7,959 research outputs found

    Review of Person Re-identification Techniques

    Full text link
    Person re-identification across different surveillance cameras with disjoint fields of view has become one of the most interesting and challenging subjects in the area of intelligent video surveillance. Although several methods have been developed and proposed, certain limitations and unresolved issues remain. In all of the existing re-identification approaches, feature vectors are extracted from segmented still images or video frames. Different similarity or dissimilarity measures have been applied to these vectors. Some methods have used simple constant metrics, whereas others have utilised models to obtain optimised metrics. Some have created models based on local colour or texture information, and others have built models based on the gait of people. In general, the main objective of all these approaches is to achieve a higher-accuracy rate and lowercomputational costs. This study summarises several developments in recent literature and discusses the various available methods used in person re-identification. Specifically, their advantages and disadvantages are mentioned and compared.Comment: Published 201

    Personnel recognition and gait classification based on multistatic micro-doppler signatures using deep convolutional neural networks

    Get PDF
    In this letter, we propose two methods for personnel recognition and gait classification using deep convolutional neural networks (DCNNs) based on multistatic radar micro-Doppler signatures. Previous DCNN-based schemes have mainly focused on monostatic scenarios, whereas directional diversity offered by multistatic radar is exploited in this letter to improve classification accuracy. We first propose the voted monostatic DCNN (VMo-DCNN) method, which trains DCNNs on each receiver node separately and fuses the results by binary voting. By merging the fusion step into the network architecture, we further propose the multistatic DCNN (Mul-DCNN) method, which performs slightly better than VMo-DCNN. These methods are validated on real data measured with a 2.4-GHz multistatic radar system. Experimental results show that the Mul-DCNN achieves over 99% accuracy in armed/unarmed gait classification using only 20% training data and similar performance in two-class personnel recognition using 50% training data, which are higher than the accuracy obtained by performing DCNN on a single radar node

    Gait recognition and understanding based on hierarchical temporal memory using 3D gait semantic folding

    Get PDF
    Gait recognition and understanding systems have shown a wide-ranging application prospect. However, their use of unstructured data from image and video has affected their performance, e.g., they are easily influenced by multi-views, occlusion, clothes, and object carrying conditions. This paper addresses these problems using a realistic 3-dimensional (3D) human structural data and sequential pattern learning framework with top-down attention modulating mechanism based on Hierarchical Temporal Memory (HTM). First, an accurate 2-dimensional (2D) to 3D human body pose and shape semantic parameters estimation method is proposed, which exploits the advantages of an instance-level body parsing model and a virtual dressing method. Second, by using gait semantic folding, the estimated body parameters are encoded using a sparse 2D matrix to construct the structural gait semantic image. In order to achieve time-based gait recognition, an HTM Network is constructed to obtain the sequence-level gait sparse distribution representations (SL-GSDRs). A top-down attention mechanism is introduced to deal with various conditions including multi-views by refining the SL-GSDRs, according to prior knowledge. The proposed gait learning model not only aids gait recognition tasks to overcome the difficulties in real application scenarios but also provides the structured gait semantic images for visual cognition. Experimental analyses on CMU MoBo, CASIA B, TUM-IITKGP, and KY4D datasets show a significant performance gain in terms of accuracy and robustness
    corecore