The multi-path α-fair allocation problem is the problem of finding a path-wise bandwidth allocation x (and
therefore its corresponding aggregate bandwidth allocation y = Bx) such that the function fα is maximized with respect
to y and the link capacity constraints Ax ≤ c are respected.

It is well-known that the function fα admits a unique maximizer over any convex closed bounded set. In our case, this
means that the optimal aggregate bandwidth allocation y∗ is unique. We draw the reader’s attention to the fact that the
fairness is measured upon the aggregate bandwidth allocation y, not upon the path-wise allocations: one request may be
allocated resources along several paths which do not need to be “fair” to each other. Remarkably, for the unique optimal
aggregate bandwidth allocation y∗, there may1 be several path-wise allocations that verify the equation Bx = y∗.

3.2 Problem formulation
In the rest of this article, we adopt the convex optimization terminology. Define for each r ∈ R the convex cost function
gαr (yr) ∶= −f

α
r (yr). Then, gα(y) ∶= ∑r∈R g

α
r (yr) is a convex, closed and proper2 function over R∣R∣+ . We introduce ι as the

convex indicator function of the capacity constraints:

ι(x) = {
0 if Ax ≤ c,x ≥ 0
∞, otherwise.

Then the multi-path α-fair allocation problem (Def. 2) can equivalently be formulated as the following convex program:

1. The unicity of y∗ follows from the strict convexity of fα as a function of y. As the function x ↦ fα(Bx) is not generically strictly convex
with respect to the path-wise variable x, the unicity of a path-wise optimum is no more guaranteed.

2. The term closed stands for lower semi-continuous and proper means non-identically equal to∞.



min
y,x
∑
r∈R

gαr (yr) + ι(x), (4)

s.t. y −Bx = 0. (5)

3.3 ADMM as an augmented Lagrangian splitting
The Alternating Directions Method of Multipliers is directly applicable to the form of the convex optimization problem (4)–
(5). To do so, we write the augmented Lagrangian function of the problem, for a given penalty parameter λ−1 > 0, where u
is the vector of Lagrange multipliers associated to the constraints (5):

Lλ−1(x,y,u) = gα(y) + ι(x) +uT
(y −Bx) +

1

2λ
∣∣y −Bx∣∣

2 (6)

where for two vectors a and b, aTb is the Euclidean product of a and b and ∣∣ ⋅ ∣∣ is the Euclidean norm.
Unlike the classic method of multipliers (see for instance [9], Chapter 3), where the augmented Lagrangian is minimized

jointly with respect to (x,y) each time the dual variable u is updated (see Eq. (7c) below), the ADMM consists of
minimizing the augmented Lagrangian Lλ−1(x,y,u), alternatively with respect to x and y. After some straightforward
algebra, one can derive the update rules that represent each of the alternate minimizations, and summarize, through
Eqs. (7a)–(7c) below, one iteration of ADMM that is to be repeated till a suitable termination condition is satisfied.

y ←ÐargminLλ−1(x, ⋅,u)

= argmin
y

gα(y) +
1

2λ
∣∣y − (Bx − λu)∣∣

2 (7a)

x←ÐargminLλ−1(⋅,y,u)

= argmin
x

ι(x) +
1

2λ
∣∣Bx − (y + λu)∣∣

2 (7b)

u←Ðu +
1

λ
(y −Bx) (7c)

We refer to this algorithm as the centralized algorithm.
In the light of the above update rules, one can directly remark that the centralized algorithm assumes that the function ι

is globally accessible (see Eq. (7b)). The function ι is the indicator function of the network’s capacity set, hence contains and
necessitates full knowledge of the network topology and load. However, we assume that our distributed setting cannot
afford such global knowledge. Indeed, the SDN controllers have the sole topology information of the underlying sub-
network they have been assigned to. Thus, they are able to perform local computations only and have to operate together
to achieve global consensus, which forbids the function ι from being globally available.

Remark 1. The centralized algorithm (7a)–(7c) benefits from the best presently known convergence rate. Indeed, for-
mulation (4)–(5) belongs to a class of problems with strongly convex objectives having Lipschitz gradient that respects
the assumptions of Theorem 1 in [16] and as such, the convergence of ADMM applied to solve them is linear with a
known explicit rate. Unavoidably, we will sacrifice this convergence speed guarantee in order to abide by the rules of the
distributed SDN settings.

In the next section, we show how to break down the topology information with respect to the SDN distribution, by
benefiting from the distributive properties of ADMM.

4 MULTI-AGENT CONSENSUS FORMULATION
In this section, we show how to skirt the need for the global topology information by decomposing the formulation with
respect to the network links of each SDN domain. The global knowledge of the topology being not affordable in the
distributed SDN control plane, the decomposition permits to respect the locality of information of the different domain
controllers. As we will see, our decomposition will break down the function ι by partitioning the network topology
into different domains, and will naturally induce a partition of the set of requests over the network. This will therefore
partition the global information and distribute it among the domains accordingly. We assume the domains can operate only
with their private information, and any other information needed that belong to another controller needs to be gathered
through inter-domain communication. The partition into domains can be orchestrated at the discretion of the SDN architect.
Unavoidably though, domains will need to exchange information as paths may traverse many of them.

4.1 Preliminaries
We suppose that the network is split into M domains, where each domain m is assigned to a set of links Jm ⊂ J . In other
words, (Jm) forms a partition of the set of links J . Let Pm be the set of paths traversing the domain Jm via some link
j ∈ Jm.

We partition the set of requests R in the following way. Each request r has one source node that belongs to one unique
domain m(r). Define, for each domain m, the set of requests originating from it asRm = {r ∈R s.t. m =m(r)}. Notice that
(Pm) forms a covering of P , and (Rm) forms a partition of R.



Now, each domain m can define a set of (private, as explained later) indicator functions for each of its links: let ιj denote
the indicator function for link j ∈ Jm, i.e.,

ιj(x) =

⎧⎪⎪
⎨
⎪⎪⎩

0 if ∑
p∶j∈Jp

xp ≤ cj and xp ≥ 0 ∀p s.t. j ∈ Jp

∞ otherwise.
(8)

Remark 2. The function ιj depends only on the variables xp such that j ∈ Jp.

To simplify the algorithm design, we eliminate the matrix B and the variable y from the formulation by plugging in
directly the equation (2) into the functions gαr . We therefore redefine the (now private) domain functions gαm as:

gαm ∶RP+ →R,x↦ ∑
r∈Rm

gαr (∑
p∈Pr

xp), (9)

Remark 3. In fact, the function gαm depends only on the variables xp, p ∈ Pr , for r ∈Rm.

4.2 Private variables and consensus form
As from now, the controller of domain m is the sole owner of the now private indicator functions ιj , j ∈ Jm and gamlpha.
In order to evaluate its private function gαm, domain m defines a variable xm as its private copy of the variable x. As gαm
depends only on a reduced number of variables (see Rem. 3), one only needs to define xm = ((xmp )p∈Pr)r∈Rm

.
In the same way, each link j belonging to domain m is associated to a private copy zj of the vector x through which

the controller will evaluate the indicator function ιj . Likewise, thanks to Rem. 2, we only need to define zj = (zjp)p∶j∈Jp , to
avoid creating unnecessary variables.

The notation zm will from now on be adopted to refer to the collection of variables {zj}j∈Jm .
In short, the minimal information that a domain m needs is:

1) the SDN-domain topology Jm and the load on each link j ∈ Jm, that is, the sub-matrix (Aj)j∈Jm .
2) the knowledge of the objective functions gαr for each r ∈Rm.

Following the above notations, we can reformulate the objective (4) as the following:

M

∑
m=1

hm(xm,zm), (10)

where the functions hm are defined as:

hm(xm,zm) ∶= gαm(xm) + ∑
j∈Jm

ιj(z
j
).

Finally, the controllers will enforce a consensus value among all the copies of a same variable via the following (global)
indicator function:

χ((xm)m, (z
m
)m) =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

0 if zjp − xmp = 0
∀m,∀p ∈ Pr,∀r ∈Rm,∀j ∈ Jp

∞ otherwise.
(11)

Hence, the new function to minimize to solve our problem is simply ∑hm + χ. We separate it further to end up with
the classic 2-block form applicable to ADMM by introducing special copies x′m and z′

m of the collections of variables xm

and zm, respectively for the composite term χ. Considering the present setting, one can verify that our problem takes the
equivalent separated form:

min
M

∑
m=1

hm(xm,zm) + χ((x′
m
)m, (z

′m
)m) (12)

s.t. zj = z′
j

∀j ∈ J (13)
xm = x′m ∀m = 1, . . . ,M. (14)

To recap, we have artificially separated the objective function by creating a minimal number of copies of the variable x in order to
fully distribute the problem. Now, instead of a global resource allocation variable, several copies of the variable account for
how its value is perceived by each link of each domain. This new formulation can be interpreted as a multi-agent consensus
problem formulation where domain m has cost hm and has to agree on the values it shares with other domains. To enforce
an intra- (local) and inter- (global) domain consistent value of the appropriate allocation, consensus constraints (11) are
added to the problem. Those consensus constraints are now handled by the agent χ that will represent the communication
steps required at each iteration between domains.



4.3 Update rules
In the same fashion as in Section 3.3, we write the augmented Lagrangian form of Formulation (12)–(14), and obtain,
after some simplification, Algorithm 1 (Fast Distributed (FD)-ADMM). The variables um and vm are the dual variables
associated to the constraints (13) and (14) respectively.
Alg. 1 can be summarized into the three following steps:

Stage 1) Objective minimization – solve :

argmin
(x,z)

M

∑
m=1

⎧⎪⎪
⎨
⎪⎪⎩

hm(xm,zm)+

1

2λ
(∣∣xm −x′

m
+ λvm∣∣

2
+ ∣∣zm − z′

m
+ λum∣∣

2
)

⎫⎪⎪
⎬
⎪⎪⎭

(15)

Stage 2) Consensus operation – setting xm and zm as the result of Stage 1), solve :

argmin
(x′,z′)

χ((x′
m
)m, (z

′m
)m)+

1

2λ

M

∑
m=1

(∣∣xm −x′
m
+ λvm∣∣

2
+ ∣∣zm − z′

m
+ λum∣∣

2
) (16)

Stage 3) Dual variables update – see Alg. 1 lines 6 and 9.

For presentation purposes we presented those three stages in Alg. 1 in the order 2), 3), 1) to start with the information
gathering and end with the information broadcasting of each domain controller. Of course, it has no incidence on the
algorithm behavior as long as the three steps are executed in the correct order.

By separability of Eq. (15), the objective minimization stage boils down to the parallel minimization of each term of the
sum by the corresponding domain controller. In details, the controller of domain m can minimize the term of index m in
the sum (15) with respect to xm and zm, simultaneously, meaning that the minimization operations with respect to xm and
zm are independent.

The corresponding update rules can be stated as follows:
Stage 1) a) The minimization over xm:

argmin
xm

∑
r∈Rm

⎧⎪⎪
⎨
⎪⎪⎩

gαm(xm) +
1

2λ
∑
p∈Pr

∣∣xmp − x′p
m
+ λvmp ∣∣

2
⎫⎪⎪
⎬
⎪⎪⎭

.

This problem is separable with respect to r ∈ Rm. Hence, we minimize it term by term. A term of index r of the above
sum is differentiable, strictly convex (because of the 2-norm term) and coercive (near 0 and ∞) with respect to the positive
variables (xmp )p∈Pr . Therefore, a unique minimum exists and is obtained at the unique critical point. By differentiation, the
critical point verifies:

xmp − x′p
m
+ λvmp =

λwr
(∑
r∈Pr

xmp )
α .

Thus, by setting yr ∶= ∑r∈Pr x
m
p , one has:

yαr (x
m
p − x′p

m
+ λvmp ) = λwr. (17)

Summing Eq. (17) over p ∈ Pr , a necessary condition for yr is:

yα+1r − yαr ∑
p∈Pr

{x′p − λv
m
p } − λwr = 0. (18)

A quick study of the left hand side of Eq. (18) shows that there is a unique positive solution. Therefore, it is an uni-variate
unconstrained problem that can be solved efficiently with standard root finding algorithms (particularly when α is an
integer, it boils down to finding the unique positive root of a polynomial of degree α + 1). Eq. (17) in turn yields the
path-wise update rule:

xmp =
λwr
yαr

+ x′p
m
− λvmp . (19)

Stage 1) b) The minimization over zm:

argmin
zm

∑
j∈Jm

⎧⎪⎪
⎨
⎪⎪⎩

ιj(z
j
) +

1

2λ
∑

p∶j∈Jp
∣∣zjp − z

′
p
j
+ λujp∣∣

2
⎫⎪⎪
⎬
⎪⎪⎭

.

Likewise, this problem is separable with respect to j ∈ Jm. Hence, we minimize it term by term. The minimization of the
term j boils down to operating the Euclidean projection of the point ϕj = (z′p

j
− λujp)p∶j∈Jp onto the capacity set of the link

j. That is, we find the closest point3 to ϕj lying in the set {(zjp)p∶j∈Jp ≥ 0 s.t. ∑p z
j
p ≤ cj}. This set is in fact a simplex of

3. With respect to the 2-norm.



Algorithm 1 Fast Distributed ADMM (FD-ADMM)

1: procedure of domain m
2:

STAGE 2):
3: Collect żq from neighbors
4: FORM z̃mp = 1

∣Jp∣+1
(∑n∶p∈Pn ż

n
p ) ▷ ∀r ∈Rm, p ∈ Pr

5:
STAGES 3) AND 1):

6: ujp ← ujp +
1
λ(z

j
p − z̃

m
p ) ▷ ∀p s.t. j ∈ Jp

7: Update zj as the Euclidean projection of
(z̃mp − λujp)p∶j∈Jp onto the capacity set of
link j ▷ ∀j ∈ Jm
(see 1. b)

8:
9: vmp ← vmp + 1

λ(x
m
p − z̃mp )

10: Update xmp as in Eq. (19) ▷ ∀r ∈Rm, p ∈ Pr
11:

BUILD INFORMATION TO BE SENT TO NEIGHBORS:
12: żmp ← ∑

j∈Jp∩Jm
zjp ▷ ∀p ∈ Pm

13: żmp ← żmp + xmp ▷ ∀r ∈Rm
14: Send żm to neighbors
15: end procedure

dimension nj = Card({p ∶ j ∈ Jp}) and radius cj , and this operation can be done [15] with a complexity dominated by the
one of sorting a list of length nj (thus, O(nj log(nj)) in average).
Stage 2) The consensus operation: As for the consensus operation stage, it suffices4 to build the consensus point z̃ ∈ RP ,
where:

z̃p =
1

1 + ∣Jp∣

⎛
⎜
⎜
⎝

xm(r)p + ∑
m = 1 . . .M
j ∈ Jm ∩ Jp

zjp

⎞
⎟
⎟
⎠

∀r,∀p ∈ Pr. (20)

In order to produce this point, domain m communicates its contribution żm to the sum encountered in the average (20)
(l.12). Then the actual consensus value for each component p is recovered by dividing by the number of existing copies of
variables with index p. Let r be the request such that p ∈ Pr . Then, one can check that for each path p, this number equals
∣Jp∣ + 1: one copy per link and one copy for the domain m such that m(r) = r (l.4).
Communication among domain controllers: In FD-ADMM, only domains that do share a path together have to communicate.
The communication procedures among the domain controllers are described between the lines 12 and 14. In these steps, the
domains gather from and broadcast to adjacent domains the sole information related to paths that they have in common.
In particular, domains are blind to paths that do not visit them, and can keep their internal paths secret from others. In
details, after each iteration of the algorithm, each domain m receives the minimal information from other domains such
that m is still able to compute a local consensus value z̃m (l. 4). Next, domain m sends back to the neighboring domains a
contribution żm so that they can recover a consensus value of the path-wise allocation.

Communication overhead: In terms of overhead, we can easily evaluate the number of floats transmitted between each
pair of domain at each iteration. At each communication, domain m must transmit żmp for each path p ∈ Pm to each other
domain that p traverses. The variable z̃ does not need to be centralized or transmitted between controllers. Each domain
controller may actually have a copy of it recovered locally at negligible cost (see l.4). Note that the value of ∣Jp∣ in l.4 can be
recovered by each domain through a unique message passing at the establishment of the path p, therefore we can dismiss
the global nature of this information. Hence, domain m transmits in total ∑n≠m ∣Pn ∩Pm∣ floats to the set of its peers. As a
comparison, in a distributed implementation of the standard dual algorithm given in [25], each domain m would transmit
in total ∑n≠m ∣{j ∈ Jm,∃p ∈ Pn s.t. j ∈ Jp}∣ floats to the set of its peers, which is bounded by (M − 1)∣Jm∣ as ∣P ∣ grows.
Practical implementation. Domain controllers implementing FD-ADMM are communicating bandwidth allocation deci-
sions to SDN switches using standard protocols such as OpenFlow, PCEP (Path Computation Element Protocol) or BGP-LS
(Border Gateway Protocol for Link State) available at their south-bound interface. To exchange information with other
domain controllers about optimization variables or network states, i.e. east-west communications, domain controllers may
use the iSDNi or IOCONA interfaces, in the case of the two most popular open source SDN controllers, OpenDayLight [3]
and ONOS [2] respectively.
Feasibility preservation: A potential drawback of the distributed approach is the potential feasibility violation by the
iterate z̃. However, we have the following positive result.

Proposition 1. At each iteration of FD-ADMM, the point z†, defined as z†
p = minj∈Jp z

j
p, ∀p ∈ P , is feasible, and Bz† converges to

the optimal aggregate bandwidth allocation.

4. The minimization of Eq. (16) can be done with a straightforward calculus that we ommit here. Moreover, we explain in [6] how to obtain this
simplified expression.



Proof. See [6], Proposition 1.

Thus, in a certain way, for sufficiently loaded and communicating domains (i.e. the ∣Pm∩Pn∣ are large enough) we sacrifice
some overhead (counted on a per iteration basis) compared to standard dual methods, but in exchange for anytime
feasibility, a major feature that dual methods do not generically provide.
Penalty parameter initialization: It is well known that the penalty parameter λ highly conditions the convergence speed
of ADMM. In [5], it has been shown numerically that the optimal penalty λ∗ in terms of convergence speed for the
(centralized) algorithm given in the update rules (7a)–(7c) provides a satisfactory performance of FD-ADMM. The analysis
of this aspect of the design of FD-ADMM goes beyond the scope of this article, but in this paragraph, we adapt a multi-path
version of Theorem 1 in [5] where a lower bound on the (path-wise) α-fair bandwidth allocation in the case of single paths
is derived. It is shown there how this lower bound permits to define a natural penalty parameter initialization that boosts
the algorithm performance. Here, we generalize the result of [5, Th. 1] to our case of multi-path routing, and establish a
lower bound on the aggregate bandwidth allocation.

To do so, one needs the following definitions: we define, for each request r, the set R(r) of other requests that visit some
link used by r: R(r) ∶= {s ∈R ∶ (∪q∈PsJq) ∩ (∪p∈PrJp) ≠ ∅}. Lastly, we define the utopic5 aggregate bandwidth allocation ar
of a request r, and its local midpoint value %r , respectively, as the following:

ar ∶= max
x ≥ 0,Ax ≤ c,

∀s ∈R(r) − {r}, (Bx)s = 0

(Bx)r, %r =
wr

∑
s∈R(r)

ws
ar. (21)

Proposition 2. Let r† ∶= argmins∈R %s be the request with the smallest local midpoint value. Then, one can bound from below the
optimal aggregate bandwidth allocation y∗ ≥ d where:

● if α ≥ 1 dr = %
1−1/α
r† %1/αr

● if 0 < α ≤ 1 dr =

⎛
⎜
⎜
⎜
⎝

wrar

∑
s∈R(r)

wsa
1−α
s

⎞
⎟
⎟
⎟
⎠

1/α

.

Proof. See [5], Theorem 1.

Using this lower bound, we now generalize the penalty parameter that is formulated in [5]:

Penalty parameter initialization:

λ∗ = α(min
wr
aα+1r

max
wr
dα+1r

)
− 1

2

. (22)

5 RECONFIGURATION WITH SWITCHING COSTS
In this section, we show that our FD-ADMM formulation is flexible enough to permit to solve a related relevant problem,
by simply modifying the private objective functions hm. We assume a traffic is already established with a current resource
allocation, and that its requirements can vary on-the-fly. One can model a variation of the traffic requirements by a
change in priorities between flows via a variation of the weight vector w, the computation of a new path for an existing
(or not) request, the elimination of a path for a request, etc. Under these circumstances, FD-ADMM can continuously
generate feasible solutions to adapt the path-wise allocation to the new requirements in real-time. In fact, by doing so, the
controllers may improve the optimality gap, and thus satisfy the demands with a better fairness measure as they evolve.
However, enforcing a new resource allocation too often requires overwhelming flow reconfigurations rules that can cause
Quality-of-Service degradation or system instability [30]. Therefore, we introduce a switching cost to limit the number of
reconfigurations. The goal for the controllers will thus be to perform a trade-off between fairness and switching cost.

The introduction of a switching cost into the objective function can be of interest to enforce hard constraints onto the
number of reconfigured paths. To be more specific, let x0 be a feasible path-wise allocation and assume the actual resource
allocation of the demands follows x0. Now, the traffic demands have changed and the network has to recompute a new
path-wise allocation x∗ with fair aggregate bandwidth allocation Bx∗, to respond to the traffic requirements. Assume the
network has a budget of κ > 0 reconfigurations. According to the fairness policy of the network, the allocation should be
updated in order to maximize the new fairness metric, without exceeding this budget:

∣∣x0
−x∗∣∣0 ≤ κ,⇔∑

p

1(x0p ≠ x
∗
p) ≤ κ, (23)

where ∣∣u∣∣0 = Card{p, up ≠ 0} is called the zero-norm6 of a vector and denoted `0. Adding the constraint of Eq. (23) into the
problem gives rise to a problem structure with integral constraints, and goes beyond the scope of this work. We consider
here a relaxation of this problem that is still tractable with our method.

We can control the zero-norm (23) by adding the most natural sparsity inducing penalty induced by the θ-scaled `1-
norm θ∣∣x0

− x∗∣∣1, where θ is a positive parameter. The `1-norm is well known to be the fittest convex relaxation of the
`0-norm, for the simple reason that the `1-ball is the convex hull of the set of points {v s.t. ∣∣v∣∣0 ≤ 1}. We therefore consider
the problem described in Eqs. (12), (13), (14), with an extended expression of the function hm:

5. In fact, the utopic path-wise and aggregate bandwidth allocations correspond to the path-wise and the aggregate bandwidth allocations,
respectively, that a request can get if all other requests get an allocation of 0, which justifies the term utopic.

6. This is an abuse of terminology as it is not a norm.



Fig. 2: Convergence with domain distribution. (Barabasi-Albert Graphs) Optimality gap over time within a deadline
of 3 minutes for different numbers of domains. The average number of achieved iterations appear in the legend (inside
parenthesis).

hm(xm,zm) = gαm(xm) + θ ∑
r∈Rm

∑
p∈Pr

∣xmp − xm0
p ∣

+ ∑
j∈Jm

ιj(z
m
), (24)

where xm0 is the copy of x0 for domain controller m.
With this extended formulation, the changes in FD-ADMM only occur in the optimization stage 1) (Eq.(15)). The term-

wise minimization of the functions hm now also takes into account an incentive for each domain m to stay near the point
xm0. Of course, a proper tuning of the parameter θ is necessary to enforce the real budget κ. The larger θ, the smaller the
number of re-sized paths. We show this effect in the next section, dedicated to the experimentations.

6 SIMULATIONS
This section is dedicated to the experimentation of FD-ADMM. First of all, we demonstrate, on large instances with
hundreds of nodes and thousands of requests and paths, the gains achievable with the distribution of the workload
among several domain controllers (Fig. 2). We will not focus on absolute performance evaluation in terms of time, but in
demonstrating the benefits of the distribution of the SDN centralized controller into SDN domain controllers that split the
workload and build global solutions through consensus. Secondly, we analyze the behavior of FD-ADMM implemented as
the extension described in Sec.5 (Fig. 4). All the simulations are executed under the three main sharing policies: proportional
fairness (α = 1), minimum potential delay (α = 2) and max-min fairness (with an approximation α = 4). In previous works
[6], the performance of FD-ADMM with respect to convergence speed, feasibility preservation, and responsiveness in
variable traffic requirement situations was extensively compared with the one of the classic Lagrangian method in [19]. We
do not display these results here, and refer the curious reader to the aforementioned work.
6.1 Setting
Two simulations7 were run over two types of networks. The one type of network was generated following the model of
Barabasi-Albert with minimal degree 4, and the other was a Fat Tree with a number pods k = 16. We give here a description
of the generated instances for the first simulation.

The Barabasi-Albert networks contained 500 nodes, which gave problems with 3968 resources. Over this network,
instances of requests were created between sources and destinations chosen uniformly at random with a number of
established paths from 2 to 4 between the pair of nodes. The instances contained 5,000 requests (that represented
approximately 11,000 − 15,000 paths in total).

The Fat Tree (with 16 pods) networks contained 1,345 nodes, which gave problems with 3,136 resources. We modeled a
connection to the Internet via the fat tree by adding a root node connected to the core nodes of the tree. For each server,
we generated two connections to the root node through 4 paths each, and to another server chosen uniformly at random
through 4 paths. This gave problems with 3,072 requests and therefore 12,288 paths.

The second simulation was executed on a small network (generated with the model of Barabasi-Albert with same
minimal degree 4) with 100 nodes made of 768 links, and each instance contained 500 requests each with 1 to 2 established
paths (approximately 700 − 800 paths).

In all the simulations, the network capacities were fixed at an equal value (100) and unless specifically mentioned
otherwise, the weights w were fixed at a unique value 1. We created the domains by splitting the set of network links into
a number (equal to the desired number of domains) of equally sized subsets, taking into account the network topology so

7. The curious reader can find the source code an run the simulations in [4].



Fig. 3: Convergence with domain distribution. (Fat Tree Graphs) Optimality gap over time within a deadline of 3 minutes
for different numbers of domains. The average number of achieved iterations appear in the legend (inside parenthesis).

that each domain remains connected. We assumed all the domains performed their update rule in a synchronized manner,
meaning that an iteration was achieved (and the variable z̃ in stage 2) updated) when all the controllers were done with their
respective work. The direct extension of distributed ADMM-based algorithms to the asynchronous setting is possible and its
convergence is studied and demonstrated for instance in [13]. We keep simulations in the aforementioned case for future
work.

6.2 Results
Convergence with domain distribution. We evaluated the gains achievable by the SDN distribution by plotting, for each
partition of the network following Sec. 4 into a number of controllers within {1,2,4,16,32}, the achieved number of
iteration and the optimality gap8 with time under a finite time deadline. In our implementation, each controller performs
its private update rules under one specific thread at each iteration. As the update rules for each controller are also massively
parallelized, there is still a lot of room for optimizing absolute time performances. Also, the consensus operation stage is
here done without exploiting the parallelism. In practice, domain controllers may be themselves equipped with hundreds of
cores and perform multi-threads computations that can crush the computation times down to several orders of magnitude
smaller. The deadline was fixed to three minutes for all instances. The results are shown in Fig. 2 (Barabasi-Albert Graphs)
and Fig. 3 (Fat Tree Graphs). Each point represented corresponds to an average over 15 and 10 instances (for Fig. 2 and
Fig. 3, respectively) of the same characteristics along with a 95%-confidence interval estimated following the t-distribution
model.

The results show that the distribution of the computation permits to operate more than twice faster (according to the
average achieved number of iterations) and thus to reach the same optimality gap faster. For instance, for α = 1 in Fig. 2,
in order to reach a gap below 2%, a single controllers needs more than 2 minutes whereas 32 controllers together need less
than one minute. This reduction of the time can be even more dramatic when the update rules within each domain, as well
as the consensus operation stage, are done in parallel.

The communication delay being dependent of the SDN implementation, we condense the information concerning the
overall communication delay of controllers into the number of performed iterations. According to recent work on this
topic [8], east-west interfaces between domain controllers can permit one to perform inter-controller communications with
low latency. With the fast convergence that is demonstrated in Fig. 2 in terms of iteration count, one can see that the
communication delay does not deteriorate the acceleration achieved with the distribution of the workload among the
domain controllers.

Fig. 4: Switching costs. Number of re-sized paths (n) and achieved fairness (Φ) versus the switching cost θ.

8. The optimal solution was obtained by running FD-ADMM till the convergence is provably obtained. This can be done by observing the
values of the primal and dual residuals of the problem at each iteration. It is shown [12, Ch. 3.3.1] that these values bound the optimality gap of
the iterate at each iteration. The residual values are thus used as a robust convergence detector. We consider the optimum was reached when the
residual values dropped below 10−2 (modest but satisfactory convergence)



Switching costs. In the second experiment, we set x0 as an optimal path-wise allocation for the actual setting of the
weights w(≡ 1). Then, we simulate a new traffic requirement by choosing at random a new weight vector w1 within
[1,10]. Thus, FD-ADMM runs to find the new optimally fair aggregate bandwidth allocation, but, the value of θ forces a
trade-off between fairness and switching cost. We ran FD-ADMM till convergence was provably obtained to a precision
10−2 and analyzed the number of paths that had been re-sized, for different values of θ. The minimization problem in
stage 1) was solved optimally at each iteration using a standard optimization package for unconstrained problems with
a tolerance 10−2 (as the closed form of (19) is no longer available for positive θ). To evaluate numerically the zero-norm
of vectors, we used the function Nε(x) = Card({p ∶ ∣xp∣ > ε}) where ε is a desired level of precision. This precision was
fixed to the convergence tolerance of our experimentation, that is, ε = 10−2. At the optimum, the objective therefore splits
up into a sum −Φ + θΨ, where Ψ ∶= ∑p,∣xp−x0

p∣>ε ∣xp − x
0
p∣, the number of terms in that sum being equal to n ∶= Nε(x − x0

)

and Φ is the achieved fairness ∑r f
α
r (yr) for the optimal aggregate bandwidth allocation y =Bx. The results are shown in

Fig. 4. Likewise, each point represented corresponds to an average over 15 instances of the same characteristics along with
a 95%-confidence interval estimated following the t-distribution model.

As expected, the larger the configuration cost θ, the smaller the number of reconfiguration. The results show that for a
desired number of reconfiguration, it is possible to chose an appropriate value of θ to enforce it. Also, it can be seen that the
reconfiguration cost does not deteriorate dramatically the system’s sharing policy performance. This means it is possible
to reconfigure small subsets of paths on-the-fly (to the limit of what is feasible in terms of reconfiguration budget), and still
enforce a satisfactorily fair policy, that will be ultimately optimally fair if the traffic requirement stabilizes. In the figures,
we only showed the points for small values of θ – this, along with the small precision level ε, explain the apparition of
a plateau below which it seems impossible to go. In reality, even larger values of θ permit one to accomplish a very low
(down to zero) number of reconfigurations. We do not plot the points for larger values of θ in order to focus on the decrease
of the reconfiguration number in the very beginning.

7 CONCLUSION
We designed an algorithm, FD-ADMM, that solves optimally the multi-path α-fair resource allocation problem. We showed
that FD-ADMM is fully distributed and that its implementation is suitable to distributed SDNs, regardless of the actual
distribution of the networks into domains. The massively separable sub-problems given by FD-ADMM are efficiently
solvable by the SDN domain controllers equipped with massively parallel hardware capable of addressing each update
rule simultaneously as multiple-threads, thus reducing considerably the computation time and improving dramatically the
responsiveness of the algorithm while providing in real-time feasible solutions. It was demonstrated numerically that the
distribution of the SDN control permits to accelerate the overall system efficiency by attaining an equivalent optimality gap
in highly reduced time. This shows that FD-ADMM scales naturally with the problems size, exploiting the computational
power of modern SDN controllers. We also showed that the FD-ADMM extends easily to account for a switching cost per
path, and that a trade-off between fairness and switching cost can be operated to preserve the system stability without
deteriorating too much the resource allocation efficiency. In the future, we wish to specify the trade-off by providing
theoretical bounds on the cost θ for this specific problem in order to respect any maximum allowed reconfiguration budget
κ in the multi-path setting.
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