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In analyzing non-stationary noisy signals with time-varying frequency content, it’s convenient to use
distribution methods in joint, time and frequency, domains. Besides different adaptive data-driven
time-frequency (TF) representations, the approach with multiple orthogonal and optimally concentrated
Hermite window functions is an effective solution to achieve a good trade-off between low variance
and minimized stable bias estimates. In this paper, we propose a novel spectrogram method with
multiple optimally parameterized Hermite window functions, with parameterization which includes a
pair of free parameters to regulate the shape of the window functions. The computation is performed
in the optimization process to minimize the variable projection (VP) functional problem. The proposed
parametrized distribution method improves TF concentration and instantaneous frequency (IF) estimation
accuracy, as shown in experimental results for synthetic signals and real-life ship motion response signals.
With the optimization of nonlinear least-squares approximation of the ship response signals, the Hermite
spectra are centralized, and only up to 15 basis functions are sufficient for concentration improvement in

the TF domain.
© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction choice of an appropriate method is data-driven and requires addi-
tional processing to obtain a trade-off between time and frequency
resolution and to eliminate undesirable cross-terms [28].

Although adaptive TFD methods improve TF representations,
bias and variance control issues are generally not considered. To
maintain the favorable localization properties of conventional TF
methods and improve the TF concentration, one can find differ-
ent approaches in the literature. One solution to minimize the
variance is to combine empirical methods with additional post-
processing algorithms, e.g., the S-method with adaptive window-
width selection [31]. On the other hand, an analysis approach with
multiple orthogonal and optimally concentrated window functions
has proven to be suitable for achieving minimal variance and bias
while retaining favorable properties for non-stationary signals [8].
In other words, obtaining a good trade-off between low variance
and minimized stable bias estimates can be done by applying the
multiple windows (MW) approach. With favorable properties, the
MW approaches to signal spectrum estimation found application
in various fields such as radar imaging applications [23], vibration

To analyze changes in spectral densities over time, time-
frequency distribution (TFD) methods are utilized, thus decompos-
ing a signal in both the time and frequency domains. There are
many different TFD methods for analyzing non-stationary noisy
signals with time-varying frequency content. The analysis is per-
formed using the spectrogram, or, more recently, any member of
Cohen’s class of TFDs. The spectrogram is characterized by sim-
plicity; however, it does not provide satisfactory time-frequency
(TF) resolution. On the other hand, Cohen’s class quadratic TF
distributions, as Wigner distribution, give satisfactory TF resolu-
tion but introduce undesired TF cross-term components [12]. Over
the years, various advanced affined and reassigned TF methods
have been developed to achieve finer properties such as localiza-
tion, positivity, removal of unwanted cross-terms, etc. Usually, the
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characterization in swallowing acceleration signals [22], classifica-
tion [25], biomedicine [19] and many others.

To improve the concentration, one needs to choose the type and
the number of applied window functions in the MW approach. In
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addition to an appropriate choice of the number of window func-
tions, the performance can be further improved by optimizing the
weight coefficients of the MW distributions. In their work, [27]
proposed a method to reduce the normalized mean squared er-
ror (MSE) by individually optimizing the weight coefficients. The
method shows improvement in the final mean representation with
scaling optimization. Also, [24] proposed optimized weight coeffi-
cients to improve instantaneous frequency (IF) estimates in a noisy
environment. In the proposed approach, improvements in IF esti-
mation accuracy were proved by calculating mean MSE values. The
method demonstrated improvement for different signal to noise
ratio (SNR) values and is suitable for use in a noisy environment.

In addition to modified (adopted) weight coefficients, the shape
of the window functions could also be of great importance for op-
timizing MW distribution approaches. For example, [17] proposed
a peak-matched MW approach to obtain low bias estimates in the
vicinity of the peak frequency, with Karhunen-Loéve basis func-
tions of a known peaked spectrum used in the matching process.
However, due to the finite length of the windows, leakages occur at
frequencies outside the resolution bandwidth, so it is necessary to
use the penalty function to suppress them. On the other hand, Her-
mite functions, as orthogonal and optimally concentrated window
functions, have been shown to be very well suited to model com-
pactly supported waveforms, such as blood pressure signals [19],
QRS-complexes [26], or evoked potentials [6]. More recently, these
models have been extended to include free parameters that al-
low the system of Hermite functions to be adapted to other signal
processing problems, such as ECG delineation [5], data compres-
sion [19], and model-driven representation learning [18].

Optimizing free parameters affects the shape of the Hermite
window functions. Therefore, it can be assumed that adapted win-
dow functions in the MW approach can potentially improve TF
concentration and IF estimation accuracy. In this paper, we pro-
pose a novel parametrized multiple window spectrogram (MWS)
method. The parameterization is given with pair of free parame-
ters to minimize the variable projection (VP) functional problem,
and the computation is performed in the optimization process. We
observe mono- and multi-component signals with slowly varying
frequency content. A noisy environment is modelled by adding
white Gaussian noise, and signals are analyzed for different SNR
values. We regulate the shape of the window functions by us-
ing only two free parameters. This affects the final optimization
and results in TF representation improvement. In the evaluation
process, the mean MSE of IF estimation is calculated for different
types of synthetic signals with slowly varying frequencies, show-
ing the improved accuracy of the IF estimation in noisy scenarios
compared to original competitive methods. In addition, TF concen-
tration is measured using the Rényi entropy, and it was shown that
the proposed technique outperforms standard distributions both
for synthetic and real-world ship motion response signals.

The rest of the paper is structured as follows. Section 2 provides
a theoretical background of TFD approaches for non-stationary sig-
nals as well as MW analysis approaches in the TF domain with
appropriate Hermite window functions. Section 3 explains the
novel parameterization method with two free parameters, with
their optimization to achieve improved representation results. Sec-
tion 4 provides an insight into the efficiency of the proposed
parametrized method, which is demonstrated in several synthetic
and real-life experimental results. Discussion and concluding re-
marks are given in Section 5.

2. Theoretical background

Different versions of TFD methods have been proposed and
used for processing of non-stationary signals, and, depending on
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the application, these methods are adopted to achieve the high-
est possible resolution and concentration in the time and fre-
quency domains simultaneously, according to the uncertainty prin-
ciple [9]. The resulting adaptive data-driven TF analysis methods
are obtained using various non-parameterized and parameterized
approaches [28]. The TF representation, well-known as a spectro-
gram, is traditionally used in practice due to its simplicity in re-
alization and application. It represents the square modulus of the
short-time Fourier transform (STFT) given by the following equa-
tion:
o
STFT(t, f) = /s(t)h(t —tye 2TITgr, (1)

—o0

where s(7) is a considered signal, h(t) is a fixed-size window func-
tion (h(t —t) is the window function centered at t with T denoting
free variable). The optimal window length depends on the appli-
cation and directly affects the time and frequency resolution. With
larger values of window length, we divide the frequency range into
smaller pieces. So any given sample is covered by more frames.
It provides an improvement in frequency resolution (narrowband
spectrogram). However, we have less precision in the time domain
(blurring over time) because large values of window length inte-
grate over longer windows of time. On the other hand, with a
shorter window length, each frame only catches a small amount
of information, and the precision of the transition location is much
better, but the frequency resolution is intruded since the range is
divided into only a few pieces (wideband spectrogram). In short,
the time resolution is proportional to the effective duration, and
the frequency resolution is proportional to the effective bandwidth
of the observed analysis window. Moreover, it is possible to use
additional arguments when calculating the STFT, such as the num-
ber of overlapping samples or the corresponding hop length. With
a good choice of hop length, we can ensure that no information
is lost in the STFT calculation and that the resulting STFT varies
smoothly. The recommendation for selecting hop length values is
to set the length as a fraction of window length, typically %, I,
or % For example, when using the Hanning window, an overlap
length of 50 % is a good choice to reduce the variance of the
spectral density calculated by the spectrogram. However, the spec-
trogram suffers from insufficiently high TF resolution, and it is not
always suitable for advanced real-world signal analysis.

To improve the TF resolution, one can next use the quadratic
(energy) TFDs. As the fundamental TFD method for all other energy

distributions, Wigner-Ville distribution (WVD) is given as:
o0
Tk T —j2n ft

WVD(, f)= s(t—l—i)s (t—i)e dt. (2)
—0o0

It can provide a good time-frequency representation for chirp

signals but produces cross-terms (the undesirable TF components),

especially in the case of multi-component signals. On the other

hand, the highly efficient S-method (obtained by simple convo-

lution within the frequency-domain windows) reduces the cross-

term phenomenon while preserving the concentration of the auto-
terms in the TF plane. The S-method is given as follows [30]:

SM(t, f) =2 / P@)STFT(t, f +6)STFT*(t, f —0)do.  (3)

By sliding the window width P(6), one can perform a transition
from a spectrogram to a WVD (so-called the smoothing process).
With a narrow window, we get the blurred image, whereas a too
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wide window can introduce cross-terms. Therefore, choosing the
appropriate window width is necessary to simultaneously achieve
acceptable TF resolution and reduce unwanted cross-terms.

To achieve a variety of properties as localization, positivity,
cross-term removal, and other goals in TF analysis, other adaptive
Cohen class quadratic distributions with smoothing kernels were
designed [12]. However, in the development of adaptive TF meth-
ods with smoothing kernels, issues of bias and variance control are
generally not considered [3]. For example, empirical WVD is un-
biased, but it has infinite variance. To achieve minimal variance
and bias while retaining favorable properties for non-stationary
signals, one can use the TFD approach with MW functions. The
MW approaches to signal spectrum estimation found applications
in various fields, and many of these methods are based on Thom-
son’s MW spectrum estimation technique for stationary signals
[33]. Thomson’s method proved very favorable localization proper-
ties using optimal window functions as discrete prolate spheroidal
sequences (DPSS) [29]. However, the proposed method is restricted
to stationary signals only and has a limited range of applica-
tions. In other words, DPSS window functions do not have opti-
mal properties when non-stationary signals are observed in the
joint time and frequency domain. MW approaches in analyzing
non-stationary signals perform averaging over MW functions using
orthogonal Hermite window functions. Hermite functions have be-
come popular due to the very favorable properties of orthogonality
(to achieve minimization of variance), optimal TF concentration (to
perform stable bias estimations), and simple implementation. Var-
ious MW approaches in TF analysis of non-stationary signals have
been developed to improve the representation of spectral compo-
nents with both minimal variance and stable bias estimates. The
MWS approach has also emerged as an improvement to Thom-
son’s method. For signal s(t), it is defined as the weighted sum
of K spectrograms as follows:

K-1

MW Sk (t, f) =) de(©)Sk(t, f), (4)

k=0

where di(t) are weight coefficients, and Si(t, f) is the spectrogram
obtained according to the given Hermite window function hy(t) of
k-th order [8]:

00 2

Sk(t, f) = /s(r)hk(t—t)e’ﬂ”ffdr . (5)

o0

The estimate of the time-varying spectrum is defined here
as the weighted sum of the individual estimates in each quasi-
stationary segment, indexed by time. In other words, fitting locally
stationary processes in particular segments of limited duration are
achieved, and then averaging by weighted sum is performed. More
window functions provide a higher concentration in the TF plane,
resulting in lower variance. However, we also want to maintain a
high resolution. For this purpose, using an optimal number of Her-
mite window functions and adjusted weighting coefficients is of
great importance. Therefore, the change in the number of windows
K should be followed by an appropriate adjustment to achieve
a trade-off between bias and variance. In other words, optimiz-
ing and controlling the given trade-off is done by regulating the
number of the orthogonal windows and adjusting the weighting
coefficients.

As mentioned before, DPSS window functions are not suitable
for observing signals in the joint TF domain. The reason lies in
the fact that these functions treat the TF plane as two separate
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spaces [2]. However, Hermite window functions, with their advan-
tageous properties, can be used to consider the joint TF domain.
Namely, these window functions are localized in TF domain, i.e.
optimally localized in the circular TF region: (t, f):t%+ f2 <R?,
of area 7 R? [10]. Therefore, the family of Hermite functions can
be defined as follows [13,32]:

1

hy(t) = —HH’HHk(t)\/W(t), keN (6)
K

where k denotes the order of the Hermite function (k=0,1,..., K),

w(t) = e~ is the Hermite weight function and ||Hy|| is a normal-
ization factor. Namely, it is necessary to normalize the Hermite
polynomial function H(t) to avoid ill-conditioned numerical com-
putations [7].

It is well known that the classical orthogonal polynomials obey
a three-term recurrence relation, which can be used to evaluate
the corresponding Hermite functions:

2 [k—1
h(t) = t\/;hk—l () — _k he_a(t), k=2, (7)
where the initial terms are
1 -2 \/jt —t2
ho(t) = —=e™2, hi(t) = —=e2 . 8
o(t) N 1(0) i (8)

The first few Hermite polynomials with the corresponding Her-
mite functions are shown in Fig. 1. It can be seen that the zero-
order Hermite function ho(t) (given by eq. (8)) corresponds to the
Gaussian window function. Also, hy(t) (given by eq. (7)) quickly
tends to zero as |t| tends to infinity, thus h,:s are assumed to be
compactly supported functions. In practice, this is a very useful
property since the computations involving Hermite functions can
be reduced to a finite number of points within the effective sup-
port. The computation of the Hermite-Fourier coefficients (x, hy) is
a typical example where the integral over [—o0, co] can be approx-
imated very well by applying numerical quadrature rules within
the effective support. In our implementation, we used the compos-
ite trapezoidal rule with N points to evaluate the Hermite-Fourier
coefficients (x, hy) of a signal x with N number of samples.

The derivatives of Hermite functions can also be calculated re-
cursively:

8hk _
at
and the set {hy : k € N} of functions forms an orthonormal and

complete system in L2(R) with respect to the usual dot product
and the norm [32]:

V2khy_y —thy, k>0, (9)

o0
o) = [ mOhOde =80 helli= ik, (10
—00
where §y, stands for the Kronecker delta symbol.
The weight coefficients dy(t) in eq. (4) are calculated to satisfy
IF constraints versus various polynomial phase orders K according
to [8]:
K—1
1, n=0
> di M) = n=0,1,....,K - 1), (11)
Pt 0, n>0

where M,’;(t) is n-th order moment of the spectrogram Si(t, w)
given for a signal of amplitude A(t) as follows:
J A%t +Dhi(t)T"dT

=0,1,...., K—1). 12
I T

MK (t) =
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Fig. 1. a) Orthogonal Hermite polynomials with corresponding b) Hermite functions for the first few orders (k =0, 1, 2, 3).

Therefore, the appropriate weight coefficients are computed
with K Hermite window functions and by solving a set of equa-
tions given in eq. (11) with K spectral moments for each window
function h(t). The computation of the weight coefficients can be
performed in matrix form using an appropriate regularization pro-
cedure. In doing so, the complexity of the computation can be
costly.

Note that for constant or slowly varying amplitude signals
(A(t + T) = A(t)), the weighting coefficients dy(t) have constant
values. In this case, all odd-order moments M’z‘n_l have zero value
and hi(t)? is an even function of time. Therefore, the computa-
tion of the optimal coefficients is performed only for even-order
moments, reducing the number of optimal windows in eq. (11).
A precomputed weighting coefficients values d) for constant or
slowly varying amplitude signals, up to tenth order, can be found
in [23]. These constant values can be used in cases where the ma-
trix of moments is ill-conditioned to initialize the regularization
process described in the following section.

3. Parameterized multiple window spectrogram

By including free parameters in the system of Hermite func-
tions, the Hermite system can be defined as follows:

! (¢) = VAt — 1))

where y and A stand for the translation and the dilatation param-
eters, respectively. Fig. 2 shows an example of how these param-
eters affect the shapes of the parameterized Hermite basis func-
tions. The dilatation parameter A scales the unit on the real axis,
while the translation y shifts the central point in the time do-
main. In other words, A controls the localization in the frequency

t,yeR,1>0), (13)
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h, ()

N0)

h, ()

h ()

b)

domain, while y localizes the signal components in the time do-
main. The smaller the value of the dilatation parameter, the larger
the window width (i.e., the length of the effective support of h,’:’)‘).
The purpose of y is less obvious since a uniform time shift is nat-
urally performed in the spectrogram via windowing. However, our
approach differs to a great extent from the common MW distribu-
tions since the time shifts are not distributed uniformly through
the whole data due to the independent translation of the Hermite
window functions in each signal segment. The proper choice of y
gives an additional degree of freedom to include or exclude some
parts of the data in the spectral estimate, which is demonstrated
in Fig. 3b. The dashed magenta rectangles indicate those parts of
the signal that are suppressed by the tails of the Hermite window
functions; therefore, they would be excluded from the final spec-
tral estimate.

From a mathematical point of view, the linear parameterization
A(t — y) of the Hermite functions has several advantages. First, it
can be shown that the new function system {h,’:’A : k € N} pre-
serves orthonormality and completeness for all 0 < A and y € R.
Second, the partial derivatives can be easily computed by the chain
rule:

ol oh

—k Ak (14)
dy I lema(t—y)

and

anlt 1 oh
k VA k

= Wt — )V , (15)
2V k Ot le—iit—y)

where the derivatives of the classical Hermite functions dhy/dt’s
are given in eq. (9). This allows the use of gradient-based opti-
mization techniques in finding the best values for y and A.
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Fig. 2. Demonstrating the elements of the VP-functional for y =434.6 and A = 0.001: The matrix of parameterized Hermite functions H(y, 1), the ordinary least squares
solution ¢ = H* (y, A)Xs, and the least squares approximation H(y, A)c of the original signal segment Xs.
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Fig. 3. Demonstrating the effect of multiple windows by using a) fixed and b) adaptive Hermite functions without overlap. (For interpretation of the colors in the figure(s),

the reader is referred to the web version of this article.)

Here we propose a MWS approach where the window func-
tions h}:’)\ vary over time. Namely, in each signal segment x5 =
[X(@®),xt+T),...,x(t+ (L —1DT)]T of length L and sampling fre-
quency 1/T, the optimal values of ¥ and A are determined by
minimizing the VP-functional [11]:

ra(y.2) = ||s — Hiy, WH (v s (16)

where the k-th column of the matrix H(y, 1) € RE*K represents
h}:”\(t) sampled at t =0,1,...,L — 1, and H* (y, A) represents the
Moore-Penrose pseudoinverse of H(y, A).

Note that the window length and hop size are hyperparame-
ters of each TF distribution method, and their values are preset
before the STFT calculations. Due to the discrete nature of these
hyperparameters, their optimal values are typically determined via
an exhaustive grid search. In our approach, these hyperparameters
are assumed to be continuous variables, and hence their optimal
values are determined by minimizing the VP-functional in eq. (16).
In this way, it is enough to provide a rough initial estimate of the
window length and the hop size, which are refined in each signal
segment. Fig. 3 demonstrates this process, where the uniform time
and frequency resolutions in Fig. 3a are rescaled non-uniformly in
Fig. 3b. We note that the center of the Hermite windows y and
their length A could be optimized simultaneously for each segment
Xs to take into account the influence of neighboring segments.
However, this would be computationally expensive, so we consider
segment-wise optimization of y and A.

3.1. Optimization methods

We have implemented two different optimization methods,
with and without gradient information. The first one provides un-
constrained nonlinear optimization using the Nelder-Mead sim-
plex algorithm and does not require information about the gra-
dient of the error function. Another one is defined as extensions of
Newton’s method with the analytical gradient in each step. It per-
forms nonlinear constrained optimization and supports linear and
nonlinear constraints. The minimization of the VP-functional in
eq. (16) is a separable nonlinear least-squares problem for which
the gradient can be computed simply based on the partial deriva-
tives of the basis functions [21]. It should be noted that all nonlin-
ear optimization methods require decent initial parameters, mainly
to avoid the local minimum problem. The proper initial parameter
was determined based on experiments. Fig. 4 shows an approxi-
mation before and after parameters optimization of the Hermite
functions, with the corresponding Hermite-Fourier power spectra.

A wide range of smooth functions can be used for windowing.
However, it is desirable to reduce the signal samples to zero at the
end of the window segment. An arbitrary parametrization of the
Hermite functions does not necessarily satisfy these constraints;
thus, the windowed signal segment can have a discontinuity at the
borders. In order to avoid this phenomenon, we design nonlinear
constraints which keep the parameters of the Hermite functions in
a feasible region. We begin with the zero-order Hermite function
ho(t), which is equal, up to a constant factor, to the probabil-
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Fig. 4. Example of approximations by the Hermite Functions with corresponding Hermite-Fourier power spectra before a) and after b) optimization procedure.

ity density function of the standard normal distribution. By the
so-called three-sigma rule, 99% of the overall integration of hg(t)
lies within three standard deviations away from the mean, that is
[—3, 3]. Outside this interval, ho(t) is negligibly small. A proper
discretization of hg must preserve this property, thus we choose
the sampling interval [a, b] such that [—3; 3] C [a; b] holds. For in-
stance, in Fig. 1, we set [a; b] = [—5; 5]. The parametrization we
proposed in Section 3 changes the sampling interval, we claim,
however, that the property [—3,3] C [A(@a — ¥), A(b — y)] must
hold. This way, the optimization of ¥ and A can be restricted to
the feasible set:
3 3

F:{(y,)\)eRxRJr:y—f-xfb, y—xza}. (17)

Similar constraints can be derived for higher-order Hermite
functions by using the fact that the effective support of h;j in-
creases with the degree j. Indeed, the effective support of hj is
nested into the effective support of hj,q; thus, it is enough to
provide an estimation for the Hermite function with the highest
degree, and then adjust the constraints accordingly. For instance,
in the case of K =30, we found that [—9,9] is a good estimate
for the effective support of hyg, thus 3 can be replaced with 9
in eq. (17). Fig. 5 shows a typical example of how the nonlin-
ear parameters Yy and A influence the condition number of the
matrix H. Note that the y-axis is scaled up by 107 due to the ill-
conditioned examples (red and blue curves), whereas the feasible
examples (black dashed curve) always result in a condition num-
ber equal to 1.

Besides numerical stability, orthogonality is another property
that might be lost after discretization. There are uniform and non-
uniform sampling methods to treat this issue [32]. For instance,
the Gaussian quadrature rule is a classical non-uniform sampling
method to construct discrete orthogonal function systems. In this
approach, the first K Hermite functions hy, k=0,...,K — 1 are
sampled over the roots of the (K + 1)th Hermite function hg. Al-
though there is no explicit formula to calculate these roots, they
can be precomputed. Then the corresponding sampling points of

the parameterized Hermite functions h}:’)\ can be derived by in-
verting the linear argument transform we proposed in eq. (13).
Namely, if t; denotes the roots of hy, then the corresponding roots
of h,’:’)‘ are expressed as ty/A + y. The precomputation of the roots
can be done offline (i.e., once in a lifetime), whereas the transfor-
mation of these roots along with the non-uniform resampling of
the input signal must be recomputed multiple times during the op-
timization. The extra computational cost caused by the resampling
of the input signal can be avoided via uniform sampling, which is
another discretization approach. Although it is well-known that the
Hermite functions lose orthogonality over uniform sampling grids,
we found that near-orthogonality of the function system {h}:’)‘

k=0,...,K — 1} can be maintained, provided that the number of
sampling points is large enough (L > 100), and (y,2) € I'. An ex-
ample is shown in Fig. 5, where we plotted the Frobenius norm of
the non-diagonal entries of HT (y, A)H(y, A). Indeed, the product
resembles to an identity matrix (i.e., (hl?"l,h}"k) = §;j) when the
nonlinear parameters y and A are chosen from the feasible set I.

3.2. Regularization techniques

After the optimization, the next step is to combine the Hermite
window functions such that the IF constraints are satisfied [8]. To
this end, the system of linear equations Md = b must be solved,
where M;; is the i-th moment of the j-th Hermite window, and
b =11,0,...,0]" according to eqgs. (11)-(12). Typically, M is a
highly ill-conditioned matrix, which makes the solution very sen-
sitive to perturbations of M and b. Although the numerical repre-
sentation of b is exact (contains only zeros and ones), the elements
of M are just approximations to the true spectral moments due to
the discretization of the integral in eq. (12). In addition to the dis-
cretization error, the numerical solvers involve round-off errors ac-
cumulating at the end of the calculations and dominating the solu-
tion. Thus, standard algorithms (e.g., LU, Cholesky, QR factorization)
cannot be applied to get a meaningful solution; more sophisticated
numerical regularization methods must be used instead. There are
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various ways to formalize the regularization; among them, the
penalized least-squares method is a common technique to solve
ill-conditioned problems:

dy =argmin{|[b — Md||3 + £*Q(d)}, (18)
where 8 > 0 stands for the regularization parameter, and Q(.) is a
penalty function. For instance, (d) = ||d||, for p=1, 2 is a typical
choice for the penalty term that allows to regulate mathematical
properties of the solution d, such as smoothness, non-negativity,
and sparsity. In our experiments, we tested several professional
numerical solvers, such as Tikhonov regularization, truncated and
damped singular value decompositions from RegTool [16], and the
IRhybrid_Isqr and the IRelll MATLAB routines from the IRTool [14]
package.

In eq. (18), B is a crucial parameter, which controls the tradeoff
between under- and over-fitting. Searching for the optimal value
of B is a demanding problem, but various heuristics, such as cross-
validation, normalized cumulative periodogram, L-curve [15], exist
to estimate it. In our experiments, we utilized the L-curve method,
which is one of the most intuitive model-selection approaches.
Namely, if we plot the residual norm [|b —Mdg||> versus the norm
of the regularized solution Q(&,g) = ||H,g 2 in a log-log scale for
several values of 8, the resulting curve will resemble to the let-
ter L whose corner point is a good estimate of the optimal value
of B. Note that this method requires the evaluation of the L-curve
at several points, i.e., eq. (18) must be solved for several values
of B; hence, this method is appropriate for small-scale problems
only. However, the computational effort required to calculate the
L-curve is negligible compared to the regularization method since
the size of the matrix M is proportional to the number of Hermite
window functions K, which is typically small (< 100).

4. Experimental results

The efficiency of the proposed parameterized MWS method is
tested and discussed in this section. Through detailed experimen-
tal analysis, the achieved performances are compared to other
competitive TFD methods. Namely, we compared the simulation
results obtained by the raw spectrogram, WVD, raw MWS, and pro-
posed parametrized MWS methods for a set of mono- and multi-
component, synthetic, slowly-varying, non-stationary noisy signals.
To confirm the efficiency of the proposed method, we assessed

performances of parametrized MWS in terms of the IF estimation
accuracy, TF concentration, and improvement in TF representation.
The IF estimation accuracy is evaluated by the MSE averaged over a
number of iterations to confirm the estimation accuracy improve-
ment and to guarantee that the proposed MWS method provides
TF representation suitable for IF estimation. For evaluating the sig-
nal information content and the TF representation in the TF plane,
we employ the Rényi entropy as a quantitative concentration mea-
sure [1,4]. Additionally, the proposed MWS method is applied to
examples of real-world ship motion data to demonstrate perfor-
mance improvement in practical scenarios.

4.1. Results for synthetic frequency modulated signals

The set of different synthetic frequency modulated signals is
observed for the method’s performance evaluation, such as lin-
ear frequency modulated (LFM) and parabolic frequency modulated
(PFM) mono-component signals, as well as a multi-component
signal with sinusoidal frequency modulation (SFM). IF estimation
accuracy is analyzed by MSE averaged over 100 realizations of
randomly generated additive, white, Gaussian noise with different
SNR values. Nonlinear unconstrained and constrained optimization
methods have been tested. It has been experimentally determined
that it is most appropriate to use a programming solver that per-
forms nonlinear constrained optimization and the analytical gradi-
ent in each step. Since this solver supports nonlinear constraints,
we additionally tested the performance with designed nonlinear
constraints. The initial free parameters in optimizers are experi-
mentally determined for each SNR to avoid reaching the local min-
imum during optimization. Also, both optimizers are set to have
the same number of iterations. Complete analysis and efficiency
comparison, as well as the corresponding TF representations, are
given below.

The LFM signal is considered with values of starting and ending
normalized frequencies of 0.05 and 0.15, respectively, with 128
samples. The raw spectrogram with Hanning window, the WVD,
the raw MWS, and the proposed parametrized MWS representa-
tions for the observed signal are shown in Fig. 6, with normal-
ized TF magnitude values (rescaling the range of TF data to the
interval [0, 1]). Raw MWS is calculated with 10 Hermite func-
tions, experimentally determined to improve TF concentration and
representation results. The proposed parametric approach is also
computed with the same number of Hermite functions with a
nonlinear optimization method. The initial values of dilatation A
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Fig. 6. TF representation of the LFM signal with SNR = 10 dB: a) Raw spectrogram, b) WVD c) Raw MWS (K = 10), d) Proposed parametrized MWS (K = 10).

and translation y are determined experimentally to avoid the local
minimum problem during optimization. Also, nonlinear constraints
are designed to keep the parameters of the Hermite functions in a
feasible region, as described in Section 3.1. One can see that the
proposed parametrized approach significantly outperforms other
representations for the tested noisy LFM signal.

Estimation of the IF was performed for different SNR values,
and the mean values of MSE for 100 realizations of random noise
are given in Table 1, for raw spectrogram, WVD, raw MWS, and for
the proposed parameterized MWS distribution with and without
nonlinear constraints. As expected, the accuracy of the IF estima-
tion degrades with decreased SNR value for all presented distribu-
tion methods. However, the proposed method with designed non-
linear constraints provides significantly improved results compared
to other TFDs, even for the noisy test scenarios with low SNR val-
ues. The raw MWS method is given here to compare and confirm
the obtained improvement in the results. Namely, its efficiency can
be improved by setting the appropriate parameters that are de-
termined experimentally by a general grid search as explained in
Section 3. On the other hand, the proposed parameterized method
determines these values by minimizing the VP-functional given in
eq. (16). Additionally, it should be noted that the best fitting initial
values of the free parameters may vary in small quantities depend-
ing on the applied random noise. In the case of 100 test iterations,
the best fitting initial values are set evenly for each iteration to,
ultimately, obtain the minimum MSE.

The efficiency of the proposed method for a signal with PFM
was tested in the same manner as for the LFM signal. We con-
sider the signal s(t) = e/27@t+3+%) \where qq, a; and a, are
coefficients of the polynomial instantaneous phase. To generate
a signal with PFM law, we used a set of TF points in the form
(ti, fi) as follows: (1,0.2), (64,0.05), (128,0.15). The coefficients
ap, ai, and ay are then calculated to fit these points according to
a PFM law. TF representation results for all analyzed distribution
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Table 1

MSE of the IF estimation for different SNR values for the LFM signal (x1072).
TF Distribution 10 dB 7.5 dB 5dB
Raw spectrogram 0.75 0.90 116
WVD 5.84 9.21 29.16
Raw MWS 0.73 0.84 0.96
Parametrized MWS without nonlinear constraints 0.79 0.86 0.99
Parametrized MWS with nonlinear constraints 0.72 0.83 0.95

Table 2

MSE of the IF estimation for different SNR values for the PFM signal (x1072).
TF Distribution 10 dB 7.5 dB 5dB
Raw spectrogram 1.98 219 2.49
WVD 417 6.98 27.01
Raw MWS 175 212 2.31
Parametrized MWS without nonlinear constraints 131 157 195
Parametrized MWS with nonlinear constraints 1.30 1.56 1.84

methods are given in Fig. 7. Averaged MSE values of the esti-
mated IF obtained for 100 test iterations are given in Table 2. The
proposed method with 11 parametrized Hermite functions and de-
signed nonlinear constraints provides the best TF representation
results for the tested PFM noisy signal compared to other compet-
itive representations. Moreover, the proposed method is robust to
noise. It should also be noted that the corresponding initial val-
ues of the free parameters need to be redefined and, hence, were
adjusted experimentally.

Following experimental results for mono-component signals,
we perform IF estimation efficiency tests for a multi-component
signal consisting of two components having SFM. With the new
initial values of the free parameters, the experimental results are
given in Fig. 8. MSE values obtained for different SNR values are
given individually, for each component, in Table 3. As it can be
seen, the lowest mean MSE values for the estimated IF are ob-
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Table 3
MSE of the IF estimation of each component for different SNR values for the multi-component SFM signal (x10~%).
e 10 dB 75 dB 5dB
TF Distribution Component 1 | Component 2 Component 1 | Component 2 Component 1 | Component 2
Raw spectrogram 0.36 | 11.72 0.41 | 26.68 0.44 | 39.19
WVD 7.76 | 2.53 7.71 | 6.25 7.62 | 14.46
Raw MWS 0.35]0.12 0.38 | 0.17 0.43]0.20
Parametrized MWS without nonlinear constraints ~ 0.52 | 0.12 0.60 | 0.16 0.63 | 0.18
Parametrized MWS with nonlinear constraints 0.29|0.10 0.33]0.15 0.36]0.17
b4
Table 4 _
TF concentration measured by the Renyi entropy for tested synthetic signals (SNR = Sij(we) = / Hi(we, 0)H j(we, 6)E (we, 6)db, (19)
5 dB).
-

TF Distribution LFM PFM SFM

Raw spectrogram 3.597 3.659 3.647
WVD 0.565 2.406 1.394
Raw MWS 0.358 0.447 0.436
Parametrized MWS without nonlinear constraints 0.515 0.527 0.416
Parametrized MWS with nonlinear constraints 0.325 0.307 0414

tained by the proposed parametrized approach with applied non-
linear constraints.

The results show that the selected number and shape of the
Hermite window functions can be of great importance for obtain-
ing improved performance results. The proposed method achieves
improved results with a small number of functions and outper-
forms the competitive ones for both mono- and multi-component
frequency-modulated noisy signals. Due to the smaller number
of Hermite functions being sufficient for the proposed method,
the computation time for the calculation of weight coefficients in
eq. (11) is similar to that in the raw MWS method. Hence, we can
conclude that the proposed parameterized MWS method is robust
to noise and gives favorable results in terms of TF representation
and IF estimation accuracy.

To additional evaluate the performances of the proposed method
in terms of TFD concentration, we utilize the Rényi entropy mea-
sure of order 3. Results of the Rényi entropy obtained for different
TFDs are given in Table 4. As it can be seen, the entropy values
are reduced using the proposed MW approach, and, ultimately, the
proposed parameterized method results in a more concentrated
TFD outperforming the tested competitive methods.

4.2. Results for real-world ship motion response signals

Maintaining stable operational performance for ship routing in
rough weather conditions and/or restricted navigation areas is of
great importance for safety and navigational efficiency (in terms of
fuel consumption and greenhouse gas emissions). In such condi-
tions, it is appropriate to use on-board Decision Support Systems
(DSS) that help operators make more precise control decisions,
providing them with information on essential data [28]. DSS con-
sists of many different modules and algorithms to analyze and
filter measured motion responses and contribute to advanced sea
state estimation techniques associated with the Directional Wave
Spectra (DWS). Recently, the common DWS estimation technique
follows the idea of wave buoy analogy. It represents a more ef-
ficient alternative to moored buoys, satellite, and radar measure-
ments, as it aims to measure only available ship responses from
different ship sensor systems, thus achieving less complexity, sim-
pler maintenance, and ultimately lower costs [20]. The DWS es-
timation with wave buoy analogy has different formulations, and
most of them are given in the frequency domain with the assump-
tion of linearity between the measured motion response spectra
and the DWS:

10

where S;;j(we) denotes the response spectrum of the ship’s motion
and E(we, ) denotes the corresponding DWS for the encounter
frequency w, and angle 6. Their relationship is given with the
prior knowledge of the ship behavior under certain wave condi-
tions, which are described with complex transfer functions, called
response amplitude operators (RAO), denoted as H; and Hj. Esti-
mation accuracy and trustworthiness depend mainly on the relia-
bility of the RAO functions and/or the performance of the spectral
analysis. Since the accuracy of the RAO may be insufficient due to
the incomplete knowledge of the input conditions, it is of great
importance to recognize the possibility of improvement by suit-
able filtering and processing algorithms with analysis in the TF
domain. Thus, the contribution to the effectiveness of such systems
depends significantly on the integrated modules for advanced sig-
nal processing.

While routing, the ship encounters stochastic environmental
forces (such as waves, wind, and sea currents), and response sig-
nals introduce interferences into the system. Consequently, the
acquired noisy signals need to be processed before being passed
to the control algorithm. Thus, we observed noisy non-stationary
signals modeled as random, non-stationary processes with time-
varying spectral content. Indeed, it is possible to observe the re-
sponse spectra for six degrees of ship motions (pitch, roll, heave,
sway, surge, and yaw). The most commonly used motions are the
pitch, roll, and heave motions with their couplings. Those motions
are mainly caused by the sea waves and are least affected by the
operation of the thrusters.

Considering the favorable properties of the proposed paramet-
rized MWS approach, we perform the analysis of the spectral con-
tent of real-world ship motion response signals and demonstrate
the efficiency of the proposed parametrized method with exam-
ples of ship navigation data. We selected ship motion response
signals (in multiple degrees of freedom) from a dataset observed
within rough sea navigation in 2013 in the Southern Hemisphere.
Data length is one hour in each subset of the dataset with a time
interval of 0.1 seconds. The observed 20,000DWT Bulk Carrier ship
has a length of 160.4 m and a width of 27.2 m. For example, we
used pitch motion response signals in two scenarios, usual ship
navigation and navigation with speed loss due to the influence
of environmental forces. For the observed noisy motion response
signals (with a low frequency), the intention was to produce the
best possible TF concentration with minimized variance and high-
concentration TF representation using parametrized Hermite func-
tions.

For the proposed parameterized MWS method, in all cases, the
initial values of the free parameters were set to A = 20/N and
y = N/2, where N is the number of samples. Applied nonlinear
optimizer with gradient information is set with a maximum of 30
allowed iterations. The number of Hermite functions K was deter-
mined experimentally to achieve the best performance.

Fig. 9 shows examples of pitch motion signals (with and with-
out speed loss) in the time domain, demonstrating performances
of Hermite expansion using a programming solver which performs
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Fig. 9. An example of ship motion signal and the corresponding Hermite expansion for an a) Pitch motion and b) Pitch motion in speed loss cases.

Table 5
TF concentration measured by the Renyi entropy for tested real-world ship pitch
motion response signals.

TF Distribution Pitch Motion Pitch Motion with
without Speed Loss Speed Loss

Raw spectrogram 3.37 3.77

WVD 1.09 2.03

Raw MWS 0.86 0.68

Parametrized MWS 0.77 0.44

nonlinear constrained optimization with designed nonlinear con-
straints. The obtained MSE of the VP-approximation is rather low,
with values MSE = 6.57 - 10~ for the normal navigation case and
MSE = 2.40 - 10~ for the speed loss case. With such small values
of the approximation error, optimal values of free parameters were
obtained. These values are further used to calculate the parame-
terized Hermite functions according to the eq. (13) as a part of the
MWS calculation procedure.

The TF representation results are given in Fig. 10 for usual
pitch motion response, while Figs. 11 and 12 show two exam-
ples of pitch motion responses in the case of speed loss. In this
way, achieved improved ship motion response data representation
in the TF domain is clearly demonstrated. Additionally, compared
to other analyzed methods, the proposed method with parameter-
ized Hermite functions and applied nonlinear constraints provides
the lowest Rényi entropy values, thus representing the most con-
centrated TFD (see Table 5). Given the results obtained, we can
conclude that the proposed method effectively analyzes real-life
ship motions signals and outperforms other competitive distribu-
tion approaches in terms of TF concentration enhancement and TF
representation improvement.

It should be additionally noted, in the above example with
speed loss, given in Fig. 12, the number of used Hermite functions
has increased to achieve improved results. In our experiments, it
turned out that K = 30 is appropriate to fit the windowed signal
segments in the sense of eq. (20). Also, we found that [-9,9] is a
good estimate for the effective support, as already described in 3.1.
Due to the optimization, the Hermite spectra are centralized, and

11

it turned out only 15 basis functions are enough, and the rest of
the coefficients may be negligible. Therefore, the ship motion data
can be represented in a very compact form using only 15 Hermite
functions. However, when using a larger number of Hermite func-
tions, as in this case, problems with round-off and discretization
errors, as well as a highly ill-conditioned matrix, occur when solv-
ing Md = b. These problems have been mitigated successfully with
the help of MATLAB routines from the IRTool package described
in Section 3.2. Although the IRTool approaches are more compu-
tationally expensive compared to the other solvers we used, the
proposed method results in significantly improved results.

To conclude, the given study shows that the proposed, novel pa-
rameterized MWS significantly outperforms the original MWS and
other tested TFDs in terms of IF estimation accuracy and TF con-
centration. This was demonstrated on both synthetic and real-life
signals.

5. Conclusion

With the proposed MWS method, a more suitable represen-
tation of the underlying features is obtained for various non-
stationary frequency modulated signals. The optimization of non-
linear least-squares approximation of the response signals and
parametrization of the Hermite functions lead to improved anal-
ysis results in terms of the TF concentration and accuracy of IF
estimation. The proposed method also provides a reliable trade-off
between minimized variance and stable bias estimates. Experimen-
tal results have shown that it outperforms other competitive non-
adaptive and adaptive TFDs for both synthetic mono- and multi-
component frequency modulated signals, as well as for tested
real-world ship motion response signals. The improvement was
achieved using only two free parameters and considered segment-
wise optimization to lower the computational cost. In general, exe-
cution times are highly affected by regularization procedures when
a larger number of Hermite functions are chosen, but increased ex-
ecution times are neglectable in the case of a smaller number of
Hermite functions. It has been shown that 15 basis functions are
sufficient for representation and concentration improvement for
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Fig. 12. TF representations of a ship pitch motion response signal with speed loss (example 2): a) Raw spectrogram, b) WVD, c¢) Raw MWS (K = 11), d) Parametrized MWS

(K = 30).

ship pitch motion data. With additional modifications of the pro-
posed MWS method, as modified weight coefficients, even better
characteristics for spectral analysis can be expected. Since the free
parameters in the MWS method need to be adaptively adjusted
based on the applied noise, the application of machine learning al-
gorithms for automatic parameters selection could be the next step
to upgrade our future work.

CRediT authorship contribution statement

Denis Selimovic: Investigation, Methodology, Software, Valida-
tion, Visualization, Writing - original draft. Jonatan Lerga: Con-
ceptualization, Formal analysis, Funding acquisition, Investigation,
Methodology, Project administration, Resources, Supervision, Vali-
dation, Writing - original draft, Writing - review & editing. Péter
Kovacs: Conceptualization, Investigation, Methodology, Software,
Validation, Writing - original draft, Writing - review & editing.
Jasna Prpic-0Orsic: Conceptualization, Data curation, Formal anal-
ysis, Funding acquisition, Methodology, Project administration, Re-
sources, Supervision, Validation, Writing - review & editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgment

This work was fully supported by the Croatian Science Founda-
tion under the project IP-2018-01-3739, EU Horizon 2020 project
“National Competence Centres in the Framework of EuroHPC (EU-
ROCC)”, IRI2 project “ABsistemDCiCloud” (KK.01.2.1.02.0179), Uni-
versity of Rijeka projects uniri-tehnic-18-17 and uniri-tehnic-18-

13

15, Croatian-Slovenian bilateral project BI-HR/20-21-043, and the
European COST project CA17137. Also, this paper was supported by
the Janos Bolyai Research Scholarship of the Hungarian Academy of
Sciences. Project no. TKP2021-NVA-29 has been implemented with
the support provided by the Ministry of Innovation and Technology
of Hungary from the National Research, Development and Innova-
tion Fund, financed under the TKP2021-NVA funding scheme.

References

[1] R. Baraniuk, P. Flandrin, A. Janssen, O. Michel, Measuring time-frequency in-
formation content using the Renyi entropies, IEEE Trans. Inf. Theory 47 (2001)
1391-14009, https://doi.org/10.1109/18.923723.

M. Bayram, R.G. Baraniuk, Multiple window time-frequency analysis, in: Pro-

ceedings of the IEEE-SP International Symposium on Time-Frequency and

Time-Scale Analysis, Institute of Electrical and Electronics Engineers Inc.,

United States, 1996, pp. 173-176, Conference date: 18-06-1996 through 21-

06-1996.

B. Boashash, Advanced implementation and realization of TFDs, in: B. Boashash

(Ed.), Time-Frequency Signal Analysis and Processing, second edition, Academic

Press, Oxford, 2016, pp. 331-385, Chapter 6, http://www.sciencedirect.com/

science/article/pii/B9780123984999000066, https://doi.org/10.1016/B978-0-12-

398499-9.00006-6.

B. Boashash, Measures, performance assessment, and enhancement of tfds,

in: B. Boashash (Ed.), Time-Frequency Signal Analysis and Processing, sec-

ond edition, Academic Press, Oxford, 2016, pp. 387-452, Chapter 7, https://
www.sciencedirect.com/science/article/pii/B9780123984999000078, https://
doi.org/10.1016/B978-0-12-398499-9.00007-8.

C. Bock, P. Kovacs, P. Laguna, J. Meier, M. Huemer, ECG beat representation and

delineation by means of variable projection, IEEE Trans. Biomed. Eng. (2021)

1-12, https://doi.org/10.1109/TBME.2021.3058781.

[6] M. Boudiaf, M. Benkherrat, K. Mansouri, Denoising of single-trial event-related
potentials using adaptive modelling, IET Signal Process. 11 (2017), https://doi.
org/10.1049/iet-spr.2016.0528.

[7] J. Boyd, Dynamics of the equatorial ocean, https://doi.org/10.1007/978-3-662-
55476-0, 2017.

[8] E. Cakrak, PJ. Loughlin, Multiwindow time-varying spectrum with instanta-
neous bandwidth and frequency constraints, IEEE Trans. Signal Process. 49
(2001) 1656-1666, https://doi.org/10.1109/78.934135.

[2]

3

[4

[5


https://doi.org/10.1109/18.923723
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib2D7DA3C0F5E7A176083D5E90E81FB696s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib2D7DA3C0F5E7A176083D5E90E81FB696s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib2D7DA3C0F5E7A176083D5E90E81FB696s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib2D7DA3C0F5E7A176083D5E90E81FB696s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib2D7DA3C0F5E7A176083D5E90E81FB696s1
http://www.sciencedirect.com/science/article/pii/B9780123984999000066
http://www.sciencedirect.com/science/article/pii/B9780123984999000066
https://doi.org/10.1016/B978-0-12-398499-9.00006-6
https://doi.org/10.1016/B978-0-12-398499-9.00006-6
https://www.sciencedirect.com/science/article/pii/B9780123984999000078
https://www.sciencedirect.com/science/article/pii/B9780123984999000078
https://doi.org/10.1016/B978-0-12-398499-9.00007-8
https://doi.org/10.1016/B978-0-12-398499-9.00007-8
https://doi.org/10.1109/TBME.2021.3058781
https://doi.org/10.1049/iet-spr.2016.0528
https://doi.org/10.1049/iet-spr.2016.0528
https://doi.org/10.1007/978-3-662-55476-0
https://doi.org/10.1007/978-3-662-55476-0
https://doi.org/10.1109/78.934135

D. Selimovic, J. Lerga, P. Kovdcs et al.

[9] L. Cohen, The uncertainty principle for the short-time Fourier transform and
wavelet transform, in: Wavelet Transforms and Time-Frequency Signal Analysis,
Birkhduser Boston, Boston, MA, 2001, pp. 217-232.

[10] 1. Daubechies, Time-frequency localization operators: a geometric phase space
approach, [EEE Trans. Inf. Theory 34 (1988) 605-612, https://doi.org/10.1109/
18.9761.

[11] B. Fischer, G.H. Golub, How to generate unknown orthogonal polynomials out
of known orthogonal polynomials, J. Comput. Appl. Math. 43 (1992) 99-115,
https://core.ac.uk/download/pdf/82564792.pdf.

[12] G. Fraser, B. Boashash, Multiple window spectrogram and time-frequency dis-
tributions, in: IEEE International Conference on Acoustics, Speech, and Signal
Processing, vol. 4, 1994, IV/293-1V/296, https://doi.org/10.1109/ICASSP.1994.
389818.

[13] W. Gautschi, Orthogonal Polynomials, Computation and Approximation. Nu-
merical Mathematics and Scientific Computation, Oxford University Press, Ox-
ford, UK, 2004.

[14] S. Gazzola, P.C. Hansen, J.G. Nagy, IR tools: a MATLAB package of iterative regu-
larization methods and large-scale test problems, Numer. Algorithms 81 (2019)
773-811.

[15] P.C. Hansen, Rank-Deficient and Discrete Ill-Posed Inverse Problems: Numerical
Aspects of Linear Inversion, SIAM Monographs on Mathematical Modeling and
Computation, SIAM, Philadelphia, PA, USA, 1998.

[16] P.C. Hansen, Regularization tools version 4.0 for Matlab 7.3, Numer. Algorithms
46 (2007) 189-194.

[17] M. Hansson, G. Salomonsson, A multiple window method for estimation of
peaked spectra, IEEE Trans. Signal Process. 45 (1997) 778-781.

[18] P. Kovécs, G. Bognar, C. Huber, M. Huemer, Vpnet: variable projection net-
works, Int. J. Neural Syst. (IJNS) 32 (2021) 2150054, https://doi.org/10.1142/
S0129065721500544.

[19] P. Kovacs, C. Bock, T. Dézsa, ]. Meier, M. Huemer, Waveform modeling by
adaptive weighted Hermite functions, in: 2019 IEEE International Confer-
ence on Acoustics, Speech and Signal Processing (ICASSP), ICASSP 2019, 2019,
pp. 1080-1084.

[20] UD. Nielsen, A concise account
board sea state estimation, Ocean Eng.
www.sciencedirect.com/science/article/pii/S0029801816305388,
doi.org/10.1016/j.0ceaneng.2016.11.035.

[21] D.P. O’Leary, B.W. Rust, Variable projection for nonlinear least squares prob-
lems, Comput. Optim. Appl. 54 (2013) 579-593.

[22] L. Orovic, S. Stankovic, T. Chau, C. Steele, E. Sejdic, Time-frequency analy-

sis and Hermite projection method applied to swallowing accelerometry sig-

nals, EURASIP J. Adv. Signal Process. 2010 (2010), https://doi.org/10.1155/2010/

323125.

L. Orovic, S. Stankovic, T. Thayaparan, L. Stankovic, Multiwindow s-method for

instantaneous frequency estimation and its application in radar signal analysis,

[ET Signal Process. (2010) 363-370, https://doi.org/10.1049/iet-spr.2009.0059.

I. Orovic, N. Zaric, S. Stankovic, M. Amin, A multiwindow time-frequency ap-

proach based on the concepts of robust estimate theory, in: 2011 IEEE Inter-

national Conference on Acoustics, Speech and Signal Processing (ICASSP), 2011,

pp. 3584-3587.

[25] 1. Orovi¢, S. Stankovi¢, M. Amin, A new approach for classification of
human gait based on time-frequency feature representations, Signal Pro-
cess. 91 (2011) 1448-1456, https://www.sciencedirect.com/science/article/pii/
S0165168410003506, https://doi.org/10.1016/j.sigpro.2010.08.013, Fourier Re-
lated Transforms for Non-Stationary Signals.

[26] A. Sandryhaila, S. Saba, M. Piischel, ]. Kovacevic, Efficient compression of QRS
complexes using Hermite expansion, IEEE Trans. Signal Process. 60 (2012)
947-955, https://doi.org/10.1109/TSP.2011.2173336.

[27] M. Sandsten, J. Sandberg, Optimization of weighting factors for multiple win-
dow spectrogram of event-related potentials, EURASIP J. Adv. Signal Process.
2010 (2010), https://doi.org/10.1155/2010/391798.

[28] D. Selimovig, J. Lerga, J. Prpi¢-Orsi¢, S. Kenji, Improving the performance of
dynamic ship positioning systems: a review of filtering and estimation tech-
niques, J. Marine Sci. Eng. 8 (2020), https://www.mdpi.com/2077-1312/8/4/234,
https://doi.org/10.3390/jmse8040234.

[29] D. Slepian, H.O. Pollak, Prolate spheroidal wave functions, Fourier analysis and
uncertainty - [, Bell Syst. Tech. J. 40 (1961) 43-63, https://doi.org/10.1002/j.
1538-7305.1961.tb03976.x.

[30] L. Stankovic, A method for time-frequency analysis, IEEE Trans. Signal Process.
42 (1994) 225-229, https://doi.org/10.1109/78.258146.

of techniques available for ship-
129 (2017) 352-362, https://
https://

[23]

[24]

14

Digital Signal Processing 126 (2022) 103491

[31] L. Stankovic, T. Thayaparan, V. Popovi¢-Bugarin, 1. Djurovic, M. Dakovic, Adap-
tive s-method for sar/isar imaging, EURASIP ]. Adv. Signal Process. 2008 (2007),
https://doi.org/10.1155/2008/593216.

[32] G. Szego, Orthogonal Polynomials, 3rd ed., AMS Colloquium Publications, New
York, USA, 1967.

[33] D.J. Thomson, Spectrum estimation and harmonic analysis, Proc. IEEE 70 (1982)
1055-1096, https://doi.org/10.1109/PROC.1982.12433.

Denis Selimovic is currently pursuing a Ph.D. degree in Computer Sci-
ence at the Faculty of Engineering, University of Rijeka, Croatia. He is also
a member of the Center for Artificial Intelligence and Cybersecurity, Uni-
versity of Rijeka, Croatia. His main research interests include digital signal
processing, machine learning, and artificial intelligence applications.

Jonatan Lerga received a Ph.D. degree from the Faculty of Electrical
Engineering and Computing, University of Zagreb, Croatia, in 2011. He is
currently an Associate Professor at the Faculty of Engineering, University
of Rijeka, Croatia, where he is the Head of the Department of Computer
Engineering and the Information Processing Laboratory. He is also the
Head of the Center for Artificial Intelligence and Cybersecurity, Univer-
sity of Rijeka, Croatia. He published more than 70 scientific papers with
35 papers in WoS journals. His main research interests include digital sig-
nal and image processing, artificial intelligence applications, information
theory, and coding. Prof. Lerga received numerous awards for his work:
the Annual Award of the Croatian Academy of Engineering for his scien-
tific achievements in 2012, the Annual Award of the City of Rijeka in 2015,
and the Annual Award of the Primorje-Gorski Kotar County in 2018. Also,
he received several recognitions from the Foundation of the University of
Rijeka, in 2008, 2010, and 2018.

Péter Kovacs received his Ph.D. in computer science from the E6tvos
Lorand University (ELTE), Budapest, Hungary, in 2016. His research inter-
ests include signal processing, numerical analysis, and optimization. Since
2016 he has been an assistant professor at the Department of Numerical
Analysis of ELTE. He spent five months as visiting researcher at the De-
partment of Signal Processing, the Tampere University of Technology in
Finland, and 30 months as a postdoc at the Institute of Signal Processing,
Johannes Kepler University Linz in Austria. In 2016 he received the Farkas
Gyula Prize in applied mathematics from the Janos Bolyai Mathematical
Society. In 2022 he was habilitated at the Faculty of Informatics of ELTE.

Jasna Prpic-Orsi¢ was born in 1965 in Rijeka, Croatia. She is a pro-
fessor at the Department of Naval Architecture and Ocean Engineering,
Faculty of Engineering, University of Rijeka, and the Head of the Ship Dy-
namics Chair. She has served as Dean of the Faculty of Engineering (2016-
2019) and Vice Dean for Research Affairs (2010-2016). She has been a
visiting researcher on NTNU since 2008, at the Center of Ships and Ocean
Structures (CESOS) and the Centre for Autonomous Marine Operations and
Systems (AMOS), Norwegian Centers of Excellence, Trondheim, Norway.
She is also an associate researcher at the Centre for Marine Technology
and Ocean Engineering, Group of Marine Dynamics and Hydrodynam-
ics, Instituto Superior Tecnico, Lisbon, Portugal. She has been a member
of IMAM (International Maritime Association of the Mediterranean) since
2011 and was President of IMAM (2015-2017). She has been a member of
the ISSC Loads Committee since 2015. She has been a lead researcher on
eight scientific projects. Currently, she is the lead researcher of the project
Decision Support System for Green and Safe Ship Routing, funded by the
Croatian Foundation for Research. She received the Republic of Croatia An-
nual Scientific Award in 2020 and the Croatian Academy of Sciences and
Arts Award in 2007. She has published some 150 scientific papers and
two books. Her main interests include seakeeping, numerical simulations
in marine dynamics, wave loads, and the response of marine objects.


http://refhub.elsevier.com/S1051-2004(22)00108-7/bibECD9E09A443BB5F6C31675C9992FF41Es1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bibECD9E09A443BB5F6C31675C9992FF41Es1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bibECD9E09A443BB5F6C31675C9992FF41Es1
https://doi.org/10.1109/18.9761
https://doi.org/10.1109/18.9761
https://core.ac.uk/download/pdf/82564792.pdf
https://doi.org/10.1109/ICASSP.1994.389818
https://doi.org/10.1109/ICASSP.1994.389818
http://refhub.elsevier.com/S1051-2004(22)00108-7/bibF068BC8DA2FBD26CFAB2C0E689296F74s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bibF068BC8DA2FBD26CFAB2C0E689296F74s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bibF068BC8DA2FBD26CFAB2C0E689296F74s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib77A2B5E46078922E4B8D20AD31C0C840s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib77A2B5E46078922E4B8D20AD31C0C840s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib77A2B5E46078922E4B8D20AD31C0C840s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib6C5B77BC23A2BCAA5EE5AF7EB4938D5As1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib6C5B77BC23A2BCAA5EE5AF7EB4938D5As1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib6C5B77BC23A2BCAA5EE5AF7EB4938D5As1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib98BE82EA0D6B353CF4B0A65A5F19524Ds1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib98BE82EA0D6B353CF4B0A65A5F19524Ds1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib794D57569004B5AF48E940166892C5A0s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib794D57569004B5AF48E940166892C5A0s1
https://doi.org/10.1142/S0129065721500544
https://doi.org/10.1142/S0129065721500544
http://refhub.elsevier.com/S1051-2004(22)00108-7/bibC3CF9965F538BC5C59878603FF0986E0s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bibC3CF9965F538BC5C59878603FF0986E0s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bibC3CF9965F538BC5C59878603FF0986E0s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bibC3CF9965F538BC5C59878603FF0986E0s1
https://www.sciencedirect.com/science/article/pii/S0029801816305388
https://www.sciencedirect.com/science/article/pii/S0029801816305388
https://doi.org/10.1016/j.oceaneng.2016.11.035
https://doi.org/10.1016/j.oceaneng.2016.11.035
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib585CF61D7D2B7216120E1AA36D120AE2s1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib585CF61D7D2B7216120E1AA36D120AE2s1
https://doi.org/10.1155/2010/323125
https://doi.org/10.1155/2010/323125
https://doi.org/10.1049/iet-spr.2009.0059
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib3740B5B4DD959CA919ABEE215C11C21Cs1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib3740B5B4DD959CA919ABEE215C11C21Cs1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib3740B5B4DD959CA919ABEE215C11C21Cs1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib3740B5B4DD959CA919ABEE215C11C21Cs1
https://www.sciencedirect.com/science/article/pii/S0165168410003506
https://www.sciencedirect.com/science/article/pii/S0165168410003506
https://doi.org/10.1016/j.sigpro.2010.08.013
https://doi.org/10.1109/TSP.2011.2173336
https://doi.org/10.1155/2010/391798
https://www.mdpi.com/2077-1312/8/4/234
https://doi.org/10.3390/jmse8040234
https://doi.org/10.1002/j.1538-7305.1961.tb03976.x
https://doi.org/10.1002/j.1538-7305.1961.tb03976.x
https://doi.org/10.1109/78.258146
https://doi.org/10.1155/2008/593216
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib65F8BB7681B8079CCE33F806106D287Cs1
http://refhub.elsevier.com/S1051-2004(22)00108-7/bib65F8BB7681B8079CCE33F806106D287Cs1
https://doi.org/10.1109/PROC.1982.12433

	Improved parametrized multiple window spectrogram with application in ship navigation systems
	1 Introduction
	2 Theoretical background
	3 Parameterized multiple window spectrogram
	3.1 Optimization methods
	3.2 Regularization techniques

	4 Experimental results
	4.1 Results for synthetic frequency modulated signals
	4.2 Results for real-world ship motion response signals

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgment
	References


