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Abstract

While estimates of models with spatial interaction are very sen-
sitive to the choice of spatial weights, considerable uncertainty sur-
rounds definition of spatial weights in most studies with cross-section
dependence. We propose a new methodology for estimation of spa-
tial weights matrices in the spatial error model, which are consistent
with an observed pattern of spatial autocovariances. The estimated
spatial weights are useful for identifying the real rather than hypothe-
sised determinants of spatial interaction. The methodology is applied
to regional housing markets in the UK, providing an estimated spa-
tial weights matrix that generates several new hypotheses about the
economic and socio-cultural drivers of spatial diffusion in housing de-
mand.
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1 Introduction

The usual approach to the representation of spatial dependence in economet-
ric studies is to define a spatial weights matrix, which represents a theoretical
and a priori understanding of the nature of spatial interdependence between
different geographical regions or, more generally, between different economic
agents. These spatial weights represent patterns of interaction and diffusion,
and thereby provide a meaningful and easily interpretable representation of
spatial interaction (spatial autocorrelation) in spatial dependence models. In
combination with spatial structure (spatial heterogeneity), they offer a useful
framework for studying cross-sectional dependence (see, for example, Anselin,
1988, 1999). The spatial weights are usually interpreted as functions of rele-
vant measures of economic or geographic distance (Anselin, 1988, 2002). The
distance between two agents reflects their proximity with respect to unob-
servables, so that the joint distribution of random variables at a set of points
can be represented as a function of the economic distances between them.
The choice of appropriate spatial weights is a central component of spatial

models as it imposes a priori a structure of spatial dependence, which may
or may not correspond to reality. Further, the accuracy of these measures af-
fects profoundly the estimation of spatial dependence models (Anselin, 2002;
Fingleton, 2003). The choice typically differs widely across applications, de-
pending not only on the specific economic context but also on availability
of data. Spatial contiguity (resting upon implicit assumptions about conta-
gious processes) using a binary representation, is a frequent choice. Further,
in many applications, there are multiple possible choices and substantial un-
certainty regarding the appropriate choice of distance measures. However,
while existing literature contains an implicit acknowledgment of these is-
sues, most empirical studies treat spatial (and spmetimes spatio-temporal)
dependence in a superficial manner assuming inflexible diffusion processes in
terms of known, fixed and arbitrary spatial weights matrices (Giacomini and
Granger, 2004). The problem of choosing spatial weights becomes a key issue
in many economic applications1.

However, the spatial econometrics literature tells us little about adequate
foundations for these choices. Acknowledging the uncertainty regarding spec-
ification of economic distances in most applications using spatial models,

1Ethnic networks and trade, spatial demand for goods and services, risk-sharing in
rural developing economies, and convergence in growth models, to name only a few (see
Conley, 1999; Fingleton, 2003; Herander and Saavedra, 2005). Similar issues regarding
the choice of spatial weights have also been addressed in the regional science and urban
economics literature (Lacombe, 2004; Aten and Heston, 2005).
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Conley (1999) proposed a strategy allowing for imperfectly measured eco-
nomic distances and used these distances to obtain asymptotic estimators of
the implied spatial autocovariance matrices. Pinkse et al. (2002) develop
a framework which accommodates uncertainty regarding distance measures
and allows for spatial nonstationarity; related work is developed in Kelejian
and Prucha (2004).
In this paper, we take a different nonparametric view on the nature and

strength of spatial diffusion. As a new departure from the literature, we
develop a method for estimating spatial weights matrices that are consistent
with an observed pattern of spatial (or cross sectional) dependence. Once
these spatial weights have been estimated they can be subjected to interpre-
tation in order to identify the true nature of spatial dependence, representing
a significant departure from the usual practice of assuming a priori the na-
ture of spatial interactions. The approach developed here builds upon the
spatial error model with autoregressive errors, but is, however, extendable to
other models of spatial dependence.

An illustration of the proposed methodology and its potential is presented
in the paper through a model-based study of regional housing markets in
England and Wales, where the aim is to identify the economic and socio-
cultural drivers of spatial diffusion in housing demand. Whilst the study of
spatial diffusion of demand in the housing market is in itself not new (for
example, in the case of the UK: Meen, 2001, 2003; and for the US: Haurin
and Brasington, 1996; Fik et al., 2003), the ex post approach to identifying
drivers of diffusion presented here is novel and some of the results are both
surprising and not explainable by simple contiguity assumptions.

Section 2 describes the econometric framework and the methodology for
estimation of the spatial weights matrix. In section 3, we discuss asymptotic
properties of the estimator, bootstrap estimation of standard errors and hy-
pothesis tests. Results of a Monte Carlo simulation study calibrated to the
Barro and Sala-i-Martin (1992) study of β-convergence across census divi-
sions in the US are reported in section 4. In section 5, we apply our methods
to the study of spatial diffusion in housing demand in England and Wales
and section 6 draws together the conclusions.

2 Proposed Estimation Methodology

In this section, we propose methods for estimation of the spatial weights ma-
trix when spatial dependence is in the form of a spatial error model. Much
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of our discussion is in the context of a model where the error process of spa-
tial diffusion has an autoregressive structure; the extension of the methods
to a moving average spatial error model is straightforward. The proposed
estimates are constructed using a consistent estimate of the spatial autoco-
variance matrix. In the following subsections, we first present our economet-
ric model of spatial diffusion, along with the assumptions. Next, we discuss
estimation of the spatial weights matrix implied by the given (estimated)
autocovariance matrix of the spatial errors. Finally, we review the existing
literature on estimation of the spatial autocovariance matrix under different
model assumptions.

2.1 The Spatial Error Model

Studies in spatial econometrics typically distinguish between two different
kinds of spatial effects in regression models for cross-sectional and panel data
— spatial interaction (spatial autocorrelation) and spatial structure (spatial
heterogeneity). While the study of spatial structure is similar to the tradi-
tional treatment of coefficient heterogeneity in econometrics, spatial inter-
action is usually modeled through a pre-determined spatial weights matrix.
The problems associated with prespecified spatial weights matrices are well-
known: the choice of weights is frequently arbitrary, there is substantial
uncertainty regarding the choice, and the results from studies vary consid-
erably according to the choice of spatial weights. Given a particular choice
of the spatial weights matrix, there are two important and distinct ways
in which spatial interaction is modelled in spatial regression analysis — the
spatial error model (SEM) and the spatial lag model (SLM).
In the following discussion, we focus on regional demand in housing —

consistent with an application presented later in the paper. The applicabil-
ity of the model and the methodology are, however, not in any way specific
to this application. We consider panel data on demand and other explana-
tory variables across various regions over several time periods. Within the
context of estimated demand equations for each of several regions, we aim to
understand how excess demand in any region diffuses over space to the other
regions.
Regional demand (D) is modeled using a simple structural spatial error

model, where is explained by the effects of explanatory variables (X) and dif-
fusion of excess demand from other regions. The spatial externalities in the
form of demand diffusion are driven by the completely unspecified pattern
of spatial weights (given by the spatial weights matrixW ) and the strength
of spatial spillovers in each region described by spatial autocorrelation para-
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meters ρK . The model and its reduced form are described as follows:

Dt = Xt.β + ut, t = 1, . . . , T,

ut = R.W .ut + εt, (1)

=⇒ Dt =Xt.β + (I −R.W )−1 .εt,

where there are T time periods (t = 1, . . . , T ) and K regions (k = 1, . . . ,K),
Dt is the K × 1 vector of regional demand in period t,
W is an unknown spatial weights matrix of dimension K ×K,
R = diag (ρ1, ρ2, . . . , ρK) is aK×K diagonal matrix containing the (possibly
heterogeneous) spatial autoregression parameters for each region2, and
εt is the K × 1 vector of independent but possibly heteroscedastic spatial
errors.
In this model, the spatial diffusion of errors is assumed to be autoregres-

sive; we call this model the spatial error model with autoregressive errors
(SEM-AR). The spatial diffusion of errors can also be modelled as a moving
average process (Anselin, 1988), where we have the spatial error model with
moving average errors (SEM-MA):

ut = R.W .εt + εt, (2)

=⇒ Dt =Xt.β + (I +R.W ) .εt.

The above formulation of the SEM-AR and SEM-MA models represent
several departures from the literature. First and foremost, we do not assume
a given form of the spatial weights matrix. Indeed, our aim is to estimate
the spatial weights matrix implied by the observed pattern of spatial auto-
correlations (autocovariances).
Second, we allow the spatial autoregression (spillover) parameters to vary

across agents or regions, and also to be unknown. This flexibility in spatial
spillovers captures an important dimension of heterogeneity.
Third, the description of the model also allows for heterogeneity in the

regressors as well as their coefficients across the regions, a feature which is
important in the application considered later.
Fourth, we allow heteroscedasticity in the errors across regions. However,

all spatial autocorrelation under the model is completely specified by the
spatial weights matrix and the spatial autoregression parameters. This is the

2Here, and henceforth in the paper, diag(a1, a2, . . . , ak) denotes the diagonal matrix⎛⎜⎜⎜⎝
a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...
0 0 . . . aK

⎞⎟⎟⎟⎠.
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crucial feature in the model that allows us to estimate the implied spatial
weights from the observed spatial autocovariances.
Simple types of temporal variation, such as those in the nature of simple

autoregressive or moving average processes in the temporal dimension, can
also be easily accommodated in our framework. However, for reasons of
expositional simplicity, we abstract from the issue of temporal dynamics in
this paper. In other words, we assume independence of the joint distribution
of the variables over time, but not over space.

An alternative model considered in the literature is the spatial lag model
(Anselin, 1988). A prominent example is the mixed regressive spatial autore-
gressive model (Ord, 1975) described as:

Dt = R.W .Dt +Xt.β + εt, t = 1, . . . , T,

⇒ Dt = (I −R.W )−1 .Xt.β + (I −R.W )−1 .εt. (3)

The choice between the spatial error model and the spatial lag model is
largely context specific and often quite difficult. Though different in inter-
pretation, the two kinds of models are difficult to distinguish empirically
(Anselin, 1999, 2002). Based on a given spatial weights matrix, there are
tests that can help decide between the two models3.
In this paper, we focus on the spatial error model with autoregressive

errors (Equation 1). From the point of view of relevant theory in housing
economics, we find this model well suited to explain housing demand in
terms of spatial diffusion of excess demand from neighbouring regions, where
neighbourhood is defined in an abstract sense. We also discuss the spatial
error model with moving average errors (Equation 2). While similar analysis
of other spatial interaction models is left to future work, we make some
comments regarding these models later in the paper.

The above discussion is formalised in the following assumptions.
Assumption 1: We assume that the spatial errors, εt, are iid (inde-

pendent and identically distributed) across time. However, we allow for het-
eroscedasticity across regions, so that E

¡
εt.ε

T
t

¢
= Σ = diag (σ21, σ

2
2, . . . , σ

2
K),

and σ2k > 0 for all k = 1, . . . ,K
4.

The uncorrelatedness of the spatial errors across the regions is the crucial
assumption in this paper. Assumption 1 ensures that all spatial autocorre-
lation in the model is solely due to spatial diffusion described by the spatial

3See Anselin (2001) and Baltagi et al. (2003) for reviews of tests designed to aid model
choice.

4Here and throughout the paper, T denotes transpose of a vector or matrix.
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weights matrix and the autoregression coefficients; this feature of the model
drives our estimation strategy.

Assumption 2: The spatial weights matrix W is unknown and possibly
asymmetric. W has zero diagonal elements and there are no restrictions on
the off-diagonal elements (i.e., they could be either positive or negative).
As discussed in the previous section, the literature on spatial modelling

acknowledges substantial uncertainty in the specification of appropriate spa-
tial weights. Practitioners are usually encouraged to exercise caution in the
choice of the spatial weights matrix, and also to experiment with different
choices. If the spatial weights are inversely related to some underlying metric
distance between the regions, then the spatial weights matrix would typically
be symmetric. At the moment, we retain the flexibility of a possibly asym-
metric spatial weights matrix, though symmetry is assumed subsequently
(Assumption 5).
Our most significant point of departure from the literature is in the as-

sumption of an unknown spatial weights matrix, and we propose a method-
ology for its estimation. We do not impose a non-negativity constraint on
the off-diagonal elements of W ; later we discuss situations when negative
off-diagonal elements may be expected. In fact, in an application related
to ours, Meen (1996) finds evidence of negative interaction between various
regions.
We will show that the spatial weights matrix is identified by the spatial

autocovariance matrix only upto an orthogonal transformation, except un-
der rather restrictive conditions. Additional assumptions, such as symmetry
of the spatial weights matrix, homoscedasticity or row-standardisation, are
required for the estimation of spatial weights in general.

Assumption 3: (I −R.W ) is non-singular, where I is the identity
matrix. This is a standard assumption in the literature
Under Assumption 3, the reduced form representation of the SEM-AR

model (Equation 1) is given by:

Dt = Xt.β + ut

= Xt.β + (I −R.W )−1 .εt,

where (dropping the time subscript)

E
¡
u.uT

¢
= (I −R.W )−1 .Σ. (I −R.W )−1

T

.
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Assumption 4: For the SEM-AR model (Equation 1), the population
spatial autocovariance matrix, E

¡
u.uT

¢
, is unknown and positive definite with

probability one, but otherwise has a completely unrestricted structure. Fur-
ther, there exists a consistent estimator, bΓ, of the population spatial autoco-
variance matrix E

¡
u.uT

¢
.

We assume that this structural model can be estimated, and let bΓ denote
a consistent estimator of the spatial autocovariance matrix E

¡
u.uT

¢
. Below,

we describe a method that uses bΓ to estimate the implied spatial weights
matrix.

2.2 Estimation of Spatial Weights

Meen (1996) studies spatial diffusion in housing starts across regions in Eng-
land under a SEM-AR model by regressing OLS residuals of the regression
relationship for each region on residuals from all the other regions

Dt = Xt.β + ut, (First step regression)but = Xt.bβ,
bukt = ρk.

KX
j=1
j 6=k

wkj.bujt + εkt, (Second step regressions) (4)

where the second step regressions are run separately for each region5. The
sign and statistical significance of the OLS regression estimates at the second
step are used to examine the potential importance of spatial dependence
across the regions.

This approach can be described as a first attempt towards estimating
the unknown spatial weights matrix up to a factor of proportionality (the
spatial autoregressive parameter). This method, however, suffers from several
limitations.
First, under the SEM-AR model, the OLS estimates of the regression

parameters of the original equation are consistent but inefficient. This in-
efficiency directly affects the estimates of the residuals from the regression
in the first step, and therefore affects the second step regression using these

5Note that, Meen (1996) assumes homogeneity in the spatial autoregression parameter
across the regions. For expositional clarity, we retain heterogeneity in the spatial autore-
gression parameter at this stage. However, we impose homogeneity later on (Assumption
5), and in any case, the autoregression parameter is not separately identifiable from the
estimate of the spatial weights matrix.
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residuals. This problem can be resolved by using more appropriate estima-
tion methods at the first step. Depending on the model framework and the
chosen application, one could use seemingly unrelated regressions, two stage
least squares or three stage least squares to estimate the first step regression.
Second, and most importantly, the regressions on the residuals suffer from

the serious problem of endogeneity, and therefore bias and inconsistency of
the estimates of regression coefficients.
Third, the second step involves estimating regressions through the origin,

and hence the results have to be interpreted appropriately.
Fourth, there is no simple way to extend this method to estimation of

spatial weights in other models of spatial interaction.

Our proposed estimation method is somewhat similar to Meen (1996), to
the extent that we too start by estimating the first step regression equation.
However, at the second step we do not explicitly regress the residuals from the
first step, but use the reduced form of the second step regression to estimate
the spatial weights matrix (up to a factor of proportionality) directly from
the spatial autocovariance matrix estimated in the first step.
Note that the error covariance matrix, Σ = diag (σ21, σ

2
2, . . . , σ

2
K), of the

structural equations is diagonal (Assumption 1), implying that all spa-
tial autocorrelation in the model arises from the spatial weights matrixW ,
while allowing for heteroscedasticity between the spatial units. Our method
for consistent estimation of the spatial weights matrix relies on the structure
of the problem: most importantly, the zero diagonal elements of the spatial
weights matrix (Assumption 2) and the diagonal structure of the covari-
ance matrix (Σ = E

¡
ε.εT

¢
) of the spatial errors (Assumption 1). The

proposed method is assumption-free, in the sense that it is completely based
on an estimate of the spatial autocovariance matrix, bΓ, and does not a priori
impose any structure on the drivers of spatial diffusion.

Let Γ = E.Λ.ET denote the eigenvalue decomposition of Γ = E
¡
u.uT

¢
,

where Λ = diag (λ1, λ2, . . . , λK) is the diagonal matrix of eigenvalues and the
columns of E = [e1, e2, . . . , eK ] contain the corresponding eigenvectors.

Proposition 1 Let Assumptions 1—4 hold. Then, upto an orthogonal trans-
formation, the matrix

V = (I −R.W )T .diag

µ
1

σ1
,
1

σ2
, . . . ,

1

σK

¶
(5)

is consistently estimated by bΓ−1/2 = bE.bΛ−1/2.bET
, where bE and bΛ contain

the eigenvectors and eigenvalues respectively of the estimated spatial auto-
covariance matrix bΓ. In other words, bΓ−1/2 is a consistent estimator of
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V.T for some unknown square orthogonal matrix T . Further, if the rows
of (I −R.W ) are orthogonal to each other, then bΓ−1/2 is a consistent esti-
mator of V .
Proof. First, consider the spectral decomposition of Γ−1,

Γ−1 = (I −R.W )T .Σ−1. (I −R.W )

= V .V T . (6)

This implies that
Γ−1 = (V .T ) . (V .T )T ,

for any square orthogonal matrix T .
Next, consider the eigenvalue decomposition of the consistent estimated co-
variance matrix bΓ: bΓ = bE.bΛ.bET

, (7)

where bΛ = diag (λ1, λ2, . . . , λK) is the diagonal matrix of eigenvalues of bΓ,
and the columns of bE = [e1, e2, . . . , eK] contain the corresponding eigenvec-
tors.
Note that, since bΓ is positive definite with probability one (Assumption 4),
min (λ1, λ2, . . . , λK) > 0 with probability one and

bΛ−1/2 = diag

µ
1√
λ1

,
1√
λ2

, . . . ,
1√
λK

¶
.

Therefore, from Equation (7) it follows that, the eigenvalue decomposition ofbΓ−1 is given by:
bΓ−1 = E.Λ−1.ET

= E.Λ−1/2.ET .E.Λ−1/2.ET

=
³
E.Λ−1/2.ET

´
.
³
E.Λ−1/2.ET

´T
. (8)

The first step holds because E−1 = ET , and the final step follows since Λ−1/2

is a symmetric matrix.
From Equations (6) and (8), the matrix V can be consistently estimated,
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upto an orthogonal transformation, bybV = bE.bΛ−1/2.bET

= bE.diag

µ
1√
λ1

,
1√
λ2

, . . . ,
1√
λK

¶
.bET

=
1√
λ1
e1e

T
1 +

1√
λ2

e2e
T
2 + . . .+

1√
λK

eKe
T
K

=

⎛⎜⎜⎜⎝
bv11 bv12 . . . bv1Kbv21 bv22 . . . bv2K
...

...
. . .

...bvK1 bvK2 . . . bvKK

⎞⎟⎟⎟⎠ , (9)

where we denote the elements of the matrix bV by bvij (i, j = 1, . . . ,K).
If the rows of (I −R.W ) are orthogonal to each other, then the spectral
decomposition of Γ−1 is unique and T is the identity matrix; hence, exact
equivalence holds.

Since the rows of (I −R.W ) are orthogonal only in special cases6, the
above Propositition is not very useful in itself. In the following arguments,
we develop additional assumptions under which the orthogonal matrix T can
be uniquely identified.

Assumption 5: The spatial weights matrix is symmetric and the spa-
tial autoregression parameter is the same across all regions; in other words
R.W = ρW is symmetric.
Note that symmetry of the spatial weights matrix can be a strong assump-

tion in some applied situations. Row-standardised spatial weights matrices
are usually asymmetric by construction; asymmetric spatial weights matri-
ces are also important in the study of asymmetric shocks, network flows and
core-periphery models. Later, we discuss alternative sets of assumptions that
may be useful in such situations.

Proposition 2 Let Assumptions 1—4 hold. Then, there exists a unique
orthogonal matrix T for which Assumption 5 also holds.
Proof. Under Assumption 5, we can express Equation (5) as:

V = (I −R.W )T .diag

µ
1

σ1
,
1

σ2
, . . . ,

1

σK

¶
= (I − ρ.W )T .diag

µ
1

σ1
,
1

σ2
, . . . ,

1

σK

¶
.

6Such as, when the spatial weights matrix is zero.
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Therefore, what the Proposition says is that given any positive definite Γ−1/2,
there exists a unique orthogonal matrix T such that the matrix

Γ−1/2 =
∙
(I − ρ.W )T .diag

µ
1

σ1
,
1

σ2
, . . . ,

1

σK

¶¸
.T T

is symmetric. The above expression can be rewritten as:

Γ−1/2.T =

∙
(I − ρ.W )T .diag

µ
1

σ1
,
1

σ2
, . . . ,

1

σK

¶¸
= Q = ((qij))i,j=1,...,K .

Now, since (a) post-multiplication by the diagonal matrix diag
³
1
σ1
, 1
σ2
, . . . , 1

σK

´
transforms (I − ρ.W )T by multiplying each column by the corresponding di-
agonal element, and (b) by Assumption 3, the elements on the diagonal of
(I − ρ.W )T are all unity, we have

(I − ρ.W )T =

⎡⎢⎢⎢⎣
1 q12/q11 . . . q1K/q11

q21/q22 1 . . . q2K/q22
...

...
. . .

...
qK1/qKK qK2/qKK . . . 1

⎤⎥⎥⎥⎦ .
Therefore, the condition that the spatial weights matrix is symmetric (As-
sumption 5) implies that

qij
qii
=

qji
qjj

, for all i 6= j; i, j = 1, . . . ,K. (10)

Further, note that T consists of K2 real values, and several restrictions
apply to the elements of this matrix. Specifically, there are K normaliza-
tion restrictions (one for each column of the matrix) and K(K − 1)/2 or-
thogonality conditions (one for each distinct pair of columns). This leaves
K2 − [K +K(K − 1)/2] = K(K − 1)/2 free elements in the matrix.
These free elements can be pinned down by the K(K − 1)/2 constraints re-
lating to the assumption of symmetry (Equation 10). This identification is
upto a sign transformation on the columns and rows of T that preserves the
orthogonality condition while at the same time ensuring that the diagonal el-
ements of the transformed matrix are all positive.
The identification and uniqueness of T can be easily verified for the 2-region
case, where any orthogonal matrix can be written as∙

cosφ − sinφ
sinφ cosφ

¸
.
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The proof in the general case is quite involved and not elaborated on. The
condition can be numerically verified quite easily for any given Γ.

Of course, there can be many different ways sets of constraints that would
pin down the orthogonal matrix T . In fact, one need not even explicitly
specify the constraints. Jennrich (2001) has recently proposed a “gradient
projection” algorithm for optimising any objective function over the group of
orthogonal transformations of a given matrix. The only conditions necessary
for implementing the algorithm are that (a) the objective function is differen-
tiable, and (b) there exists a stationary point of the objective function within
the class of orthogonal transformations. Here, we adapt this algorithm to our
case.

For the estimated bV and any orthogonal matrix T , define
(i) a matrix

Q = bV .T = ((qij))i,j=1,...,K , (11)

(ii) a scalar function of T (our objective function):

f(T ) =
K−1X
i=1

KX
j=i+1

µ
qij
qii
− qji

qjj

¶2
, (12)

(iii) a gradient matrix

df

dT
= bV T

.G;G = ((gij))i,j=1,...,K , (13)

where gii = − 2
q2ii
.

KX
k=1
k 6=i

qik.

∙
qik
qii
− qki

qkk

¸

gij =
2

qii
.

∙
qij
qii
− qji

qjj

¸
if i 6= j.

and (iv) a scalar constant

s =
°°skm ¡T T .G

¢°° , (14)

where skm(B) = 1
2

¡
B −BT

¢
and kBk = tr

¡
BT .B

¢
denote the skew sym-

metric part and the Frobenius norm respectively of a square matrix B.
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Algorithm: Choose α > 0 and a small ε > 0, and set T to some arbitrary
initial orthogonal matrix7.
(a) Compute s. If s < ε, stop.
(b) Compute G.
(c) Find the singular value decomposition A.D.CT of T − α.G; set eT =
A.CT .
(d) Compute Q = bV .eT . If any diagonal element of Q is negative, multiply
the corresponding column of eT by −1.
(e) If f(eT ) ≥ f(T ), replace α by

eα = ¡s2.α2¢ / h2.³f(eT )− f(T ) + s2.α
´i

and go to (c). If f(eT ) < f(T ), replace T by eT and go to (a).

The estimate of T at convergence, bT , is such that all diagonal elements
of the matrix bQ = bV .bT = ((bqij))i,j=1,...,K
are positive. Given this bT , the spatial error variances can be estimated as

bσ2k = 1bq2ii , k = 1, . . . ,K (15)

and the spatial weights matrix as:

dρW =

⎡⎢⎢⎢⎣
0 −bq21/bq22 . . . −bqK1/bqKK

−bq12/bq11 0 . . . −bqK2/bqKK
...

...
. . .

...
−bq1K/bq11 −bq2K/bq22 . . . 0

⎤⎥⎥⎥⎦ . (16)

Proposition 3 The algorithm is strictly monotone and stops when it is suf-
ficiently close to a stationary point. The return to step (c) from (e) occurs
only a finite number of times.
Under Assumptions 1—5, the final estimate, bT , of the relevant orthogonal
matrix is such that bQ has positive diagonal elements, and the estimated spa-
tial weights matrix, dρW , is symmetric.bσ2k and dρW are consistent estimators of the respective parameters of the
model (Equation 1).

7We choose a set of random orthogonal matrices, including the identity matrix, to
ensure that the algorithm does not get stuck up in a local stationary point that does not
optimise the objective function.
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Proof. Note that, reversing the sign of each element in a specific column of
T reverses the sign of the corresponding diagonal element of Q = bV .T , but
preserves the orthogonality of T . Therefore, step (d) ensures that the diago-
nal elements of Q are positive in each iteration of the algorithm. Effectively,
our objective function is

f(T ) =
K−1X
i=1

KX
j=i+1

µ
qij
|qii| −

qji
|qjj|

¶2
,

which is not a differentiable function when Q has any zero diagonal ele-
ment. However, by Assumption 1 the spatial errors have positive vari-
ances, min (σ21, σ

2
2, . . . , σ

2
K) > 0, and therefore in large samples the diagonal

elements of Q will be away from zero8.
Therefore, close to each candidate T , f(.) is locally a smooth differentiable
function of T which is bounded below by zero. Hence, a stationary point
always exists.
It can be verified easily that G = df/dT . Following arguments in Jennrich
(2001), for sufficiently large α, the algorithm is convergent from any starting
value and is expected to converge to a stationary point of f(.) over the group
of all orthogonal matrices. Therefore, bσ2k > 0 for k = 1, . . . ,K and dρW is a
symmetric matrix.
Further, as discussed in the context of Proposition 2, the value at the sta-
tionary point is zero. Therefore, bQ = bV .bT is a consistent estimator forh
(I − ρ.W )T .diag

³
1
σ1
, 1
σ2
, . . . , 1

σK

´i
.

Note that, since the spatial weights matrix W has zero diagonal elements
(Assumption 3), the elements on the diagonal of (I − ρ.W ) must all be
unity. Hence, under the model assumptions, the diagonal elements of bQ
are equal to 1

σ1
, 1
σ2
, . . . , 1

σK
respectively. From consistency of the spatial co-

variance matrix and by Proposition 1, it follows that bσ2k, k = 1 . . . ,K are
consistent estimators for σ21, σ

2
2, . . . , σ

2
K. It also follows that dρW is a consis-

tent estimator for the unknown and unrestricted spatial weights matrix ρW
under Assumptions 1—5.

The algorithm is simple to implement; there are, however, two important
issues in the implementation. First, in principle, the choice of α can be quite
critical. If α is too large, the convergence is very slow; on the other hand, if
α is too small, there will be many returns to step (c) from step (e). However,

8 This argument can be made more precise by imposing a boundedness assumption on
the spatial error variances.
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in practice this does not turn out to be a problem9. Second, there might be a
problem with the implementation if Step (d) is implemented too many times.
This would mean that we are starting too far from the stationary point, and
every time that one of the negative diagonal elements of Q is corrected for,
we are moving away from the stationary point instead of taking an optimal
step along the gradient; this does not turn out to be an important issue in
our implementation.
The assumption of a symmetric spatial weights matrix (Assumption 5)

may be too restrictive in many applications. First, it is often convenient to
work with row-standardised spatial weights matrices (Anselin, 1999), which
are asymmetric by construction. Second, there are applications where it is
reasonable to expect asymmetric strength of diffusion between regions. For
example, the strength of diffusion from a spatial unit on the periphery to the
core may well be different from that from the core to the peripheral region.
Third, if we do not assume homogeneity in the autoregression parameter ρk
across the regions, the matrix R.W will be asymmetric; such heterogeneity
may be quite natural in many situations, like in a core-periphery structure
or in relation to flows in a network.
However, the framework developed here is flexible and can admit many

other sets of conditions. Useful constraints in this context could include
setting the row sums of the estimated spatial weights matrix equal to each
other10, or homoscedasticity in all or some of the spatial error variances,
or constraints on specific spatial autocorrelations, or even a combination of
several constaints. For example, in an application with 4 regions, we would
require 6 constraints: 3 of these constraints can come from the homoscedas-
ticity assumption, while the remaining 3 can be obtained by restricting to
row-standardised spatial weights matrices.
Further, note that, setting the constraints is not essential for implement-

ing the gradient projection algorithm. What one requires is a suitable ob-
jective function to optimise; this objective function should be differentiable
and should have a stationary point within the class of orthogonal rotations.
Instead of the objective function used here (Equation 12), one could use vari-
ance of diagonal elements or of row-sums as alternative optimisation criteria.
Similarly, some of the optimisation criteria commonly used in factor analysis
could be useful in some spatial applications11.

9In our implementation, we did some trial and error to choose an optimal α before
starting the iterations. Once this choice was made, the convergence was very fast in about
95 per cent of the cases.
10This would be relevant when all spatial weights are positive and one is interested in

estimating the row standardised spatial weights matrix.
11See Jennrich (2001) for discussion on several optimisation criteria (quartimax, or-
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A notable feature of our estimator dρW (or in the more general case,
when Assumption 5 is not imposed, R.W ) is that the covariance pattern
in the errors is determined solely by the product R.W . This observation
has implications for the estimation of the spatial weights. A property of this
estimator, which derives from the underlying spatial error model, is that the
autoregression parameters ρk are in general not identifiable separately from
the spatial weights matrix W , so that only the product R.W is usually
estimable, and not the individual components R andW .

Note, however, that the row-standardised spatial weights matrix,W (RS),
can be uniquely estimated as:

cW (RS)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 bq21/" KX
k=2

bqk1# . . . bqK1/" KX
k=2

bqk1#

bq12/
⎡⎣ KX
k=1,k 6=2

bqk2
⎤⎦ 0 . . . bqK2/

⎡⎣ KX
k=1,k 6=2

bqk2
⎤⎦

...
...

. . .
...

bq1K/"K−1X
k=1

bqkK# bq2K/"K−1X
k=1

bqkK# . . . 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
(17)

Further, R.W is obtained by premultiplying the spatial weights matrix
by a diagonal matrix whose diagonal elements are the spatial autoregressive
parameters for each region. Hence, the estimates of the spatial autoregres-
sive parameters corresponding to the above row-standardised spatial weights
matrix are given by:

bρ(RS)k =
KX

l=1,l6=k

bqlk, k = 1, . . . ,K. (18)

As mentioned earlier, there is one other interesting feature of the estima-
tor described here. It is possible that some of the estimated spatial weights
in dρW may be negative. This happens if bqij > 0 for some i 6= j. When the
underlying spatial weights matrix has positive off-diagonal elements, we can
have negative estimates of spatial weights because of sampling variations.

thomax, etc.), and on extensions of the algorithm. If the objective function is complicated,
deriving an analytic expression for the gradient can become difficult. However, in this case,
one can replace the analytical gradients used in the algorithm by numerical derivatives
(Jennrich, 2004).
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However, spatial weights can be negative even in other situations. For exam-
ple, in the context of housing demand across regions, such negative weights
would imply that the excess demand in the index region is negatively related
to some of the other regions. This can happen because of asynchronicity of
the underlying housing market cycles in these regions, as would be expected
for example if there are ripple effects (Meen, 1999), or if the two regions
provide substitute housing markets. Meen (1996) explains negative interac-
tion between regions in a study of housing starts as arising from planning
restrictions in certain regions

Under the spatial error model with moving average errors (Equation 2),
the spatial weights matrix can be consistently estimated in a very similar
manner. In this model, the spatial autocovariance matrix is given by:

Γ = E
¡
u.uT

¢
= (I +R.W ) .Σ. (I +R.W )T

= Z.ZT

= (Z.T ) . (Z.T )T ,

where
Z = (I +R.W ) .diag (σ1, σ2, . . . , σK) ,

and T is any orthogonal matrix. Therefore, under the symmetric spatial
weights matrix assumption (Assumption 5), we estimate bQ exactly in the
same way as the SEM-AR model. The estimator for the spatial weights
matrix is now given by:

dρW (MA)
=

⎡⎢⎢⎢⎣
0 bq21/bq22 . . . bqK1/bqKKbq12/bq11 0 . . . bqK2/bqKK
...

...
. . .

...bq1K/bq11 bq2K/bq22 . . . 0

⎤⎥⎥⎥⎦ . (19)

Estimation of the spatial weights matrix for the spatial lag model (Equa-
tion 3) turns out to be a more difficult problem. This is because, the spatial
weights matrix enters the reduced form of the model through the spatial
filter, (I −R.W )−1, applied to both the regressors and the spatial errors.
Given sufficient data, one can estimate the spatial error autocovariance ma-
trix using regressors for all the regions (except the index region) instead of
the (unknown) filtered regressors. This estimated spatial autocovariance ma-
trix can then be used to estimate the spatial weights matrix. However, this
would give only a limited information estimator, since it does not exploit
the additional information on the spatial weights embedded in the regression
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coefficients. Similarly, an alternative limited information strategy could be
extracting the information on the spatial weights from the regression coef-
ficients. Finding a way to combine these two estimation methods requires
further work.

2.3 Estimates of the Spatial Autocovariance Matrix

In the previous subsection, we developed consistent estimates of the spatial
weights matrix based on a given consistent estimate of the spatial autoco-
variance function of regression errors. Here, we discuss estimation of the
underlying spatial autocovariance matrix and implications for estimation of
the spatial weights.
When the regressors, X, included in the SEM-AR or SEM-MA model

(Equations 1 and 2) are exogenous, Meen (1996) proposes estimation of the
spatial autocovariance matrix using seemingly unrelated regressions (SURE).
This procedure begins with initial nonparametric estimation of the spatial
autocovariance matrix of reduced form errors (u) from a first stage regression,
performs GLS-type estimation using this estimated covariance matrix, and
continues iteration till convergence. As emphasized by Anselin (1999), the
SURE approach is very general and does not require any specification of
spatial processes or indeed any functional form for distance decay. Further,
the procedure naturally allows estimation of a spatial regime model (Anselin,
2002) incorporating region-specific heterogeneity in slope, intercept and even
the choice of regressors. Since the SURE estimator is a maximum likelihood
estimator (MLE), the proposed estimator of the spatial weights matrix based
on a spatial autocovariance matrix estimated using SURE will also be the
MLE. Therefore, this estimator of the unknown spatial weights matrix will
possess the desirable asymptotic properties of MLEs, including efficiency and
asymptotic normality.
If some of the regressors are endogenous, we can proceed as in the two-

stage least squares (2SLS) procedure by computing predictions of the en-
dogenous variables by regressing them on the instruments. Next, we can use
the residuals from the second-stage regression to estimate the spatial auto-
covariance matrix. Like SURE, one can iterate this process using GLS-type
estimation, but this does not give efficiency gains. The resulting estimator
is consistent, but will not be asymptotically efficient if the instruments are
weak (Staiger and Stock, 1997)
If we have a system of simultaneous equations involving the endogenous

variables, efficiency gains can be made by allowing the covariances across the
equations to be possibly non-zero. The parameters of the structural equation
and the spatial autocovariance matrix can be estimated as in the earlier case,
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using a three stage least squares (3SLS) procedure. The estimates can be
iterated to convergence, but there are no asymptotic efficiency gains to the
iterative procedure; the 3SLS estimator itself is asymptotically efficient and
has asymptotic properties similar to the MLE.

3 Asymptotic Properties and Hypothesis Tests

3.1 Consistency and Asymptotic Distribution

Asymptotic properties of our estimator dρW (or \R.W in the more general
case) depend directly from the properties of the underlying spatial autoco-
variance matrix bΓ. Under the assumptions that the spatial errors have pos-
itive variance (Assumption 1), (I −R.W ) is non-singular (Assumption
3) and the identification condition (Assumption 6), dρW is a continuous

function of the estimated spatial autocovariance matrix bΓ. Similarly, cW (RS)

and bρ(RS)k are also continuous functions of bΓ. Hence, and following arguments
in Proposition 3, these estimators are consistent for the underlying true
spatial weights matrix and the region-specific autocorrelation coefficients.
Also, differentiability of the functions ensure that the proposed estima-

tors converge weakly to corresponding limiting distributions whenever bΓ
has a limiting distribution. Further, since bΓ is almost surely nonsingular
(Assumptions 1 and 3), the estimators are uniquely defined by bΓ with
probability one, and hence the proposed estimators are also MLEs wheneverbΓ is the MLE. This happens, for example, when we use the SURE or the
FIML estimator, under appropriate conditions ensuring that bΓ is the MLE.
Since the 3SLS estimator of the spatial autocovariance matrix is asymptoti-
cally equivalent to the FIML (under normally distributed errors) and is the
asymptotically efficient IV estimator, the estimator of the spatial weights
matrix based on 3SLS also inherits the same properties.

3.2 Confidence Intervals

Under normality assumption, it is possible to use asymptotic distributions of
the MLE to estimate large sample standard errors of the estimated spatial
weights. The SURE estimator of the spatial weights matrix is the MLE,
the 3SLS estimator is asymptotically equivalent to the MLE, and the as-
ymptotic distribution of the 2SLS estimator can be derived from the eigen-
decomposition of a noncentral Wishart distribution. However, these standard
error estimates are not robust to non-normality, and may be quite poor in
small samples.
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As an alternative, we propose the bootstrap to construct confidence in-
tervals around the elements of\R.W . It is well known that the bootstrap is
valid when the statistics are smooth functions of the sample moments and
the model can be consistently estimated. Further, as argued by Freedman
and Peters (1984), we would expect substantial benefits from using the boot-
strap to compute standard errors in GLS-type methods like SURE, 2SLS and
3SLS.
The use of the bootstrap in SURE estimation has been discussed in the

literature; in particular, we can use the procedure described in Rilstone and
Veall (1996) to construct confidence intervals for estimates of the spatial
weights.
While the bootstrap has also been found useful in simultaneous equations

models (Freedman, 1984), its use here is substantially more complicated as
compared to an equation involving only exogenous variables. This is because
the bootstrap DGP (data generating process) has to provide a method to
generate realisations of all the endogenous variables (Fair, 2003). Typically,
moment assumptions on the errors and smoothness conditions of the regres-
sion function are required for the validity of the bootstrap. For the static
simultaneous equations model, where the coefficient estimates are fixed in
the resampling process, Freedman (1984) shows the validity of the boot-
strap for the 2SLS estimator when the first four moments of the error terms
exist, while Brown and Mariano (1984) provide an alternative set of assump-
tions including the existence of second moments. A bootstrap procedure in
the dynamic setup, where parameter estimates are allowed to vary over the
bootstrap samples, is described by Fair (2003); this procedure can be used
to obtain bootstrap estimates of standard errors for the spatial weights.
However, since our estimates of spatial weights are based on the estimated

spatial autocovariance matrix, we require the bootstrap to be valid not only
for the estimates of the regression function but also for estimates of all the
spatial variances and autocovariances. Hence, in addition to the moment
and smoothness conditions specified in the above literature, the proposed
procedure would require additional conditions necessary for bootstrapping
the spatial autocovariance matrix. In particular, following Beran and Sri-
vastava (1985), we require the spatial weights matrix and the region-specific
spatial variances to be such that the reduced form spatial autocovariance ma-
trix is nonsingular and all eigenvalues of the matrix have unit multiplicity12.
Therefore, we make the following additional assumption.

12See Beran and Srivastava (1985) for consequences of the violation of this assumption,
and description of a valid bootstrap procedure in the case of repeated eigenvalues.
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Assumption 6: We assume the moment and smoothness condtions re-
quired for the validity of the bootstrap under SURE (Rilstone and Veall, 1996)
or under 3SLS estimation (Fair, 2003). Following Beran and Srivastava
(1985), these are conditions that ensure (a) weak convergence of the vector
of reduced form spatial residuals (bu1, bu2, . . . , buK) to the corresponding vector
of the error terms (u1, u2, . . . , uK), and (b) existence of finite fourth order

moments of the error vector (i.e.,
¯̄̄
E
³QK

k=1 u
rk
k

´¯̄̄
<∞ for every set of non-

negative integers rk such that
PK

k=1 rk = 4). In addition, we assume that
the spatial weight matrix, W , and the spatial variances of the structural
equations, Σ, are such that the reduced form spatial autocovariance matrix
E
¡
u.uT

¢
= (I −R.W )−1 .Σ. (I −R.W )−1

T

has distinct (non-zero) eigen-
values.
Note that, since σ2j > 0 for all j = 1, . . . ,K (Assumption 1) and

since the eigenvalues and eigenvectors of the spatial autocovariance matrix
E
¡
u.uT

¢
= (I −R.W )−1 .Σ. (I −R.W )−1

T

are continuously differentiable

with respect to E
¡
u.uT

¢
, the estimator of the spatial weights matrix\R.W

(or dρW ) is also a continuously differentiable function of E
¡
u.uT

¢
. It follows

from Beran and Srivastava (1985) that, under the conditions of Assump-
tion 6, the eigenvalues and eigenvectors of E

¡
u.uT

¢
possess pivotal statistics

which can be used to validate the bootstrap procedure outlined in the next
section (see also Horowitz, 2001).

3.3 Testing for a given driver of spatial diffusion

We have motivated the estimators proposed in this paper based on uncer-
tainty regarding the choice of spatial weights matrices and the arbitrariness
regarding such choice in practice. It is, therefore useful to test the hypothesis
that the observed pattern of spatial autocovariances has been generated by
a hypothesized spatial weights matrix,W 0:

H0 :W =W 0 versus H1 :W 6=W 0. (20)

Under H0, the spatial weights matrix is known. Therefore one can use
the large pool of available econometric methods to estimate the unknown
parameters of the spatial error model (Equation 1) and compute the spatial

autocovariance matrix bΓW 0 =
³
I − bRW 0

´−1
.bΣ.³I − bRW 0

´−1T
consistent

with the given spatial weights matrix. Since our proposed estimator is a
unique transformation of the estimated spatial autocovariance matrix bΓ, the
above test of hypothesis is equivalent to testing that bΓW 0 is the same as bΓ.
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Therefore, under the assumption of normal spatial errors, we can follow
Ord (1975) and Mardia and Marshall (1984) to obtain MLEs of the unknown
parameters by maximising the log-likelihood

lnL (B,Σ,R|W 0) = const.− T

2

KX
k=1

lnσ2k+T. |I −RW 0|− 1
2

TX
t=1

εTt .Σ
−1.εt,

where εt = (I −RW 0) . (Dt −XtB), B =
³
β
1
: β

2
: . . . : β

K

´
is a ma-

trix whose columns correspond to regression coefficients for each region, and
Σ = σ2I and R = diag (ρ1, ρ2, . . . , ρK) are diagonal matrices containing the
spatial error variances and spatial autocorrelation parameters respectively
for each region. Maximum likelihood estimation in this setup is, in general,
computation intensive unless the spatial autocorrelation parameters, ρk, are
known in advance. Alternative GMM based estimation procedures are de-
scribed in Kelijian and Prucha (1999) and Bell and Bockstael (2000). These
GMM procedures are computationally simpler and, for reasonable sample
sizes, almost as efficient as the MLE.

Having obtained the MLE or GMM estimates bR and bΣ, we can construct
the spatial covariance matrix bΓW 0 =

³
I − bRW 0

´−1
.bΣ.³I − bRW 0

´−1T
un-

der H0, and then use a wide variety of tests available in the statistical lit-
erature for testing equality of two covariance matrices13. In particular, we
suggest the test statistic proposed by Ledoit and Wolf (2002); this test is
valid when the estimated spatial covariance matrix is not full rank and when
the number of regions increases with sample size. This situation may be
relevant in many microeconomic applications where the number of agents
increase asymptotically, or if we are interested in finer spatial aggregation as
we accumulate more data.
The additional assumptions regarding the distribution of the errors and

the nature of asymptotics are as follows.

Assumption 7: We assume that the spatial errors, εt, are normally dis-
tributed. This is in addition to being iid across time and having E

¡
εt.ε

T
t

¢
=

Σ = diag (σ21, σ
2
2, . . . , σ

2
K), and σ2k > 0 for all k = 1, . . . ,K (Assumption

1).
Assumption 8: We allow the number of spatial units KT to possibly

increase with sample size T , where both KT and T are positive integers.
Asymptotically, either (a) KT is constant ( lim

T→∞
KT = K < ∞), or (b) KT

increases at the same rate as the sample size, T , ( lim
T→∞

KT

T
= c, 0 < c < 1).

13See Muirhead (1982) for details.
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Under Assumptions 7 and 8, and using the Cholesky decomposition ofbΓW 0 = D
T
W 0

.DW 0, we can restate the null and alternative hypotheses (20)
as:

H0 : bΓ∗W 0
= I versus H1 : bΓ∗W 0

6= I, (21)

where bΓ∗W 0
=
¡
DT

W 0

¢−1
.bΓ. (DW 0)

−1. For the above hypotheses, the Ledoit-
Wolf test statistic is given by:

LW =
1

K
.tr
³bΓ∗W 0

− I
´2
− K

T
.

∙
1

T
.tr
³bΓ∗W 0

´¸2
+

K

T
, (22)

KT

2
.LW ∼ χ2

µ
K(K + 1)

2

¶
under H0 as T →∞

where tr(.) denotes trace of a square matrix. As demonstrated by Ledoit and
Wolf (2002), the test shows very good small sample performance.

4 Monte Carlo Study

This section investigates the performance of the proposed estimators of the
spatial weights matrix (Equations 16 and 19) under autoregressive and mov-
ing average spatial error processes, and compares the performance with that
of the residual regression estimator (Meen, 1996). The design of the Monte
Carlo study is similar to Baltagi et al. (2003) and calibrated to the study of
β-convergence across the 9 census regions in the U.S.
Barro and Sala-i-Martin (1992) studied convergence in the U.S. over the

period 1963 to 1986 using data on per capital gross state product for 48 U.S.
states They estimate a cross-section regression of the form

yi = α+ β.xi + εi, i = 1, . . . , 48,

where y denotes the average growth rate in per capita income over the 23
years, x denotes the log of per capita income in 1963, and β < 0 measures
the strength of convergence. While estimating similar regression equations
across different time periods, Rey and Montouri (1999) observe significant
spatial autocorrelation among the states.
Using data on per capita state domestic product reported in Barro and

Sala-i-Martin (1992), we estimated separate regression equations for states
within the 9 different census regions and find evidence of heterogeneity in the
rate of β-convergence across the regions; there is stronger convergence in the
contiguous regions South Atlantic, East South Central, East North Central
and West North Central as compared to the other regions. Further, there is
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heterogeneity in the initial levels of per capita income between the southern
states and the non-southern states. Given this descriptive analysis, we set
up a simulation model incorporating heterogeneity across the census regions,
both in the rate of convergence and in initial income, and model the spatial
autocorrelation using a spatial weights matrix approximately consistent with
first-order contiguity.

Table 1: Region-specific parameters14

Regions αi βi µi
NENG 0.047 −0.011 2.25
MATL 0.047 −0.011 2.25
SATL 0.073 −0.024 2.00
ESC 0.073 −0.024 2.00
WSC 0.047 −0.011 2.00
ENC 0.073 −0.024 2.25
WNC 0.073 −0.024 2.00
MTN 0.047 −0.011 2.25
PAC 0.047 −0.011 2.25

The model is set up as follows. Spatial panel data yit and xit are generated
for the 9 census regions for T periods of time according to the DGP

yit = αi + βi.xit + uit, i = 1, . . . , 9, t = 1, . . . , T,

where the regression coefficients vary across the regions. The regressor x
is independently distributed as N (µi, 0.15

2) with different means across the
regions. We choose the parameter values based on our descriptive analysis
and regression results (Table 1).
The spatial errors, ut, in each period of time t are modelled both as a

spatial autoregressive process (ut = ρ.W .ut+εt) and a spatial moving average
process (ut = ρ.W .ut+ εt). In either case, the pattern of spatial interactions
is approximately described by a first-order contiguity spatial weights matrix
between the 9 census regions (Table 2A). This spatial weights matrix (ρ.W ) is
chosen to ensure that both (I − ρ.W ) and (I + ρ.W ) are strictly diagonally
dominant and has no repeated eigenvalues.

14NENG: New England;MATL: Middle Atlantic; SATL: South Atlantic; ESC: East
South Central; WSC: West South Central; ENC: East North Central; WNC: West
North Central; MTN : Mountain; PAC: Pacific.
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Table 2: Spatial Weights Matrix (Actual and Simulations)15

A. Spatial Weights Matrix (Actual), ρ.W
NENG MATL SATL ESC WSC ENC WNC MTN PAC

NENG 0 0.25 0 0 0 0.167 0 0 0
MATL 0.25 0 0.25 0.125 0 0.125 0 0 0
SATL 0 0.25 0 0.25 0 0 0 0 0
ESC 0 0.125 0.25 0 0.125 0.125 0 0 0
WSC 0 0 0 0.125 0 0 0.125 0.167 0.167
ENC 0.167 0.125 0 0.125 0 0 0.125 0 0
WNC 0 0 0 0 0.125 0.125 0 0.167 0.167
MTN 0 0 0 0 0.167 0 0.167 0 0.167
PAC 0 0 0 0 0.167 0 0.167 0.167 0

B. Estimated Symmetric Spatial Weights Matrix, dρW
NENG MATL SATL ESC WSC ENC WNC MTN PAC

NENG 0
MATL 0.261∗∗

(.17,.34)
0

SATL −0.003
(-.10,.09)

0.244∗∗
(.16,.32)

0

ESC 0.001
(-.09,.10)

0.129∗∗
(.03,.23)

0.252∗∗
(.14,.35)

0

WSC 0.001
(-.11,.10)

0.001
(-.10,.12)

0.000
(-.10,.10)

0.127∗∗
(.03,.23)

0

ENC 0.168∗∗
(.06,.27)

0.123∗
(.01,.22)

0.002
(-.09,.11)

0.125∗
(.02,.23)

−0.002
(-.10,.10)

0

WNC 0.000
(-.08,.10)

0.001
(-.10,.12)

0.000
(-.10,.11)

0.002
(-.11,.10)

0.128∗
(.03,.23)

0.122∗∗
(.02,.21)

0

MTN 0.002
(-.10,.10)

−0.004
(-.09,.09)

−0.002
(-.08,.10)

−0.001
(-.10,.10)

0.167∗∗
(.07,.27)

−0.001
(-.09,.09)

0.164∗∗
(.06,.26)

0

PAC 0.001
(-.08,.10)

0.001
(-.10,.09)

0.006
(-.08,.12)

−0.004
(-.10,.09)

0.171∗∗
(.06,.26)

0.000
(-.12,.10)

0.173∗∗
(.07,.28)

0.170∗∗
(.08,.27)

0

The idiosyncratic error term, εit, is independently and identically distrib-
uted as N (0, σ2ε), where the parameter value for σ

2
ε (= 3.0e-9) is chosen to

approximately match the trace of the resulting spatial autocovariance matrix
to that of the independent error OLS regression estimates.
We generate data from the above DGP for various sample sizes (T =

25, 50, 100) and estimate the parameters using maximum likelihood SURE
estimates. The estimates of the spatial weights matrix are computed using
15Abbreviations for the regions are as in Table 1.

Estimates reported are averages based on 1000 Monte Carlo simulations with T = 100.
Figures in parentheses are 95 per cent confidence intervals based on percentiles from the
Monte Carlo simulations.
∗∗,∗, +: Significant at 1 per cent, 5 per cent and 10 per cent level respectively.
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both the above SURE estimator of the spatial autocovariance matrix (our
proposed estimator), and regression of the SURE residuals (Meen, 1996).
Since SURE performs poorly in many applications where the number of
equations is large, we also repeat the analysis for the three contiguous re-
gions Middle Atlantic, South Atlantic and East South Central; each of these
regions is first order contiguous with the other two. The reported results are
based on 1000 Monte Carlo replications of the above simulation scheme.

Table 3: Monte Carlo Results —
Performance of the Proposed Estimator

9 Regions 3 Regions
T = 25 T = 50 T = 100 T = 25 T = 50 T = 100

SEM−AR Model
Regression Coeff.

— Average bias −1.39e-7 7.11e-6 −3.75e-6 2.07e-5 7.51e-5 3.87e-5
— Average RMSE 0.0081 0.0047 0.0030 0.0063 0.0045 0.0028

Spat. Err. Std. Dev.
— Average bias 5.68e-4 2.33e-4 1.14e-4 1.70e-4 6.95e-5 4.82e-5
— Average RMSE 7.05e-4 3.67e-4 2.31e-4 4.47e-4 2.95e-4 2.15e-4

Spat. Wts. Matrix
Proposed estimator

— Average bias −7.24e-3 −3.49e-3 −5.33e-4 −5.14e-3 −2.30e-3 −3.07e-5
— Average std. dev. 0.1391 0.0753 0.0489 0.0897 0.0585 0.0410
— Average RMSE 0.1393 0.0754 0.0489 0.0898 0.0586 0.0410

Residual regression est.
— Average bias 0.0271 0.0284 0.0292 0.0850 0.0876 0.0887
— Average std. dev. 0.2236 0.1388 0.0937 0.1307 0.0939 0.0661
— Average RMSE 0.2326 0.1507 0.1101 0.1568 0.1285 0.1107

SEM−MA Model
Regression Coeff.

— Average bias −1.39e-7 7.11e-6 −3.75e-6 2.07e-5 7.51e-5 3.87e-5
— Average RMSE 0.0081 0.0047 0.0030 0.0063 0.0045 0.0028

Spat. Err. Std. Dev.
— Average bias 1.17e-4 7.49e-5 3.66e-5 8.36e-5 4.62e-5 2.92e-5
— Average RMSE 4.29e-4 3.00e-4 2.07e-4 4.17e-4 2.25e-4 2.04e-4

Spat. Wts. Matrix
Proposed estimator

— Average bias −4.51e-3 −2.21e-3 −1.45e-3 −8.06e-3 −3.08e-3 −2.52e-3
— Average std. dev. 0.1113 0.0697 0.0470 0.1126 0.0876 0.0391
— Average RMSE 0.1114 0.0697 0.0470 0.1127 0.0879 0.0391

27



The estimated spatial weights matrix for the spatial error autoregressive
model, dρW , based on T = 100 and averaged over the 1000 Monte Carlo
replications are presented in the bottom panel of Table 2 (Table 2 B), along
with 95 per cent confidence intervals (2.5 and 97.5 percentiles).
None of the zero spatial weights in Table 2 A have significantly positive

or negative estimates in Table 2 B; the estimates of all the positive actual
weights are significanly positive at least at the 10 per cent level (in fact, most
are significant at 1 per cent level). The average bias across the 81 elements
in the spatial weights matrix is 0.0011 and the average RMSE (root mean
squared error) is 0.0511. This is very good, given that we are estimating a
large number of spatial weights.
In Table 3, we report average bias, standard deviation and root mean

squared errors (RMSE) for the two estimators of the spatial weights matrix.
Similar statistics for the SURE regression estimates are also reported. Results
are presented both for the spatial error model with autoregressive errors (see
also Table 2) and for the spatial error model with moving average errors. The
results show that the residual regression based estimator is not only biased
but also inconsistent. The proposed estimator based on the SURE-estimated
spatial autocovariance matrix performs quite well even for reasonably small
sample sizes; even with 9 regions (81 elements in the spatial weights matrix)
the average bias and RMSE for a sample size of T = 50 are quite reasonable.
The performance improves quite substantially with sample size.

5 An Application: Demand Diffusion in Re-
gional HousingMarkets in England andWales

5.1 Background

Substantial literature on the UK housing market has accumulated over the
past two decades; research highlights substantial mismatch between demand
and supply at least in a localised context (in terms of region and type of
housing, for example), an extremely low and declining price-elasticity of sup-
ply, and lower response of demand to price signals as compared with changes
in income (Meen, 2003; Barker, 2003). The substantial and continuing inter-
regional differences in prices and volatility have been attributed to differences
in features of the local economies as well as to local supply constraints that
limit the response of prices to changes in the economic environment (Meen,
2001, 2003; Barker, 2003). The implications of inter-regional differences in
housing markets in terms of reduced mobility and a growing spatial inequality
have also been discussed (Barker, 2003).
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Further, hedonic and repeated sales models of regional prices (see, for ex-
ample, Rosenthal, 1999) reflect not only geographically varying price effects,
but also substantial spatial dependence. Attempts have been made to ex-
plain spatial diffusion, particularly in terms of neighbourhood characteristics
such as crime rates, schooling, transport infrastructure and quality of public
services (Meen, 2001; Cheshire and Sheppard, 2004; Gibbons, 2004; Gibbons
and Machin, 2005), and social interaction and segregation (Meen and Meen,
2003). In addition, several authors have studied the so-called “ripple effects”,
by which house prices have a propensity to first rise in the South-East dur-
ing an upswing, and then spread out to the rest of the UK over time (Meen,
1999). The existence of ripple effects reflects spatio-temporal dependence in
regional housing prices in the UK.

The above literature abounds in implicit acknowledgement of the strong
spatio-temporal dependence in features of regional or local housing mar-
kets. However, as emphasized in Bhattacharjee and Jensen-Butler (2005),
what is distinctly missing in the literature is adequate understanding of the
reasons behind spatial or spatio-temporal interactions. Bhattacharjee and
Jensen-Butler (2005) extend the literature by incorporating a spatial reac-
tion function within an economic model combining a traditional ‘supply and
demand’ model of housing markets with a micro-founded model of search
and bargaining in local housing markets.

Whereas traditional spatial econometric models hold the spatial weight
function as given (at least approximately), the choice of an appropriate eco-
nomic distance measure is by no means obvious. In the current context, there
are several potential candidates, based either on geographic distances, or
transport costs, or transport time, or socio-cultural interactions. We make a
significant departure from the literature in assuming that the spatial weights
matrix is completely unknown, and take a nonparametric approach towards
understanding the spatial pattern of diffusion in demand. Based on the
economic model of housing markets proposed in Bhattacharjee and Jensen-
Butler (2005), we apply the methods proposed in this paper to estimate the
implied spatial weights matrix for housing demand, and thereby provide new
inferences regarding the nature of spatial diffusion across the different regions
of England and Wales.
In the following subsections, we describe the data, the structural equa-

tions of the economic model, and finally present and discuss the estimates of
the spatial weights matrix implied by the spatial autocovariances of our re-
gression model errors. Using methods proposed in the paper, we find that no
single driver explains the pattern of spatial diffiusion in housing markets in
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Figure 1: Government Office Regions (GORs) in England and Wales

England and Wales, and advance tentative hypotheses concerning the ‘real’
factors determining spatial diffusion in housing demand.

5.2 The Data

The empirical analysis covers housing markets in England and Wales over
the period November 2000 to May 2003. The basic spatial units of analysis
are the ten government office regions in England and Wales (Figure 1). Data
on regional housing markets for the period have been collected or estimated
on a monthly basis.
Monthly data on local housing markets at 3-digit postcode level were

obtained from Hometrack, an independent property research and database
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company in the UK16. The variables included are:

• Average number of views;
• Average time on the market (TOM); and
• Average final to listing price ratios (reciprocal of degree-of-overpricing).

Additional regional spatio-temporal data on supply, demand, neighbour-
hood characteristics and market conditions were collected (see Appendix 1).
Data were also collected for other variables useful in interpreting the esti-
mated spatial weights.

5.2.1 Structural Equations

The structural equations of our model of housing markets17 include four rela-
tionships in the four endogenous variables — namely, prices, demand, degree-
of-overpricing and time on the market. Given the relatively short time-series
of our data (monthly from November 2000 to May 2003), and given our focus
on understanding spatial diffusion in demand, we present our structural rela-
tionships in first differences. This approach renders each of demand, supply,
prices, degree-of-overpricing and time on the market stationary across the
temporal dimension.
In our model, supply and demand both have temporal variation. Demand

is endogenously determined but supply is exogenous, and in equilibrium sup-
ply (St) is related to demand (Dt) as

Dt ≡ (1− νt) .St, (23)

where νt denotes the vacancy rate
We assume an extended rental adjustment model (Hendershott, 1996),

expressed in terms of values rather than rents, relating change in realised
value (price) (Vt) of housing properties to deviations of the vacancy rate
from the natural vacancy rate and deviations of the realised value from its

16The Hometrack data are based on compilation of monthly responses to a questionnaire,
from about 3,500 major estate agents in the UK. The data are rather unique in providing
information on time on the market and degree-of-overpricing, both of which have important
roles in our analysis. We benchmark this information with data from other sources. In
particular, we augment the Hometrack data with quarterly information on sales price and
number of sales by type of property, for each county and local/ unitary authority, collected
from HM Land Registry of England and Wales.
17For further details on the derivation of these structural equations, see Bhattacharjee

and Jensen-Butler (2005).
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equilibrium level (V ∗t ). We further assume that the natural value (V
∗
t ) is

fixed in the short run (V ∗t ≡ V ∗). Hence, change in realised value (price) is
explained by change in occupancy rate (1- vacancy rate), change in natural
value, and lagged change in realised value. Since ∆ lnV ∗t = 0, and ∆ ln(1−
νt) ≡ ∆ lnDt −∆ lnSt, we have:

∆ lnVt = γ1∆ ln(1− νt−1) + γ2∆ lnV
∗
t + γ3∆ lnVt−1 + 1t

= γ1∆ lnDt−1 + γ3∆ lnVt−1 − γ4∆ lnSt−1 + 1t, (24)

0 < {γ1, γ3} < 1, γ4 = γ1.

Demand is modelled as a function of realised value, housing market con-
ditions and neighbourhood characteristics. The market conditions include
economic activity (Yt; local and economy-wide income, unemployment, pro-
ductivity and interest rates) and the neighbourhood characteristics include
socio-economic variables (Xt; quality of education and public services, de-
mographics, etc.). Hence, change in demand is explained by change in local
(neighbourhood characteristics), change in price, and change in (local) in-
come or other indicators of local market conditions.

∆ lnDt = λ1∆Xt + λ2∆ lnVt + λ3∆ lnYt + 2t, (25)

where λ2 < 0 is the price elasticity and λ3 > 0may be regarded as the income
elasticity.
If vacancy rates and supply were perfectly observed, the above three rela-

tionships (Equations (23), (24) and (25)) become recursive and the structural
relationships can be easily estimated18. However, quality data on vacancy
rates for the residential housing market in the UK are difficult to obtain.
Further, even though data on supply of residential property are more readily
available, there may be no perceptible changes in supply over time in many
non-urban areas. This is because investment in residential property is often
highly localized and geographically not very widespread. Hence, supply data
do not contain sufficient information to explain temporal variation in the
demand-supply balance in regional housing markets.

We have therefore drawn on the literature on search, bargaining and
price-setting in housing markets (see, for example, Wheaton, 1990; Krainer,
2001; and Anglin et al., 2003) to identify other observed characteristics of
the housing markets to identify the wedge between demand and supply. This
literature describes the way in which the initial list price (V L

t ) is set, the final

18This is the usual approach taken in the rental office market literature. See, for example,
Hendershott et al. (2002) and references therein.
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(realised) price is determined through repeated search and bargaining by both
the seller and the buyer, and the time-on-the-market (TOMt) that it takes to
find an appropriate buyer. The trade-offs between time-on-the-market and
setting the initial listing price (equivalently, the degree-of-overpricing, DOPt)
play crucial roles in this price-setting process. A higher list price discourages
potential buyers and increases time on the market, while a lower initial list
price reduces time on the market but also simultaneously reduces the final
price.
Broadly following Anglin et al.(2003), we can represent listing price, V L

t

(= Vt.DOPt), as a function of demand, market conditions and local neigh-
bourhood characteristics typically included in a hedonic model. It follows
that:

∆ lnDOPt = α1∆Xt + α2∆ lnYt + α3.∆ lnDt − α4∆ lnVt + 4t, (26)

α4 = 1.

Further, it has been argued that time on the market increases with both
the degree-of-overpricing and the vacancy rate, though the relationship with
degree-of-overpricing may vary somewhat with the nature of the market (An-
glin et al., 2003). Hence, we have:

∆TOMt = β1∆ lnYt + β2∆ lnDOPt − β3∆ lnDt + β4∆ lnSt + 5t, (27)

β4 = β3.

The system comprising the above four simultaneous equations (Equations
(24), (25), (26) and (27)) is overidentified. Identifiability is not affected if
multiple indicators for neighbourhood characteristics and local market con-
ditions are included.
The four endogenous variables (∆ lnVt, ∆ lnDt, ∆ lnDOPt and ∆TOMt)

are measured in first differences, and tests indicate that each of these vari-
ables are stationary over the temporal domain in each of the 10 regions under
consideration, as well as in a panel. Hence, we estimate the relationships
simultaneously using a 3SLS method, where the spatial autocovariance ma-
trix estimated from the residuals incorporates unrestricted spatial interaction
across the different regions.

In the first stage of our estimation procedure, we estimate the four struc-
tural equations individually for each region, using measures of demand (aver-
age number of views per week), realised value (price), degree-of-overpricing,
time on the market, neighbourhood characteristics (unfit houses, access to
education, and crime detection rates) and indicators of market conditions
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(claimant counts and average household income). This allows for hetero-
geneity in the relationships across the regions, both in the sense of intercept
heterogeneity (or heterogeneity in spatial fixed effects) and slope heterogene-
ity, and in the choice of indicators for neighbourhood characteristics and
market conditions. In other words, we assume a spatial regime model with a
completely general form of heterogeneity across the spatial units. This kind
of heterogeneity is desirable in our context, since there is no a priori reason
to believe that the functioning of housing markets in different regions will be
homogeneous. Under this model, we estimate our structural equations sep-
arately for each region using 3SLS, and estimate the spatial autocovariance
matrix for the demand equation from the second-stage residuals.
It may be mentioned here that the structural disturbance covariance ma-

trix in our case is singular. This is because we use data for 31 months
to construct the covariance matrix for 40 structural equations (4 structural
equations × 10 regions). Therefore, in the third stage, we estimate our struc-
tural equations using the Moore-Penrose generalised inverse of the covariance
matrix (Court, 1974). However, the estimated 10×10 spatial covariance ma-
trix of the demand equation is still nonsingular.

It is well-known that instrumental variables methods can lead to poor
results in cross-sectional analysis. Following the literature, we check the F-
statistics of the first stage regressions for each of the endogenous variables
in our model, and verify that the instruments in our estimated model are
well-specified.
The estimates of the structural equations are consistent with a priori

expectations19 and qualitatively very similar to the second stage SURE esti-
mates reported in Bhattacharjee and Jensen-Butler (2005). The results are
not reported here since we are more interested in analysing the spatial errors
from the demand equation; however, we briefly discuss the estimates.
We find substantial heterogeneity in the coefficients and in the specifi-

cation of the relationships across the various regions. For the demand rela-
tionship, which is our major focus in this paper, the coefficient of the price
variable is negative and significant for most regions, but with substantial
slope heterogeneity. Neighbourhood characteristics have an important effect
on demand, where share of unfit houses is negatively related to demand in
most of the regions, and access to education and crime detection have pos-
itive effects. Similarly, market conditions measured by claimant counts and
average household income have the expected signs (negative and positive
respectively).

19There is one exception; in the degree-of-overpricing relationship, the estimated coeffi-
cient on predicted price is positive but not significant.
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5.3 Spatial Diffusion of Demand

The spatial autocovariance matrix of demand is estimated non-parametrically,
(i.e., without specifying any explicit spatial process or functional form for
the distance decay) from the second-stage residuals of the demand equation.
Separate equations are estimated for each region, and we allow unexplained
variation in demand to be contemporaneously correlated across the regions.
This approach is consistent with the spatial regime model allowing hetero-
geneity in the demand relationship across regions. Further, the approach
allows for completely unrestricted kinds of spatial autocorrelation in the re-
gressuion errors. This estimated spatial autocovariance matrix is used to
estimate the implied matrix of spatial weights, dρW (Equation 16).

Table 4: Estimated Error Covariance and Correlation Matrices20
A. Errors, Spatial Autocovariance Matrix

E EM L NE NW SE SW W WM YH
E 0.011
EM 0.011 0.018
L 0.005 0.008 0.007
NE 0.017 0.027 0.015 0.073
NW 0.003 0.004 0.003 0.003 0.015
SE 0.008 0.009 0.006 0.015 0.001 0.008
SW 0.003 0.003 0.002 −0.000 0.007 0.002 0.008
W 0.019 0.029 0.016 0.082 −0.009 0.019 −0.008 0.128
WM 0.005 0.008 0.006 0.014 0.004 0.005 0.004 0.012 0.009
YH 0.022 0.031 0.017 0.080 −0.004 0.019 −0.004 0.104 0.013 0.109

B. Errors, Spatial Autocorrelation Matrix
E EM L NE NW SE SW W WM YH

E 1
EM 0.764 1
L 0.589 0.688 1
NE 0.605 0.741 0.640 1
NW 0.191 0.241 0.260 0.081 1
SE 0.813 0.717 0.750 0.634 0.092 1
SW 0.352 0.217 0.314 −0.007 0.635 0.284 1
W 0.495 0.607 0.524 0.845 −0.205 0.581 −0.241 1
WM 0.526 0.605 0.672 0.522 0.317 0.593 0.457 0.342 1
YH 0.614 0.707 0.608 0.890 −0.100 0.631 −0.117 0.877 0.415 1

20E: East of England; EM : East Midlands; L: Greater London; NE: North East;
NW : North West; SE: South East; SW : South West; W : Wales; WM : West Midlands;
Y H: Yorks & Humberside.
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The spatial autocovariance matrix across the 10 regions (Table 4 A) and
the corresponding spatial autocorrelation matrix (Table 4 B) show some
interesting spatial characteristics. Housing demand in Greater London is
strongly correlated with the South East, and also with West Midlands. The
highest spatial correlations are observed for Wales and Yorkshire and Hum-
berside, North East and Yorkshire and Humberside, North East and Wales
and East and the South East. These patterns indicate that spatial patterns
in demand are not necessarily related to simple notions of contiguity and geo-
graphical distance. For example, demand diffusion in London is not strongly
related to the East of England, which is contrary to common perception. Sim-
ilarly, the strong correlation between London and West Midlands, between
Wales and North East and between Wales and Yorkshire and Humberside
are somewhat difficult to justify based on geographical distance notions. It
is possible that the nature of diffusion is related to the structure of the ur-
ban hierarchy, or peripherality, or perhaps even topologically in terms of
networks.
In order to understand the nature of spatial diffusion in terms of spa-

tial weights, we use our estimator dρW (Equation 16) to estimate the spatial
weights matrix implied by the spatial autocovariance matrix reported in Ta-
ble 4, under the assumption of a spatial error model with autoregressive errors
(Equation 1). These estimates, reported in the top panel of Table 5 (Table
5A), measure the spatial contribution of demand in other regions to the de-
termination of housing demand in each individual region. Put differently,
the elements in a row corresponding to the index region represent, within
the context of the estimated spatial autoregressive model, the contributions
of idiosyncratic excess demand from other regions to excess demand in the
index region. The corresponding estimated row-standardised spatial weights
matrix is reported in the lower panel of Table 5 (Table 5B). Bootstrap 95
percent confidence intervals for each element of the spatial weights matrix,
and the estimates of region-specific standard deviations of the spatial errors
are also reported in Table 5A. Below we describe the bootstrap procedure
and the construction of confidence intervals.
Based on the 3SLS procedure described in the previous subsection, we

propose the following bootstrap procedure:

1. Estimate the structural equations using the 3SLS procedure for sin-
gular covariance matrix (Court, 1974), and compute a set of 31 resid-
ual vectors for the four endogenous variables, one set for each time
period. Let us denote these residual vectors but, t = 1, . . . , 31, wherebut = ¡bu(V )t, bu(D)t, bu(DOP )t, bu(TOM)t

¢
and the estimates of the parame-

ters of the structural equations bα.
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2. Draw a bootstrap sample bu∗t , t = 1, . . . , 31 from the empirical distribu-
tion of the residuals but.

3. For each bootstrap trial, take the exogenous and predetermined vari-
ables and the residuals as given and obtain estimates for the endogenous
variables in the sequence ∆ ln bVt(∆ lnDt−1,∆ lnVt−1,∆ lnSt−1; bα,bu∗t ),
∆ ln bDt(∆Xt,∆ ln bVt,∆ lnYt; bα,bu∗t ), ∆ ln\DOP t(∆Xt,∆ lnYt,∆ ln bDt,

∆ ln bVt; bα,bu∗t ) and∆\TOM t(∆ lnYt,∆ ln\DOP t,∆ ln bDt,∆ lnSt; bα,bu∗t ) for
t = 1, . . . , 31.

4. Using these predicted values for the endogenous variables, run the first
and second stage of the 3SLS procedure. Using the reduced form residu-
als, compute the spatial covariance matrix and its eigen-decomposition.
Use the eigenvalues and corresponding eigenvectors compute the esti-
mate of the spatial weights matrix.

5. Repeat steps 2—4 for each bootstrap trial.

Using this bootstrap procedure, we generate 200 bootstrap replications
of the estimated spatial weights matrix. We also compute 31 jackknife repli-
cations of the spatial weights matrix by omitting one time period each time.
For each element of the spatial weights matrix, we compute 95 percent con-
fidence intervals using the nonparametric BCα accelerated bootstrap con-
fidence intervals (DiCiccio and Efron, 1996). The bias correction term in
the confidence interval is estimated nonparametrically while the acceleration
parameter is estimated using the jackknife. The bootstrap confidence limits
are used to identify statistically significant spatial weights in Table 5A.
Several elements in the estimated symmetric spatial weights matrix (Table

5 A) are significantly different from zero, either positive or negative. Simi-
larly, several contributions in the row-standardized matrix (Table 5 B) are
numerically large (indicated in bold), suggesting a significant contribution
from some regions to demand in the index region. For example, in relation
to housing demand in Greater London (L, row 3 in Table 5B), 34 percent
of the spatial diffusion originates from West Midlands, 30 percent from the
East of England, and another 20 percent from the South East; while the
contribution from Yorkshire and Humberside is 24 percent, that from the
contiguous region North East is significantly negative at minus 25 percent.
The corresponding contributions in the spatial weights matrix (Table 5 A)
are significant at at least the 10 percent level of significance. Below, we
examine the pattern of these significant weights in order to understand the
process of spatial diffusion lying behind the observed demand for housing in
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the different regions. Our findings are consistent with the view that the na-
ture of spatial diffusion in regional housing markets is more complicated than
what can be modeled using a single and simple notion of distance. In partic-
ular, we find several explanations, singly or in combination, for the pattern
of observed spatial diffusion; these include geographic contiguity or distance,
inter-regional economic interactions, and social interactions and segregation.
First, contiguity or distance explains a number of the significant positive

spatial weights. These include: spatial weights between Greater London,
South East and the East of England; North East and Yorkshire and Hum-
berside; and spatial weights of West Midlands with the neighbouring regions
East Midlands and the South West. Tentative explanations can be offered.
Greater London, the South East and East can be regarded as substitutes in
the choice of housing location. Hence, idiosyncratic shocks to housing de-
mand in one of these regions can also affect demand in the other two regions.
It is, however, interesting to note that the demand in the North West is
negatively related to that in Wales, and not significantly related to housing
demand in Yorkshire and Humberside; similarly the spatial weight between
Wales and neighbouring regions South West and North West are significantly
negative. This suggests that the regional markets may be segmented in social
or ethnic terms, implying that while the North West may be attractive for
certain social groups, these groups may be less attracted to housing market
in the neighbouring regions21.
On the other hand, many other significant spatial weights appear to be

driven by reasons other than geographic distance or contiguity. A test for the
first-order contiguity spatial weights matrix using the proposed test statistic
(Equation 22) also rejects the specified driver of spatial diffusion in demand
at the 1 per cent level of significance. This evidence also supports the view
that there is more to the nature of spatial dependence than what can be
explained by simple geographic distances.
Second, a few of the strong positive spatial interactions operate along

major inter-region transport links. Significant positive spatial weights of
Yorkshire and Humberside with Greater London and the South East; between
the North East and West Midlands; and similarly between the North West
and the South West appear to be related to transportation infrastructure
(railways and motorways). This evidence is in line with recent evidence on
the effect of commuting time and choice on housing demand (Gibbons and
Machin, 2005).

21Meen and Meen (2003) point to the importance of social interactions and segregation
in understanding housing markets.
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Table 5: Estimated Spatial Weights Matrix22

A. Symmetric Spatial Weights Matrix, dρW
E EM L NE NW SE SW W WM YH

E 0
EM 0.17

(-.13,.33)
0

L 0.30∗∗
(.16,.62)

−0.02
(-.23,.17)

0

NE 0.22+
(-.02,.47)

0.02
(-.29,.20)

−0.26∗∗
(-.42,-.22)

0

NW −0.16
(-.45,.16)

0.19
(-.08,.53)

0.18
(-.11,.27)

0.22+
(-.05,.55)

0

SE 0.46∗∗
(.29,.64)

0.05
(-.19,.19)

0.20+
(-.04,.45)

−0.26∗
(-.62,.44)

0.09
(-.13,.53)

0

SW 0.34∗∗
(.19,.52)

−0.05
(-.31,.21)

−0.03
(-.29,.22)

0.05
(-.28,.20)

0.39∗
(.02,.78)

−0.04
(-.43,.11)

0

W −0.03
(-.27,.27)

0.05
(-.22,.27)

0.05
(-.16,.24)

0.41∗∗
(.22,.66)

−0.20+
(-.50,.12)

0.24
(-.16,.58)

−0.19+
(-.40,-.08)

0

WM −0.25∗∗
(-.44,-.03)

0.15+
(-.04,.46)

0.35∗∗
(.08,.56)

0.47∗∗
(.26,.79)

−0.22∗
(-.53,-.04)

0.36∗∗
(.18,.70)

0.21∗∗
(.05,.43)

−0.20
(-.55,.12)

0

YH 0.00
(-.28,.18)

0.16
(-.06,.48)

0.24∗∗
(.10,.37)

0.32+
(-.08,.51)

−0.08
(-.31,.16)

0.28∗
(.18,.46)

−0.05
(-.30,.30)

0.32∗∗
(.12,.71)

−0.11∗
(-.25,-.03)

0

cσk .039∗∗
(.02,.06)

.068∗∗
(.05,.08)

.040∗∗
(.03,.05)

.088∗∗
(.05,.13)

.077∗∗
(.05,.11)

.034∗∗
(.02,.05)

.044∗∗
(.03,.06)

.122∗∗
(.03,.21)

.041∗∗
(.01,.07)

.114∗∗
(.05,.20)

B. Row-Standardised Spatial Weights Matrix, cW (RS)23

E EM L NE NW SE SW W WM YH
E 0 0.16 0.28 0.21 −0.15 0.43 0.31 −0.02 −0.23 0.01
EM 0.23 0 −0.03 0.03 0.26 0.07 −0.06 0.08 0.21 0.23
L 0.30 −0.02 0 −0.25 0.17 0.20 −0.03 0.05 0.34 0.24
NE 0.19 0.02 −0.22 0 0.18 −0.23 0.04 0.35 0.39 0.27
NW −0.42 0.49 0.45 0.55 0 0.23 0.98 −0.51 −0.57 −0.20
SE 0.34 0.04 0.14 −0.19 0.06 0 −0.03 0.18 0.26 0.20
SW 0.54 −0.07 −0.05 0.09 0.62 −0.07 0 −0.30 0.33 −0.07
W −0.07 0.12 0.11 0.94 −0.46 0.54 −0.44 0 −0.47 0.72
WM −0.33 0.20 0.46 0.61 −0.30 0.47 0.27 −0.26 0 −0.13
YH 0.00 0.16 0.22 0.30 −0.08 0.26 −0.05 0.30 −0.10 0

22Abbreviations for the regions are as in Table 4.
+, ∗, ∗∗: Significant at 10 per cent, 5 per cent and 1 per cent level respectively.

23Figures in bold in the estimated row-standardised spatial weights matrix denote the
numerically “large” spatial weights in each row (positive or negative), without attaching
any probabilistic interpretation to these figures.
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Third, the housing markets in some more peripheral regions, like Wales,
North East and Yorkshire and Humberside, appear to be related reciprocally.
Spatial weights between Wales on the one hand and Yorkshire and Humber-
side and the North East on the other are positive and highly significant;
further, the contiguous regions Yorkshire and Humberside and North East
also have significantly high spatial weights. One possible interpretation is
that an external shock affects the periphery as a whole differently, and in
some senses uniformly, compared to other regions.
Fourth, the spatial weights between West Midlands (which is dominated

by Birmingham) and Greater London and the South East are positive and
significant at the 1 per cent level. This evidence suggests that shocks to local
demand in West Midlands may similarly affect housing demand in Greater
London. One could also propose the hypothesis that social interactions in
substantial market segments in either region (for example, segments consti-
tuted by different ethnic groups) may play a crucial role. This is also in line
with recent evidence on immigrant networks and inter-region trade (Heran-
der and Saavedra, 2005). The significant spatial weight between the South
West and the North West (dominated by Manchester) could also be driven
by similar reasons. The strong spatial relationship between the North West
and the South West is particularly important because the North West has
low and insignificant spatial weights with most of the other regions; an expla-
nation could have implications for understanding the nature of ripple effects
in the UK housing markets. The significant spatial weight between the East
of England and the South West may also be explained similarly.
Finally, Table 5 A indicates some negative spatial interactions in the

spatial weights for North East with Greater London and the South East, and
for Wales with the North West and the South West. These negative spatial
weights would suggest one of two possibilities. First, the housing markets in
the South West, Wales and North West could be alternatives with respect
to housing for retirement. Second, the negative spatial weights between the
North East and regions in the south may be related to the “ripple effects”
phenomenon, whereby sharp changes in housing markets in the South East
and London slowly spread over time to other parts of the country. This could
imply that different regions may be on different housing market cycles, which
are possibly asynchronous with one another.

In summary, the application identifies significant and interpretable spatial
relationships in demand between government office regions in England and
Wales, based on an estimate of the symmetric spatial weights matrix. We find
that while contiguity and geographic distance provide some understanding of
the strength of inter-region interactions, other factors such as socio-cultural
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distances and transport infrastructure may also drive the spatial diffusion in
housing demand. This is in addition to the importance of neighbourhood
characteristics such as educational facilities and crime that has been noted
in the literature (Cheshire and Sheppard, 2004; Gibbons, 2004).
A more complete analysis of these effects would involve constructing spa-

tial weights matrices reflecting the drivers suggested by the current work,
and then to formally examine the explanatory power of corresponding spa-
tial weights. Recent methodological advances in Conley (1999), Pinkse et
al. (2002) and Kelejian and Prucha (2004) could provide important tools for
such extension of the current analysis.

6 Conclusion

The paper proposes a methodology for estimation of a symmtric spatial
weights matrix, based on consistent estimators for the spatial autocovari-
ances. The methodology has the important advantage that it does not assume
the availability of any distance measures or spatial weights, nor any a priori
assumption about the nature of spatial diffusion. This flexible (nonparamet-
ric) approach to studying spatial diffusion represents a departure from the
literature. We discuss various features of the estimator including its large
sample properties, outline a bootstrap procedure for computing standard er-
rors, and propose a test for a specified driver of spatial diffusion. Results
of a Monte Carlo simulation study demonstrate the superior small-sample
performance of the proposed estimators.
The proposed methodology is used to study spatial diffusion in hous-

ing demand between government office regions in England and Wales. The
spatial weights matrix is estimated and tentative explanations for significant
spatial weights are advanced. The structural economic model provides a good
description of housing markets in different regions of England andWales, and
the estimates suggest significant heterogeneity in the operation of regional
housing markets.
The nature and strength of diffusion in the different regions appears to

be driven by a combination of factors including contiguity or distance, pe-
ripherality, as well as social, ethnic, and national composition representing
cultural distance, none of which is a priori obvious. Besides, some other
regions have negative spatial weights which can be explained by substitution
effects or by “ripple effects”. Thus, our approach provides substantial infor-
mation about the nature of spatial diffusion, is useful both in explaining how
regional housing markets function, and in the evaluation of region-specific
housing and related policies.
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The work in this paper suggests several extensions and paths of model
development. These include: further analysis using spatial weights matri-
ces which incorporate the drivers of spatial diffusion identified in this paper;
analysis at a lower level of spatial disaggregation; and extending our modeling
approach in relation to spatial diffusion to include temporal aspects thereby
improving understanding of features such as ripple effects. Extension of the
methodology to other models of spatial interaction will enhance the useful-
ness of the methodology. Similar analyses can uncover dimensions of spatial
interaction in other applications, such as the study of convergence across re-
gions and more generally in applied microeconomic studies of cross-sectional
dependence.
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Appendix 1: Sources of spatio-temporal data

Other than Hometrack, sources for regional spatio-temporal data were:

• Supply: Housing stock (Source: Office of the Deputy Prime Minister
(ODPM) and the Office of National Statistics (ONS);

• Demand: Proportion of Local Authority and RSL dwellings having
low demand (Source: ODPM); Property transactions (Source: HM
Land Registry and Inland Revenue); Supply minus vacant housing
(Source: ODPM); Average number of views per week (Source: Home-
track);

• Neighbourhood characteristics: Percentage of unfit houses (Source:
ODPM); Crime rates (Source: ODPM); Crime detection rates (Source:
Home Office); Percentage of university acceptances to applications (Source:
Universities and Colleges Admissions Service (UCAS)); Percentage of
population of 16-24 year olds attending university (Source: UCAS);
Best value performance indicators (Source: ODPM); and

• Market conditions: Average weekly household income (Source: ONS);
unemployment rate (Source: Labour Force Survey (LFS)); Proportion
of population claiming income support (Source: ONS).
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