11 research outputs found

    Adaptive Parameter Control Strategy for Ant-Miner Classification Algorithm

    Get PDF
    Pruning is the popular framework for preventing the dilemma of overfitting noisy data. This paper presents a new hybrid Ant-Miner classification algorithm and ant colony system (ACS), called ACS-AntMiner. A key aspect of this algorithm is the selection of an appropriate number of terms to be included in the classification rule. ACS-AntMiner introduces a new parameter called importance rate (IR) which is a pre-pruning criterion based on the probability (heuristic and pheromone) amount. This criterion is responsible for adding only the important terms to each rule, thus discarding noisy data. The ACS algorithm is designed to optimize the IR parameter during the learning process of the Ant-Miner algorithm. The performance of the proposed classifier is compared with related ant-mining classifiers, namely, Ant-Miner, CAnt-Miner, TACO-Miner, and Ant-Miner with a hybrid pruner across several datasets. Experimental results show that the proposed classifier significantly outperforms the other ant-mining classifiers

    Ant colony optimization algorithm for rule based classification: Issues and potential

    Get PDF
    Classification rule discovery using ant colony optimization (ACO) imitates the foraging behavior of real ant colonies. It is considered as one of the successful swarm intelligence metaheuristics for data classification. ACO has gained importance because of its stochastic feature and iterative adaptation procedure based on positive feedback, both of which allow for the exploration of a large area of the search space. Nevertheless, ACO also has several drawbacks that may reduce the classification accuracy and the computational time of the algorithm. This paper presents a review of related work of ACO rule classification which emphasizes the types of ACO algorithms and issues. Potential solutions that may be considered to improve the performance of ACO algorithms in the classification domain were also presented. Furthermore, this review can be used as a source of reference to other researchers in developing new ACO algorithms for rule classification

    Rule pruning techniques in the ant-miner classification algorithm and its variants: A review

    Get PDF
    Rule-based classification is considered an important task of data classification.The ant-mining rule-based classification algorithm, inspired from the ant colony optimization algorithm, shows a comparable performance and outperforms in some application domains to the existing methods in the literature.One problem that often arises in any rule-based classification is the overfitting problem. Rule pruning is a framework to avoid overfitting.Furthermore, we find that the influence of rule pruning in ant-miner classification algorithms is equivalent to that of local search in stochastic methods when they aim to search for more improvement for each candidate solution.In this paper, we review the history of the pruning techniques in ant-miner and its variants.These techniques are classified into post-pruning, pre-pruning and hybrid-pruning.In addition, we compare and analyse the advantages and disadvantages of these methods. Finally, future research direction to find new hybrid rule pruning techniques are provided

    Adaptive parameter control strategy for ant-miner classification algorithm

    Get PDF
    Pruning is the popular framework for preventing the dilemma of over fitting noisy data. This paper presents a new hybrid Ant-Miner classification algorithm and ant colony system (ACS), called ACS-Ant Miner. A key aspect of this algorithm is the selection of an appropriate number of terms to be included in the classification rule. ACS-AntMiner introduces a new parameter called importance rate (IR) which is a pre-pruning criterion based on the probability (heuristic and pheromone) amount. This criterion is responsible for adding only the important terms to each rule, thus discarding noisy data. The ACS algorithm is designed to optimize the IR parameter during the learning process of the Ant-Miner algorithm. The performance of the proposed classifier is compared with related ant-mining classifiers, namely, Ant-Miner, CAnt-Miner, TACO-Miner, and Ant-Miner with a hybrid pruner across several datasets. Experimental results show that the proposed classifier significantly outperforms the other ant-mining classifiers

    An adaptive ant colony optimization algorithm for rule-based classification

    Get PDF
    Classification is an important data mining task with different applications in many fields. Various classification algorithms have been developed to produce classification models with high accuracy. Differing from other complex and difficult classification models, rules-based classification algorithms produce models which are understandable for users. Ant-Miner is a variant of ant colony optimisation and a prominent intelligent algorithm widely use in rules-based classification. However, the Ant-Miner has overfitting and easily falls into local optima problems which resulted in low classification accuracy and complex classification rules. In this study, a new Ant-Miner classifier is developed, named Adaptive Genetic Iterated-AntMiner (AGI-AntMiner) that aims to avoid local optima and overfitting problems. The components of AGI-AntMiner includes: i) an Adaptive AntMiner which is a prepruning technique to dynamically select the appropriate threshold based on the quality of the rules; ii) Genetic AntMiner that improves the post-pruning by adding/removing terms in a dual manner; and, iii) an Iterated Local Search-AntMiner that improves exploitation based on multiple-neighbourhood structure. The proposed AGI-AntMiner algorithm is evaluated on 16 benchmark datasets of medical, financial, gaming and social domains obtained from the University California Irvine repository. The algorithm’s performance was compared with other variants of Ant-Miner and state-of-the-art rules-based classification algorithms based on classification accuracy and model complexity. Experimental results proved that the proposed AGI-AntMiner algorithm is superior in two (2) aspects. Hybridization of local search in AGI-AntMiner has improved the exploitation mechanism which leads to the discovery of more accurate classification rules. The new pre-pruning and postpruning techniques have improved the pruning ability to produce shorter classification rules which are easier to interpret by the users. Thus, the proposed AGI-AntMiner algorithm is capable in conducting an efficient search in finding the best classification rules that balance the classification accuracy and model complexity to overcome overfitting and local optima problems

    Learning Bayesian network equivalence classes using ant colony optimisation

    Get PDF
    Bayesian networks have become an indispensable tool in the modelling of uncertain knowledge. Conceptually, they consist of two parts: a directed acyclic graph called the structure, and conditional probability distributions attached to each node known as the parameters. As a result of their expressiveness, understandability and rigorous mathematical basis, Bayesian networks have become one of the first methods investigated, when faced with an uncertain problem domain. However, a recurring problem persists in specifying a Bayesian network. Both the structure and parameters can be difficult for experts to conceive, especially if their knowledge is tacit.To counteract these problems, research has been ongoing, on learning both the structure and parameters of Bayesian networks from data. Whilst there are simple methods for learning the parameters, learning the structure has proved harder. Part ofthis stems from the NP-hardness of the problem and the super-exponential space of possible structures. To help solve this task, this thesis seeks to employ a relatively new technique, that has had much success in tackling NP-hard problems. This technique is called ant colony optimisation. Ant colony optimisation is a metaheuristic based on the behaviour of ants acting together in a colony. It uses the stochastic activity of artificial ants to find good solutions to combinatorial optimisation problems. In the current work, this method is applied to the problem of searching through the space of equivalence classes of Bayesian networks, in order to find a good match against a set of data. The system uses operators that evaluate potential modifications to a current state. Each of the modifications is scored and the results used to inform the search. In order to facilitate these steps, other techniques are also devised, to speed up the learning process. The techniques includeThe techniques are tested by sampling data from gold standard networks and learning structures from this sampled data. These structures are analysed using various goodnessof-fit measures to see how well the algorithms perform. The measures include structural similarity metrics and Bayesian scoring metrics. The results are compared in depth against systems that also use ant colony optimisation and other methods, including evolutionary programming and greedy heuristics. Also, comparisons are made to well known state-of-the-art algorithms and a study performed on a real-life data set. The results show favourable performance compared to the other methods and on modelling the real-life data

    New Multi-Label Correlation-Based Feature Selection Methods for Multi-Label Classification and Application in Bioinformatics

    Get PDF
    The very large dimensionality of real world datasets is a challenging problem for classification algorithms, since often many features are redundant or irrelevant for classification. In addition, a very large number of features leads to a high computational time for classification algorithms. Feature selection methods are used to deal with the large dimensionality of data by selecting a relevant feature subset according to an evaluation criterion. The vast majority of research on feature selection involves conventional single-label classification problems, where each instance is assigned a single class label; but there has been growing research on more complex multi-label classification problems, where each instance can be assigned multiple class labels. This thesis proposes three types of new Multi-Label Correlation-based Feature Selection (ML-CFS) methods, namely: (a) methods based on hill-climbing search, (b) methods that exploit biological knowledge (still using hill-climbing search), and (c) methods based on genetic algorithms as the search method. Firstly, we proposed three versions of ML-CFS methods based on hill climbing search. In essence, these ML-CFS versions extend the original CFS method by extending the merit function (which evaluates candidate feature subsets) to the multi-label classification scenario, as well as modifying the merit function in other ways. A conventional search strategy, hill-climbing, was used to explore the space of candidate solutions (candidate feature subsets) for those three versions of ML-CFS. These ML-CFS versions are described in detail in Chapter 4. \ud Secondly, in order to try to improve the performance of ML-CFS in cancer-related microarray gene expression datasets, we proposed three versions of the ML-CFS method that exploit biological knowledge. These ML-CFS versions are also based on hill-climbing search, but the merit function was modified in a way that favours the selection of genes (features) involved in pre-defined cancer-related pathways, as discussed in detail in Chapter 5. Lastly, we proposed two more sophisticated versions of ML-CFS based on Genetic Algorithms (rather than hill-climbing) as the search method. The first version of GA-based ML-CFS is based on a conventional single-objective GA, where there is only one objective to be optimized; while the second version of GA-based ML-CFS performs lexicographic multi-objective optimization, where there are two objectives to be optimized, as discussed in detail in Chapter 6. In this thesis, all proposed ML-CFS methods for multi-label classification problems were evaluated by measuring the predictive accuracies obtained by two well-known multi-label classification algorithms when using the selected features? namely: the Multi-Label K-Nearest neighbours (ML-kNN) algorithm and the Multi-Label Back Propagation Multi-Label Learning Neural Network (BPMLL) algorithm. In general, the results obtained by the best version of the proposed ML-CFS methods, namely a GA-based ML-CFS method, were competitive with the results of other multi-label feature selection methods and baseline approaches. More precisely, one of our GA-based methods achieved the second best predictive accuracy out of all methods being compared (both with ML-kNN and BPMLL used as classifiers), but there was no statistically significant difference between that GA-based ML-CFS and the best method in terms of predictive accuracy. In addition, in the experiment with ML-kNN (the most accurate) method selects about twice as many features as our GA-based ML-CFS; whilst in the experiments with BPMLL the most accurate method was a baseline method that does not perform any feature selection, and runs the classifier once (with all original features) for each of the many class labels, which is a very computationally expensive baseline approach. In summary, one of the proposed GA-based ML-CFS methods managed to achieve substantial data reduction, (selecting a smaller subset of relevant features) without a significant decrease in predictive accuracy with respect to the most accurate method

    Real-time pathogen surveillance systems using DNA sequencing

    Get PDF
    Microbiological research has uncovered the basis of fermentation, infectious disease, vaccination and antibiotics. Now, a technological revolution leveraging DNA, the code of life, has allowed us to unravel cellular and evolutionary processes in exquisite detail. Today our need for new innovation is still great. The modern world is a challenging environment: over-population, climate change and highly mobile populations create a high risk of pandemic disease especially from viruses and many bacteria are now resistant to our life saving antibiotic drugs due to overuse. In hospitals, the spread of pathogens can be rapid and life threatening. Whole-genome sequencing has the power to identify the source of infections and determine whether clusters of cases belong to an outbreak. Portable, real-time nanopore sequencing enables sequencing to be performed near the patient, even in resource-limited settings. Integrating with existing datasets allows digital surveillance able to detect outbreaks earlier while they can still be contained. Early demonstrations of the power of whole-genome sequencing for outbreak surveillance have made it an area of intense interest and further development in laboratory methods and infrastructure will make it an important tool that can be deployed in response to future outbreaks

    A complex systems approach to education in Switzerland

    Get PDF
    The insights gained from the study of complex systems in biological, social, and engineered systems enables us not only to observe and understand, but also to actively design systems which will be capable of successfully coping with complex and dynamically changing situations. The methods and mindset required for this approach have been applied to educational systems with their diverse levels of scale and complexity. Based on the general case made by Yaneer Bar-Yam, this paper applies the complex systems approach to the educational system in Switzerland. It confirms that the complex systems approach is valid. Indeed, many recommendations made for the general case have already been implemented in the Swiss education system. To address existing problems and difficulties, further steps are recommended. This paper contributes to the further establishment complex systems approach by shedding light on an area which concerns us all, which is a frequent topic of discussion and dispute among politicians and the public, where billions of dollars have been spent without achieving the desired results, and where it is difficult to directly derive consequences from actions taken. The analysis of the education system's different levels, their complexity and scale will clarify how such a dynamic system should be approached, and how it can be guided towards the desired performance
    corecore