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Abstract
A novel feature set for low-dimensional signal representation, designed for classification or clustering of
non-stationary signals with complex variation in time and frequency, is presented. The feature representation of a
signal is given by the first left and right singular vectors of its ambiguity spectrum matrix. If the ambiguity matrix is of
low rank, most signal information in time direction is captured by the first right singular vector while the signal’s key
frequency information is encoded by the first left singular vector. The resemblance of two signals is investigated by
means of a suitable similarity assessment of the signals’ respective singular vector pair. Application of multitapers for
the calculation of the ambiguity spectrum gives an increased robustness to jitter and background noise and a
consequent improvement in performance, as compared to estimation based on the ordinary single Hanning window
spectrogram. The suggested feature-based signal compression is applied to a syllable-based analysis of a song from
the bird species Great Reed Warbler and evaluated by comparison to manual auditive and/or visual signal
classification. The results show that the proposed approach outperforms well-known approaches based on
mel-frequency cepstral coefficients and spectrogram cross-correlation.

Keywords: Time-frequency analysis, Ambiguity spectrum, Singular value decomposition, Multitaper, Bird song

1 Introduction
In biology, bird song analysis has been a large field for
several decades, and for many years, methods based on
spectrograms (sonograms) have been considered well-
suited for the comparison of bird sounds. Generally, song
analysis tools are especially challenged when recordings
have been conducted on birds under natural outdoor con-
ditions. In these environments, disturbing background
noises, such as wind and interference from other birds,
is typically present and often distorts the recorded sig-
nal substantially. The extent to which such background
noise effectively impairs the analysis depends on the
type/structure of the underlying signal and on the par-
ticular research question. Essentially two principal top-
ics have been considered in literature in the context of
classification or clustering of bird song units (e.g., sylla-
bles). The hitherto most common research aims at the
song-based identification of bird species. Characterizing
patterns of songs from different bird species are often
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sufficiently distinct, so that rather straightforward fea-
tures such as time and frequencymoments, time duration,
and frequency bandwidth often yield satisfactory results.
Somewhat more sophisticated is song analysis by means
of pairwise cross-correlation of spectrograms (SPCC),
[1, 2] or dynamic time warping (DTW), [3–5]. Besides,
methods that have become popular in speech analysis,
such as approaches based on pitch frequency or mel-
frequency cepstrum coefficients (MFCC), have been suc-
cessfully applied to bird species classification, [6]. More
recently, bird sounds analysis of especially noisy signals
has been approached using wavelets, [7].
The other main question guiding bird-song research is

the within-species classification and clustering. This task
often constitutes a much more involved problem, espe-
cially when the songs of the species under consideration
have a complex structure. Such problems thus require suf-
ficiently sophisticated methods that are able to not only
capture subtle characteristic details within a song, but also
to compare them with each other. More simplistic meth-
ods, which may be well-tailored for species identification,
smooth out the differences that should be detected and
will fail in the within-species analysis. The Great Reed
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Warbler (GRW) is one example of a species with songs
of pronounced profound complexity. However, due to the
lack of sufficiently sophisticated methods, song analysis
for the GRW has so far mainly been conducted manually,
by listening and visually studying the syllable sonograms,
[5, 8, 9].
Bird song analysis is only one of various several appli-

cations of time-frequency (TF) analysis of non-stationary
signals and a significant number of approaches in this
important field has been suggested. Since its introduction
to bird song analysis in the 50 s, the sonogram (or TF
spectrum) has become one of the most established tools
in context of bird song investigation, and computation-
ally efficient and robust algorithms for spectrogram-based
TF analysis can be found using, e.g., multitapers (MTs).
Originally, MTs were introduced by Thomson, [10], who
proposed the discrete Prolate Spheroidal Sequences for
estimation of a low-variance spectrum with pre-specified
resolution. Nowadays, the noise-robust Thomson MTs
are well-established in the context of stationary spec-
trum analysis and have found various application areas.
Recently, the Hermite MTs, [11], have gained popular-
ity, especially in applications with particular interest in
estimation of the TF spectrum of non-stationary signals,
[12–16]. As the MT spectrogram is known to reduce
variation in amplitude and to limit resolution in time
and frequency, it is tailored for the analysis of multi-
component signals with jitter, or variance, in both location
of the components and their amplitudes, [17]. In contrast
to TF distributions, that aim at optimal resolution of signal
components and cross-term suppression, [18], MT spec-
trograms are more suitable for the type of data considered
in this paper, as MTs are expected to smooth out small
differences in time and frequency locations and therefore
lower the in-class variance.
Extracting features from the TF spectrum for classi-

fication or clustering is a non-trivial task, and several
approaches have been proposed in literature. In different
application areas, there has recently been an increased
interest in decomposition methods, such as approaches
related to principal component analysis (PCA), indepen-
dent component analysis (ICA), singular value decom-
position (SVD), and non-negative matrix factorization
(NMF). In [18], the authors achieve increased noise-
insensitivity by combining image processing techniques
with wavelets and SVD. Barry et al., [19] improved clas-
sification performance of event-related signals by the
application of PCA to TF spectra of the electroencephalo-
gram data. The SVD of TF spectra was also used to
classify multi-component bird song syllables in [17], and
multi-component frequency modulated (FM) signals in
[20]. Approaches employing these techniques are promis-
ing for two key reasons. On the one hand, they create
a decoupling of the time and frequency domains and

therefore facilitate the separate inspection of correspond-
ing features, and on the other hand, they achieve a noise
reduction as noise is spread across the collection of all
singular vectors and the signal part usually has low rank
[19, 20]. The NMF, [21], where a matrix with positive
values is decomposed into positive basis functions, has
been applied for classification of TF spectrum of audio
signals [22, 23]. In [24], it is shown that the NMF decom-
position method of a TF spectrum is superior to PCA
and ICA for classification of audio data. However, the
NMF method is computationally more demanding than,
e.g., the SVD technique, as it requires an iterative solu-
tion. Different algorithms for better convergence have
been proposed, and recently, an approach using the SVD
basis functions as initialization of the NMF algorithm was
suggested, [25].
A less intuitive, but for certain topics—particularly in

bird song analysis—highly suitable tool for signal rep-
resentation and the ground for feature extraction is the
so-called ambiguity spectrum (AS) [26]. A characteris-
tic for this two-dimensional Fourier transform of the TF
spectrum is its invariance to time and frequency shifts
of the signal. More specifically, the absolute values of the
AS of a signal and its time and frequency shifted version
are identical. Therefore, signal analysis based on the AS
focuses on differences between time and frequency com-
ponents rather than on their actual location in the TF
plane. Moreover, for many applications—as also for rep-
resentation of syllables from bird songs—the AS will be a
matrix of low rank, and can hence be well-approximated
by only a few (e.g., the first pair) of its singular vectors.
The AS and its first pair of singular vectors will constitute
the essence of our methodology.
As the MT spectrogram is robust to jitters in the

amplitudes and locations of a signal’s components [17],
selecting the first two singular vectors of the MT spectro-
gram is more intuitive than the AS-based representation.
However, as shown in [17], using singular vectors of the
spectrogram for classification of multi-component signals
requires several singular vector pairs and more advanced
algorithms to combine the singular vectors in an appropri-
ate way. To ensure better comparability of ambiguity- and
TF-domain analysis, we, however, base our investigations
in both cases on only the first pair of singular vectors.
The main contribution of this paper is the introduc-

tion of a feature set based on SVD of the AS on the basis
of which, e.g., classification and clustering tasks of non-
stationary signals can be performed. The latter may be
conducted in terms of a similarity measure. The method
has recently been applied to clustering of a whole song of
the GRW [27], where in this work, a collection of possi-
ble similarity measures is presented and their respective
performances are evaluated and compared. Additionally,
the optimal parameters of the TF methods are found,
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and robustness of methods are investigated for additional
noise disturbances.
The suggested algorithm consists of four steps. The

detection step aims at detecting and subdividing a bird-
song strophe into individual syllables (∼ 50–300 ms). In
the second step, the syllable-specific ambiguity spectra are
estimated, and the corresponding SVDs are calculated in
the third step. Each syllable will then be represented by
the first two singular vectors of its AS. As the ambiguity
matrix for these kinds of signals is typically of low rank,
this representation captures the signal’s key information,
both in time and frequency direction. In the fourth step,
the alikeness of two syllables, represented by their respec-
tive pair of singular vectors, is assessed by means of a
collection of candidate similarity measures, which are
evaluated and compared to each other.
The reminder of the article is structured as follows. In

the subsequent section, we give a short treatment of the
TF representation of a signal along with the quadratic
class of smoothed spectra. The ambiguity spectrum,
which will play an important role in our methodology,
is introduced and its utilization is motivated. We give a
first application of some spectral methods on a bird-song
signal, the latter being the main object for our analysis.
In section 3, we introduce our feature set which is based
on the SVD of a signal’s AS and provide a few examples.
Next, we present two raw similarity measures in section 4
and use them to derive three combined measures, all of
which subsequently are to be assessed and compared. In
section 5, we describe a two-step method for detection
of syllables from a bird song strophe. The data used for
our examples is described in section 6, and a baseline
truth for the classification is defined. In section 7, we
evaluate the suggested similarity measures as well as dif-
ferent approaches for estimation of the AS. Moreover, this
section provides a comparison of the proposed approach
to other well-known methods. Section 8 contains a major
application of our methodology to a larger set of syllables
in a more complex classification study. Finally, section 9
concludes.

2 Time-frequency analysis andmultitapers
For a non-stationary signal, the instantaneous autocor-
relation function (IAF) of a zero-mean signal x(t) is a
function of two variables t and τ defined as

rx(t, τ) = E
[
x
(
t + τ

2

)
xH

(
t − τ

2

)]
, (1)

where E[∗] denotes the expectation operator and the
superscript H the conjugate-transpose. The Wiener-
Khintchine theorem extended to the time-varying spec-
tral density and an application of the Fourier transform
with respect to the variable τ give the so-called Wigner
or TF spectrum, [28], Wx(t, f ) = Fτ→f rx(t, τ). For a

given TF kernel �(t, f ), we find in the quadratic class
(Q) the smoothed TF spectrum as the two-dimensional
convolution,

WQ
x (t, f ) = Wx(t, f ) ∗ ∗�(t, f ). (2)

The AS spectrum is obtained by application of the
Fourier transform with respect to the variable t in the IAF,
Ax(ν, τ) = Ft→νrx(t, τ). For a given ambiguity domain
kernel φ(ν, τ), one defines the filtered AS [28], as

AQ
x (ν, τ) = Ax(ν, τ) · φ(ν, τ). (3)

The relationship between the smoothed TF spectrum,
the filtered AS and the IAF is given by

WQ
x (t, f ) =

∫ ∫
AQ
x (ν, τ)e−i2π(τ f−tν)dτdν (4)

=
∫ ∫

Ax(ν, τ)φ(ν, τ)e−i2π(τ f−tν)dτdν (5)

=
∫ ∫

rx(u, τ)ρ(t − u, τ)e−i2π f τdudτ , (6)

with time-lag kernel ρ(t, τ) = F−1
ν→tφ(ν, τ). Using the

change of variables, t = (t1 + t2)/2 and τ = t1 − t2, Eq. (1)
becomes

rx((t1 + t2)/2, t1 − t2) = E[ x(t1)xH(t2)] , (7)

and therefore Eq. (6) can be rewritten as

WQ
x (t, f ) =

∫ ∫
E[ x(t1)xH(t2)] ρ

(
t − t1 + t2

2
, t1 − t2

)

× e−i2π f (t1−t2)dt1dt2

=
∫ ∫

E[ x(t1)xH(t2)] ρrot(t − t1, t − t2)

× e−i2π ft1ei2π ft2dt1dt2, (8)

with

ρrot(t1, t2) = ρ

(
t1 + t2

2
, t1 − t2

)
. (9)

In general, if the kernel ρrot(t1, t2) satisfies the Hermi-
tian property

ρrot(t1, t2) = (ρrot(t2, t1))H , (10)

the solution of the integral equation∫
ρrot(t1, t2)q(t1)dt1 = λq(t2), (11)

results in eigenvalues λk and eigenfunctions qk , k ∈ N,
which form a complete set. The time-lag kernel can then
be expressed as

ρrot(t1, t2) =
∞∑
k=1

λkqk(t1)qHk (t2). (12)
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Using the eigenvalues and eigenvectors, Eq. (6) is rewrit-
ten as a weighted sum [29],

WQ
x (t, f ) =

∞∑
k=1

λkE[|
∫

x(t1)e−i2π ft1qk(t − t1)dt1|2] (13)

=
∞∑
k=1

λkS(k)
x (t, f ) = Sx(t, f ), (14)

where each S(k)
x is a spectrogram with window function

qk . Thus, the corresponding filtered AS can be calculated
as AQ

x (ν, τ) = Ft→νFf→τSx(t, f ).
Depending on the eigenvalues λk , the number of differ-

ent spectrograms that are averaged could be just a few or
an infinite number. In particular, if only finitely many, say
K, eigenvalues are non-zero, one has

Sx(t, f ) =
K∑

k=1
λkS(k)

x (t, f ), (15)

which is also called multitaper spectrogram. The averag-
ing of a few spectrograms forms an effective solution from
implementation aspects in contrary to all the steps involv-
ing calculation of the Wigner spectrum, transformation
to the AS and the corresponding transformation back
to the smoothed TF spectrum. The selection of window
functions qk determines the properties of the multitaper
spectrogram. A particular choice of multitapers are the
Hermite functions which can be computed recursively as

h1(t) = e−t2/2,
h2(t) = 2t e−t2/2,
hk(t) = 2t hk−1(t) − 2(k − 2)hk−2(t), k = 3 . . . K .

As Hermite functions are more localized in the TF plane
than Thomson MTs [11, 30], they pose the method of
choice in this paper, i.e., we choose qk(t) = hk(t), with the
corresponding weights λk = 1, k = 1 . . .K .
The main merit of MT spectrograms is their reduced

variance as compared to a single-window spectrogram.
The variance of the latter is roughly of order V [Sx(t, f )]≈
Sx(t, f )2. Multitapering using K tapers, however, can lead
to a substantial variance reduction. The reason for such
improvement in terms of robustness is that the spectro-
grams from different tapers are uncorrelated, provided the
signal satisfies certain properties. Therefore, their aver-
age reduces the variance by up to a factor of K, i.e.,
V [Sx(t, f )]≈ 1

K Sx(t, f )
2.

In a later section, we will compare methods which rest
upon the AS as derived from a single window Hanning
spectrogram to those which employ the AS calculated
from Hermite MT spectrograms. To facilitate a reason-
able comparison between methods based on the Han-
ning window and those based on Hermite windows, their
respective time and frequency concentrations should be

related. However, whereas the window length of a Han-
ning window is well-defined, the Hermite functions are of
infinite length and therefore a “window length” is not a
reasonable quantity for connecting those windows to each
other in a suitable way. Hence, we need to define a mea-
sure that relates the two window types. In this paper, we
therefore define the time concentration of a window as
that time interval in which 99 % of the power is located.
A corresponding definition of frequency concentration is
to use the frequency interval which contains 99 % of the
window’s spectral power. For the MT methods, the corre-
sponding concentration values from the window hK (t) are
used, as this is the windowwith lowest time and frequency
concentration in the set of K MTs h1, . . . , hK . Note that
with a larger value ofK, i.e., withmore tapers, the time and
frequency resolution of the corresponding final estimate
will decrease.
Key ingredients to our approach are on the one hand

the usage of MTs for spectrogram estimation and on the
other hand the transformation to the AS for subsequent
feature extraction. The main property of the AS (which
also holds for the filtered AS), as already mentioned in the
introduction, is its invariance to frequency modulation
and time shifts. In fact, for a modulated and time-shifted
signal z(t) = x(t − t0)ei2π f0t one has |Az(ν, τ)| =
|Ax(ν, τ)|, [28]. This property is desirable in many appli-
cations related to acoustic signals. As an example, if the
comparison of two identical syllables starting at differ-
ent time points is based on their respective ambiguity
spectra, they will indeed be classified as being the same.
Analogously, a frequency modulated syllable, which can
be thought of as pronouncing the same syllable in differ-
ent pitches, will not affect identification of these syllables
either.
The popular SPCC approach, which cross-correlates

the TF spectra of two signals, shares such robustness
to shifts of a signal in time or frequency dimension.
The additional advantage of the AS, which will turn out
to cause a considerable gain in performance in subse-
quent examples (as compared to SPCC), can be deduced
from Fig. 1. The upper two panels (a) and (b) show
two syllable examples from the GRW with conspicu-
ous structural similarities in their time domain rep-
resentation. Nevertheless, they clearly differ regarding
their number of large TF components, which is six for
syllable A while being five for syllable B. This mis-
match is mirrored in the syllables’ spectrograms, see
Fig. 1c, d. Therefore, as there is no actual time and
frequency location where the two spectrogram images
coincide to sufficiently large extend, an SPCC-based
syllable comparison will not clearly reveal the striking
structural similarities between these signals. In fact, the
maximum cross-correlation based on the MT spectro-
grams is 0.815, not strongly suggesting the substantial
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Fig. 1 Example of two syllables: a syllable A; b syllable B. The corresponding MT spectrograms with window length 6.9 ms, frequency resolution
1770 Hz and K = 8;:c syllable A; d syllable B. The filtered ambiguity spectra: e syllable A; f syllable B

similarity between these syllables. The syllables’ filtered
ambiguity spectra, which are depicted in the bottom pan-
els (e) and (f), however, do not reflect these structural
discrepancies, but instead closely resemble each other. As
opposed to time or spectrogram visualization, the sylla-
bles’ representation in the ambiguity domain only mirrors
distances between the large TF components. These dis-
tances are approximately 40 ms (see, e.g., Fig. 1a, in which
the components repeat at 70, 110, 150, 190, and 230 ms),
corresponding to 1/0.040 = 25 Hz (and 50 Hz) in Doppler
frequency, see panels (e) and (f ). Thus, comparison in the
ambiguity domain will not be affected by the different
numbers of strong components.

3 Feature extraction—singular value
decomposition

The singular value decomposition is a low-rank matrix
approximation and a popular noise-reduction technique
for a data matrix. The decomposition of a matrix
A results in the representation A = ∑r

j=1 σjujvHj ,
where uj, vj are the singular vectors of unit length and
σ1 ≥ . . . ≥ σr ≥ 0 the singular values. The unit-length
vector v1, i.e., the first right singular vector, maximizes
the Euclidean norm ‖Av‖2 and can hence be seen as
the vector with unit length which undergoes the maxi-
mum amplification under A. Thus, v1 serves as a crude
approximation of the directions of the columns of A.
Similarly, u1 maximizes ‖ATu‖2 and serves as an approx-
imation of the row-directions. Hence, if the matrix A
is of low-rank, the vectors u1, v1 comprise the major

information in A: u1 captures the frequency-related
information while v1 captures the time-related and the
matrix Ã1 = σ1u1vH1 , with σ1 satisfying σ1 = ‖ATu1‖2 =
‖Av2‖2, gives a good rank-1 approximation of A.
The ambiguity matrix derived from a song syllable is

typically of low rank and therefore predestined for approx-
imation by a small collection of singular vectors. Thus,
little information is lost when replacing the AS-based sim-
ilarity assessment of two syllables with a comparison of
the corresponding first left and right singular vectors.
More specifically, if Â(A) denotes the estimated AS of syl-
lable sA and û(A)

1 , v̂(A)
1 the first pair of singular vectors

(with corresponding notation for syllable sB), similarity
between sA and sB can be captured by confining the
investigation to comparison of û(A)

1 , v̂(A)
1 and û(B)

1 , v̂(B)
1 .

Closeness of û(A)
1 , û(B)

1 then suggests similarity of sylla-
ble structures in the frequency domain while closeness
of v̂(A)

1 , v̂(B)
1 corresponds to structural resemblance in the

time dimension.
As an illustration, the first singular vector pairs of the

(estimated) filtered AS of syllables A and B, which are dis-
played in Fig. 1a, b, are depicted in Fig. 2. The left panel in
Fig. 2 illustrates the alikeness of the vectors u(A)

1 and u(B)
1

and the closeness of the pair v(A)
1 and v(B)

1 can be seen in
the right panel.
A study of the singular values of the ambiguity spec-

trum shows that the first pair of singular vectors captures
80 % of the energy in most of the signals. Increasing the
number of singular vector pairs to, e.g., 10, would explain



Sandsten et al. EURASIP Journal on Advances in Signal Processing  (2016) 2016:68 Page 6 of 16

−30 −20 −10 0 10 20 30
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Lag(ms)

a) Left singular vectors

u(A)
1

⋅ u(B)
1

=0.997

−0.1 −0.05 0 0.05 0.1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Doppler(kHz)

b) Right singular vectors

v(A)
1

⋅ v(B)
1

=0.967
u(A)

1

u(B)
1

v(A)
1

v(B)
1

Fig. 2 The corresponding first left and right singular vectors of the filtered ambiguity spectra of syllables A and B in Fig. 1: a the left singular vectors,
u(A)
1 and u(B)

1 ; b the right singular vectors, v(A)
1 and v(B)

1

approximately 90 % of the variations in the signal. Such
gain in captured energy comes, however, at the expense
of increased noise and unwanted jitter effects from small
differences in similar signals. Restricting signal represen-
tation to the first pair is therefore a reasonable choice if
the main structure of the signal should be captured. Our
investigations including more pairs of singular vectors did
not increase the performance.

4 Similarity measures
Denoting the inner product in Euclidean space by 〈·, ·〉, we
introduce the following similarity measures

βu(sA, sB) = |〈û(A)
1 , û(B)

1 〉|, (16)

βv(sA, sB) = |〈v̂(A)
1 , v̂(B)

1 〉|, (17)

where sA and sB denote two syllables and û(A)
1 , v̂(A)

1 and
û(B)
1 , v̂(B)

1 their respective pair of first singular vectors. The
function βu thus quantifies similarity of the frequency
structures of sA and sB whereas time-scale structures are
compared in terms of βv. To assess similarity in time and
frequency structure simultaneously, these two measures
(which in the following will be referred to as raw mea-
sures, as opposed to the combined measures introduced
below) shall be assembled. To this end we consider and
investigate the following three combinations:

βmean(sA, sB) = (βu(sA, sB) + βv(sA, sB))/2, (18)

βmin(sA, sB) = min(βu(sA, sB),βv(sA, sB)), (19)

βmax(sA, sB) = max(βu(sA, sB),βv(sA, sB)). (20)

The normality of singular vectors implies β(sA, sA) = 1.
Note, however, that β(sA, sB) = 1 does not suggest equal-
ity of syllable sA and syllable sB but rather a strong alike-
ness. In clustering applications, the key issue is to decide
whether two syllables are realizations of the same syllable
type (and thus should be allocated to the same cluster) or if
they arouse from distinct syllable types (and hence should
be grouped in different clusters). Due to background noise
in recordings and within-individual variability, β(sA, sB)

will rarely be equal to 1 even if sA, sB represent the same
type of syllable. Thus, the decision on assigning two sylla-
bles to the same or to distinct groups will be made based
on whether or not β(sA, sB) exceeds a certain threshold ρ.

5 Syllable detection
The syllable detection approach is divided into two steps.
A set of filters is applied in the first step to filter out back-
ground noise while the syllables are defined and extracted
in the second step based on time distances between ampli-
tude peaks.
Syllables in the initial and final parts of a strophe often

have weaker amplitudes than those in the body of the
strophe. However, even sections in the middle of a stro-
phe sometimes contain parts with syllables of consider-
ably lower amplitude. Therefore, we have chosen a time-
varying adaptive threshold for detection of syllables. This
threshold is created by means of two power-smoothing
filters (moving averages) of the form

Pfilter(t) = 1
L

L/2∑
t1=−L/2

x2(t + t1), (21)
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where x(t) represents the time samples of the song and
L + 1 is the length of the filter. The two filters are cho-
sen as one longer Plong (default 360 ms), determining a
time-varying threshold, and a shorter filter Pshort (default
90 ms), detecting the actual sample points that belong to
a particular syllable. The decision on whether a sample is
belonging to a syllable is based on when the level of Pshort
is sufficiently above the level of Plong ,

Pshort(t) > Plong(t) + (1 − lsens
100

) · max
t

Plong(t), (22)

where lsens is the sensitivity of the detector in percentage.
After a particular signal section has been declared as a syl-
lable, its start and end time points are extended backwards
and forwards (by a default value of ±60 ms) to include the
syllable’s weaker start and end.
Using a sensitivity of lsens = 100 %, Fig. 3a), all minor

changes in amplitude level, even those which solely are
due to background noise, will be classified as small sylla-
bles (see in particular the final part of the signal in Fig. 3a,
between 7 and 8 s). Choosing lsens = 99 %, Fig. 3b), a
slightly less sensitive detector is created that disregards
the small amplitude jitters between 7 and 8 s, which are
solely due to noise. The weaker notes (usually labeled as
initial syllables, [31]), at the beginning of the strophe, are
encoded as four syllables. However, these are not seen as

the syllables of major interest for analysis [31]. Moreover,
disturbances of other birds in the strophe, such as the
weak sound at 2.7 s, are as well declared as syllables. Thus,
a level of 99 % seems still too sensitive, unless the signal
is sufficiently clean, i.e., nearly without any wind noise or
disturbances from other birds. Using lsens = 95 %, Fig. 3c,
the four initial syllables will be not be declared as syllables,
neither will be the lower-level disturbance from another
bird at 2.7 s. Therefore, in this paper, the syllable detec-
tion is based on a sensitivity level of lsens = 95 %, which
gives a sufficiently sensitive detector which at the same
time avoids to falsely declare smaller disturbances (arising
from background noise) and initial notes as syllables.
The outputs of the two filters, together with the detected

samples using lsens = 95 %, for a section of the strophe
depicted in Fig. 3c, are shown in Fig. 4a. In this exam-
ple, these default settings result in a good performance of
the syllable detection algorithm. The longer filter length
(360 ms) is chosen to give a slowly time-varying threshold
and to smooth out the variation of the specific sylla-
ble power. The total syllable length is assumed to be
50–300 ms with a maximum allowed length of 400 ms,
so the 360 ms smoothing will certainly give a reason-
able time-varying threshold of any syllable. The shorter
filter is by default of length 90 ms, which is reasonably
long to smooth out short-term variations, or even empty

Fig. 3 An example of a strophe with detected syllables (SNR = 20 dB) for a lsens = 100 %; b lsens = 99 %; c lsens = 95 %
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Fig. 4 A part of the strophe in Fig. 3c; a The levels of the two smoothing filters, (blue-long filter, green-short filter) and detected samples using
lsens = 95 % (red). b The corresponding cut syllables including the 60 ms extension backward and forward, and with subsequent pairs of syllables
manually labeled as similar (S) or non-similar (N)

intervals such as, e.g., the silent intervals between two
parts of a so called—a syllable composed of two repeated
smaller parts. The frequent occurrence of such double syl-
lables is one of the challenges in dealing with songs of
the GRW, as it is often unclear whether two detected,
closely spaced syllables should be treated as two single
or as a double syllable. In the presented detection algo-
rithm, this decision is based on the time distance between
the two detected syllables (or syllable parts). If the time
distance exceeds a minimum allowed distance (default 60
ms), the detected sounds are declared as two separate syl-
lables. Otherwise, they are assumed to combine into one
double syllable.

6 Data presentation and baseline classification
The data under consideration is a 7-min bird-song sig-
nal recorded from the Great Reed Warbler under natural
outdoor conditions. The bird song has been recorded
analogously with a Telinga parabola and microphone and
a SONY cassette tape recorder (SONY TC-D5M). The
recording is of average quality (with respect to noise and
disturbance) and the signal is digitized to a sample fre-
quency of 44.1 kHz, which is subsequently decimated by a
factor 4 for the further analysis.
Before the main analysis, the output from the auto-

matic syllable detection step (as described in the previous
section) is manually checked for detection errors. In four
of the strophes, initial notes were falsely declared as sylla-
bles and were therefore removed manually (in total 4 × 3

syllables). In one strophe a burst of noise was erroneously
detected as a syllable and removed as well.
The resulting data to be used for our analysis consists

of 362 detected syllables in 28 strophes. A typical stro-
phe section in a GRW song consists of 2–8 repeats of the
same syllable type followed by a change to realizations of
another syllable structure, see Fig. 3. This characteristic
pattern makes it fairly easy to assess whether two subse-
quent syllables belong to the same or to different types,
since the change to another type of syllable is generally
quite pronounced. This facilitates a rather straightforward
visual (based on the spectrogram and/or the time domain
representation of the syllables) and auditive classification
of subsequent syllables as being similar (S), i.e., realiza-
tions of the same syllable type, or non-similar (N). As
an example, the two first syllables in Fig. 4b are labeled
as similar, while the pair given by the second and third
syllables is marked as non-similar, followed by the as sim-
ilar declared pair of the third and fourth syllable. This
pairwise classification was conducted for all 28 strophes
and the resulting labeled data contains 217 subsequent
syllable pairs classified as similar and 117 classified as
non-similar. This labeling is used as the baseline “truth”
for the evaluation of different methods and parameter
choices.
The variance of the noise is estimated from the last 1 s of

data from each of the 28 strophes, with no signal present.
An average of these 28 estimated variances is used as the
baseline noise variance σ 2

N = 0.0002 of measured data
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throughout the paper. Similarly, the mean power of each
syllable is computed (without the syllable extension of+−
60 ms), and the average of all the mean powers in a stro-
phe is calculated as the total averaged syllable power, Pav.
Finally, the signal-to-noise ratio (SNR) of these two values
is calculated as

SNR = 10 log10
Pav
σ 2
N
. (23)

The computed SNR of the strophe in Fig. 3 is 20 dB.
Note that due to the special pattern of the GRW song

(repeats of a particular syllable type are followed by rep-
etitions of another syllable structure), comparing subse-
quent syllables depicts a simpler problem than the general
approachwhere all syllables are comparedwith each other.
Defining a baseline truth for method evaluation in the
general problem is a much more involved task as it is
often difficult to decide (based on listening and visual
inspection of spectrograms) whether two syllables, which
have been chosen from a song on random basis, are sim-
ilar and different experts might likely come to different
conclusions.

7 Evaluation
With a feature set based on the first singular vectors of the
estimated filtered ambiguity spectrum and our proposed
similarity measures at hand, we proceed to evaluate our
methodology. The target quantities for evaluation are (1)
the similarity rate pS(α), i.e., the proportion of correctly
classified pairs of similar syllables while accepting α ·100 %
false positives (α · 100 % “non-similar” pairs are misclas-
sified as “similar”) and (2) the non-similarity rate pN (α),
i.e., the proportion of correctly classified non-similar syl-
lables while allowing for α ·100 % false negatives (falsely as
"non-similar" classified pairs of “similar” syllables). Here,
α is fixed to the value of 0.05.
In the first part, we evaluate the performance of the

raw similarity measures βu and βv individually, based on
different settings for the MT windows. In the second
part, we assess the performance of the suggested com-
bined measures for a selection of MT and single window
settings.

7.1 Evaluation of rawmeasures under different window
settings

In this section, the performances of the two raw similarity
measures are studied. To illustrate the difference between
spectrogram-based and ambiguity-based feature repre-
sentation, we describe syllables via the first singular vector
pair of their AS as well as by the first left and right singular
vectors from the spectrogram and study the performance
of βu,βv for both representation settings. Moreover, we
consider four approaches for the spectrogram estimation
(recall that the AS is just the two-dimensional Fourier

transform of a spectrogram), (1) a single Hanning win-
dow spectrogram (denoted by H1), and (2) a K-window
Hermite MT spectrogram, where K is 2, 4, and 8 (MT2,
MT4 andMT8, respectively). Moreover, we combine each
spectral estimation technique with a collection of differ-
ent time and frequency concentrations. In the following,
the MT method is labeled as MTK(�t,�f ), where K is
the number of tapers, �t, �f are the time- and frequency
bandwidths, respectively, and the standard single Han-
ning window is labeled as H1(�t,�f ). Table 1 displays
the different constellations of estimation method and TF
bandwidths which will be examined.
In the first part, we focus on the performance of βu

and βv, Eqs. (16 and 17), when applied to feature vec-
tors based on the syllable-specific ambiguity spectra. The
results for all considered methods are shown in Fig. 5.
In each of the four panels, the x-axis relates to different
values of �t, see Table 1. The upper panels show the sim-
ilarity rates of the measures βu and βv, respectively, while
their respective non-similarity rates are illustrated in the
two bottom panels. One can observe that - uniformly over
all considered methods—the performance of βu for both
similarity and non-similarity rate is satisfactory andmore-
over robust to changes in the TF bandwidths. On the
contrary, its counterpart βv is highly sensitive to modifi-
cations of the TF bandwidths and the performance of all
considered methods decreases markedly—both for sim-
ilarity and non-similarity rates—when the windows are
less concentrated. Moreover, it can be seen that the per-
formance of both measures improves as the value of K
increases (more tapers are used).
In further investigations, the analysis will be restricted

to oneHermiteMT and a single Hanning window spectro-
gram. It is, however, not too obvious which constellations
are most qualified. Clearly, best results are given by K = 8
MTs, but it is ambiguous which window length should
be used for them. In most cases, the window length

Table 1 All different windows and their time and frequency
bandwidths

Window �t (ms) �f (kHz) Window �t (ms) �f (kHz)

MT8(53, 0.21) 53.3 0.215 MT2(15, 0.24) 14.9 0.237

MT8(27, 0.43) 26.8 0.431 MT2(7.6, 0.50) 7.62 0.495

MT8(13, 0.88) 13.4 0.883 MT2(3.8, 0.97) 3.81 0.969

MT8(6.9, 1.8) 6.89 1.77 MT2(2.0, 2.0) 1.99 1.96

MT4(39, 0.15) 39.4 0.151 H1(32, 0.065) 31.56 0.065

MT4(20, 0.32) 19.8 0.323 H1(16, 0.11) 15.96 0.108

MT4(10, 0.65) 9.98 0.646 H1(8.0, 0.24) 7.98 0.237

MT4(5.1, 1.3) 5.08 1.31 H1(4.2, 0.47) 4.17 0.474

MT4(2.5, 2.6) 2.54 2.61 H1(2.2, 0.95) 2.18 0.947

MT2(30, 0.13) 29.7 0.129 H1(1.1, 1.8) 1.09 1.83
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Fig. 5 Similarity rates; a βu ; b βv , and non-similarity rates; c βu ; d βv , accepting 5 % false positives, based on the AS matrix for all different methods
and window lengths defined in Table 1

corresponding to method MT8(13, 0.88) appears to give
the best results for MTs, while for the Hanning win-
dow spectrogram the choice H1(2.2, 0.95) is considered
as most suitable for further analysis. These constellations
will in future considerations be referred to as MT8AU
when similarity is assessed by filtered ambiguity spectrum
and βu and as MT8AV when instead the measure βv is
employed. Similarly, investigation based on the chosen
Hanning window ambiguity spectrum will be referred to
as H1AU and H1AV , depending on whether similarity is
assessed by βu or βv.
In this second part, we repeat the previous investiga-

tion, but this time with syllable features extracted from
the spectrogram (as opposed to the AS). For this case,
the performances of the measures βu and βv are pre-
sented in Fig. 6. Note that the scales of the y-axes of
Fig. 6b, d, which show the results of βv, is now the whole
scale from zero to one. The performance of βu, Fig. 6a,
c, is not as good as for the case when βu is computed
from the AS. The sensitivity to the window length is
also higher and the best results are obtained for more
concentrated (“shorter”) windows with �t < 10 ms.
Studying βv in Fig. 6b, d, we see that the classification
is rather poor, especially for the rate of non-similarity.
This is not an acceptable performance, and therefore, we
discard the measure βv based on the spectrogram for

further analysis. As representative for the spectrogram-
based SVD, themeasure βu is chosen, both in combination
withMT8(13, 0.88) (in the sequel denoted byMT8SU ) and
in combination with H1(2.2, 0.95) (referred to as H1SU ).
To summarize, further investigations will be based on

MT8AU , MT8AV , H1AU , H1AV , MT8SU , and H1SU .

7.2 Evaluation of combinedmeasures
In this part we also include the combined measures from
Eqs. (18, 19 and 20) in our analysis and investigate which
of the similarity measures βmean, βmax, βmin, βu, βv per-
forms best when features are extracted from AS and
the computation of AS is based on MT8(13, 0.88). The
results are presented in terms of ROC curves, which illus-
trate the similarity rate pS(α) as a function of α and
are shown in Fig. 7. Here, MT8Amean refers to applica-
tion of βmean to feature vectors extracted from AS based
on MT8(13, 0.88). The remaining notations MT8Amin,
MT8Amax, MT8AU and MT8AV have analogous interpre-
tation. Note that only the upper left part of the total
ROC figure (total axes 0–1 for both x and y) is shown. It
can be seen that the combined measures βmean and βmin
obtain a similarity rate of 100 % at α = 0.05. The per-
formance βmax is comparable to that of βu with similarity
rate pS(0.05) ≈ 0.98. The application of the raw measure
βv gives a performance well below the other measures.
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7.3 Comparison with established approaches
Here, we compare more thoroughly the performance of
the best method based on the multitaper AS, MT8Amean,
to the corresponding Hanning-window approach
H1Amean, to the spectrogram-based methods which
have been selection in section 7.1 (i.e., to , MT8SU and
H1SU ) and moreover to established approaches based on
MFCCs and the SPCC. For the MFCC method, the often
used implementation by Malcolm Slaney1 is chosen with
eight cepstral coefficients, a 25 ms Hamming window and
90 % overlap between frames. For the SPCC method, we
use the single window Hanning spectrogram with time
and frequency resolutions 2.18 ms and 947 Hz as defined
above.
The results are presented as ROC curves in Fig. 8.When

used in combination with βmean, the single Hanning win-
dow AS derived from H1(2.2, 0.95) (i.e., the approach
encoded by H1Amean) achieves an almost as reliable result
as the method MT8Amean. For both approaches, the sim-
ilarity rate pS(0.05) is 100 %. If the raw measure βu is
applied instead of βmean and features are derived from the
spectrogram representation, the performance of the sin-
gle Hanning window approach (H1SU ) is comparable to
the results if MTs were used for spectrogram estimation
(MT8SU ) with a still high similarity rate of pS(0.05) =
0.95. A marked drop in performance can, however, be
noted for the MFCC- and SPCC-based approaches. These
methods give rather unreliable results with similarity rates
of 90 % and just above 85 %, respectively.

8 Classification of four predefined syllable classes
The classification of subsequent syllable pairs into “sim-
ilar” or “non-similar” constitutes the first performance
assessment of our methodology. This classification task
is, however, beneficial for all algorithms as two subse-
quent similar syllables are often very similar and therefore
alikeness is not too difficult to detect. In the same way,
two non-similar syllables are generally sufficiently differ-
ent such that switches from one syllable-type to another
are easily detected by auditive or visual inspection.
Therefore, the methods which have been considered in

the previous section (i.e., MT8Amean, H1Amean, MT8SU ,
H1SU , MFCC and SPCC) are also evaluated for a number
of carefully chosen syllables, which are not occurring sub-
sequently. To this end, a subset of 51 syllables has been
manually selected. The syllables are chosen in such a way
that they can easily be grouped into four different classes,
based on visual inspection of their time-domain represen-
tation (see Fig. 9) or their spectrograms. For each class, a
syllable has been chosen and is displayed in Fig. 10 along
with its spectrogram (where the syllable denoted by exam-
ple 1 was taken from class 1, example 2 from class 2 and
so forth). Class 1 and 2 can easily be distinguished based
on their time-representation, see the upper two panels
in Fig. 9. In contrast, the distinction between syllables
belonging to class 3 and 4, if only based on Fig. 9, may
be somewhat more involved. However, the spectrogram
plots (see Fig. 10) reveal that the main frequency content
for syllables of class 1, 2, and 4 is concentrated around 3
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for different similarity measures and methods
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Class 1, 13 syll. Class 2, 14 syll.

Class 3, 13 syll. Class 4, 11 syll.

Fig. 9 The syllables of the four chosen classes, SNR = 15 dB

kHz, while the syllables of class 3 have the main concen-
tration around 4 kHz. The difference of the syllables in
class 3 is thereby large compared to the syllables of class 4.
Therefore, manually separating all 51 syllables based on
the respective spectrograms or their time-representations
is rather straightforward.

For the considered syllable subset, the average of the
mean powers of all 51 syllables resulted in a SNR of 15 dB.
We will investigate and compare the results of the six

methods. We first study the correct classification rate for
the simpler task of separating syllables from two different
classes. This is, for two fixed classes all possible syllable

Fig. 10 Example of four different syllables, one from each class in Fig. 9, and their corresponding single window Hanning spectrograms with time
resolution 2.18 ms and 947 Hz
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pairs are compared with each other. Given two syllable
classes Ci,Cj, the total number of comparisons is Ntotal =
Nbetween + Nwithin,i + Nwithin,j, where Nbetween = Ni · Nj is
the number between syllables from different classes and
Nwithin,i = Ni(Ni − 1)/2 is the number of within-class
comparisons for class Ci, similar for class Cj. For class 1
and 2, the number of comparisons within-class will be 169
and between-class will be 182. The results are presented
in Table 2, where the similarity rates pS(α) are shown for
all considered methods and α = 0.05.
The best results for all class comparisons are given by

MT8Amean, closely followed by H1Amean. The results of
the spectrogram-based methods MT8SU and H1SU are,
however, convincing only for some of the comparisons.
For the comparison of class 1 and 2, these methods fail
with an achieved similarity rate of only 0.402 and 0.325,
respectively. This drop in performance is not surprising
as these methods are based on the measure u1 and there-
fore entirely disregard the time information contained in
the syllables. For the comparison of class 2 and 4 the per-
formances of MT8SU and H1SU are slightly better but still
quite unreliable (0.842 and 0.849). The MFCC method
performs convincingly for all pairwise class comparisons,
apart from the latter (class 3 versus class 4). These two
classes include short single syllables, and these do not ful-
fill the typical structure for which the MFCC method is
designed for, i.e., signals, such as speech, with repeating
structures suitable for the cepstral decomposition. The
results of the SPCC method are promising in all cases,
except for the comparisons of class 1 to 2 and class 2 to
4. The insufficient performance for these two class com-
parisons is connected to the different number of repeats
of main components of a syllable in class 2, as already
discussed and exemplified in the introduction (see also
Fig. 1). There it was noted that cross-correlation of spec-
trograms will be unreliable if the number of components
in the syllables vary.
To further investigate the differentmethods, we now put

our analysis into a more realistic and challenging setting
and perform all possible pairwise comparisons between
the syllables in the four classes. The number of com-
parisons within-class is then 302 and between-class is

Table 2 Rates for correct classification of two syllables belonging
to the same class accepting 5 % false positives

Class comp. MT8Amean H1Amean MT8SU H1SU MFCC SPCC

1 − 2 1.0 0.994 0.402 0.325 0.905 0.846

1 − 3 1.0 1.0 1.0 1.0 0.987 1.0

1 − 4 1.0 1.0 1.0 1.0 0.932 1.0

2 − 3 1.0 1.0 1.0 1.0 1.0 1.0

2 − 4 1.0 1.0 0.842 0.849 0.931 0.842

3 − 4 1.0 1.0 1.0 1.0 0.421 1.0

973. The ROC curves for all methods are computed and
depicted in Fig. 11. The true positive rate (y-axis) gives
the proportion of correct classification of two syllables
belonging to the same class (true positive). The AS-based
MT8 method in combination with βmean, i.e., MT8Amean,
gives the best result with a rate of 100 % when allowing
for 5 % false positives. The similarity rates of H1Amean and
SPCC are similar at α = 0.05 with pS(α) ≈ 0.93. However,
both methods are clearly inferior to MT8Amean. The other
three methods (MFCC, MT8SU and H1SU ) surrender to
the complexity of the analysis task, revealing a poor per-
formance of pS(0.05) = 0.74 and pS(0.05) ≈ 0.05. In order
for those methods (as well as for SPCC) to achieve a sim-
ilarity rate of pS(α) ≥ 0.95, one has to concede to a false
positive acceptance rate of as large as α = 0.2. Thus, with-
out accepting a very high rate of false positives, it will be
difficult to find a reasonable rate of correct classification
for these methods.
To investigate the performance for higher noise levels,

white Gaussian noise realizations with variance σ 2
ext are

added to all syllables of the four classes and the new SNR
is defined as

SNR = 10 log10
Pav

σ 2
N + σ 2

ext
, (24)

where Pav and σ 2
N are defined as previously. For different

methods, the similarity rates pS(0.05) of accepting a false
rate of 5 % are depicted in Fig. 12a) as a function of the
SNR. Here we chose SNRs ranging from 15 dB (SNR of
the measured signal) to -2 dB. The methods depicted in
that figure are the same as those in Fig. 11. The results
show that MT8Amean is reliable with a correct rate of
100 % for SNR values up to 3 dB, where H1Amean achieves
only around 95 % of correct classifications and the SPCC
reaches 90 %. Between 3 and −2 dB both MT8Amean and
H1Amean show a similar result, achieving a similarity rate
of about 95 %. The four example syllables in Fig. 10 are
shown in Fig. 12b) for SNR = 0 dB.

9 Conclusions
In this work, a novel feature set for low-dimensional signal
representation is suggested that is designed for the anal-
ysis of non-stationary signals with complex variation in
time and frequency. The features for signal representation
are given by the first pair of singular vectors from the MT
ambiguity spectrum, which ensures robustness to noise,
and shifts in time, frequency and amplitude. For classifi-
cation or and clustering purposes of a signal (e.g., a bird
song), a collection of similarity measures are proposed.
These are compared and evaluated on the basis of an out-
door recording of a wild male Great Reed Warbler, being
a bird species with complex song structure. Moreover, it
is shown that the suggested signal representation along
with a specific combined similarity measure (which uses
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an average of the inner product of right singular vectors
and of the left singular vectors) clearly outperforms other
well-known methods (SPCC and MFCC) in the example
analysis of the bird-song data.
Our methodology is also compared to a similar

approach where the AS is replaced by the spectrogram
for feature extraction, and it could be is observed that
switching to the spectrogram comes along with a marked
evident decrease in performance. Furthermore, we com-
pared calculation of the spectrograms by means of based
on (Hermite) MTs to spectrograms based on a single
Hanning window and concluded that MTs increase the
performance in a classification task, both for AS-based
and for spectrogram-based feature representation.

Endnote
1 https://engineering.purdue.edu/~malcolm/interval/

1998-010/
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9. E Wȩgrzyn, K Leniowski, Syllable sharing and changes in syllable
repertoire size and composition within and between years in the great
reed warbler, acrocephalus arundinaceus. J. Ornithol. 151, 255–267 (2010).
doi: 10.1007/s10336-009-0451-x

10. DJ Thomson, Spectrum estimation and harmonic analysis. Proc. IEEE.
70(9), 1055–1096 (1982)

11. I Daubechies, Time-frequency localization operators: a geometric phase
space approach. IEEE Trans. Information Theory. 34(4), 605–612 (1988)

12. B Jokanovic, MG Amin, YD Zhang, F Ahmad, Multi-window
time-frequency signature reconstruction from undersampled
continuous-wave radar measurements for fall detection. IET Radar, Sonar
Navigation. 9(2), 173–183 (2015)

13. M Hansson-Sandsten, Optimal estimation of the time-varying spectrum
of a class of locally stationary processes using Hermite functions. EURASIP
J. Adv. Signal Process (2011). Article ID 980805
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