16,612 research outputs found

    GraphMaps: Browsing Large Graphs as Interactive Maps

    Full text link
    Algorithms for laying out large graphs have seen significant progress in the past decade. However, browsing large graphs remains a challenge. Rendering thousands of graphical elements at once often results in a cluttered image, and navigating these elements naively can cause disorientation. To address this challenge we propose a method called GraphMaps, mimicking the browsing experience of online geographic maps. GraphMaps creates a sequence of layers, where each layer refines the previous one. During graph browsing, GraphMaps chooses the layer corresponding to the zoom level, and renders only those entities of the layer that intersect the current viewport. The result is that, regardless of the graph size, the number of entities rendered at each view does not exceed a predefined threshold, yet all graph elements can be explored by the standard zoom and pan operations. GraphMaps preprocesses a graph in such a way that during browsing, the geometry of the entities is stable, and the viewer is responsive. Our case studies indicate that GraphMaps is useful in gaining an overview of a large graph, and also in exploring a graph on a finer level of detail.Comment: submitted to GD 201

    Broadcasting Automata and Patterns on Z^2

    Get PDF
    The Broadcasting Automata model draws inspiration from a variety of sources such as Ad-Hoc radio networks, cellular automata, neighbourhood se- quences and nature, employing many of the same pattern forming methods that can be seen in the superposition of waves and resonance. Algorithms for broad- casting automata model are in the same vain as those encountered in distributed algorithms using a simple notion of waves, messages passed from automata to au- tomata throughout the topology, to construct computations. The waves generated by activating processes in a digital environment can be used for designing a vari- ety of wave algorithms. In this chapter we aim to study the geometrical shapes of informational waves on integer grid generated in broadcasting automata model as well as their potential use for metric approximation in a discrete space. An explo- ration of the ability to vary the broadcasting radius of each node leads to results of categorisations of digital discs, their form, composition, encodings and gener- ation. Results pertaining to the nodal patterns generated by arbitrary transmission radii on the plane are explored with a connection to broadcasting sequences and ap- proximation of discrete metrics of which results are given for the approximation of astroids, a previously unachievable concave metric, through a novel application of the aggregation of waves via a number of explored functions

    The city as a socio-technical system a spatial reformulation

    Get PDF

    Reducing Timing Interferences in Real-Time Applications Running on Multicore Architectures

    Get PDF
    We introduce a unified wcet analysis and scheduling framework for real-time applications deployed on multicore architectures. Our method does not follow a particular programming model, meaning that any piece of existing code (in particular legacy) can be re-used, and aims at reducing automatically the worst-case number of timing interferences between tasks. Our method is based on the notion of Time Interest Points (tips), which are instructions that can generate and/or suffer from timing interferences. We show how such points can be extracted from the binary code of applications and selected prior to performing the wcet analysis. We then represent real-time tasks as sequences of time intervals separated by tips, and schedule those tasks so that the overall makespan (including the potential timing penalties incurred by interferences) is minimized. This scheduling phase is performed using an Integer Linear Programming (ilp) solver. Preliminary results on state-of-the-art benchmarks show promising results and pave the way for future extensions of the model and optimizations

    Online real-time crowd behavior detection in video sequences

    Get PDF
    Automatically detecting events in crowded scenes is a challenging task in Computer Vision. A number of offline approaches have been proposed for solving the problem of crowd behavior detection, however the offline assumption limits their application in real-world video surveillance systems. In this paper, we propose an online and real-time method for detecting events in crowded video sequences. The proposed approach is based on the combination of visual feature extraction and image segmentation and it works without the need of a training phase. A quantitative experimental evaluation has been carried out on multiple publicly available video sequences, containing data from various crowd scenarios and different types of events, to demonstrate the effectiveness of the approach

    Locally Adaptive Dynamic Networks

    Full text link
    Our focus is on realistically modeling and forecasting dynamic networks of face-to-face contacts among individuals. Important aspects of such data that lead to problems with current methods include the tendency of the contacts to move between periods of slow and rapid changes, and the dynamic heterogeneity in the actors' connectivity behaviors. Motivated by this application, we develop a novel method for Locally Adaptive DYnamic (LADY) network inference. The proposed model relies on a dynamic latent space representation in which each actor's position evolves in time via stochastic differential equations. Using a state space representation for these stochastic processes and P\'olya-gamma data augmentation, we develop an efficient MCMC algorithm for posterior inference along with tractable procedures for online updating and forecasting of future networks. We evaluate performance in simulation studies, and consider an application to face-to-face contacts among individuals in a primary school

    Monitoring Networked Applications With Incremental Quantile Estimation

    Full text link
    Networked applications have software components that reside on different computers. Email, for example, has database, processing, and user interface components that can be distributed across a network and shared by users in different locations or work groups. End-to-end performance and reliability metrics describe the software quality experienced by these groups of users, taking into account all the software components in the pipeline. Each user produces only some of the data needed to understand the quality of the application for the group, so group performance metrics are obtained by combining summary statistics that each end computer periodically (and automatically) sends to a central server. The group quality metrics usually focus on medians and tail quantiles rather than on averages. Distributed quantile estimation is challenging, though, especially when passing large amounts of data around the network solely to compute quality metrics is undesirable. This paper describes an Incremental Quantile (IQ) estimation method that is designed for performance monitoring at arbitrary levels of network aggregation and time resolution when only a limited amount of data can be transferred. Applications to both real and simulated data are provided.Comment: This paper commented in: [arXiv:0708.0317], [arXiv:0708.0336], [arXiv:0708.0338]. Rejoinder in [arXiv:0708.0339]. Published at http://dx.doi.org/10.1214/088342306000000583 in the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Monocular SLAM Supported Object Recognition

    Get PDF
    In this work, we develop a monocular SLAM-aware object recognition system that is able to achieve considerably stronger recognition performance, as compared to classical object recognition systems that function on a frame-by-frame basis. By incorporating several key ideas including multi-view object proposals and efficient feature encoding methods, our proposed system is able to detect and robustly recognize objects in its environment using a single RGB camera in near-constant time. Through experiments, we illustrate the utility of using such a system to effectively detect and recognize objects, incorporating multiple object viewpoint detections into a unified prediction hypothesis. The performance of the proposed recognition system is evaluated on the UW RGB-D Dataset, showing strong recognition performance and scalable run-time performance compared to current state-of-the-art recognition systems.Comment: Accepted to appear at Robotics: Science and Systems 2015, Rome, Ital
    • …
    corecore