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Abstract

Bayesian networks have become an indispensable tool in the modelling of uncertain

knowledge. Conceptually, they consist of two parts: a directed acyclic graph called the
structure, and conditional probability distributions attached to each node known as the
parameters. As a result of their expressiveness, understandability and rigorous math¬
ematical basis, Bayesian networks have become one of the first methods investigated,
when faced with an uncertain problem domain. However, a recurring problem persists
in specifying a Bayesian network. Both the structure and parameters can be difficult for
experts to conceive, especially if their knowledge is tacit.

To counteract these problems, research has been ongoing, on learning both the structure
and parameters of Bayesian networks from data. Whilst there are simple methods for
learning the parameters, learning the structure has proved harder. Part of this stems from
the NP-hardness of the problem and the super-exponential space of possible structures.
To help solve this task, this thesis seeks to employ a relatively new technique, that has
had much success in tackling NP-hard problems. This technique is called ant colony
optimisation. Ant colony optimisation is a metaheuristic based on the behaviour of ants

acting together in a colony. It uses the stochastic activity of artificial ants to find good
solutions to combinatorial optimisation problems. In the current work, this method is

applied to the problem of searching through the space of equivalence classes of Bayesian
networks, in order to find a good match against a set of data. The system uses operators
that evaluate potential modifications to a current state. Each of the modifications is
scored and the results used to inform the search. In order to facilitate these steps, other
techniques are also devised, to speed up the learning process. The techniques include
faster versions of tests needed whilst performing a search and caching of the test results.

The techniques are tested by sampling data from gold standard networks and learning
structures from this sampled data. These structures are analysed using various goodness-
of-fit measures to see how well the algorithms perform. The measures include structural
similarity metrics and Bayesian scoring metrics. The results are compared in depth
against systems that also use ant colony optimisation and other methods, including
evolutionary programming and greedy heuristics. Also, comparisons are made to well
known state-of-the-art algorithms and a study performed on a real-life data set. The
results show favourable performance compared to the other methods and on modelling
the real-life data.
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Chapter 1

Introduction

Bayesian networks are mathematical objects that can be used to provide a fac¬tored representation of a probability distribution. They consist of parameters and
a structure that specifies how these parameters are combined to produce the distribution.
As a result of their representational power and because the structured part of the network
can model causal relations in a manner understandable to humans, they are now seen as

a useful mechanism to encode uncertain knowledge.
This thesis will apply the ant colony optimisation technique to the problem oflearning

Bayesian network structures. As an introduction, this chapter will give an overview of
the path followed in achieving this task. Furthermore, a discussion will be given of: the
motivation behind the problem, the thesis' objectives, the methodology for achieving the
objectives, a concise examination of the results found and an overview of the structure
of this dissertation.

1.1 Motivation

This section will examine three of the main motivating points behind this work and seek
to answer the questions behind them:

• Why should knowledge be represented as a Bayesian network?

• Why should machine learning techniques be used to construct Bayesian networks?

• Why should ACO be used as a learning technique - in particular for the problem
above?

These points will now be discussed.
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2 Chapter 1. Introduction

1.1.1 Using Bayesian Networks to Encode Knowledge

Bayesian networks have become a mainstream tool in the representation of uncertain

knowledge. There are many reasons for this. Perhaps the most influential is that the
structure of Bayesian networks has an intuitive feel, as humans can understand what
is being represented fairly easily. However, an easily understandable structure is not

enough. Underlying Bayesian networks is the safety net of probability, which guarantees
that well understood and useful mathematical properties apply. Bayesian networks can

be seen as a generalisation of many other probabilistic models; e.g. dynamic Bayesian
networks can model both hidden Markov models and linear dynamical systems (Murphy,
2002). This is extremely useful, as advances in one field can be passed to others, with the
single formalism breaking down barriers of understanding.

The intuitive structural layout of a Bayesian network is also an asset when it comes to

answering questions about the information stored in it. Taking advantage of this layout,
algorithms have been developed that can answer probabilistic questions about variables
in the face of uncertain evidence. This strictly numerical answer can easily be turned
into a discriminative one as is given by many standard machine learning systems such as

classifiers and clustering algorithms.
Aside from the theoretical aspects, the pragmatic use of Bayesian networks cannot

be denied. They can be specified by experts, learnt from data, or be created from a

combined approach. Much research has taken place in recent years. This, coupled with
increased computational power, has meant that Bayesian networks can now be used
in situations where they might have been seen as excessive. The list of applications is
now too numerous to mention, but what was originally used in the domain of medical
diagnosis and monitoring has spread to practically every area involving uncertainty.

1.1.2 Using Machine Learning Techniques to Construct Bayesian
Networks

Along with the increased expressiveness of Bayesian networks comes a greater difficulty
in specifying them. Bayesian networks can be built by hand, but this process is often
seen as long and unwieldy (Abramson et al., 1996). Since Bayesian networks consist of
two parts - the structure and the parameters - each of these must be specified separately.

Of the two, the structure is seen as the easier part for a human to give. The standard
technique starts by getting an expert to specify the variables that are needed to model a

given domain. This in itself is difficult, as an expert does not always know all the variables
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that influence the concept. The experts might group the effects of different variables into
one, or give variables that have a negligible effect on others. After the variables have
been recognised, the arcs among the variables are normally specified by looking at causal
relations among the variables - ifX causes Y, then an arc is added from X to Y in the
structure. Here, problems determining which variables are causes of other variables and
problems with too many parents can crop up. These can be aggravated by missing or

extra variables.

Once the structure has been given, the parameters must be specified. This task is
normally hard for domain experts to do, as it is not natural for them to think in terms of
conditional probabilities.

Machine learning techniques can help in this situation, as they are able to learn
Bayesian networks from data. Indeed, much progress has been made in this field, with re¬

cent algorithms being able to provide good performance in reconstructing gold-standard
Bayesian networks. Similar to specifying a Bayesian network by hand, the structure and
parameters must be learnt separately. Unlike the hand-crafting procedures, learning the
parameters of the network is by far the easier task. With complete data, only a single
pass over the data is needed.

Learning the structure is more complicated. Since the space of possible structures
is super-exponential in the number of variables, some form of heuristic must be used
to find a good match to the data. However, most of these methods tend to be greedy
in nature and therefore suffer from the well-known problem of local maxima in the
learning space. In order to avoid these maxima, techniques which utilise randomness
can be useful. One of these - ant colony optimisation and how it can be applied to this
problem - is the subject of the next section.

1.1.3 Using Ant Colony Optimisation to Learn Bayesian Net¬
works

A recent technique that can help with the problem of local maxima is that of ant colony
optimisation (ACO) (Dorigo and Stiitzle, 2004). This metaheuristic is based on the
swarming behaviour of ants searching for food and has shown good performance in
solving many combinatorially hard problems. ACO has been successfully applied to
such tasks as: the sequential ordering problem (Gambardella and Dorgio, 2000), the
vehicle routing problem (Bullnheimer et al., 1999), the bin-packing problem (Levine and
Ducatelle, 2004), classification rule induction (Parpinelli et al., 2002b) and many more
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(Maniezzo and Colorni, 1999; Gambardella and Dorgio, 2000; Stiitzle, 1998; Costa and
Hertz, 1997).

In ACO, a set of autonomous agents known as ants perform a walk of a construction

graph, incrementally building a solution to the problem being looked at, e.g. a travelling
salesman problem. The agents do not communicate directly; instead they rely on the
principle of stigmergy, i.e. communicating via their environment. They do this by leaving
a pheromone trail on the graph. This pheromone trail positively influences other ants to

proceed in the direction that previously successful ants took. Inherent in this process is
the idea of randomness; ants are free to decide which direction to go in, even if it seems

that a particular direction is not optimal. In the end, sometimes taking the seemingly
worse route is needed to get a better solution. This stigmergy principle is often coupled
with a problem dependent heuristic. The heuristic induces ants towards better solutions
and it is the combination of the pheromone and heuristic that produces good solutions.

When applied to the task of learning Bayesian network structures, ACO proceeds by
having each ant move from graph structure to graph structure in the space of all possible
structures. Because of the biased random nature of the metaheuristic, it is possible to

bypass local maxima in the learning space and hence generate better solutions.

1.2 Thesis Objectives

The aim of this thesis is to investigate the effect of an implementation of the ACO
metaheuristic to the problem of learning Bayesian network structures. To further this
task, the following sub-aims were identified:

• To investigate current strategies in learning Bayesian network structures and
identify problems in these strategies;

• To seek solutions to help in resolving these problems;

• To implement these solutions, in order that their effectiveness can be analysed;

• To set up a testing framework to see the performance of the solutions, both in

regards to various parameter settings and against other strategies found in the
literature;

• To analyse the results found and discuss any conclusions in the context of other
strategies; and
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• To test the implementations on a real-life problem involving input from domain
experts.

1.3 Methodology

The main problem to be solved is that of learning the structure of a Bayesian network
from data. In general, there are three types of methods that can achieve this. The first
performs statistical tests on the data to identify conditional independencies and uses

these independencies to build the structure (Spirtes et al., 2000).
The second uses what is known as a score-and-search approach. With this type of

method, a search space is set up, with each of the states of the space being a Bayesian
network structure. A scoring function is then specified, that can judge how good each
state is. Because of the massive size of the space, an exhaustive search is not feasible, and
heuristics must be used. Therefore, a set of operators is given that can modify a state to

change it into a different state. With these elements, a search can proceed, by specifying
a start state and repeatedly invoking operators on the current state to traverse the search
space (Heckerman, 1995b).

The third method is similar to the second, in that a scoring function is needed to
see how good a fit a structure is with the data. However, in this method, a search does
not happen. Rather, dynamic programming is used to calculate the scores of all possible
structures. The structure with the best score is then selected by the algorithm (Ott and
Miyano, 2003).

1.3.1 Searching the Space of Equivalence Classes Using a Novel
ACO Algorithm

The method developed in this thesis to solve the main problem as given above, is based
on the second aforementioned type of search. This method is implemented in a new

algorithm called ACO-E. A search space is set up, with each state of the space being an

equivalence class of Bayesian network structures. This particular space avoids some of
the problems associated with the space of structures, including a plateauing effect of
the scoring function on statistically indistinguishable structures. A standard scoring
function and set ofoperators are defined, so that a search can move through the space. The
algorithm uses ant colony optimisation to find a good structure given the data provided.
It does this by having each ant select an operator to apply to the current state. The operator
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selected depends on a heuristic given by the scoring function and a pheromone value
left by previous ants.

Tbe ACO-E algorithm combines two ideas that have shown success in learning
Bayesian network structures - that of searching through the space of equivalence classes
(Chickering, 2002a) and that of using ant colony optimisation (de Campos et al., 2002a).
By bringing these two designs together, it is hoped that a more accurate algorithm for
learning structure can be produced.

1.3.2 Speeding up Search in the Space of Equivalence Classes

In developing the ACO-E algorithm, it was noticed that large amounts of time were

spent in calculating a value needed to determine where a particular operator was valid.
In order to reduce this time and hence speed up a search, methods were devised that cut
down on the amount of checks that needed to be performed at each iteration of a search
algorithm. Although these methods were developed for the purpose of speeding up the
ACO-E algorithm, they are applicable to any search in the space of equivalence classes.
This is especially true in the case of randomised algorithms that restart multiple times

(e.g. a greedy search with multiple random starts) - of which ACO-E is one.

1.3.3 Testing the Hypothesised Methods

In testing the utility of the proposed methods, two main objectives were sought:

• Test the utility of the methods in themselves, e.g. how does varying the parameters
of an algorithm change the output; and

• Test the utility of the methods compared to other methods, e.g. how does one

algorithm compare to another in recreating gold-standard Bayesian networks that
are used for testing purposes.

1.4 Preview of Results

In performing experiments involving the methods described above, results were found
that supported their utility.

Firstly, the methods that were designed to speed up searching in the space of equiva¬
lence classes of Bayesian network structures were shown to have a significant effect. It
was found that:
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• the speed-up was by a factor of n, where n is the number of variables in the
structure;

• this speed-up matched an analytical analysis of the computational complexity of
the methods; and

• the effect is uniform across an algorithm run.

Secondly, the method used to improve the accuracy of learning a Bayesian network
structure - namely the ACO-E algorithm - was found to significantly improve on the
results of other algorithms. It was shown that:

• varying the parameters of ACO-E produced a significant effect on the output of
the algorithm;

• ACO-E performed well against other algorithms that were similar in operation,

e.g. that used ACO (but not in the space of equivalence classes) (de Campos et al.,
2002a) or that searched in the space of equivalence classes (but did not use ACO)
(Muruzabal and Cotta, 2004; Cotta and Muruzabal, 2004; Chickering, 2002a); and

• ACO-E performed well against other state-of-the-art Bayesian network structure

learning algorithms, including MMHC (Tsamardinos et al., 2006), the sparse

candidate algorithm (Friedman et al., 1999c), PC (Spirtes et al., 2000) and GES
(Chickering, 2002b).

Finally, the experiments on the real-life data showed that ACO-E was able to reconstruct a

regulatory network involving genes from theArabidopsis Thaliana plant. It was discovered
that:

• the false positive rate of the constructed networks was quite good;

« the scoring function used in the algorithm is often quite sensitive to one of its

parameters;

• at small sample sizes, prior knowledge is necessary; and

• the algorithm was able to construct Bayesian networks with a good true positive
rate.
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1.5 Dissertation Structure

In following the aims laid out in Section 1.2, the structure of this document is as follows:

• Chapter 2 involves a literature review on Bayesian networks. This includes the
foundations of the subject, the role played by inference of Bayesian networks, learn¬
ing the parameters of Bayesian networks and learning the structure of Bayesian
networks. In addition, a section on applications of Bayesian networks across many

domains and a final comparison of various learning techniques is given.

• Chapter 3 is on ant colony optimisation. The basis of the technique is given along
with a sample application, a look at ACO in the context of machine learning and
two methods which use ACO in learning the structure of Bayesian networks.

• Chapter 4 contains the main new ideas of the thesis. These include:

- an in-depth look at learning Bayesian network structures, by searching
through the space of equivalence classes;

- the methods used to speed up searching through this space; and
- the implementation of the ACO-E algorithm, as mentioned above.

• Chapter 5 describes the experimental methodology used to examine the behaviour
of the techniques described in Chapter 4. Descriptions of standard networks used
in testing are given, as are the design of the experiments used to fulfil the thesis
objectives, along with criteria with which to compare the results.

• Chapter 6 presents the results from the experiments run according to the methodol¬
ogy in Chapter 5. These results are discussed and tested using statistical techniques.
These tests are used to discover whether the methods described in Chapter 4

improved on other methods described in the literature.

• Chapter 7 shows an experiment to test the utility of the ACO-E algorithm on a

real-life problem. Data from experiments involving the Arabidopsis Thaliana plant
were used to try and model its circadian clock. A simple extension of the ACO-E

algorithm is proposed to model temporal data. Experiments used to check this
utility are described, along with the results of the experiments and an evaluation
of these results.
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• Chapter 8 presents conclusions reached in performing the work described above.
Along with these conclusions are examples of where this research could lead onto
and possible directions to achieve these goals.



Chapter 2

A Review of the Literature on

Learning Bayesian Networks

Bayesian networks have become a widely used method in the modelling of un¬certain knowledge. Because of the difficulty domain experts have in specifying
them, techniques that learn Bayesian networks from data have become indispensable.
Recently however, there have been many important new developments in this field. This
chapter, based on the work of Daly et al. (2008), takes a broad look at the literature on

learning Bayesian networks - in particular their structure - from data. Specific topics are

not focused on in detail, but it is hoped that all the major fields in the area are covered.
An effort has been made to locate all the relevant publications, so that this thesis can be
used as a ready reference to find the works on particular sub-topics. This chapter is not
intended to be a tutorial - for this, there are many books on the topic, the most relevant
probably being by Neapolitan (2004).

The chapter proceeds as follows. Firstly, the theory and definitions behind Bayesian
networks are explained, in order that readers are familiar with the myriad terms that ap¬

pear on the subject. Next, a brief overview of inference in Bayesian networks is presented.
While this is not the focus of this thesis, inference is often used whilst learning Bayesian
networks and therefore it is important to know the various strategies for dealing with
the area. Thirdly, the task of learning the parameters of Bayesian networks - normally
a subroutine in structure learning - is briefly explored. Fourthly, the main section on

learning Bayesian network structures is given. Finally, a brief look at some applications of
structure learning are examined and a comparison between different structure learning
techniques is given.

11
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2.1 Introduction to Bayesian Networks

Before properly beginning, it is useful to note that Bayesian networks are often known by
other names. These include: recursive graphical models (Lauritzen, 1995), Bayesian belief
networks (Cheng et al., 1997), belief networks (Darwiche, 2002), causal probabilistic
networks (Jensen et al., 1990b), causal networks (Heckerman, 2007), influence diagrams
(Shachter, 1986a) and doubtless many more. Compounding this confusion, authors often
mean slightly different things when they use these terms. Nevertheless, the term Bayesian
network seems to have become the prevalent way of describing this particular structure
and it is how they will be described in this thesis.

Bayesian networks can have many different interpretations. This section hopes to

capture their mathematical background. From this, the relations between Bayesian net¬
works and other approaches to knowledge modelling can be seen. To start out with, a

very short introduction will be given on probability theory, Bayes' rule and conditional
independence. These ideas are fundamental to the theory of Bayesian networks, and will
enable a better understanding of the context of the subject.

2.1.1 Preliminaries

Most people have an intuitive understanding of probability as either the long run limit
of a series of random experiments, or a subjective belief of what is likely to happen in a

given situation. To introduce this topic in a more rigorous manner, a short background
will be given here in order to introduce terminology and notation. To start with, a sample
space O is defined as a set of outcomes, i.e. Ci. = {cv\,a>2,...,u)n}. An event E on O is a

subset of CI, i.e. E <= CI. From this point of view, outcomes may be seen as elementary
events, i.e. events that can only take on a true/false character. Events are things which
we might be interested in and tend to be the fundamental unit of probability theory. A

probability distribution P, is a function from the space of events to the space of real
numbers from 0 to 1, i.e. P : P(H) -* [0,1], where P(fi) is the power set of Cl. So when
we say the probability of an event E is 0.76, we are saying P(E) = 0.76. Since events are

sets, we can perform set operations on them. This allows us to specify the probability of
two events, E and F occurring, by P(EnF). From this we can define another very useful
idea, that of conditional probability.

The conditionalprobability ofan event E occurring, given that an event F has occurred
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is given by

Obviously for this to be defined, P(F) must be strictly positive. As an aside, it should be
noted that

P(EnF) = P(JE|F)P(F) = P(F|F)P(F)

This implies that

This is the well-known Bayes' formula and is in itself fundamental to many modern
statistical techniques in machine learning. The term P(F|F) is often known as the
posterior probability of E given F. The term P(F|£) is often referred to as the likelihood
of E given F, when viewed as a function of E and the term P(£) is the prior or marginal
probability of E. The term P(F) is a normalising term that is often expanded out as

P(F)= y P(FnHi)= £ P(F|H,)P(H,),
H,€H

where H is a set of pairwise disjoint events H,- such that Hi u H2 u ... u Hn = Cl. The
reason for this expansion is that the terms P(H,|F) and P(H,) are often much easier to
obtain than P(F).

Given the definition of conditional probability, we can now define what it means for
events to be independent. Two events, E and F are independent if

P(£|F) = P(E) and P(F|£) = P(F)

If P(£) and P(F) are both positive, then both equations imply the other. This definition
leads to that of conditional independence, which will involve a third event. Two events,
E and F are conditionally independent, given another event G if

P(£|£nG) = P(£|G) and P(£|£nG) = P(F|G)

Again, these are equivalent if P(F), P(F) and P(G) are strictly positive. The notion
of conditional independence is central to Bayesian networks and many other models
dealing with probabilistic relationships. It is often given its own notation as/p(£,£|G)
which means event E is conditionally independent of event F given event G, under
probability distribution P.

To complete this subsection, it suffices to explain the concepts ofrandom variables and
joint probability. In common parlance, random variables are variables that can take on a
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value from a given set, and have a certain probability associated with taking on this value.
Technically, a random variable X is a function from a sample space O to a measurable
space M. To illustrate how they are used in practice, imagine the following scenario. Say
we are dealing with temperature and we have three different measures of it, low, medium
and high. We could then state that the random variable X stands for temperature and our

measurable space M is the set {low, medium, high}. So when we make the statement

P(X = low), the probability that the temperature is low, the expression X = low is an event
E. Therefore, we are calculating P(£), such that E = {w\to e Cl,X(w) = low}. Normally,
we leave all the details of sample space and probability measure implicit and never

mention them. Instead we deal directly with random variables, but it is beneficial to
know where the notation comes from.

Finally, the joint distribution of a set of random variables is the multidimensional
analogue of the single variable case. For example, P(X, 7) is the joint distribution of two
random variables X and Y. To specify a probability for an event, we assign values to the
variables. P(X = x, Y = y) is the probability that X takes on value x and Y takes on value
y. We can marginalise across some of the variables by adding up across all possible values
of those variables. For example, given P(X, Y) we can get the probability distribution
P(X) by

P(X)= Y, P(*>Y = y)
yeM(Y)

where M(Y) is the domain (or measure space) of Y. It is useful to note that with the
notation P(x,y), where x and y are lower case letters, there are usually implied random
variables, so that X = x and Y = y, i.e. P(x,y) = P(X = x,Y = y).

2.1.2 Bayesian Networks

To see why conditional independence is important, imagine the following scenario.
Imagine we wanted to define a joint probability distribution across many variables
P(Xi, X2,..., X„). If each variable is binary valued, then we need to store 2n - I values.
It should be obvious that with this storage requirement exponential in the number of
variables, things soon become intractable. To get around this, firstly note the identity

P(X1,X2,...,X„) = P(Xi|X2,X3,...,X„)P(X2,...,X„).

Now, say that Ip (Xi, {X3,... ,X„} |X2), i.e. Xi is independent of the rest of the variables
given X2. Then,

P(X1)X2,...,X„) = P(X1|X2)P(X2,...,X„).
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Figure 2.1: A directed acyclic graph

Notice how the expression involving Xi has become much shorter and we have a slightly
smaller joint term (minus Xi). Ifwe can find conditional independencies for the rest of
the variables such that this factorisation can proceed in a chain like fashion, we will be
left with a product of terms, each of which will only contain (hopefully) a small number
of random variables. Then, to specify the joint probability distribution, we need only
specify a number of conditional probability distributions. The reason for this is two-fold.
Firstly, if each variable is conditionally independent of most others, then we only need
specify a small number of values for each distribution. Secondly, humans generally find
it easier to specify the values of a conditional distribution.

There are many statistical models that take advantage of these properties. Examples
can be found in the paper by Lauritzen and Wermuth (1989) and the books by Castillo
et al. (1997a), Pearl (1988) and Whittaker (1990). The particular model that will be dealt
with here is the Bayesian network. Before defining what they are, some definitions relating
to graphs will be given.

A graph Q is given as a pair (V,E), where V = {vi,..., v„} is the set of vertices or

nodes in the graph and E is the set of edges or arcs between the nodes in V. A directed
graph is a graph where all the edges have an associated direction from one node to
another. A directed acyclic graph or DAG, is a directed graph without any cycles, i.e. it
is not possible to return to a node in the graph by following the direction of the arcs.

For illustration, the graph in Figure 2.1 is a DAG. The parents of a node v,-, Pa (v,), are

all the nodes Vj such that there is an arrow from Vj to v,- (v;- -> v,). The descendants of
Vi, D(vi), are all the nodes reachable from v,- by following the arrows repeatedly. The
non-descendants of v,-, ND(v,), are all the nodes that are not descendants of v,-.

Let there be a graph Q - (V,E) and a joint probability distribution P over the nodes
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in V". Say also that the following is true

Vve V IP({v},ND(v)\Pa(v))

That is, each node is conditionally independent of its non-descendants, given its par¬

ents. Then it is said that Q satisfies the Markov condition with P, and that (Q,P) is a

Bayesian network. Notice the conditional independencies implied by the Markov con¬

dition. They allow the joint distribution P to be written as the product of conditional
distributions; P(vi,V2,.. .,v„) = P(v\\Pa (v\))P(v2\Pa(v2))---P(vn\Pa (v„)). However,
more importantly, the reverse can also be true. Given a DAG Q and either discrete
conditional distributions or certain types of continuous conditional distributions (e.g.
Gaussians), of the form (P(v, |Pa (v, )) then there exists a joint probability distribution
-P(vi> v2»- • •. Vn) = P(vi|Pfl (v1))P(v2|Pfl (v2))-P(v„|Pfl (v„)). This means that if we

specify a DAG - known as the structure - and conditional probability distributions for
each node given its parents - known as the parameters -, we have a Bayesian network,
which is a representation of a joint probability distribution.

It may be wondered whether there are any other conditional independencies that may

be obtained from the Markov condition. It turns out there are and these can be identified

by a property known as d-separation, which is a purely graphical test, i.e. a test that can

be implemented by performing a search on a graph. The notation Ig (A, B|C) means that
the nodes in set A are d-separated from the nodes in set B, given set C. It is also the case

that given the Markov condition, d-separation identifies conditional independencies
only in P. That is, Ig (A,B|C) => Ip (A,B|C) for all mutually disjoint subsets A, B and
C of V. If a graph Q can be found such that Ig (A,B|C) <=> IP(A,B\C), then it is said
that Q is faithful to P. This is important because it implies that the arcs in the graph
directly model dependencies between variables, whereas up to now only independencies
have been discussed. This brings the structure of the Bayesian network closer to human
intuition, in that an arc between two nodes implies there is a direct relation between
those variables.

Finally, if it is assumed that in a Bayesian network, an arc from x to y means that x is a

direct cause ofy, then one of a number ofcausal assumptions is being made (see Druzdzel
and Simon (1993), Huang and Valtorta (2006) and Neapolitan (2004) for more on these
assumptions). If this is the case, then this Bayesian network is capturing knowledge in a

succinct way that is immediately obvious to humans, yet also with a well understood
formalism underlying the operations that can be performed. It is for these reasons that
Bayesian networks are so popular. As mentioned before, there exist other structures that
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Figure 2.2: The skeleton of the DAG in Figure 2.1

model conditional independencies, such as Markov fields, that seem to be less popular
because of their opaqueness. For a more in-depth look at the differences and similarities
of these structures, see the paper of Smyth (1997). Also, for a look at the explanatory
properties of Bayesian networks see the papers of Druzdzel (1996) and Madigan et al.
(1997). The relationship between Bayesian networks and causality is sometimes fraught,
but there are methods as described in Section 2.4.7, that mean a causal interpretation
is valid. For more on the intersection of Bayesian networks and causal models see the
books of Glymour and Cooper (1999), Spirtes et al. (2000) and Pearl (2000).

2.1.3 Markov Equivalent Structures

For the purposes of this thesis, it is necessary to define some further terms relating to
the structures of Bayesian networks. These terms arise because of redundancies in the
DAG representation of the structure.

It has been known for some time, that there are DAGs that are equivalent to one

another, in the sense that they entail the same set of conditional independencies as each
other, even though the structures are different. According to a theorem by Verma and
Pearl (1991), two DAGs are equivalent iff they have the same skeletons and the same

v-structures. By skeleton, it is meant the undirected graph that results from undirecting
all edges in a DAG and by v-structure (sometimes referred to as a morality), it is meant
a head-to-head meeting of two arcs, where the tails of the arcs are not joined. These
concepts are illustrated in Figures 2.2 and 2.3. From this notion of equivalence, a class of
DAGs that are equivalent to each other can be defined, notated here as Class(Q).

To represent the members of this equivalence class, a different type of structure is
used, known as a partially directed acyclic graph (PDAG). A PDAG (an example ofwhich
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Figure 2.3: V-Structures

is shown in Figure 2.4) is a graph that contains both undirected and directed edges and
that contains no directed cycles and will be notated herein as V. The equivalence class of
DAGs corresponding to a PDAG is denoted as Class{V), with a DAG Q e ClassfV) iff
Q and V have the same skeleton and same set of v-structures.

Related to this is the idea of a consistent extension. If a DAG Q has the same skeleton

and the same set ofv-structures as a PDAG V then it is said that Q is a consistent extension

of V. Not all PDAGs have a DAG that is a consistent extension of itself. If a consistent

extension exists, then it is said that the PDAG admits a consistent extension. Only PDAGs
that admit a consistent extension can be used to represent an equivalence class of DAGs
and hence a Bayesian network. An example of a PDAG that does not have a consistent
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extension is shown in Figure 2.5. In this figure, directing the edge x-y either way will
create a v-structure that does not exist in the PDAG and hence no consistent extension

can exist.

Directed edges in a PDAG can be either:

• compelled, or made to be directed that way; or

• reversible, in that they could be undirected and the PDAG would still represent
the same equivalence class.

From this idea, a completed PDAG (CPDAG) can be defined, where every undirected
edge is reversible in the equivalence class and every directed edge is compelled in the
equivalence class. Such a CPDAG will be denoted as Vc. It can be shown that there is
a one-to-one mapping between a CPDAG Vc and Class(Vc). Therefore, by supplying
a CPDAG, one can uniquely denote a set of conditional independencies. This can be
useful in defining certain strategies to learn Bayesian network structures from sets of
data, as seen in Section 2.4.5. For a more in-depth look at this topic, see the papers of
Andersson et al. (1997) and Chickering (1995).

Equivalence classes of Bayesian network structures are particularly relevant for this
thesis, as they are the basis of the search space on which the search will proceed. This
will be explained further in Section 4.1.1.

2.1.4 Special Types of Bayesian Networks

There exist certain specialisations of Bayesian networks that deal with situations that
demand slightly more structure then the general Bayesian network. A brief summary of
these types will be given here.
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(a) A prior and transition dynamic (b) An expanded dynamic Bayesian net-

Bayesian network structure work structure

Figure 2.6: Dynamic Bayesian network structures

2.1.4.1 Causal Interaction Models

Otherwise known as causal independence models, they imply that the parents of nodes
in a Bayesian network are independent of each other, to some degree. Coming in various
flavours, the best-known type is the noisy-OR model as defined by Kim and Pearl (1983)
and showcased in Pearl (1988). This was later generalised by Srinivas (1993) to multiple
causes and arbitrary combination functions. Heckerman and Breese (1996) and Meek and
Heckerman (1997) also have a look at the field in the context of inference and learning.

2.1.4.2 Dynamic Bayesian Networks

In order to model temporal processes, special structures are needed. This is because the
arcs in a Bayesian network say nothing about time, only about probabilistic relationships.
For these purposes, dynamic Bayesian networks (DBNs) are a useful representation. The
key to DBNs is that they are specified in two parts, a prior Bayesian network that specifies
the initial conditions and a transition Bayesian network that specifies how variables
change from time to time. An example DBN, due to Friedman et al. (1998), is shown in

Figure 2.6(a). In this, the prior and transition network are shown. It can be seen that
whilst the prior network is simply a general Bayesian network, the transition network
has slightly more structure to it. In this, there are two layers of nodes, and arcs from the
first layer only go to the second. Also, no arcs go from the second layer to the first. For
the purposes of performing inference, or simply reasoning about them, DBNs can be
expanded out into a single network. The network in Figure 2.6(a) has been expanded
out in Figure 2.6(b). More information of DBNs can be found in the papers of Friedman
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et al. (1998) and Dean and Kanazawa (1989) and in the work of Murphy and Mian (i999)-
Also, Ghahramani (1998) examines the topic from the perspective of learning.

In this thesis, dynamic Bayesian networks are used in Chapter 7 in order to model
the temporal behaviour of the circadian clock of the plant Arabidopsis Thaliana.

2.1.4.3 Influence Diagrams

By themselves, Bayesian networks do not specify what to do in a particular situation;
they only say what is the probability of certain things happening. If a Bayesian network
is augmented with two other types of nodes, then it is possible for actions to be decided
based on given evidence. These two types of nodes are utility nodes and decision nodes.
Utility nodes represent the value of a particular event, whilst decision nodes represent
the choices that might be made.

Influence diagrams represent a powerful formalism in helping to make decisions
under uncertainty. They can be used in static situations such as diagnosis or dynamic
situations when combined with DBNs, such as controllers. More information can be

found in the articles of Shachter (1986a, 1988).

2.2 Inference in Bayesian Networks
Whilst performing inference in Bayesian networks is a large topic in its own right, any

treatment of Bayesian network structure learning has to have at least some mention of
the subject. This is because inference is often a subroutine in structure learning problems,
especially in the case of missing data or hidden nodes. Therefore, a short summary will
be given of the major methods of performing inference, in order that a full appreciation
can be had of this expansive area.

The summary will contain a short introduction on what inference is, followed by a

look at various techniques used to solve the problem. This starts with the message passing
algorithm of Pearl (Section 2.2.2), probably the most important base technique and moves

on to deal with the problems created by multiply connected networks (Section 2.2.3).
The exact techniques covered include clustering (Section 2.2.4), conditioning (Section
2.2.6), node elimination and arc reversal (Section 2.2.5), symbolic probabilistic inference
(Section 2.2.7) and polynomial compilation (Section 2.2.8). The various approximate
methods include Monte-Carlo methods (Section 2.2.9), search based approximation

(Section 2.2.10.1), model simplification (Section 2.2.10.2) and loopy belief propagation
(Section 2.2.10.3). Finally, special topics such as inference in dynamic Bayesian networks,
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causal independence networks and robustness of inference will be looked at. For a good
survey of the literature, see the paper by Guo and Hsu (2002).

There are many books that deal with Bayesian network inference. Some of the more

popular ones are the original by Pearl (1988), the knowledge-focused book by Castillo
et al. (1997a) and the up-to-date book by Jensen and Nielsen (2007). Other books include
those by Cowell et al. (1999), Korb and Nicholson (2004) and Neapolitan (2004).

2.2.1 Introduction to Inference

Inference in Bayesian networks generally refers to:

• finding the probability of a variable being in a certain state, given that other vari¬
ables are set to certain values; or

• finding the set of variables that best explains why a set of other variables are set to
certain values.

The Bayesian network structure in Figure 2.7 will be used to illustrate these problems.
This is the well-known ASIA network, as defined by Lauritzen and Spiegelhalter (1988).
With the first problem, a patient might present as a smoker and obtain a positive X-ray.

Using this network, a physician might want to find out the probability that they have lung
cancer i.e. P(lung cancer = true). With the second problem, a physician might want to
find out the most probable explanation that explains these symptoms, i.e. what is most

likely to have caused the symptoms. In this thesis, it is generally the former problem that
is being looked at, though the latter will be mentioned as well.

2.2.2 Trees and Polytrees

The first Bayesian network inference algorithms were developed for trees and polytrees,
i.e. Bayesian network structures that contained only a single path between any two
nodes. Pearl (1982) was the first to apply an inference procedure on trees, with Kim
and Pearl (1983) extending this to polytrees (i.e. graphs with no loops). The polytree
algorithm was later extended by Peot and Shachter (1991) to visit each node at most
twice. Regardless of any speed-ups, Pearl's message passing algorithm is important, as

it operates in polynomial time with singly connected networks. An illustration of this
scheme is shown in Figure 2.8. Here, each node is an autonomous processor that collects
evidence from its n parents (nx (u\) ,...,nx (un)) and m children (Ai (x),. ..,Am (x)),
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Figure 2.7: The ASIA Bayesian network structure

Figure 2.8: Inference by message passing
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performs processing and sends out messages to its parents (A* (ui),...,Xx (un)) and
children (n\ (x) (x)). The whole procedure is inherently asynchronous and is
the basis of many of the inference schemes for multiply connected networks.

2.2.3 Multiply Connected Networks

A problem with Pearl's algorithm is that it can only be applied to singly connected
networks. Otherwise its messages can loop forever. Pearl (1986b) reported on this problem
and mentioned some techniques that can solve this, which are explained in the next
sections. Because of the large number of possible techniques, the comparison of Diez
and Mira (1994) is quite helpful.

The probable explanation for the plethora of inference methods is that Bayesian
network inference is NP-hard in both the exact (Cooper, 1990) and approximate (Dagum
and Luby, 1993) case, where the network is multiply connected. The following techniques
seek to cut down the possibly exponential time needed.

2.2.4 Clustering

One of the first methods to help apply the message passing algorithm to multiply-
connected networks was by Spiegelhalter (1986). In this he describes a way of'pulling
loops together', into clusters. These clusters are then joined together into a singly con¬

nected structure, and a message-passing algorithm is started. This is built upon by
Lauritzen and Spiegelhalter (1988) and then by Jensen et al. (1990a), who describe a

variant of the clustering algorithm that builds a so called junction tree. They later give an

optimal algorithm for junction tree construction given a triangulated graph (Jensen and
Jensen, 1994)-

Later authors looked into trying to optimise junction tree inference. Breese and
Horvitz (1991) show how to trade off time spent on decomposition of the Bayesian
network against actual inference. Other authors look at ways to get an optimal decompo¬
sition, e.g. Kjaerulff (1992b) uses simulated annealing, Gamez and Puerta (2002) use ant

colony optimisation in building the tree and Huang and Darwiche (1996) show how best
to implement clustering. Some useful bounds have been found by Becker and Geiger
(2001,1996b), who give an algorithm that is sufficiently fast for building close to optimal
junction trees.

Other authors have looked at the structure of the clique tree; Kjaerulff (1997) shows
how the cliques in the tree may themselves be factored into a clique tree, and Darwiche
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(1998) shows how to keep clique trees up to date after pruning irrelevant parts of the
network.

A clustering architecture that differs slightly from Lauritzen and Spiegelhalter and
Jensen et al. is that of Shenoy and Shafer (1990) and Shafer and Shenoy (1990). It is worth
knowing about, as it has been used by various authors, albeit to a lesser degree than the
other schemes e.g. in (Shenoy, 1997) and (Schmidt and Shenoy, 1998).

2.2.5 Variable Elimination and Arc Reversal

A simple method of inference involves reversing arcs in a Bayesian network and remov¬

ing variables. Shachter (1986a,b) introduced this in the context of evaluating influence
diagrams - Bayesian networks that have decision and utility nodes that recommend a

course of action to follow. This idea is continued on in (Shachter, 1988). It is useful to

note that the node removal method of Zhang and Poole (1994b) proceeds from a different
angle than Shachter.

2.2.6 Conditioning

Another one of the original techniques used to perform inference in multiply connected
networks was that of conditioning. In this procedure, loops in the network are broken
by instantiating nodes and the message passing algorithm is run on the singly connected
networks, one for each combination of values that the nodes take on. Pearl (1986a) was

the first to use this method, whilst Suermondt and Cooper (1988,1990) show the optimal
cutset is NP-hard to find. One issue with conditioning is that the set of nodes that cut
the loops (the cutset) need to have a joint prior probability assigned to them; Suermondt
and Cooper (1991) have a method to handle this.

Because conditioning is NP-hard it can be good to know that Becker and Geiger
(1996a, 1994) have an algorithm (MGA) that finds a loop cutset with a guaranteed car¬

dinality of less than twice the minimum cardinality. Other researchers have designed
methods to try to alleviate the problems of conditioning; for more information see e.g.

(Diez, 1996), (Shachter et al., 1994), (Darwiche, 1995) and (Darwiche, 2001b).

2.2.7 Symbolic Probabilistic Inference

Li and DAmbrosio (1994) have found a method that splits the task of inference into
two parts. Firstly, a symbolic factorisation of the joint probability distribution based
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on the Bayesian network is found. Then a numeric step is performed where the actual
probabilities are calculated. This style of inference has been built on by Chang and Fung
(1995), who look at continuous variables and by Castillo et al. (1996,1995) who develop a

slightly different system for the symbolic inference.

2.2.8 Polynomial Compilation

A recent technique by Darwiche (2003) and Park and Darwiche (2004) shows that
Bayesian networks can be represented as a polynomial. Probabilistic queries can be
formulated by evaluating and differentiating this polynomial. This is based on the fact
that every Bayesian network is a multi-linear function, which can be encoded as a decom¬
posable negation normal form (d-DNNF) (Darwiche, 2001a), a language for representing

propositional statements that has useful properties for evaluation. This can then be
implemented as an arithmetic circuit (Darwiche, 2002), which is easy to evaluate and
differentiate.

The inference of Bayesian networks as polynomials is interesting, as it can be shown
that they subsume other methods of inference such as clustering. They can also be
more efficient than other methods that have been discussed, such as clustering and
conditioning, as the compilation phase of the method can be performed offline and
optimisations performed (Chavira and Darwiche, 2007).

2.2.9 Monte-Carlo Methods

Because inference in Bayesian networks was found to be NP-hard in general (Cooper,
1990), attention was paid to heuristic and stochastic techniques to help solve the problem.
It was then found that approximate inference is also NP-hard (Dagum and Luby, 1993).
However, in general, approximate inference techniques have a wider range ofapplicability
on hard networks than exact techniques. Some of the most prevalent inexact techniques
are based on Monte-Carlo methods; the paper of Cousins et al. (1993) has a short tutorial
on the subject in relation to Bayesian network inference, whilst the paper of Dagum
and Horvitz (1993) analyses the performance of simulation algorithms using a Bayesian
perspective.

2.2.9.1 Logic Sampling

One of the first techniques to use Monte-Carlo methods was introduced by Henrion
(1988). In this, nodes are instantiated in topological order. The particular instantiation
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depends on the probability distribution of that node. If, on an evidence node, the in¬
stantiation does not match, then that instantiation is discarded. When this procedure is
iterated, each node will have been instantiated to each of its values a certain number of

times and from this the probability can be estimated. However, there is a problem with
this, in that if the evidence is unlikely, a large number of samples may be discarded. This
can mean it takes a long time to get a reasonable estimate.

Various authors have suggested ways to mitigate the problem of unlikely evidence.
The first of these were by Fung and Chang (1990) and Shachter and Peot (1990) who
discussed a strategy called likelihood weighting, that does not discard evidence. This
strategy was examined by Shwe and Cooper (1991) on a dense medical Bayesian network.
Likelihood weighting is a very simple strategy and because of this, can often outperform
more complicated strategies such as Gibbs sampling and other approximation schemes
as discussed below.

From this point on, authors examined ways to improve this type ofsampling approach.
Examples include those of Bouckaert (1994c); Bouckaert et al. (1996) and Cano et al.
(1996) who look at ways to more evenly sample the space. Following on from this, systems
have been demonstrated by Pradhan and Dagum (1996), Dagum and Luby (1997) and
Hernandez et al. (1998). Some of the newest work is by Cheng and Druzdzel (2000, 2001)
with their AIS-BN system, which has good performance characteristics across a wide
range of classes, guaranteed bounds on inferred probabilities and a simple stopping rule.

2.2.9.2 Markov Chain Monte-Carlo Methods

As well as straight forward logic sampling schemes, authors have looked to other methods
such as Gibbs sampling. Examples include early schemes such as that of Pearl (1987) and
that ofChavez and Cooper (1990), whose algorithm has computable bounds. However, the
complexity of these methods, compared to the likelihood weighting inspired approaches,
means they are rarely used in practice.

2.2.10 Other Approximate Inference

As well as sampling based approaches, inference in Bayesian networks may be tackled
using other, more heuristic methods. These include search based methods, model sim¬

plification methods and ones based on the loopy belief propagation idea, which will be
explained later. A comparison of sampling and search based algorithms in approximate
inference can be found in (Lin and Druzdzel, 1999)-
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2.2.10.1 Search Based Approximation

Search based approximations look for a small fraction of high probability instantiations
and use them to approximate the distribution. Like sampling methods they have the ad¬
vantage of being anytime, but can also keep the approximation in the form of guaranteed
bounds, which might be important in certain contexts such as real-time systems.

An early example of these is by Poole (1993a) who demonstrates an algorithm that
computes the exact answer if run to completion, but can be stopped to obtain a bound.
This is extended so that it works best in distributions that are highly skewed (Poole, 1993b,
1996). Another author who shows that search can work well with skewed distributions is
Druzdzel (1994). For later work on this style of technique, see the works of Monti and
Cooper (1996), Santos et al. (1996,1997), Shimony and Santos (1996) and Santos and
Shimony (1998).

2.2.10.2 Model Simplification

Another class of approximations works by simplifying the model being queried. E.g.
Kjaerulff (1994,1993) shows how to remove edges from the moralised independence graph,
whilst constructing a clique tree. Wellman and Liu (1994) propose reducing the number
of states of a node to reduce computation time. Draper and Hanks (1994) compute
interval bounds by examining a subset of the nodes. This can get more accurate as the
subset increases, van Engelen (1997) simply removes arcs from the network and then
uses exact techniques. Other authors describe removing nodes from the network (Poole,
1997,1998; Poole and Zhang, 2003; Jaakkola and Jordan, 1997). Finally, authors have
recently started to use variational methods to approximate the model and then use exact
inference (Bishop et al., 1998; Jaakkola and Jordan, 1999a,b; Jordan et al., 1999).

2.2.10.3 Loopy Belief Propagation

The final form ofapproximate inference procedures that will be looked at is based on loopy
belief propagation. This method involves message passing in the multiply connected
graph. In some cases, it can work well, e.g. in the case of a single loop as shown by Weiss
(2000). However in general, it does not always work well (Murphy et al., 1999). From
this perspective, Yedidia et al. (2001) and Pakzad and Anantharam (2002) have created
generalised versions that have better convergence when faced with loops.
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2.2.11 Inference in Dynamic Bayesian Networks

Inference in dynamic Bayesian networks often needs a special approach to deal with
their particular structure. Although a transition DBN can be represented as a finite
number of time slices (normally two), inference in general needs to be computed over

the expanded network; i.e. inference needs to computed at a particular time. Apart from
the possibly massive number of nodes if the time is far in the future, the repetitious
structure ofthis expansion is often not amenable to standard exact techniques for multiply-
connected networks; see Boyen and Roller (1998) for a look at this problem and a possible
solution. Kjaerulff (1992a) looks at reasoning in dynamic Bayesian networks, based
on Lauritzen and Spiegelhalter s approach, whilst Ghahramani and Jordan (1997) use

variational approximations on factorial hidden Markov models (a subtype of DBNs).
Meanwhile Kanazawa et al. (1995) adapt standard sampling techniques to the 'special
characteristics' of DBNs.

2.2.12 Causal Independence Networks

Bayesian networks are often specified, where all parents of a node are independent of
each other. This can happen if the network was constructed by hand, or if in the course

of structure learning, prior knowledge specified that this should be the case. Therefore,
inference procedures need to be aware of this possible situation. An advantage is that
causal independence models can reduce inference complexity (Zhang and Poole, 1994a).

Inference in causal independence networks has been performed since Kim and Pearl
(1983) specified their extension of Pearls message passing scheme. From then on, authors
have developed different methods of representing causal independence and how to

perform inference and learning. For example, Zhang and Poole (1996) examine methods
involving an operator acting upon the effects of a node's parents, e.g. or, sum or max.

Jaakkola and Jordan (1996) look at computing upper and lower bounds on likelihoods in
sigmoid and noisy-OR networks. Huang and Henrion (1996) also investigate noisy-OR
inference with their TopEpsilon system. Other interesting papers on the subject include
those by Heckerman and Breese (1996), Boutilier et al. (1996) and Zhang and Yan (1998).

2.3 Learning Bayesian Network Parameters

Whilst learning the parameters in a Bayesian network is an important task in itself, it
is also significant in the context of learning the structure of a Bayesian network. This
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is because most structure learning - particularly that using a scoring paradigm, as

illustrated in Section 2.4.4 - has parameter learning as a subroutine. That is not to say

that in learning a structure, parameters need to be explicitly represented and learnt.
It is that the fundamental ideas behind them are the same and they are, in a sense,

manifestations of the same procedures.
The parameters that are learnt in a Bayesian network depend on the assumptions that

are made about how the learning is to proceed. For example, in the case of maximum
likelihood learning, the parameters could be the actual probabilities in the conditional
probability table attached to each node. Whereas in a Bayesian setting, the parameters
could be used to specify a conditional density that in turn models the probabilities in a

conditional probability table.

Fitting parameters to a model has mostly been attacked from the point ofview of
statistical machine learning. Good background material on the matter can by found
in Whittaker (1990), but a more directed look is given by Spiegelhalter and Lauritzen
(1990). For a gentle and broad introduction, the book of Neapolitan (2004) and article of
Buntine (1994) are quite readable, whilst parameter learning in the context of structure

learning is seen in (Heckerman et al., 1995).

2.3.1 Multinomial Data

A multinomial variable is a variable that can take on one of a finite number of possible
values. Any data corresponding to a multinomial variable is known as multinomial
data. When dealing with multinomial data, there are choices that can be made as to
how the learning is to proceed. Perhaps one of the simplest methods is to estimate the
parameters of the model using a maximum likelihood approach. However, this has a

problem with sparse data, in that some probabilities - perhaps most of them - can be
undefined if a case does not come up in the database. This can cause problems later
with inference. To counteract this, some form of prior distribution is normally placed
on the variables, which is then updated from the data. An example of this would be a

distribution that said all values of a particular variable were of an equal prior probability
to begin with, but changed quickly to reflect the observed data. Heckerman and Geiger
(1995) and Buntine (1996) discuss this more. Also, under certain reasonable assumptions

- that the parameters of the network are independent of each other and the density
function characterising each parameter is strictly positive - Geiger and Heckerman
(!995> 1997) showed that this distribution must be Dirichlet. The Dirichlet distribution is
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the multivalued generalisation of the Beta distribution and is a conjugate prior of the
multinomial; i.e. when updated with new information, the updated distribution is again
Dirichlet. As an example, the form of the Beta density function is given by

f(x;a,p) = — -r: ,

fQua~l(l-u)P du

for parameters a and /J and variable x. When a series of Bernoulli trials is performed,
with s successes and t failures and a prior given by /(x; <x, (3) is specified, the posterior
distribution is given by /(x; oc + s,j3 + t). This allows easy extraction of statistics and in
the case of complete data, a simple closed form updating rule. These ideas are expanded
upon by Castillo et al. (1997b).

2.3.2 Continuous Variables

Whilst a lot of the literature on Bayesian networks assumes that the data is multinomial,
for many applications, the data supplied is continuous and so ways must be found to
handle this situation. Whilst the simplest method might be to discretise the data as done
by Monti and Cooper (1998), this can cause problems. However, there exist methods
for representing continuous data under different assumptions. One of the first of these
assumptions is that the data is normally distributed. Geiger and Heckerman (1994) use

this to learn using continuous data. Taking away the normal assumption, Hofmann
and Tresp (1996) use kernel density estimators to model the conditional distribution.
These two methods are compared by John and Langley (1995), who show that the non-

parametric approach ofkernel density estimators can be useful. Another non-parametric

way of estimating the conditional densities is given by Monti and Cooper (1997a), who
use neural networks in this regard. They also look at the situation of hybrid networks, i.e.

Bayesian networks with continuous and discrete attributes.

2.3.3 Missing Data/Hidden Variables

One large problem in learning Bayesian networks, and indeed in running any machine
learning algorithm is dealing with missing data, a problem that occurs in perhaps most
real-life data sets. There are generally three different missing data assumptions that can

be applied to missing data. Under a missing completely at random (MCAR) assumption,
the missing value mechanism depends neither on the observed data nor on the missing
data. This means that the data with missing values can simply be discarded. This is an
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extremely easy situation to implement, but suffers, in that there is a decreased amount
of data available. Under a missing at random (MAR) assumption, the missing value
mechanism depends on the observed data. This means the missing data can be estimated
from the observed data. This is more complicated than the MCAR situation, but all the
data gets used. And under a missing not at random (MNAR) assumption, the missing
value mechanism depends on both the observed and missing data. Because of this, a

model of the missing data must be supplied. This is the most complicated situation, as a

model may not be readily available, or could even be unknown.

2.3.3.1 Missing at Random

One of the most widely used methods of parameter estimation with missing data is
the expectation maximisation (EM) method of Dempster et al. (1977). This was first
applied to learning in Bayesian networks by Lauritzen (1995). The popularity of this
model probably stems from the fact that it always converges to a maximum, albeit a local
one in multi-modal distributions. Extensions to this algorithm that can make it faster
are given by Thiesson (1995), Bauer et al. (1997) and Neal and Hinton (1999).

As well as using EM, the gradient of the learning surface can be computed explicitly
and a gradient descent applied. Russell et al. (1995) and Binder et al. (1997) apply this to
the learning of parameters with possible hidden variables. They also extend this to the
case of continuous nodes and dynamic Bayesian networks. Kwoh and Gillies (1996) apply
the same idea, but also describe the technique of inventing hidden nodes to describe
dependencies between variables. Thiesson (1997) shows an application of these ideas
when prior expert information is available.

The methods given above find a local maximum of the distributions. In case a better
estimate needs to be found, Monte-Carlo methods can help, such as the candidate method
as used by Chickering and Heckerman (1997). Other techniques that tend to be used in
structure learning might also be able to help; these are described in more detail in 2.4.11.

2.3.3.2 Missing Not at Random

When the mechanism of the missing data cannot be found from the observed data, it
must be specified in some other manner. The Bound and Collapse (BC) method given by
Ramoni and Sebastiani (1997a,b) can be useful in this regard. In (Ramoni and Sebastiani,
1999)> they compare BC to EM and to the Gibbs sampling Monte-Carlo method and
show that BC can be substantially faster. A method related to BC is the Robust Bayesian
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Estimator (RBE) of Ramoni and Sebastiani (2001). Here, an assumption on the type of
missing data does not need to be made. Instead, probability intervals are calculated that
can be used in inference and provide a more robust estimate.

2.3.4 Miscellaneous Techniques

This section will show some techniques in learning parameters that look at specific topics.

Firstly, researchers have looked at learning parameters in causal independence models,
i.e. models where causes can be assumed to be independent from each other, e.g. in

noisy-OR and noisy-MAX nodes. Meek and Heckerman (1997) show how these types of
nodes can be learnt using Bayesian methods, whilst Neal (1992) shows learning noisy-OR
and sigmoid models using Gibbs sampling.

Ihe simplest model of a multinomial conditional probability distribution is probably
representing it as a table of values. However other representations may be possible, such
as trees, that can model interactions between variables at a finer level. For example,
Friedman and Goldszmidt (1996b) demonstrate simple algorithms that can learn condi¬
tional probability distributions as tables or trees, as part of an overall structure learning
algorithm. In the same vein, Chickering et al. (1997a,b) show an algorithm that learns
decision graphs for the CPDs as well as the network structure.

In regards to learning dynamic Bayesian networks, Ghahramani and Jordan (1997)
discuss learning the parameters of a factorial hidden Markov model (and hence a dynamic
Bayesian network). This is generalised to dynamic Bayesian networks and an analysis is
done over many different specialisations of DBNs (Ghahramani, 1998).

Normally, updating parameters in an online setting is not a hard task, but when
coupled with structure learning, there can be difficulties in knowing what data to remem¬

ber. An early look at this problem is given by Buntine (1991), who describes a system of
keeping possible parameters for a node in a lattice structure. Bauer et al. (1997) look at
a different problem, with updating parameters in an online setting, assuming missing
data.

Finally, the papers below represent some interesting ideas in parameter learning,
with possible applications to structure learning. As a prelude to their structure learning
method described in Section 2.4.15, Tong and Roller (2000) present an application of
using active learning to estimate parameters in a Bayesian network. Also in the context
of structure learning, Greiner et al. (1997) examine ways of learning CPDs dependent on

the queries that will be put to the network.
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2.4 Learning Bayesian Network Structures

Learning the structure of a Bayesian network can be considered a specific example of
the general problem of selecting a probabilistic model that explains a given set of data.
Although this is a difficult task, it is generally considered an appealing one, as constructing
a structure by hand might be hard or even impossible if the dependent variables are

not known by domain experts. Because of this problem, a wealth of literature has been
produced that seeks to understand and provide methods of learning structure from data.

A fine example of an overview on the area was given by Buntine (1996), which
although dated now, is a good reference in dealing with most of the issues that arise in
the area. Heckerman (1995b) gives a more tutorial like introduction to the task, and for a

gradual introduction to the area, the recent book by Neapolitan (2004) has a good look
at the theory behind a lot of the techniques used. To begin with, this section will start
with a look at the theory and complexity of learning Bayesian network structures and
then move on to how the challenges have been addressed.

2.4.1 Learning Theory and Learning Complexity

There is a lot of theory behind the learning of Bayesian networks, most ofwhich is rooted
in statistical concepts and graph theory. Geiger et al. (2001) and Geiger (1998) look at
different families of models (ofwhich Bayesian networks are one) in the context ofmodel
selection, but a gentler introduction can be found in the pages of the books of Pearl
(1988), Jensen and Nielsen (2007), Castillo et al. (1997a) and Cowell et al. (1999). From a

more recent perspective, Kocka et ai. (2001) investigate the important role of inclusion
in learning Bayesian network structure. And whilst the theory of learning is important
as a basis to why certain techniques are adopted, to many people, the issue of complexity
of learning is the most immediately obvious challenge.

2.4.1.1 Complexity

Learning Bayesian network structures has been proven to be NP-hard by Chickering
(1996a) and Chickering et al. (2004), whilst Dasgupta (1997) has looked at the situation
where latent variables are and are not allowed. Indeed, a simple look at the number of
possible DAGs for a given number of nodes will indicate the problem is hard; for 10

nodes there are 4.2 x 1018 possible DAGs. The properties of the space of DAGs have been
explored by Gillispie and Perlman (2001, 2002) who look at equivalence classes of DAGs
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and Steinsky (2003) who presents an efficient scheme of coding labelled DAGs.

Luckily, from the theoretical standpoint, it is possible to put bounds on various items
of interest. For example, Friedman and Yakhini (1996) look at the sample complexity
of structure learning and show how many samples are needed to achieve an £-close
(in terms of entropy distance) approximation, with confidence probability S. Zuk et al.
(2006) show how to calculate the number ofsamples needed to learn the correct structure
of a Bayesian network.

Despite the complexity results, various techniques have been developed to render
the search tractable. The following sections will show these in the context of the three
main methods used:

• A score and search approach through the space of Bayesian network structures

(Section 2.4.4);

• A constraint-based approach that uses conditional independencies identified in
the data (Section 2.4.7); and

• A dynamic programming approach (Section 2.4.10).

Although the classification into three different methods is useful in differentiating their
applicability, the boundaries between them are often not as clear as they may seem. E.g.
the score and search approach and the dynamic programming approach are both similar
in that they use scoring functions. Indeed, there is a view by Cowell (2001) that the
conditional independence approach is equivalent to minimising the Kullback-Leibler
(KL) divergence (Kullback and Leibler, 1951) using the score and search approach.

Whilst these three approaches will be illustrated, other factors that impact the process

will be mentioned. These include: partially observed models, missing data, multi-model
techniques, dynamic Bayesian networks, parallel learning, on-line learning, incorporat¬
ing prior knowledge into learning, large domains, continuous variables, robustness of
learning, tricks to make learning faster and other problems and techniques that could be
relevant.

2.4.2 Trees

One of the first pieces of work on learning structure was by Chow and Liu (1968), who
described an algorithm for learning Bayesian networks structured as trees, i.e. a structure
where each node has either one or zero parents. These are sometimes known as Chow-
Liu trees. Their algorithm constructs the optimal second-order approximation to a
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joint distribution, by finding the maximal spanning tree, where each branch is weighted
according to the mutual information between the two variables. This work was built upon

by Ku and Kullback (1969) who show it is a special case of a more general framework to

approximating joint probability distributions.
There has continued to be research on trees as a decomposition of a joint distribution

e.g. by Lucas (2002) and Friedman et al. (1997) in the context of classification. Meila and
Jaakkola (2006) show how learning tree structures in a fully Bayesian fashion can be
achieved in polynomial time.

2.4.3 Polytrees

More general than trees, polytrees are an important class of Bayesian network structure.
A polytree is a graph in which there are no loops, irrespective of arc direction. They
are important because there exist exact algorithms that can perform inference on the
polytree in polynomial time (Kim and Pearl, 1983; Peot and Shachter, 1991).

One of the earliest examples on learning polytrees from data is given by Pearl (1988),
following on from work by Rebane and Pearl (1987), which uses Chow and Liu's (1968)
system as a subroutine. Dasgupta (1999) gives a good look at the field and mentions the
NP-hardness of the problem, whilst showing a good approximation. Other work on the
area includes Geiger et al. (1990) and Acid and de Campos (1995), who show an empirical
study into approximating general Bayesian networks by polytrees.

We will now turn our attention to the problem of learning a general Bayesian network
structure, i.e. a DAG. This has by far received the most attention from the research
community and correspondingly there are many more publications. In the sections that
follow, there will be a classification of the various factors involved, but it is worthwhile

to bear in mind that some ideas fall into many different camps.

2.4.4 Heuristic Algorithms

One of the most widely studied ways of learning a Bayesian network structure has been
the use of so-called 'score-and-search' techniques. These algorithms comprise of:

• A search space consisting of the various allowable states of the problem, each of
which represents a Bayesian network structure;

• A mechanism to encode each of the states;

• A mechanism to move from state to state in the search space; and
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• A scoring function to assign a score to a state in the search space, to see how good
a match is made with the sample data.

Because of the hardness of the problem, heuristic algorithms are generally used to explore
the search space, the most basic of which are greedy searches. In all these frameworks,
it is useful to bear in mind the work of Xiang et al. (1996), who show that single-link
search cannot find all models.

2.4.4.1 Greedy Search with an Ordering on the Variables

Some of the earliest work that looked at greedy methods to learn Bayesian network
structure was by Herskovits and Cooper (1991) with their Kutato system. However, the
seminal paper in this area is by Cooper and Herskovits (1992), which describes the K2
system.1 This provided a way to construct a Bayesian network structure given a data
sample and an ordering of the various variables and used a Bayesian scoring criterion,
which has come to be known as the K2 score.

Following on from this, Bouckaert (1993,1994a) developed his K3 system that, like the
K2 system, takes an ordering of variables and a set of data and produces a DAG. Instead
of using the K2 score, he uses a scoring criterion based on the minimum description
length (MDL) principle (Section 2.4.6.2). de Santana et al. (2007) have a procedure that
behaves like K2, in that it needs an ordering on the variables and decides whether to add
an arc from a possible parent by looking at a regression coefficient. Similar again is the
work of Liu et al. (2007b) and Liu and Zhu (2007a,b), which takes an ordering of the
variables and treats the problem as a feature selection one.

2.4.4.2 Greedy Search with No Ordering on the Variables

Other people that used the MDL scoring function were Lam and Bacchus (1993,1994a)
who had a best-first search algorithm and a way to incorporate domain knowledge into
the problem. Suzuki (1999) also used MDL in conjunction with branch and bound.
Branch and bound is a technique that has been used in many Al applications (Miguel
and Shen, 2001) and that prunes the search space of definitely worse solutions, using
bounds obtained from the current best solution.

One of the most important works on learning structures was by Heckerman et al.
(1995), who analysed scoring functions from a Bayesian perspective and tested their
techniques using a greedy learning algorithm described by Chickering et al. (i995)> that

'The name K2 is derived from the Kutato system that preceded it.
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added, removed or reversed an arc from the current DAG at each step. Following on

from this general technique, various researchers showed methods that seek to make
learning faster and more accurate. Chickering et al. (1997a,b) show an algorithm that
learns decision graphs for the CPDs at each of the nodes as part of structure learning.
Steck (2000) has a search technique that alternates between the search space between
DAGs and skeletons. Hwang et al. (2002) have a method to reduce the search space,

whilst de Campos et al. (2002c) introduce a modified neighbourhood.

2.4.4.3 Genetic Algorithms

There has been a tremendous amount of interest in using genetic algorithms (GAs) to
learn Bayesian network structures in the recent past. One of the first implementations
came from (Larranaga et al., 1996a,b), who used GAs to search over the space oforderings,
whilst using K2 as a subroutine to score a particular ordering. A closely related approach
comes from Hsu et al. (2002), who have the same basic idea, but hold back training data
to produce a score for an ordering using importance sampling. Finally with his K2GA
algorithm, Faulkner (2007) again uses a modified K2 as a subroutine for a GA.

Following on from the work of Larranaga et al., Wong et al. (1999) introduced their
minimum description length and evolutionary programming (MDLEP) system, which
searches over the space of DAGs, mainly by mutating individuals. An interesting hybrid
technique that combines a mixed approach of score-and-search with conditional inde¬
pendence testing and evolutionary programming is given by Wong et al. (2002), with
their hybrid evolutionary programming (HEP) system. Following on from their previous
work they introduce another system, hybrid evolutionary algorithm (HEA), again based
on a hybrid approach (Wong and Leung, 2004). This is extended to deal with missing
data in the HEAm system (Guo et al., 2006).

Myers et al. (1999a,b) compare using an evolutionary algorithm against a Markov-
chain Monte-Carlo (MCMC) algorithm and also combine them to form the evolutionary
MCMC (EMCMC) algorithm. Whilst this approach is focused on model selection, Wang
et al. (2006) look at the problem from the perspective of model averaging with their
DBN-EMC system.

Compared to normal Bayesian networks, dynamic Bayesian networks normally do
not receive as much attention. Tucker and Liu's (1999) and Tucker et al. (2001) EP-Seeded-
GA algorithm fills this gap with an evolutionary programming approach to learning
dynamic Bayesian networks with large time lags. A more recent example of this is the
genetic algorithm based on greedy search (GA-GS) algorithm of Gao et al. (2007).
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Combining Many researchers have investigated combining GAs with other techniques
from the machine learning library. E.g. following on from the on-line algorithm of
Friedman and Goldszmidt (1997), Tian et al. (2001) have a procedure (IEMA) that
combines an evolutionary algorithm and the expectation-maximisation procedure to
learn structure in the context of hidden variables. Blanco et al. (2003) use techniques
based on estimation of distribution algorithms (EDA), which are similar to GAs and
compare them to straight GAs. Morales et al. (2004) use a fuzzy system that combines
the values of different scoring criteria, whilst performing a GA search. Finally, Delaplace
et al. (2006) showcase a refined GA, which includes tabu search and a dynamic mutation
rate.

Representation The effective representation ofpopulation members and by extension
the search space is a difficult problem that has borne much scrutiny. Most authors define
their own representation and concentrate on other matters, but Novobilski (2003) is
concerned with the encoding of DAGs. These issues also arise in the works of Cotta and
Muruzabal (2004) and Cotta and Muruzabal (2002), who look at searching through both
the space of DAGs and the space of equivalence classes of DAGs. Finally, van Dijk and
Thierens (2004) and van Dijk et al. (2003a) look at the encoding of solutions so as to
eliminate redundancy in the search space.

2.4.4.4 Simulated Annealing

Although implementing a search using simulated annealing (Kirkpatrick et al., 1983)
should throw up no conceptual problems as it uses the framework already specified
for heuristic search in Section 2.4.4, there does not seem to be much literature on the
effectiveness of this approach. This is surprising, as it is very similar to a greedy search
that does not always select the best neighbouring state. Instead, it picks one at random
and moves to it with probability given by the scoring function of that state and how many

iterations have passed. One such work that does look at this technique is by de Campos
and Huete (2000a), who compare GA and SA on a search over orderings.

2.4.4.5 Particle Swarm Optimisation

Quite recently there has been work on applying discrete particle swarm optimisation

(Kennedy and Eberhart, 1995,1997) to learning Bayesian network structures. Xing-Chen
et al. (2007a) and Heng et al. (2006) have applied this in the case of normal Bayesian net¬
works and also in the case ofdynamic Bayesian networks (Xing-Chen et al., 2007b). Other
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approaches include that by Li et al. (2006), who use a memory binary particle swarm

optimisation technique and that by Sahin and Devasia (2007) who use a distributed
particle swarm optimisation approach.

2.4.4.6 Other Heuristics

There remain many other methods that have been and could be used in learning the
structure of a Bayesian network. A selection of these are given here in order to complete
this look at the use of heuristics.

Peng and Ding (2003) have an extension of the K2 algorithm, called K2+, that works
locally on each node, eliminating any cycles obtained and repairing damage due to cycle
elimination. Recognising stochasticism as a method to avoid local maxima, de Campos
and Puerta (2001b) describe a randomised local search called Variable Neighbourhood
Search. Additionally, de Campos et al. (2002a) apply the ant colony optimisation meta-
heuristic to searching in the space of DAGs and of orderings of nodes (de Campos et al.,
2002b). Their method, ACO-B, is what the main body of work of this thesis is based
on and is described in more detail in Section 3.5.2. Burge and Lane (2006) describe
a method based on aggregation hierarchies, that perform initial search on composite
random variables. This constrains later searches using atomic random variables.

2.4.5 Searching Through the Space of Equivalence Classes

As the structure of a Bayesian network is a DAG, it is natural to use this representation
as a state whilst searching through the space of possible structures. However, it has
been noted that certain DAGs are similar in that they capture the same conditional
independencies in their structure (Andersson et al., 1997). These Markov equivalent
structures have been discussed in Section 2.1.3. Since the PDAG structure discussed in

that section can represent an equivalence class of DAG structures, it is very useful in

representing states of searches. The space of these searches can be known as E-space, as

opposed to the B-space of DAG based search (Chickering, 2002a). More information on

these topics can be found in Lauritzen and Wermuth (1989) and Whittaker (1990).
The main work of this thesis involves learning Bayesian networks by searching

through the space of equivalence classes of structures. As such it is very relevant to the
work that will be described later in Section 4.3.
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2.4.5.1 Search Procedures

Whilst the properties of PDAGs have been known for some time before, algorithms that
would learn them from data, in a manner similar to score-and-search procedures to
find DAGs, would not appear until later. One of the first was by Spirtes and Meek (1995)
who describe a two-phase greedy Bayesian pattern search (GBPS) algorithm and then
combine it with the independence-based PC algorithm (Spirtes and Glymour, 1990).
This work relies on a procedure to turn a PDAG V into a DAG in the equivalence class
represented by V (known as extending V). Such procedures are described by Meek (1995),
Verma and Pearl (1992) and Dor and Tarsi (1992).

Another early work is by Chickering (1996b), who describes a method that uses
certain operators to modify a PDAG V and then extends V to Q to check if the move is
valid and to score it. It then turns Q back into a PDAG and repeats, using a method such
as those by Meek (1995) or Chickering (1995).

A problem with these procedures was that they were often very inefficient, with
numerous extensions and multiple scores being required at each move. These problems
were addressed by Munteanu and Cau (2000) and Munteanu and Bendou (2001) with
their EQ framework, who showed how to locally check if a particular move was valid and
if so, what score that would provide. However, the various operators given were shown to
be incorrect. Kocka and Castelo (2001) tried to limit the problem inherent with searching
in the space of DAGs, by including a procedure that would move between DAGs in the
same equivalence class. However, it was the paper by Chickering (2002a) that put a firm
foundation on using equivalence classes as states in a search-based procedure. Whilst
similar to the procedure of Munteanu and Bendou (2001), he proved the correctness of
the various operators introduced and enabled search in E-space to be competitive with
that in B-space. Note that Perlman (2001) and Castelo and Perlman (2002) also did work
on this problem.

After this, Chickering (2002b) designed another algorithm that searches in E-space.
This one, called greedy equivalent search (GES), is a two-phase algorithm that, in the
limit of a large sample size, identifies a perfect map of the generative distribution. That
is, if the probability distribution implied by the data admits a DAG representation of
it, then GES will find it in the limit of a large sample size. This work was expanded on

by Chickering and Meek (2002), who provide different optimality guarantees for more

realistic assumptions. Nielsen et al. (2003) also built on GES by introducing an algorithm
called /c-greedy equivalence search (KES), which is essentially a randomised version
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of GES, to help escape local optima in the search space. Quite recently, Borchani et al.
(2006) developed the GES-EM algorithm for utilising GES with missing data, using the
expectation maximisation procedure.

Following on from this work, Castelo and Kocka (2003) show a more general way

of looking at the search problem and illustrate certain conditions that operators on the
search space should obey, to avoid local maxima. They then introduce the hill-climber
Monte-Carlo algorithm (HCMC) that uses the ideas developed in this paper.

To finish off this section on search algorithms, various hybrid and other method¬
ologies will be mentioned. Acid and de Campos (2003) develop a representation that
borders the representational ability of DAGs and CPDAGs. They named these restricted
PDAGs (RPDAGs) and present various operators that can be used to manipulate them.
Cotta and Muruzabal (2004) and Muruzabal and Cotta (2004) present an evolutionary
programming approach called EPQ, that uses equivalence classes of structures as its

population members. Finally, Jia et al. (2007) show a hybrid algorithm using a conditional
independence approach and score-and-search to learn an equivalence class.

2.4.6 Scoring Functions

When performing a score-and-search procedure a scoring criterion must be specified
that somehow gives a good score when a structure matches the data 'well' - the better the
match, the higher the score. Of course, given this ambiguous problem, diverse scoring
criteria have been invented that involve various assumptions and different definitions of
a better match. Perhaps one of the simplest criteria - the maximum likelihood estimator

- will, in general, return the complete graph, as this is the one with the most parameters.
Therefore, most scoring criteria consist of two parts - one that rewards a better match of
the data to the structure and one that rewards a simpler structure. Examples of these
are the Bayesian Dirichlet (BD) criterion, Bayesian information criterion (BIC), Akaike
information criterion (AIC), minimum description length (MDL) and minimum message

length (MML). These and various other criteria will be discussed below.
One of the more desirable properties of a scoring criterion is decomposability,

whereby the score of a particular structure can be obtained by the score for each node
given its parents. Most of the scoring functions known have this property. Malvestuto
(1991) has some early work on this.

A comparison of MDL, BDeu (BD with N'..k = N'/riqi) and K2 (BD with N'..k = 1)
is given in Shaughnessy and Livingston (2005). Note that in this paper, they confuse
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BDeu with K2 and the WEKA Bayesian method with BDeu. Another thorough compari¬
son between the BIC, Cheeseman-Stutz approximation (Cheeseman and Stutz, 1996),
Laplace approximation and Gibbs sampling approach was conducted by Chickering and
Heckerman (1997)

2.4.6.1 Bayesian Dirichlet Scoring Functions

One of the first expositions of a Bayesian scoring criterion in learning Bayesian network
structure was given by Cooper and Herskovits (1992) as part of their K2 algorithm. As
presented by them, the function for a given structure Bs and data set D was

j»(B„D)=r(B,)nft Jr;;')!lV]W(=1 j=i [Nij + ri-iy. fc=1

where there are n variables, parent configurations of variable i, r,- is the number
of values variable i can take, is the number of times variable i took on value k,

with parent configuration j and N,;- = Y,k=i^ijk- Looking at this equation it can be seen
that P(BS) is the prior probability of structure Bs and the rest of the expression is the
likelihood of the structure, given the data.

In their paper, Heckerman et al. (1995) generalise the above equation and place it on

a sound theoretical footing. In their form,

» m T(N') n T(N'...+Nijk)P(Bs,D)=P(Bs)flYl , V ' .ft'
1=1 1=1 r r(w;A)

where variables have the same meaning as before and are exponents that specify the
user's prior knowledge about configuration ijk; the higher the more the user thinks
that configuration is likely. Meanwhile, NT = Y,k= jNLfc. They called this equation the
Bayesian Dirichlet or BD metric. It can be noted that T(x) = (x -1)! for natural numbers,
which immediately shows the similarity to the equation of Cooper and Herskovits (1992).
Indeed, with N'..k = 1, the formula is exactly the same as the K2 formula. Using an
assumption known as likelihood equivalence, which says that equivalent structures
receive the same score, they constrain the values that N'..k can take on and provide a
method to calculate them. With this method, the user provides a prior network structure
and an equivalent sample size N' that says how confident they are in it. With these
constraints, the scoring criterion is named BDe (Bayesian Dirichlet with likelihood
equivalence). With a further constraint, such that all configurations are as likely as each
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other, N'..k = N'/rjqj and the criterion is named BDeu (Bayesian Dirichlet with likelihood
equivalence and a uniform joint distribution).

The BDeu scoring function is used in this thesis as the function through which the
quality of changes to an equivalence class of Bayesian network structures is quantified
through the operators described in Section 4.3.

2.4.6.2 Minimum Description Length

Minimum description length (MDL) is a statistical principle, which says that the best
hypothesis that describes data, is the one that leads to the largest compression of that
data (including the hypothesis) (Rissanen, 1978). One of the first people to the use the
MDL principle in constructing Bayesian networks was Bouckaert (1993,1994a). Here he
provides an explanation and justification of using this measure and shows how it behaves
like the K2 criterion for large sample sizes. A more in-depth comparison of the MDL
and K2 criterion is given in (Bouckaert, 1994b).

At around the same time, Suzuki (1993) and Lam and Bacchus (1994a) also made
use of the MDL principle and presented a way to incorporate domain knowledge into
their algorithm (Lam and Bacchus, 1993). This domain knowledge can come in the form
of direct causation information (X is a direct cause of Y) and a partial ordering of the
variables. Suzuki (1999) looks into previous work using MDL and presents a branch-and-
bound algorithm. Finally Cruz-Ramirez et al. (2006) give a comparison of MDL and
BIC. In this work BIC is defined as

BIC (Bs, D) = - logP (D|0,Bs) + rf/2log n,

where 0 are the maximum likelihood parameters for Bs, d is the number of free parame¬

ters in the model and n is the sample size. Following this, MDL is defined as

MDL(B5,D) = -logP(D|0,B5) + d/2logn + Q,

where Q. = (1+ |PaXi|)logA: and \PaXj\ is the size of the parent set of variable x,-.

Hence according to Cruz-Ramirez et al., MDL is BIC with an extra penalty for model
complexity. Note that some authors use the term MDL to mean the formula indicated by
BIC above, so care must be taken to see exactly what is being used.

2.4.6.3 Minimum Message Length

A newer scoring criterion for Bayesian networks, based on the work of Wallace and
Boulton (1968), is one that computes the minimum message length (MML) of a structure,
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its parameters and data (Wallace et al., 1996). This criterion is similar to the MDL one

in that it penalises overly complex models (which will produce a longer message) and
rewards goodness of data fit (which will produce a shorter message). However, instead
of looking at the problem from a compression point of view, it views it as the problem of
sending the smallest possible message between a transmitter and receiver. It has been
used to learn linear causal models by Neil et al. (1999) and by Wallace and Korb (1999)
using their causal minimum message length (CaMML) method, and more recently by Li
et al. (2002). An up-to-date look at this method is given by Korb and Nicholson (2004).
O'Donnell et al. (2006b) builds on the work of Wallace and Korb (1999) by learning
Bayesian networks with many types of local interactions at each node.

2.4.6.4 Other

Whilst the scoring criteria given above are the most widely used in the field, researchers
have been examining other methods of ranking a structure given some data. For example,
Kayaalp and Cooper (2002) introduce a scoring metric called Global Uniform (GU) that
is based on a particular form of default parameter prior. They then compare it against
the BDeu and K2 scoring criteria, de Campos (2006) presents a scoring method called
mutual information tests (MIT) that has an information theoretic basis and performs
well compared to K2, BDeu, BIC and the PC algorithm of Spirtes and Glymour (1990).

An interesting approach with similarities to boosting etc. is that by Elidan et al. (2002)
who reweight data, so that the scoring function can change. This can help escape local
maxima. Castelo and Perlman (2002) demonstrate a scoring criterion that can be applied
directly to equivalence classes of Bayesian network structures, without extending it to
DAG form.

2.4.7 Finding Structure using Conditional Independencies

In learning the structure of a Bayesian network from data, there are often said to be two
main methods - search through the space of possible structures and using conditional
independencies (CIs) obtained from statistical tests on the data. In this section the latter
will be focused on. However, it is worth noting that Cowell (2001) has drawn parallels
between the two techniques, so they might not be as different as they seem at first glance.
Perhaps the book for learning using CIs is the one by Spirtes et al. (2000), which contains
most of the early theory and results, and looks at the problem from a causal perspective.

Some of the first work on using CIs to obtain structure came from around the
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early 1990s. Geiger et al. (1990) developed an algorithm to recover polytrees from an

independence oracle, i.e. an oracle which can say whether two variables are independent
given another. At the same time Fung and Crawford (1990) developed the Constructor
system that learnt Markov networks, i.e. undirected graphical models, that encode CIs in
a manner similar to Bayesian networks. In this work, they mention using the y2 statistical
test to obtain the needed CIs.

One of the first systems that recovered a DAG from independence data was the SGS
algorithm by Spirtes et al. (2000). However, this was quite inefficient, as each pair of
variables required tests involving every subset of the remaining variables, which is an

exponential operation. Therefore, numerous variations on the theme sprung up. Perhaps
the best known of these is the PC algorithm by Spirtes and Glymour (1990), which is
faster than SGS, but can produce errors in removing arcs. These arise because PC only
tests for d-separation between nodes X and Y in a DAG, using subsets ofneighbours ofX
and Y. A modification of the PC algorithm that decreases the amount of CI tests needed
is called PC* (Spirtes et al., 2000), and recently, applicability of PC to high dimensional
data is shown by Kalisch and Biihlmann (2007).

A variant of the SGS algorithm, proposed by Pearl and Verma (1991) and Verma and
Pearl (1991), differs from previous approaches in that it first generates an undirected graph
that models dependencies between variables, as opposed to using the complete undirected
graph in the SGS and PC manner. This algorithm, called Inductive Causation (IC), also
takes into account latent variables, and returns a graph with undirected, unidirected and
bidirected arcs. Taking inspiration from the approach of IC in starting with the undirected
independence graph, Spirtes et al. (2000) proposed changing the PC algorithm to start
in the same way. They called this modified algorithm Independence Graph (IG). Again,
with an approach based on IC, Verma and Pearl (1992) looked at an algorithm that took
a more global view and constructed a DAG, as opposed to the local view of IC.

Following on from the work of Verma and Pearl, Spirtes et al. (2000) described two

algorithms that took on the idea of identifying latent variables. These were known as

the Causal Inference (CI) and Fast Causal Inference (FCI) algorithms and Spirtes et al.
(1.995) show how they can also work in the presence of, and identify, selection bias.

After the large body of work produced by Spirtes et al. and Verma and Pearl, various
other authors examined ways to learn causal explanations of data in the context of DAGs.
These are refinements of the more general approaches discussed above and were often
developed for simplified situations. Cooper (1997) described an algorithm called Local
Causal Discovery (LCD) based on PC and FCI, that while less general in its applicability,



2.4. Learning Bayesian Network Structures 47

runs in polynomial time in the worst case, de Campos (1998) looked at representing CI
statements using polytrees and developed algorithms for this purpose, de Campos and
Huete (1997) also make a simplifying assumption with their CHi and CH2 algorithms
that can efficiently find simple graphs; i.e. DAGs where every pair of nodes with a child
are not connected, nor have a common ancestor. Various authors also advanced systems
that allow background knowledge to be given. E.g. Meek (1995) showed a method for
learning a CPDAG using methods inspired by Spirtes et al. This was done in the context
of background knowledge in the form of mandatory and disallowed causal effects. This
paper also has early work on finding DAGs from CPDAGs. Cheng et al. (1997) have a

system that takes an ordering of the variables as background knowledge, as do de Campos
and Huete (2000b), who describe a method that avoids making many high order CI tests.

An interesting modification to the standard CI type algorithm is given by Margaritis
and Thrun (2000) with their GS algorithm, which shows how to limit the number of
CI tests between two nodes by only using nodes in their Markov boundaries, which
are calculated beforehand. Another interesting approach is that of Cheng et al. (2002)
and their Three Phase Dependency Analysis (TPDA), who describe how an n variable
DAG can be learnt in 0(n4) CI tests. This was also implemented in parallel by Gou et al.
(2007). However, TPDA relies on an assumption known as monotone DAG-faithfulness,
and it has been shown by Chickering and Meek (2006) to be incompatible with the
faithfulness assumption. They show that the optimality guarantee provided by Cheng
et al. only applies in very specific situations, where there are already faster algorithms.

Some recent work on reducing computation time and errors in reconstructing net¬
works is given by Yehezkel and Lerner (2006). They propose an algorithm known as

recursive autonomy identification (RAI), that recursively performs CI tests, edge direc¬
tions and structure decomposition, with higher order CI tests for smaller structures.

With all the algorithms given above, access to fast CI tests is crucial. The normal tests
used are the y2 and G tests (Spirtes et al., 2000, pp.93-95), but work has been done on a

new test by Dash and Druzdzel (2003). Other results concerning d-separations are given
by Acid and de Campos (1996a,b), who use them in their hybrid BENEDICT system

(Acid and de Campos, 1996c).

Finally, Schulte et al. (2007) provide a look at learning BN structures using CI tests
in a paradigm that approaches the task using Gold's learning paradigm (Gold, 1967).
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2.4.8 Hybrid Search Strategies

Both the score-and-search and conditional independence testing methods have their
advantages. Score-and-search typically works better with less data than CI testing and
with probability distributions that admit dense graphs. They also allow probability distri¬
butions over models to be easily represented and have better mechanisms for dealing
with missing data. On the other hand CI testing methods work well with sparse graphs,
are generally quick and have good ways of finding hidden common causes and selection
bias.

Because both methods have advantages inherent in them, researchers have tried to
find ways to use the good points of both in hybrid methods. Below are some of the ideas
that researchers have been looking at.

One of the first hybrid algorithms in the area was by Singh and Valtorta (1993,1995).
Here, they construct a total ordering of the variables using CI tests and then use this
ordering as input to the K2 algorithm to learn the structure. This approach is followed
by Provan and Singh (1996), with their CB system. Whilst similar to the first work, the
later approach employs an initial feature selection phase. Acid and de Campos (1996c,
2001) take a different route, by measuring the difference in independencies between a

candidate graph and the data, using the Kullback-Leibler cross-entropy. They named
this algorithm BENEDICT, a refinement of which is found in their BENEDICT- dsep
system (Acid and Campos, 2000).

An approach that combines the main features of both techniques is given by the
EGS algorithm of Dash and Druzdzel (1999), who use PC to obtain an initial guess of a

PDAG, extend it to a DAG and then perform a greedy search, de Campos et al. (2003)
do the opposite with their IMAPR algorithm; they perform an initial greedy search
with random restart and then use CI tests to add and delete arcs from the obtained

DAG. Whilst the work of Friedman et al. (1999c) is slightly similar, it stops short of
providing a full structure in the initial phase. Instead, it uses CI to find good candidate
parents and hence limit the size of the search in later stages. This algorithm, called sparse

candidate (SC) is very useful in increasing the speed ofsearch procedures, without unduly
damaging the score. It has also been built upon by later authors. Brown et al. (2004) and
Tsamardinos et al. (2006) describe the max-min hill-climbing (MMHC) algorithm that
differs mainly from the SC algorithm in the way its candidate parent sets are generated,
that is, by the MMPC algorithm (Aliferis and Tsamardinos, 2002).

Insofar as their first phase builds a conceptual skeleton upon which arcs are directed,
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the work of van Dijk et al. (2003b) is quite similar. A polynomial version of the initial
phase ofMMHC is given by Brown et al. (2005). Known as Polynomial Max-Min Skeleton
(PMMS), it is compared to TPDA. Like the latter, it relies on assumptions that restrict the
structure of networks that can be found. Another algorithm relying on the monotone-
DAG-faithfulness assumption and CI testing to generate an initial skeleton is given by
Wang et al. (2007). They tested their approach in the regulatory gene domain.

Lately, MMHC has been extended to cope with very large domains (in the order
of thousands ofvariables) by Nagele et al. (2007). Their approach focuses on learning
substructures around each variable. An extension that focuses on equivalence classes of
structures is given by Jia et al. (2007) who first learn a skeleton of a graph using CI tests
and then try to identify all the v-structures.

Other hybrid algorithms can use CI tests to lesser extent. E.g. in HEP, discussed in
Section 2.4.4.3, CI tests are used to disallow certain arcs in generated structures (Wong
et al., 2002). In (Huang et al., 2005), part of the algorithm presented uses CI tests to
remove edges from an undirected graph. This graph will later be changed to a directed
graph.

2.4.9 Searching over Orderings

Score-and-search algorithms for finding Bayesian network structures generally search
over the space of DAGs and in some cases, the space of equivalence classes of DAGs.
However in some cases, other spaces can be used. One that has received some attention
is searching in the space of orderings.

An early paper on this subject was given by Larranaga et al. (1996b) as seen in Section
2.4.4.3. Acid et al. (2001) use an approach similar to Singh and Valtorta (1995) as seen

in Section 2.4.8, by using CI tests. However, instead of learning a definite ordering, a

search is performed to preserve as many of the CIs as possible. Teyssier and Roller (2005)
reported results using a true local search algorithm that proceeded by swapping the
position of two adjacent variables in an ordering and performing a greedy search. To
score an ordering they used the work of Friedman and Roller (2000, 2003) who showed
how to efficiently score an ordering in closed form where each node has a bounded
number ofparents. This paper also showed how to compute the probability of a structural
feature given data and as such is important by itself.
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2.4.10 Dynamic Programming

Besides the two major techniques of structure learning that have been discussed, there
exists a third method that is similar to the score-and-search approach, but does not have
the search aspect. These methods use dynamic programming to compute optimal models
for a small set of variables and in some cases combine these models. Note that small in

this context is in the region of 25, whereas with an exhaustive enumeration, in would be
impossible to score all models with numbers of variables greater than 6 or 7.

One of the first uses of dynamic programming in this way was by Ott et al. (2004).
In this, an algorithm for finding the optimal model is given and its correctness proved.
Later, Ott and Miyano (2003) show the technique can be used for arbitrary sized Bayesian
networks by limiting the number of possible parents and by clustering, with possible
input by an expert. At around the same time, Koivisto and Sood (2004) came up with
a very similar procedure, but with a somewhat more in-depth analysis of the problem.
They approached this from the perspective of trying to compute the posterior probability
of a subnetwork in the spirit of Friedman and Koller (2000, 2003). Koivisto (2006)
expanded on this with a faster method to compute the posterior probability of all edges
in 0 (n2"). Building on the earlier work of Koivisto and Sood (2004), Singh and Moore
(2005) introduce a similar method that optimises a different form of equation, with some

advantages and disadvantages. These are that their algorithm has a simpler structure and
less of a memory requirement, but can be slower if there are constraints on the number
of allowed incoming arcs to a node. This procedure is again approached in a different
manner by Silander and Myllymaki (2006) who present a less complicated algorithm
that is feasible for structures of up to 32 variables. As opposed to the methods of Koivisto
and Sood and Silander and Myllymaki, their algorithm is conceptually simpler and scales
better. Dojer (2006) has a variation that works on single variables and requires prior
information so that the acyclicity of a graph does not have to be checked. Finally, Eaton
and Murphy (2007b) apply the Koivisto and Sood technique to experimental data with
possibly uncertain interventions and also combine the technique with MCMC to solve
certain problems with the exact DP method (Eaton and Murphy, 2007a).

2.4.11 Missing Data and Partially Observed Data

Like the parameter learning case, learning Bayesian network structures with missing
data significantly complicates matters. This section will investigate methods to learn in
these circumstances and also in the circumstance that the data may be partially observed,
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i.e. there may be variables that can help to explain the distribution of observed data, but
there is no data for those variables. This can be seen as missing data where all the data is
missing for certain variables.

One of the earliest papers on handling missing data whilst learning the structure of
Bayesian networks, is the work of Cooper and Herskovits (1992), where they also present
their K2 algorithm and scoring function. They show how to use the law of total probability
to sum over all possible combinations of missing data. However, this is exponential in the
number of missing items. This can also be used in the case of hidden variables, where all
the data of a variable is assumed missing, but this is of course exponential in the number
of data items. There is also the problem of knowing how many hidden variables there
might be and what number of values they can take on. Cooper (1995) solves some of
these problems by showing a hidden variable method that is polynomial (though perhaps
to a high degree) in the number of data cases. He also provides a method of handling
multiple hidden variables, though identifying them is still hard, with CI testing methods
playing a useful role here.

Though the methods given above are quite general, they are still computationally
intensive. Geiger et al. (1996) showed how the BIC scoring function could be used to
score structures with missing data and hidden variables. In this, the maximum likelihood
parameters can be estimated by using one of the approaches used in parameter learning
with missing data, e.g. EM or a gradient based approach. Ramoni and Sebastiani (1997a)
applied the BC method as shown in Section 2.3.3.2 to learning a structure with data that
is missing not at random.

One of best known algorithms to learn Bayesian network structures in the presence

of missing data or hidden variables is the structural EM (SEM) algorithm (Friedman,
1998). Starting with early work defining the MS-EM and AMS-EM systems, Friedman
(i997) then went on to introduce the SEM system (Friedman, 1998). This interleaved
model selection and the EM algorithm (to estimate parameters) and was proven to

converge to a maximum. A generalisation of this approach was presented by Beal and
Ghahramani (2003) who used a variational Bayesian EM algorithm. The method has also
been specialised by Leray and Francois (2005) who use it in the space of trees with their
MWST-EM algorithm, either as a good enough solution or a starting point for a more

complex approach. Finally, Borchani et al. (2006) introduce GES-EM, which extends
GES (Chickering, 2002b) as shown in Section 2.4.5.1 to deal with missing data.
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Stochastic Algorithms A problem with EM based methods is that in most cases the
maximum found is local. One way around this is to use stochastic procedures, such as

hill-climbing with random restarts. A Monte-Carlo approach is shown by Chickering
and Heckerman (1997). This important paper also shows the effectiveness of large sample
approximations, i.e. scoring functions that are approximations to the Bayesian score and
that converge to it in the limit of a large number of samples. Myers et al. (1999a,b) show
using MCMC and an evolutionary algorithm to avoid the local maxima. An approach
that is based on the TPDA algorithm of Cheng et al. (2002) as shown in Section 2.4.7, is
given by Tian et al. (2003) and their EMI system. This is basically the TPDA algorithm
augmented to use incomplete data. The EMI method is combined with a score-and-search
approach by Tian et al. (2007).

These methods often work well for missing data and are normally easily applicable
for hidden variables. However, a hard problem is knowing how many hidden variables
to use and their cardinality. One solution to the first problem, already discussed, is to use

a CI testing algorithm to suggest likely variables and locations. Another simple one is

simply to add hidden variables one by one. Elidan et al. (2001) have a more sophisticated
approach that looks at cliques in the structure. A solution to the second problem, that of
finding the cardinality of hidden variables, is looked at by Elidan and Friedman (2001).

2.4.12 Model Averaging

Learning Bayesian network structures normally means the selection of a single structure.
In itself, this can be a useful procedure, e.g. by presenting the DAG to a domain expert to

suggest new relationships. Otherwise, parameters can be learnt and inference performed.
However, a problem with this approach is seen when there is not much data. In this case,

no one model rises high above the rest and the selection can be somewhat arbitrary, with
a corresponding lack of confidence in the structure. One way around this is to have the
learning procedure return multiple models instead of a single one. This could range from
a small collection of the most likely to the complete space. These models can then be
weighted by their probability when inference is being performed. A good introduction
to these ideas, that looks at model averaging in general, can be found in (Hoeting et al.,
1999).

One of the earliest algorithms used to find Bayesian network structures to average

over, was provided by Madigan and Raftery (1994) with their Occam's window principle.
This provides a small number of models that are not too similar but have good predictive



2.4. Learning Bayesian Network Structures 53

power. However, the main interest in early algorithms focused on a stochastic method
devised by Madigan et al. (1993,1995) to average across models using Markov chain
Monte-Carlo model composition (MC3). This method defines a Markov chain across the
space of models and proceeds from model to model, computing the quantity of interest
at each step and averaging over the results. These ideas are extended to equivalence
classes of DAGs by Madigan et al. (1996). Giudici et al. (1999) provide a more efficient
procedure to sample the chain, whilst Giudici and Castelo (2003) extend MC3 by using
different moves in the state space and provide an analysis of the distribution of various
domains. Riggelsen and Feelders (2005) extend MC3 to incomplete data with their eMC4
algorithm.

As well as MC3 based approaches, other systems have been developed to perform
the same task. Thiesson et al. (1998a,b) describe an approach to learning what they call
mixtures of Bayesian networks and mixtures of DAGs. Whilst seemingly oblivious to the
work of Madigan et al., their model appears quite similar.

A related approach to Monte-Carlo algorithms across the space of DAGs is one of
Friedman and Koller (2003). The difference with their work is that they average across the
space of orderings of variables. This is possible, due to a fast closed form expression for
the likelihood of an order, that they provide. Following on from this, Dash and Cooper
(2004) show a method to average over models quickly and a procedure to find a single
network that is equivalent to averaging. In fact this last idea has been implemented
by various authors. Kim and Cho (2006) have a method to merge multiple Bayesian
networks into a single model using an evolutionary algorithm. Gou et al. (2007) also
have a method called parallel TPDA (P-TPDA) that uses TPDA as seen in Section 2.4.7 in

parallel on different data sets and combines the resulting DAGs. Finally, Liu et al. (2007a)
learn structures using a CI testing method and then combine the resulting DAGs into a

single DAG.

2.4.13 Dynamic Bayesian Networks

The first authors to look at structure learning of dynamic Bayesian networks were Fried¬
man et al. (1998) who broke the problem down into learning a prior network which
provided initial conditions and a transition network which specified how variables behave
from state to state. This problem was analysed from the point of view of both complete
and incomplete data. Boyen et al. (1999) looked at a way of using SEM in learning DBNs
and in particular found a novel approach to detecting hidden variables in dynamic sys-
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tems. This is done by detecting non-Markovian correlations, i.e. correlations between
variables that are separated by one or more time steps. Murphy and Mian (1999) show
how DBNs subsume many other dynamic models into a general framework and look at
the various tasks that need to be done to learn a DBN.

Whilst much of the work on static BNs can be applied to DBNs (as when expanded
they are static BNs), sometimes there are techniques that can take advantage of DBNs'
unique structure. Such is the case with Tucker and Liu (1999) and Tucker et al. (2001)
who show an evolutionary programming approach to learning DBN structure. They
also propose using hidden variables to model the change in dependencies over time
(Tucker and Liu, 2004). Other authors have also proposed using metaheuristics in learn¬
ing DBN structure; e.g. Xing-Chen et al. (2007b) show an implementation of particle
swarm optimisation for this task and Gao et al. (2007) also use a genetic algorithm. And
finally, Jonsson and Barto (2007) use active learning, as might be used by agents in a

reinforcement learning setting.

Dynamic Bayesian networks are used in this thesis in order to model the circadian
clock of the plant Arabidopsis Thaliana. Indeed, the learning scheme shown in Chapter 7

is based on the method of Friedman et al. (1998).

2.4.14 Parallel Learning

Since learning Bayesian network structures is a computationally hard task, many attempts
have been made to speed it up. Most of these have been algorithmically based, but there
have been efforts to parallelise the problem so it can be tackled by multiple computing
resources. To a large extent, algorithms based on the score-and-search paradigm have, as

a bottleneck, finding the sufficient statistics needed. In general, when evaluating different
neighbouring states, each of them could be evaluated in parallel, which at a low level
means scoring functions can be evaluated in parallel, thereby giving an opportunity for
the bottleneck to be alleviated.

However, there have been some algorithms that have been structured such that
parallelism takes a large part in their operation. Xiang and Chu (1999) showcase an

algorithm that looks ahead multiple steps and hence is quite computationally intensive.
However, they show how it can be decomposed into separate chunks. Mondragon-Becerra
et al. (2006) show a fairly simple implementation of the above ideas, but a more interesting

application is that by Yu et al. (2007), who show a method to parallelise SEM inside the
EM part of the algorithm. It does this by performing the E (expectation) step on each
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sample in parallel. Finally, an application using the CI testing paradigm is given by Gou
et al. (2007) who perform TPDA in parallel and combine the results.

2.4.15 On-line Learning

Generally, learning a Bayesian network operates as a batch process—a block of data is
given to an algorithm which learns a structure and the parameters for that structure.
However, sometimes data is continuously being supplied to a system, and it could be
useful to be able to learn from that. It is normally a fairly easy job to update the parameters
of a system, given a single datum. However in the case of learning structures, it is not as

simple. An early paper on refining both structure and parameters was given by Buntine
(1991), who assumed an ordering on variables and stored counts on a parent lattice at each
node. Lam and Bacchus (1994b) and Lam (1998) have a method to refine the structure of
a BN given new data, that can incorporate a trade off between the old network and the
new data. It does this by learning a partial network from the new data and uses this to

improve the old network. Friedman and Goldszmidt (1997) provide a method that trades
off between accuracy and storage, by only storing a certain number of past observations
with which to refine the structure. This idea is expanded upon by Tian et al. (2001) in
their IEMA system, who examine it in the context of hidden variables and introduce an

evolutionary algorithm and EM into the procedure. Finally, Tong and Roller (2001) look
at the problem from the perspective of active learning, i.e. where a learning system is
allowed to intervene in its environment.

2.4.16 Incorporating Prior Knowledge

Allowing an expert to specify knowledge that can be used in a learning system is a

fundamental task that can be extremely useful in situations with a low amount of data.
However the learning data and expert knowledge are often in quite different forms and
it can be difficult in bringing both together. With Bayesian networks, many types of
background knowledge an expert can provide have already been seen in this chapter.
These include an ordering ofvariables (total or partial), a prior network, prior equivalent
sample size etc. Being able to use these is normally dependent on the algorithm in

question, though score-and-search methods that are Bayesian normally require being
somehow able to specify a prior distribution. These can be the forms already seen, or

others which will be discussed in the papers looked at below.
One of these forms to specify a prior distribution uses 'imaginary data', elicited from
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a domain expert as shown by Madigan et al. (1994). This makes the expert come up with
typical cases and uses this database to update uniform priors to become the priors for
the start of learning. Whilst specifying variable ordering as the prior knowledge in their
system, Sarkar and Murthy (1996) also look at other knowledge that can be specified, e.g.

by declaring variables to be cause or evidence nodes or by explicitly declaring conditional
independencies across variables. Another prior elicitation method that takes an ordering
of variables, is that of Castelo and Siebes (2000). However, they also take a subjective
probability, that consists of the probability of a variable being another variable's parent,
for all pairs consistent with the ordering. A discussion of the different types of prior

knowledge that may be supplied is given by O'Donnell et al. (2006a), from specifying a

full structure to indicating a correlation between nodes.
However, some of these techniques can be hard or impossible for an expert to specify,

e.g. a structure over a domain that the expert simply does not know. Mascherini and
Stefanini (2007) study this problem and specify a means to extract weak information
from an expert, i.e. information about parts of the domain, e.g. local features, ordering
of some variables, degree of connectivity etc. Another author who looks to impose local
expert knowledge on a model is Thiesson (1997). In this case the prior information
is defined in terms of a much more general class of models than Bayesian networks,
recursive exponential models. These can be seen as regular Bayesian networks, where the
local distributions are parametrised by members of the exponential family and experts
can give information in the form of imprecise probabilities.

It can be difficult to find out the effect the prior information has on learning, so the
study by Neil and Korb (1999) is useful in comparing two types of prior knowledge - a

uniform prior over all orderings and a uniform prior over all structures with the same

arc density. Another study based on three different types of prior information is given

by de Campos and Castellano (2007). These types are the existence of edges, absence
of edges and ordering of variables. Mansinghka et al. (2006) also look at non-expert

supplied priors. With their system, variables are separated into different types or classes
and prior probabilities given between the different classes.

2.4.17 Large Domains

Traditionally, structure learning algorithms for Bayesian networks had size limits in the
hundreds of variables. However, applications such as genomics often have data sets with
thousands or more features. Therefore, recent research has looked at ways to handle
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these very wide sets. One early system was the MMBN algorithm by Tsamardinos et al.
(2003c), that later developed into the MMHC system (Tsamardinos et al., 2006). This
has been tested on domains with tens of thousands of variables. Another approach by
Goldenberg and Moore (2004) is the SBNS algorithm, that proposes using Frequent Sets
and exploiting the local structure ofcached sufficient statistics. Finally, Nagele et al. (2007)
have a method similar to MMHC that firstly learns a skeleton and then the substructures
around each variable, with a final combination into a DAG.

2.4.18 Continuous Variables

Most Bayesian network theory is developed for the multinomial case, i.e. discrete variables
with a bounded cardinality. However, in many applications, data is supplied in continuous
form. One way to handle this is discretisation, or turning the continuous data into
multinomial data. However, the process of discretisation can lead to errors, depending
on how it was achieved. Therefore, researchers have tried to find ways to learn with
continuous variables directly.

An early work on learning with continuous variables is by Geiger and Heckerman
(1994), who assume the data is drawn from a multinomial Gaussian and develop scoring
criteria for the case of networks with all continuous and a mixture of continuous and

discrete nodes. John and Langley (1995) drop the assumption of normality and instead
use non-parametric density estimators, specifically Gaussian kernels. The same approach
is followed by Hofmann and Tresp (1996). Bach and Jordan (2003) also use kernels, of
the Mercer variety. Slightly different is the work of Monti and Cooper (1997a,b) who use

neural networks to represent the density function. A different approach, based on the CI
testing paradigm is used by Margaritis (2004). In the discrete case, the x2 test is normally
used, but this cannot be used for the continuous case. He develops a non-parametric
CI test that does not rely on the variables being distributed according to a given model.
This test can be used as input to any of the CI based algorithms of Section 2.4.7.

2.4.18.1 Discretisation

Some authors have proposed a different way of learning with continuous variables, that
involves a discretisation stage as part of a learning algorithm. Friedman and Goldszmidt
(1996a) are one of the first to do this with a modified MDL score that chooses the
discretisation thresholds. Monti and Cooper (1998) also have a discretisation strategy
that changes as the learning algorithm progresses. This strategy is based on the Bayesian
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scoring principle, that depends on the data and the network structure. Steck and Jaakkola
(2003) show that the discretisation policy can affect the structure of the graph learnt and
present a scoring function that efficiently discretises data, in sequence with learning the
structure.

2.4.18.2 Other Topics

It is not just model selection that researchers have concentrated on. Giudici and Green
(1999) look at using MCMC across the space ofstructures. Imoto et al. (2002) also include
an MCMC simulation of their method, based on non-parametric regression. Finally,
Bottcher (2004) looks at learning conditional Gaussian networks and also dynamic
Bayesian networks with mixed variables.

2.4.19 Robustness

When the size of the sample is small, small changes to the data can produce large changes
to the learnt structure. If the Bayesian network is to be used in a production environment,
or to provide evidence of a dependency between variables, it is very useful if an idea
of the robustness can be found. This can help decide how much confidence to place in
the network. Early confidence measuring research by Friedman et al. (1999a,b) used the
Bootstrap in order to find a degree of reliability of certain features in the learnt DAG,

e.g. the existence of an edge, the Markov blanket of a node or the ordering of variables.
Holness (2007) also examines the confidence in learning structural features, in this case

causal associations between variables. Steck and Jaakkola (2002) look at robustness from
a different angle and investigate the sensitivity of the 'equivalent sample size' as used in

Bayesian scoring criteria. They show that a small equivalent sample size can surprisingly
lead to a strong regularisation of the graph structure, i.e. the graph structure will be
sparse. The work of Silander et al. (2007) is very similar in this regard; they investigate
the sensitivity of the learnt structure to the value of the 'equivalent sample size'.

2.4.20 Acceleration Techniques

Since learning Bayesian network structures is in general a hard problem, various tech¬
niques to speed up the computation can help immensely. With the score-and-search
paradigm, one of the most valuable techniques is caching the results of scoring criterion
applications. Scoring a structure is normally in O(nmr), where n is the number of vari¬
ables, m is the number ofsamples and r is the average number ofvalues per variable. With
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caching, this can turn into an operation in O(n). Beyond this very simple, yet effective
technique, there lie some other tricks that can help. Below are just a few examples of
these.

One of the fundamental operations of learning with the score-and-search paradigm is
extracting counts ofdata from the data set, i.e. finding a contingency table for a certain set
ofvariables. With many variables and a large sample, this can easily become a bottleneck.
The ADtree data structure described by Moore and Lee (1998) can help in cases where
there are a large number of records. It achieves this by not storing zero counts and other
redundant information. Another technique by Friedman and Getoor (1999) helps to
constrain the number ofsufficient statistics (i.e. counts) that need to be collected by using
constraints imposed by the statistics already gathered to guide the learning algorithm.
The work of Chickering and Heckerman (1999) shows a method to quickly extract one

and two way counts from data that can be either real of expected. They also show an

algorithm that quickly performs the E step of the EM algorithm. Another technique to

speed up EM using a generalised conjugate gradient method is given by Thiesson (1995).
Finally, Zhang (1996) shows another modified EM algorithm that works on the principle
that some parameters are irrelevant to the probability of seeing a certain datum.

2.4.21 Miscellaneous Techniques

Below are some results by researchers that do not fit neatly into other categories. These
are normally ideas that focus on a very particular aspect of the the learning problem.

Local Learning Tsamardinos et al. (2003a,b) focus on learning local features of a

Bayesian network. In their case, they focus on direct edges to and from a certain variable
and the Markov blanket of a certain variable. These are often very useful structures in
the learning of complete Bayesian networks.

Heterogeneous Data Following on from the earlier work of Heckerman (1995a) who
looked at learning causal networks, Cooper and Yoo (1999) discuss how to learn structure
whilst using a mixture of experimental and observational data.

Operators Moore and Wong (2003) introduce a new operator, optimal reinsertion
that allows sufficient statistics to be calculated quickly.
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Causal Independence Models Meek and Heckerman (1997) discuss structure and

parameter learning of causal independence models, i.e. Bayesian network models where
causes ofan effect are assumed to be independent from each other. These can be important
in modelling situations where the assumption is warranted and also because inference
can be cheaper.

Hierarchical Bayesian Networks Gyftodimos and Flach (2004) look at learning
hierarchical Bayesian networks, i.e. Bayesian networks, where each node is itself an

aggregation of other nodes. Hwang et al. (2006) also mention learning hierarchical
Bayesian networks. However their terminology is completely different to Gyffodimos
and Flach's. To them, a hierarchical Bayesian network is one where the observed nodes
are connected via a hierarchy of hidden nodes. Whilst technically a Bayesian network, it

represents knowledge in a very different way than usual. In a sense, there are different
levels of connectivity between nodes, with higher levels indicating connections between
groups of variables.

2.5 Applications

This section aims to look at some typical applications of Bayesian networks. A lot of the
original applications were in the medical field and to some extent, this is the domain
where Bayesian network applications dominate today. However, there now exist uses

in diverse domains, from biology, to natural language processing, to forecasting. Part
of the popularity of Bayesian networks must stem from their visual appeal, as it makes
them amenable to analysis and modification by experts. However, it is the generality of
the formalism that makes them useful across a wide variety of circumstances. Because
a Bayesian network is a joint probability distribution, any question that can be posed
in a probabilistic form can be answered correctly and with a level of confidence. Some
examples of these questions are:

• Given some effects, what were the causes?

• How should something be controlled given current readings?

• What will happen if an intervention is made on a system?

Below are examples of applications across many different domains, that ask in one form
or another, questions like these.
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Medicine At present, there are many applications of Bayesian networks in medicine.
An overview of the held is given by Lucas et al. (2004), but some of the more famous
applications are given here.

An early implementation of a system for diagnosis in internal medicine was the
quick medical reference (QMR). This system was reformulated in a Bayesian network
implementation, with three levels of nodes; background, diseases and symptoms. Known
as QMR-DT, it had a very large number of nodes and arcs (Shwe et al., 1991; Middleton
et al., 1991). Because of this, algorithms had to be developed that could perform inference
in this dense network (Shwe and Cooper, 1991). Another more specific diagnostic system
is that from the Pathfinder project (Heckerman et al., 1992), which is used in the diagno¬
sis of lymph-node diseases. In the same vein, but used for diagnosing neuromuscular
disorders is the MUNIN network developed by Andreassen et al. (1989).

With a similar domain, but different purpose is the ALARM network developed by
Beinlich et al. (1989), which was used for the monitoring of patients in intensive care

situations. It is often used as a gold-standard network, as it is reasonably well connected
and has enough nodes to be a challenging but still achievable problem for many Bayesian
network algorithms. And from a learning perspective, Acid et al. (2004) give a comparison
of learning algorithms on the emergency medicine domain.

Forecasting Bayesian networks can be very useful in predicting the future based on

current knowledge. One of the most well known of these is the HailFinder network of
Abramson et al. (1996), which is used to forecast severe weather. Also in the weather

forecasting domain is the sea breeze prediction system of Kennett et al. (2001), which
uses learnt structure and probability.

In the market domain, Abramson and Finizza (1991) use a Bayesian network to
forecast oil prices, whilst Dagum et al. (1992) show a dynamic Bayesian network used for
the same task. And to the extent that classification can be seen as forecasting, Bayesian
networks have huge potential. An example of this is by Friedman et al. (1997) who gives
a generalisation of the already good na'ive-Bayes classifier into the tree-augmented na'ive-

Bayes classifier. Another implementation of classification using Bayesian networks is by
Correa et al. (2007), who use them in the classification stage of an algorithm that also
features attribute selection using a discrete particle-swarm optimisation algorithm.

Control An interesting use of dynamic Bayesian networks in the control area is that of
Forbes et al. (1995) who showcase their Bayesian automated taxi (BATmobile) network.
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This network is in the form of a dynamic influence diagram, and the system as a whole
illustrates all the problems that must be solved to provide reliable control in a noisy,
partially observed domain.

Modelling for Human Understanding Friedman et al. (2000) and Friedman (2004)
look at modelling the causal interactions between genes by analysing gene expression
data. They use the sparse candidate algorithm (Friedman et al., 1999c) as described in
Section 2.4.8, to learn the structure of 800 genes using 76 samples. These ideas have been
built on by Husmeier (2003) who looks at the problem of small sample sizes prevalent
with biological data and examines techniques to characterise the sensitivity and specificity
of results. Chapter 7 builds on these ideas, by using a dynamic Bayesian network to model
the circadian clock ofArabidopsis Thaliana using gene expression data.

2.6 Comparison of Techniques and Summary

Given the amount of different techniques that can be used to learn the structure of
a Bayesian network, it can be hard to decide which is the best to use in a particular
situation. This is not helped by authors failing to give guidelines as to what situations
their particular algorithms might be useful in. This section seeks to gives a round up

of the various techniques discussed in Section 2.4 and the circumstances in which they
might be used.

The most important piece of information when deciding what method to use in

constructing a Bayesian network structure is probably the use the network will be put to.
The main uses of a Bayesian network structure are:

• Provide a DAG that a human can use as a model of the (possibly causal) interactions

amongst variables; and

• Coupled with parameter learning, provide a model that can be used to perform
inference.

Although methods such as scoring structures and using conditional independence tests
can both be used for both of these tasks, there seems to be a slight bias in the literature
for using the latter in detecting causal relations. This is because the methods use explicit
tests to find these relations; in the case of the scoring methodology, causal semantics are

dependent on extra assumptions (Heckerman, 1995a). Also, the CI methods can help in

finding hidden variables and selection bias (Spirtes et al., 1995).
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With performing inference, there also seems to be a slight bias towards methods that
score structures. The reason for this is that they are based on the prequential prediction
principle and naturally fall into a good match for the inference task.

2.6.1 Tree and Polytrees

Although they cannot represent the full range of conditional independencies as a DAG
can, trees and polytrees might be good enough for a particular task. For example, if there
is not enough data to support the high order conditional independencies that can be
represented in a graph, then a tree or polytree could be a suitable choice and indeed
might not affect the accuracy of the model generated too much (Acid and de Campos,
!995)- An advantage of trees is that they can be exactly learnt in polynomial time (Chow
and Liu, 1968); polytrees are still NP-hard to learn, but good approximations are easily
found (Dasgupta, 1999). Perhaps the major advantage of trees and polytrees is that exact
inference can be performed in polynomial time (Kim and Pearl, 1983). This can be a large
advantage if the time needed for inference to be performed is bounded.

2.6.2 Heuristic Search

Some of the most successful strategies for learning Bayesian networks employ heuristic
search whilst scoring network structures. Even simple techniques such as greedy search
can produce network structures that are 'good enough'. And as opposed to methods
that use conditional independence testing, they can work better with smaller data sets.

Perhaps the main reason to use this technique is that it has received the most attention
in the literature and hence is more developed.

The main issues when using heuristic search are the search algorithm, the scoring
function and the search space. Obviously, greedy algorithms tend to get trapped in local
maxima; global search strategies such as genetic algorithms, simulated annealing etc.
can produce better solutions at the cost of longer running times.

Deciding on the scoring function to use can be problematic. Bayesian scoring func¬
tions such as BDeu produce the best score from the probabilistic sense of anticipating
the next datum, but require the specification of priors. On the other hand, large sample
approximations such as BIC do not require a prior, but can be slightly inaccurate at small
sample sizes. Measures such as the Cheesman-Stutz approximation can help in these
situations (Cheeseman and Stutz, 1996), and Shaughnessy and Livingston (2005) provide
a comparison of different functions.
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There are also tradeoffs on deciding on the search space to use. It can be easier and
faster to move through the states in the space of DAGs, but there can be plateau effects
on the score function, which can make it hard to get to all possible states. Searching
through, e.g. the space of equivalence classes of DAGs can avoid this problem, but at the
expense of a more complicated implementation and possibly slower running times.

2.6.3 Conditional Independencies

As stated at the start of this section, using conditional independency testing as the basis
for structure search is often used when trying to detect causal relations between variables.
However, there are problems with small sample sizes, missing data and the fact that
a single level of significance must be chosen for the statistical testing of conditional
independence. A more interesting use of CI testing may be in mixing it with score and
search techniques to produce a hybrid solution to learning structures as mentioned
in Section 2.4.8. Here, the testing can be used to massively cut down the search space

needing to be searched. This can be very useful when faced with a large number of
variables.

2.6.4 Dynamic Programming

A recent addition to the Bayesian network structure-learning toolbox, dynamic pro¬

gramming has enabled feasible exact learning for moderate numbers of variables (up
to about 30). With smaller numbers of variables this can be predicted to become the
method of choice in applications and a means to generate a standard structure to enable
comparisons ofnew techniques. There also exist techniques to scale above 30 variables, by
learning parts of the network in clusters - however in this case, the exactness guarantees
do not exist.

Perhaps the main problem with these methods is that they require an exponential
amount of space for the memoisation part of the dynamic programming algorithm.

2.6.5 Summary

In this chapter, a broad overview of the literature on learning Bayesian network structures
has been given. As a lead up to this, the foundations of Bayesian network theory, along
with brief summaries of Bayesian network inference and learning Bayesian network
parameters were presented. Also, a look at some applications of Bayesian networks and a
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high level comparison of the different methods of learning Bayesian network structures
were given.

From the preceding review of the literature on learning Bayesian network structures,
some common themes emerge. One of the most pervasive of these themes is the difficulty
of learning good structures. Because the problem is NP-hard, heuristic methods generally
need to be used, with local methods such as greedy search having the problem of local
maxima. In recognition ofthis, the main body ofwork of this thesis is focused on avoiding
the local optima problem, by using a stochastic method known as ant colony optimisation
(ACO). The hope is that in being able to bypass local maxima, better structures can

be found that more accurately model the problem domain being examined. Before
examining the application of ACO to the problem, a brief look at the background of
ACO will be given, in order that a greater appreciation of this technique can be had.



Chapter 3

A Review of the Literature on

Ant Colony Optimisation

Since the main topic of this thesis is on learning Bayesian nework structures usingan ant colony optimisation (ACO) algorithm, this chapter will present a brief
introduction to the field of ACO. The emphasis of this introduction will be on machine
learning applications, in order that a fuller understanding can be had of the motivations
and underlying ideas of this relatively new area. This, coupled with Chapter 2, will fully
explain the background to the ACO-E algorithm described in Section 4.3, the main
contribution of this thesis. To this end, this chapter will be structured as follows.

Firstly, the main motivations ofACO are given, with reference to the study of real-life
ants and continuing on to the abstraction to artificial ants. Next, the standard framework
for specifying an ACO algorithm is shown, illustrated by a standard example of an ACO
algorithm implemented in this framework. Finally, previous work in the area of ACO
applied to machine learning tasks is showcased. One of these applications concerns

applying ACO to the learning of Bayesian networks. As this application informs the new
work in the following chapters, it is looked at in depth.

3.1 Ant Colony Optimisation

Ant colony optimisation is a global optimisation technique generally used in the area

of combinatorial problems, i.e. problems where the set of solutions is discrete. Since
the inception of its present form by Dorigo (1992), ACO has been successfully applied
to many combinatorially hard problems including the sequential ordering problem

67
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(Gambardella and Dorgio, 2000), the vehicle routing problem (Bullnheimer et al., 1999),
the bin-packing problem (Levine and Ducatelle, 2004) and many more (Maniezzo and
Colorni, 1999; Gambardella and Dorgio, 2000; Stiitzle, 1998; Costa and Hertz, 1997).
Such a diverse range of applications must ask the question as to what is the nature of the
system that can solve them.

The particular form of ACO is of a metaheuristic in the field of swarm intelligence
(Bonabeau et al., 1999), that is based on the behaviour of real-life ants as they forage for
food. A metaheuristic is a general purpose heuristic that guides other, more problem
specific heuristics. Whilst a fuller exposition of metaheuristics will be showcased in
Section 3.2, a description of swarm intelligence and the beginnings ofACO as a technique
will be given here.

3.1.1 Swarm Intelligence

Swarm intelligence may be defined as:

'algorithms or distributed problem-solving devices inspired by the collec¬
tive behaviour ofsocial insect colonies and other animal societies' (Bonabeau
et al., 1999, p. 7)

This statement carries a range of connotations as to how swarm intelligence might be
realised. Indeed, there exist methods based on the behaviour of swarms (Kennedy and
Eberhart, 1995), foraging behaviour of honey bees (Pham et al., 2006) and the method
that will be discussed here, on the foraging behaviour of ants (Dorigo and Stiitzle, 2004).
Because of the broadness of the metaphor, swarm intelligence systems cannot be easily
characterised by simple properties. However, some common themes emerge that are

shared by multiple realisations of the framework.
One of these themes is self organisation. Self organisation is the organisation of a

group of agents of some sort, without a central controller, i.e. without some agent that
directly controls what other agents do. The organisation is in some sense an effect of
the agent to agent interactions in the group. This can be seen in the case of particle
swarm optimisation (PSO) (Kennedy and Eberhart, 1995), where a flock of agents keeps
a coherent structure using rules that are defined in an agent to agent manner.

Another of the themes in swarm intelligence is stigmergy. Stigmergy is the indirect
communication of agents through the environment and is used in the self organisation
of those agents. This effect can be seen in colonies of ants, as they lay down pheromone
trails that are followed by other ants, and is the topic of the next section.
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3.1.2 Ant Colony Optimisation

Ant colony optimisation is a swarm intelligence technique that is based on the foraging
behaviour of real-life ants. In particular, it uses the principle of stigmergy as a communi¬
cation mechanism. Real-life ants leave a chemical trail behind them as they explore their
environment. The substance laid down on this trail is known as pheromone. In moving
around, ants are more likely to follow a path with more pheromone, than a path with
less (or no) pheromone. This behaviour was investigated by Deneubourg et al. (1990),
who designed an experiment with a nest of Argentine ants, a food source and two trails
between them that could be set to different lengths. Ants would leave the nest, find the
food source and return back with food. When the trails were of the same length, it was

found that the ants would eventually settle on a single trail for travel to and from the
nest. This behaviour can be explained as follows.

When the experiment begins, ants initially choose one of the trails at random. Whilst
traversing this trail, they deposit pheromone. This causes following ants to choose the
trail the initial ants took more often, and deposit more pheromone on that trail. Again,
this causes more following ants to choose the initially chosen trail, to a greater degree
than the first set offollowing ants. Put another way, each ant that chooses a certain trail
reinforces the probability that following ants will choose that trail. The trail that initially
gets chosen by more ants has more pheromone deposited per unit time and hence a

positive feedback or autocatalytic process is created, where eventually all ants converge

to a single trail.
When the trails start out at different lengths, it is found that ants converge on the

shorter trail more often than the longer. This can be explained by more ants being able to
traverse the shorter trail to the food source and return to the nest in the same amount of

time it would take to traverse the longer trail. With more ants traversing the trail, more

pheromone is deposited, and the ants eventually converge to that path.
It is the behaviour of the ants when faced with trails of different lengths that ACO

is modelled upon. Instead of real-life ants, artificial ants are conceived as a computing
unit. Instead of trails, these ants traverse a construction graph. The paths the ants take
on this graph are solutions to the problem being looked at - the idea is to reinforce
the pheromone on better solutions. However, the fundamental idea of laying down
pheromone is kept, with ants depositing it on arcs as they traverse from node to node.
Also, ants are programmed to follow arcs with stronger pheromone more often than arcs

with weaker pheromone.
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Artificial ants can be more useful than real-life ants in that they can be given a

memory. This can stop ants looping around and helps when laying pheromone on the
return journey. Also they can be programmed to use problem dependent heuristics that
can guide the search towards better solutions. All of these ideas and more are discussed
in the next part, Section 3.2 and an example of ACO in practice is given in Section 3.3.

3.2 The ACO Metaheuristic

Nowadays, ACO algorithms tend to be defined in terms of the ACO metaheuristic
(Dorigo and Di Caro, 1999). A metaheuristic is a general purpose heuristic that guides
other, more problem specific heuristics. Examples of metaheuristics include simulated
annealing (Kirkpatrick et al., 1983), tabu search (Glover, 1989,1990), evolutionary com¬

putation etc.
In the ACO metaheuristic, a problem is represented by a triple (<S,/, O), where S is

a set of candidate solutions, /: S x T is an objective or scoring function that measures a

solution's quality at a particular time t e T and O : T is a set of constraints at time t e T,
used in a solution's construction. The range of / and n is dependent on the particular
instance of the metaheuristic. In trying to map a combinatorial optimisation problem
onto this representation, the following framework is used.

• There should be a finite set of solution components C = {ci, C2,..., c^c}. These are

the building blocks of candidate solutions.

® The problem states are represented by sequences of solution components x =

(c,-, Cj,...), where c,-, Cj,... e C. The set of all possible sequences (states) is given as
A".

• S - the set of candidate solutions as mentioned above - is a subset of A, i.e. <S <= A.

In this sense, some but not all states are candidate solutions, but all candidate

solutions are states.

• There is a set of feasible states A, with A c A. A feasible state x e A is a state where

it is possible to add components from C to x to create a solution satisfying the
constraints Cl.

• Each candidate solution s eS has a cost g(s, t), where s, being a solution (and
hence a state) is a sequence of components, s = lci,Cj,...). Normally g(s,t) =
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/(s, t), Vs e 5, where S = S n X is the set of feasible candidate solutions. However,
this might not always be the case; if/ is very expensive to compute, g might be an

easier to compute function that is broadly similar to / and that can be used in the
generation of solutions.

• The set of optimal solutions S* should be non-empty, with S* <= S.

• Sometimes it may also be possible to associate a cost J(x, t) to a state xeX that is
not a candidate solution, that monotonically increases as components are added.

With this framework, solutions to the problem (S,f,Cl) can be generated by having
artificial ants perform a random walk on the complete graph G defined on the components
in C. This graph G is known as the construction graph. A random walk on a graph is a

series of moves from node to node of the graph, with each move being random to some

degree. If the walk is Markovian, then the next move is always completely random; if not
then then next move is influenced by the previous moves. Hence, using this terminology
ACO is non-Markovian. The walk that the ant makes is generally biased by two things -

a heuristic value rj (rjj if the heuristic is associated with the individual nodes of G, rjij if it
is associated with the edges of G) and a pheromone trail r (again, r,- if the pheromone is
associated with the individual nodes of G, r,y if the pheromone is associated with the edges
of G). The way the heuristic and pheromone are implemented are problem dependent,
but in general the heuristic rj is a measure of the 'goodness' of taking a particular move on

the construction graph as defined by some local measure. The pheromone r is a measure

of the 'goodness' of taking a particular move as defined by the aggregate behaviour of
ants selecting that move and the quality of solutions that these ants generate.

Finally, each artificial ant k has the following properties in order to fully specify how
the random walk will proceed:

Memory - Each ant k has a memory Mk that stores information about the path it has
so far followed.

Start State - Each ant k has a start state xk and a non-empty set of termination condi¬
tions ek.

Termination Criteria - When an ant is in a state x, it checks if one of the termination

criteria in ek is satisfied. If not, it moves to a node j e J\fk(x). Nk is a function
that returns the neighbourhood of a node x, i.e. all the nodes on the construction
graph G that can be reached from the current state, given the constraints O.
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Decision Rule - An ant chooses to move to the node j according to a probabilistic
decision rule, which is a function of the pheromone r and the heuristic rj. The
specification of these rules is problem dependent, but is usually a random choice
biased towards moves with a higher heuristic and pheromone.

Pheromone Update - The pheromone of a path can be modified by an ant as it is travers¬

ing it, or on the return journey, when it returns to the start. Again, this is problem
dependent, but a standard formulation is to increase the pheromone on good
solutions and decrease the pheromone on bad solutions, good and bad being given

by the specific formulation.

In terms of algorithmic actions, an ACO algorithm can normally be broken down into
three parts. These are:

ConstructAntsSolutions This part of the algorithm is concerned with sending ants
around the construction graph according to the rules given above.

UpdatePheromones This part is concerned with changing the values of the pheromones,
by both depositing and evaporating. Parts of this task might be performed during
an ants traversal of the graph, when an ant's traversal is finished or after an iteration
of all the ants' traversals.

DaemonActions This part of the algorithm performs tasks not directly related to the
ants. E.g. a local search procedure might be performed after each ant finishes its
traversal.

3.3 Example - The Travelling Salesman Problem

Given the above framework, multiple artificial ants are released to perform a random
walk. This procedure is repeated a number of times, with the pheromone gradually
increasing on the best parts of the solution. To illustrate the metaheuristic, a concrete

problem will now be presented with reference to the various parts of the framework
introduced above.

Perhaps because of its physical resemblance to ants walking around, the travelling
salesman problem (TSP) was one of the first to be studied using an algorithm called Ant
System (Dorigo et al., 1996). In this problem, a number of cities and costs of travelling
between cities are given, with the problem being to find the cheapest tour that visits all
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the cities exactly once and then returns to the start city. The TSP was used to introduce
most of the fundamental ideas used in ACO today and hence is often used in illustrating
new ACO techniques.

According to the framework given above the problem is given as (S,f,Q) where:

• S is the set of all possible Hamiltonian circuits of the construction graph;

• / is the cost of a solution s eS, i.e. the sum of all trip distances on the tour; and

• fl is the constraint that ants only construct paths that contain each city once.

With the problem defined, the solution components can be given as follows:

• C is the set of all cities, which gives the construction graph G = (C,L) where L
are the weighted arcs on the complete graph, the weights being the cost of going
between each pair of cities;

• X, the set of all states, is given by all sequences of the components C;

• X, the set of all feasible states, is given as all sequences of length less than or equal
to n +1 where n is the number of cities and no value in the sequence is repeated,
except that x\ = x„+i;

• S* is the set of Hamiltonian cycles that have the smallest cost;

• g(s,t) = f(s,t)i and

• /(x, t) = 1 dXiX^j+l., i.e. the sum of the distances between adjacent cities in the
sequence.

Each of the ants that construct a solution is very simple, with ant k having:

• a memory Mk that is simply a state x e X;

• a start state xk = ();

• a termination condition ek which is true if \x\ = n +1; and

• a neighbourhood J\fk(x) which is C \ {x}, except when |x| = n where it is {xi}.



74 Chapter 3. A Review of the Literature on Ant Colony Optimisation

Each ant also has a probabilistic decision rule,

MW (31)" Z^druriln]"
This says that the probability of taking a particular path is proportional to the

pheromone on that path and heuristic desirability of that path. If ant k is at node i,
then pk. is the probability that it will traverse the arc connecting i to j. Here, r,y and rpj
are the pheromone and heuristic associated with the arc between i and j and a and /3
are user defined parameters that specify the relative importance of the pheromone and
heuristic in selecting a path to follow. The heuristic r]ij is defined as rjij = 1/where dij
is a distance measure between two nodes i and j. The numerator in Equation 3.1 gives
the weight of a particular path, whilst the denominator is the sum of the weightings of
all the paths and ensures that pkj can be interpreted as a probability.

After all the ants have constructed their tour, pheromone is then evaporated from all
the arcs on the construction graph G,

Tij (1-p) Tjj, V (i,j) € L,

with p € [0, l] being the proportion of pheromone that is evaporated. Finally, all ants

deposit pheromone on the path they traversed as below
m

T<7^T0'+ZAT?i> V (/,;) eL,
k=\

^11 anu la rk
of pheromone ant k deposits on the arc (i,j) and is given by

where m is the number of ants traversing the construction graph and Ar^ is the amount

Arfc.=
*J

[l/Ck, if arc (i,j) belongs to Tk
0, otherwise

where Ck is the cost or length of the tour Tk made by ant k. The above system ofconstruct¬

ing tours is repeated a certain number of iterations, with this number being constant, or

until no progress has been made in the last h iterations.
Advances in ACO generally use the framework described above. One of the newer

systems which has improved on Ant System is the MAX—MZN Ant System (MMAS)
(Stiitzle and Hoos, 2000). In this system, only one ant deposits pheromone, either the
iteration-best ant or the best-so-far ant. The iteration-best ant is the ant that constructed

the best solution in the current iteration; the best-so-far ant is the ant that has currently
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constructed the best solution up to this point in the algorithm run. Secondly there are

limits on the values the pheromone can take in order to guard against stagnation. This is
the problem that occurs when pheromone levels on certain trails are very high in relation
to others and effectively stop other solutions being generated. Thirdly, the pheromone
trails are initialised at a high value and reinitialised after no improved tour has been
generated for a number of iterations. Another extension to Ant System is the Ant Colony
System (ACS) (Dorigo and Gambardella, 1997). Here, the search is more biased towards
the best-so-far path, with a pseudo-random proportional decision rule that takes the
best solution component most of the time and the normal random proportional decision
rule the rest of the time. Also, like MM.AS only the best-so-far ant deposits pheromone.
ACS is based on a system known as ANT-Q designed by Gambardella and Dorigo (1995),
that is itself inspired by the reinforcement learning technique of Q-learning (Sutton
and Barto, 1998). The ACS is particularly interesting in this context, as it is the system
on which the new work described in later sections has been modelled. This is because

this work is inspired by a previous approach to learning Bayesian networks using ACO
(described in Section 3.5) which used ACS as its form of ACO.

3.4 ACO in Machine Learning Problems

Although the main area that ACO tends to be used in is combinatorial optimisation
problems, it has also been used with success in the area of problems that might tradition¬
ally be called machine learning. One feature that machine learning problems sometimes
have is that solutions are generated iteratively, i.e. there is a move from state to state in
a solution space. This carries over to ACO, with the effect that each solution state is a

candidate solution. In this situation there needs to be some stopping criterion, but this is
normally handled by there being no improvement according to the objective function.

In general, from a machine learning perspective, optimisation is often seen as a

sub-field, with the broad theme of machine learning being the ability to model a system
with good generalisation capability; optimisation is often used to generate good models
to a problem that has been constructed (Bennett and Parrado-Hernandez, 2006).

Neural Networks Application ofACO to machine learning type problems is relatively
new in the field, but in the last few years a diverse range has appeared. One example of
this is in learning the weights of a feed-forward neural network. The standard technique
for this is the back-propagation algorithm, but this has problems with local minima. ACO,
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being a global learning technique, has been applied to this problem by Blum and Socha
(2005). Because the weights of the links between neurons are real numbers, it might
seem hard to fit this into the learning scheme of ACO which deals with combinatorial
optimisation. However, they describe a method where instead of an ant choosing a

neighbouring node in a construction graph parameterised by a pheromone matrix, the
ant chooses a real number depending on a Gaussian kernel probability density. This
density is constructed from a population of the solutions kept by the algorithm.

Another work in the learning of feed-forward neural network weights is by Liu et al.
(2006). They take a more conventional view of the problem, by discretising the possible
weights and using these as values of the variables in an ACS type system. A given solution
can then be used as a starting point for a standard back-propagation algorithm.

Feature Selection With data sets containing many attributes, there is often a need
to reduce the amount of attributes, both because of the problem of noisy redundant
attributes making algorithms perform poorly and to speed up processing of further
algorithms. A standard approach to this problem is principal component analysis (PCA),
that returns a modified subspace of the original space. This idea is expanded upon by Yan
and Yuan (2004) who use feature selection in the task of face recognition. They firstly
perform PCA on the data, extract the 100 features with the highest eigenvalues and then
use an ACO algorithm to select the best subset of features.

Clustering Another standard machine learning task is clustering, i.e. assigning a label
to each datum in a data set, such that data with the same label are close together'. A
standard approach to this task is the k-means algorithm; this however often produces
a local optimum. Runkler (2005) demonstrates an approach to the hard c-means and
fuzzy c-means tasks that uses ACO.

Regression Whilst clustering is considered an unsupervised learning task, there also
exist examples of ACO being used in supervised learning tasks. An example of this is
the work of Hong et al. (2007) who demonstrate a system that uses ACO to learn the
parameters of a support vector regression (SVR) model; i.e. the use of support vector
machines to solve non-linear regression problems.

Classification A much earlier body of work on the subject is that by Parpinelli, Lopes
and Freitas (2001, 2002a,b,c). In this, the authors describe an algorithm known as
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AntMiner that uses ACO to build a classifier system consisting of an ordered set of
if-then rules. In this case, the construction graph is complete over all possible terms

(attribute instantiations), with the pheromone associated with the nodes, rather than
the edges. Rules are constructed by adding terms to a current rule, dependent on the
pheromone and heuristic and then pruning rules before the class term predicted by
the rule is set. The best rule in each iteration is added to the rule set, until the number

of uncovered cases in the training data falls below a given parameter. Although the
algorithm is conceptually quite simple, it performs well compared to CN2 (Clark and
Niblett, 1989) and C4.5 (Quinlan, 1993), especially in the length of rules it produces.

The results of Parpinelli, Lopes and Freitas have been built upon by other authors
to produce varying types of systems. Chan and Freitas (2006b) describe a system that
produces rules that contain multiple class attributes. The work of Smaldon and Freitas
(2006) is focused on building unordered rule sets, as opposed to the ordered rule sets of
the original work. Chan and Freitas (2006a) discuss a new pruning procedure for the
AntMiner system that produces shorter but slightly less accurate rule sets. Holden and
Freitas (2004) show an application of AntMiner to web-content mining.

Continuous Features Although attempts have been made to extend ACO to non-

combinatorial optimisation problems (i.e. optimisation problems that are parameterised
by continuous values and where the solution space is continuous) (Blum and Socha,
2005; Hong et al., 2007), work in this area is quite new. This can be a problem when
dealing with real-valued attributes, especially in a system such as AntMiner. Although
discretisation can be used, the discretisation method and parameters can cause results
to widely vary, and it can be hard to know which results to trust. Another solution to
the problem is to mix methods in an algorithm and have one to deal with continuous
attributes and one to deal with categorical. This is the approach followed by Holden and
Freitas (2005, 2006, 2007), who create a hybrid PSO/ACO algorithm in a manner similar
to AntMiner.

3.5 ACO in Learning Bayesian Network Structures

Whilst ACO has been applied to many problems in the area ofcombinatorial optimisation,
to date there has not been much research on using the technique to learn Bayesian net¬
work structures. Two alternate methods have been defined by de Campos et al. (2002a,b).
The first conducts a search in the space of orderings of DAGs, whilst the second searches
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in the space of DAGs. Both of these spaces have been discussed in Sections 2.4.4 and
2.4.9. Since a main topic in this thesis is on this problem, a description of both of these
will be given here, in order to examine the early work done on the subject and see how it
can inform future studies.

3.5.1 ACO-K2SN

In the first technique, known as ACO-K2SN, searching over the space of orderings of
DAGs, the various problem components, as taken from Section 3.2, can be defined as

follows:

Construction Graph There is one node for each attribute in the data, with an extra

dummy node from which the search starts.

Constraints The only constraints are that the tour is a Hamiltonian path, i.e. a path that
visits each node exactly once.

Pheromone Trails The pheromone is associated with each arc on the graph. Each arc in
the graph is intialised to a initial small value.

Heuristic Information The heuristic on each arc is set to the inverse of the K2 score

that is explained below.

Solution Construction The ants work on a system very similar to the ACS system.

Beginning at the dummy node, the ants construct a complete path that defines an

ordering of the nodes.

Pheromone Update This works exactly as in ACS, with local pheromone updates and
global update on the best so far solution.

Local Search A version of local search on orderings known as HCSN (de Campos and
Puerta, 2001a). This is used on the last iteration of the run.

Given the above components, the search for an ordering proceeds as follows. Starting
at the dummy node an ant decides which node to go to next. This will be the first node
in the ordering. To choose a node, heuristic information and pheromone is used. The
heuristic for the arc from i to j is given by

^ |f(xjtPa(xj))\'
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where / is the K2 scoring metric as explained in Section 4.1 and Pa (xj), the parents of
Xj are found by the K2 algorithm, with possible parents being the nodes already visited.
The initial pheromone value To is given by

1

nl/(^2SN)|

where Sk2SN is the structure given by the K2SN algorithm of de Campos and Puerta
(2001b). The update value for the pheromone is given by

At---!-
,;-|/(s+)l'

where S+ is the best-so-far structure.

3.5.2 ACO-B

The second algorithm given by de Campos et al. is the ACO-B algorithm. The components
for this algorithm are:

Construction Graph There is one node for each possible directed arc between each pair
of attributes (excluding self directed arcs). There is also a dummy node that the
ants start from.

Constraints The only constraints are that the DAG must be acyclic at each step.

Pheromone Trails The pheromone is associated with each node on the graph. The
pheromone at node (i,j) corresponds to the directed arc j -> i.

Heuristic Information The heuristic on each node (i,j) is the gain in score that would
occur in adding an arc j -> i.

Solution Construction The ants work on a system very similar to the ACS system.

Beginning at the dummy node, the ants construct a path that defines which arcs

are added to the DAG. This process ends when there is no gain in score.

Pheromone Update This works exactly as ACS, with local pheromone updates and
global update on the best so far solution.

Local Search A standard greedy search with arc addition, deletion and reversal is carried
out on the current candidate DAG. This is done every 10 iterations.
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As opposed to the ACO-K2SN algorithm given in Section 3.5.1, the search is over the
space of DAGs, not orderings of nodes. Otherwise, there are some similarities in the
definitions of parts of the algorithm. The heuristic is given by

rpj = f (xi, Pa (xt) u {Xj}) - f , Pa (xj)),

that is, the change in score by adding an arc from j to i in the candidate DAG. The initial
pheromone is given by

1

n\f(^K2SN)\
i.e. it is the same as the heuristic in ACO-K2SN. Also, the pheromone update value is
the same as in ACO-K2SN i.e.

Ar"' UW)\

3.5.3 Performance Comparison

In the results given in both (de Campos et al., 2002b) and (de Campos et al., 2002a),
the ACO-B algorithm performs slightly better in terms of accuracy than ACO-K2SN
across the ALARM (Beinlich et al., 1989) and INSURANCE (van der Putten and van

Someren, 2004) gold-standard networks. It also contains an order of magnitude fewer
statistical tests and so should always be faster. There are more comparisons of ACO-B
against other algorithms in (de Campos et al., 2002a). Here, it is compared against ILS, an

iterative local search algorithm with random perturbations of a local maximum and two
estimation ofdistribution (EDA) genetic algorithms, the univariate marginal distribution
algorithm (UMDA) by Muhlenbein (1997) and the population-based incremental learn¬
ing algorithm (PBIL) by Baluja (1994). Compared across the ALARM, INSURANCE and
BOBLO (Rasmussen, 1995) networks, ACO-B performed better than the other methods.

3.6 Summary

This chapter discussed the main features of the ant colony optimisation (ACO) meta-
heuristic in order to give a background into this technique, that will be used as a basis of
the main work in this thesis.

To begin with, on overview was given of ACO and how it relates to the more general
framework of swarm intelligence. The behaviour of ants foraging for food was given as

the inspiration for the technique. The jump from real to imaginary ants was then made.
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A modern method of defining ACO as a metaheuristic was then introduced, along with a

particular instantiation of this metaheuristic involving the travelling salesman problem.
The chapter then focused on ACO being applied to machine learning type problems.

In particular the application of ACO to learning the structure of Bayesian networks was

looked at, as this is one of the main topics of this thesis. Two methods were considered,
which conducted searches in the space of DAGs and orderings of DAGs.

As will be discussed in Section 4.1.2, there are disadvantages to conducting searches
in the space of DAGs. To this end, the next chapters will discuss a new technique that
can search in the space of equivalence classes of DAGs. This technique is inspired by the
approaches looked at in this chapter to learning Bayesian network structures by ACO.
The method will be tested and it will be shown that the performance is better than the
approaches in this chapter and indeed, many other state-of-the-art approaches in the
literature.



 



Chapter 4

Using ACO in the Learning of
Bayesian Network Equivalence

Classes

In this chapter and the next two chapters, the main body of work on learningBayesian networks using ant colony optimisation will be presented. This chapter
will deal with the theory behind the work. Chapter 5 will introduce the experiments
conducted using this theory, the methodology of these experiments and the results
obtained. Chapter 6 will give a discussion and interpretation of the results.

The work described in these chapters is divided into two strands. The first strand
deals with methods to speed up the learning of Bayesian network structures by a search
through the space of equivalence classes. These methods were originally devised to speed
up the running of experiments of the ACO algorithm described in this chapter (ACO-E).
However, they stand by themselves as a generic technique and for this reason will be
described separately. As these methods are used as a subroutine, they will be discussed
first.

The second strand uses ACO in learning Bayesian network structures by searching
through the space ofequivalence classes. This work is based on that ofChickering (2002a)
in describing the space of equivalence classes of Bayesian network structures that can

be efficiently used to perform a search procedure in order to learn a Bayesian network
structure. It is also related to the ACO-B algorithm of de Campos et al. (2002a), that
uses ACO in the space of DAGs to learn a Bayesian network structure. Bringing these
two techniques together allows a global search that performs better in terms of network
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reconstruction than many other state-of-the-art algorithms.
This chapter will begin with a more in-depth look at the background on learning

Bayesian network structures than was given in earlier chapters. This will focus on learning
in the space of equivalence classes. The concepts introduced will later be used when
discussing the two strands of work mentioned above. After introducing the background,
the theory on accelerating the learning process will be given. Finally the theory on using
ACO in learning Bayesian network structures will be presented.

4.1 Score and Search Based Methods of Learning

Bayesian Network Structures

In learning a Bayesian network from data, both the structure Q and parameters © must
be learned. These must normally be done separately. In the case of complete multinomial
data, the problem of learning the parameters is easy, with a simple closed form formula for
0 (Heckerman, 1995b). However, in the case of learning the structure, no such formula
exists and other methods are needed. In fact, learning the structure is an NP-Hard
problem and consequently enumeration and test of all network structures is not likely
to succeed (Chickering, 1996a). With just ten variables there are roughly 1018 possible
DAGs. Whilst there exist dynamic programming methods that can handle roughly 30

variables as discussed in Section 2.4.10, in general, non-exact methods are possibly the
only tractable solution to anything above this.

In order to create a space in which to search through, three components are needed:

• Firstly all the possible solutions must be identified as the set of states in the space.

• Secondly a representation mechanism for each state is needed.

• Finally a set of operators must be given, in order to move from state to state in the
space.

Once the search space has been defined, two other pieces are needed to complete the
search algorithm:

• A scoring function which evaluates the 'goodness of fit' of a structure with a set of
data.

• A search procedure that decides which operator to apply, normally using the
scoring function to see how good a particular operator application might be.
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An example of a search procedure is greedy search, that at every stage applies the operator
that produces the best change in the structure, according to the scoring function. As for
the scoring function, various formulae have been found to see how well a DAG fits a data
sample.

One of these functions is given by computing the posterior probability of a structure

Q given a sample of data D, i.e.

S(g,P)=P(g|P)=P(0^(g). (4.1)
Here the value P(D) is a constant across all network structures and so can be ignored.
This gives S(Q,D) = P(G,D) = P(D|f?)P(C/), i.e. the relative posterior probability.

The likelihood term above can take many forms. One popular method is called the
Bayesian Dirichlet (BD) metric. Here,

n n T(N'..) n T(N'.,+Nijk)

'"'-nnr^n-iisr-
In this formula, there are n variables in the graph, so the first product is over each variable.
There are q,- configurations of the parents of node i, so the second product is over all
possible parent configurations, i.e. the cross product of the number of possible values
each parent variable can take on. Each variable i can take on one of r,- possible values.
The value Njjk is the number of times that variable i = k and the parents of i are in
configuration j in the data sample D. Njj is given as £^=1A/^, i.e. the sum of Njjk over
all possible values that i can take on. With NT = NTfc, the values N'..k are given as
parameters that give different variants of the BD metric. E.g. if N'..k is set to 1 the K2
metric results, as given by Cooper and Herskovits (1992). With N'..k set to N'/(d • q;)
(where N', known as the equivalent sample size, is a measure of the confidence in the
prior value P(Q) (Heckerman et al., 1995)), the BDeu metric results which was proposed
by Buntine (1991) and further generalised by Heckerman et al. (1995).

The prior value P(£) is a measure ofhow probable a particular structure is before any

data is seen. These values can often be hard to estimate because of the massive numbers

of graphs, each of them needing a probability. Therefore, the values are often given as

uniform over all possible network structures, possibly favouring structures with fewer
arcs.

Other forms used for the scoring function are S(Q,D) = logP(D|(?,0) - flog N,
known as the Bayesian information criterion (BIC) (Schwarz, 1978) and S(Q,D) =

logP(D|£/,0) -d, known as the Akaike Information Criterion (AIC) (Akaike, 1974)-
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Operator Before After

Insert_Arc(X,Y) © © ©^©
Delete_Arc(X,Y) ©—"© © ©
Reverse_Arc(X,Y)

Table 4.1: Basic modification operators

In these models, the parameters 0 give the maximum likelihood estimate of the likeli¬
hood, d is the number of free parameters in the structure and N is the number of samples
in the data D.

Traditionally, in searching for a Bayesian network structure, the set of states is the
set of possible Bayesian network structures, the representation is a DAG and the set of
operators are various small local changes to a DAG, e.g. adding, removing or reversing an

arc, as illustrated in Table 4.1. This type of search is possible because of the decomposition
properties of score functions,

S(g,D) = fls(vf,Paa(v,),D),
i=l

where s is a scoring function that takes a node v,- and the parents of this node in graph
Q, VdP (v, ). Popular scoring functions such as the BD metric are decomposable in this
manner. If

S(£,D) = P(D|0)P(0),

and since the logarithm is a monotonically increasing function, the scoring function S
can be redefined to

S(Q,D) = log(P(D|S)P(£))
= logP(D|£) + logP(£).

Now by the likelihood given in equation 4.2,

H T(N'..) n T(N'.,+Niik)
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Therefore, for the BD metric,

ft nT(N'ljk + Nijk)
s (vf, Pas (v,), d)=logn r(N,_+'Nij) • n r(Nj^)

The log function is often distributed into the right hand term of this equation in
order to avoid the instability of the gamma function at high values, giving

s(v,,Pae(i',),D) = £logr(N[j)-logr(N!j+N,i) + £logr(N{Ji+N,ji)-logr(NlJk)
j=1 k=l

Successful application of the operators is also dependent on the changed graph being a

DAG, i.e. that no cycle is formed in applying the operator.

4.1.1 Techniques for Searching Through Equivalence Classes

Note that below, a move is referred to as an application of an operator to a particular
state in the search space.

To be able to conduct a search through the space of equivalence classes (as defined in
Section 2.1.3), a method must be able to find out whether a particular move is valid and
if valid, how good that move is. These tasks are relatively easy whilst searching through
the space of DAGs - a check whether a move is valid is equivalent to a check whether
a move keeps a DAG acyclic. The goodness of such a move is found out by using the
scoring function, but rather than scoring each neighbouring DAG in the search space,

the decomposability of most scoring criteria can be taken advantage of, with the result
that only nodes whose parent sets have changed need to be scored.

However, this task of checking move validity and move score is not as easy in the
space of equivalence classes. These classes are often represented by PDAGs, as discussed
in Section 2.1.3. For one, instead ofjust checking for cycles, checks also have to be made so

that unintended v-structures are not created in a consistent extension of a PDAG. Scoring
a move also creates difficulties, as it is hard to know what extension and hence what

changes in parent sets of nodes will occur, without actually performing this extension.
Also, a local change in a PDAG might make a non-local change in a corresponding
consistent extension and so force unnecessary applications of the score function.

These problems were voiced as concerns by Chickering (1996b). In that paper, validity
checking ofmoves is performed by trying to obtain a consistent extension of the resulting
PDAG - if none exists then the move is not valid. Scoring the move was achieved by
scoring the changed nodes in the consistent extension given. These methods were very
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generic, but resulted in a significant slowdown in algorithm execution, compared to
search in the space of DAGs.

To alleviate this problem, authors proposed improvements that would allow move va¬

lidity and move score to be computed without needing to obtain a consistent extension of
the PDAG (Munteanu and Bendou, 2001; Chickering, 2002a). This was done by defining
an explicit set of operators, with each operator having a validity test and corresponding
score change function, that could be calculated on the PDAG. These changes led to a

speed up of the execution time of the algorithm, with the result that search in the space

of equivalence classes ofBayesian networks became competitive with search in the space

ofBayesian networks. An example of one set of these operators is given in Table 4.2. In
this table, the variables x and y refer to nodes in a graph. As an example, the InsertU
operator takes two nodes as arguments, x and y. It can be seen that all the operators take
two arguments, except MakeV, which takes three arguments. Each operator also has a

set of validity tests that must be passed in order for the application of the operator with
its particular arguments to be valid. Finally, the score difference between the old and
new PDAGs is given in the last column. In this table:

Tlx is the parent set of node x, i.e. the set of nodes that have directed arcs going to node

Nx is the neighbour set of node x, i.e. the set of nodes that have undirected arcs going
to node x;

Nx,y is the set of shared neighbours of nodes x and y, i.e. Nx n Ny; and

Ox,y is the set of parents of x that are neighbours of y, i.e. If* n Ny.

Also, as a convenience,

M+x is notation for Mu {x}; and

M~~x is notation for M \ {x}.

This notation and the set of operators in Table 4.2 come from those proposed by Chick¬
ering (2002a). Other definitions include:

• An undirected path is a path from one node to another that only follows undirected
edges;



4.2. Accelerating the Learning Process 89

• A semi-directed path is a path from one node to another that only follows undi¬
rected edges or directed edges from tail to head; and

• A set of nodes N is a clique, if it is a completely connected subgraph of a graph,
(i.e. every node is connected to every other).

4.1.2 Advantages of Searching in E-space

With this representation of equivalence classes of Bayesian network structures and a set
of operators that modify the CPDAGs which represent them (e.g. insert an undirected
arc, insert a directed arc etc.), a search procedure can proceed. However, what reasons

are there for pursuing this type of search? Chickering (2002a) gives a list of reasons, some

of which are discussed here.

For one, an equivalence class can represent many different DAGs in a single structure.
With a DAG representation, time can be wasted rescoring DAGs that are in the same

equivalence class. And with a search in the space of DAGs, the connectivity of the search
space can mean that the ability to move to a particular neighbouring equivalence class
can be constrained by the particular representation given by a DAG. There is also the
problem given by the prior probability used in the scoring function. Whilst searching
through the space of DAGs, certain equivalence classes can be over represented by this
prior, because there are many more DAGs contained in the class. An example can be
given in the case of networks with two nodes. In B-space there are 3 possible structures,
which with equal priors give P (Q) = 1/3, for each DAG Q. However, the two DAGs that
are connected represent the same equivalence class, giving it an effective prior of 2/3. In
E-space there are 2 possible structures, which with equal priors give P (V) = l/2, for each
PDAG V.

These concerns have motivated researchers. In particular, recent implementations of
algorithms that search through the space of equivalence classes have produced results
that show a marked improvement in execution time and a small improvement in learning
accuracy, depending on the type of data set (Chickering, 2002a,b). These ideas will be
used in the work to be discussed later in this chapter.

4.2 Accelerating the Learning Process

Whilst the execution time of searching for equivalence classes of Bayesian networks has
decreased, it still remains quite high for problem instances with many variables. This is
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especially so if the search algorithm needs multiple traversals through the search space.

Therefore, a method of speeding up performance is to cache the values of the score

function - this normally gives a large cut in execution time. Since this technique is so

easily implemented, it is standard fare for score-and-search algorithms.
With this caching enabled, multiple identical runs over a typical greedy search using

the operators given by Chickering (in Table 4.2) were analysed. From this analysis, it was

found that much of the time was spent computing two main quantities: score values and
validity tests.

In the first run, the dominant factor was the time needed to compute the values
given by the score function. This was typically in the order of 90% of the running time.
However, in the succeeding runs, it was found that most of the execution time was used
in calculating the validity tests for the various operators. The situation had become
inverted so that this checking was taking roughly 90% of the time. This occurred because
values given by the score function had been cached. In particular, checking the validity
conditions for the operators InsertU, InsertD and MakeV was taking the most time.

Upon further analysis, it was seen that checking the 'path' condition in each of these
operators was the main culprit. Each of these path conditions involves a depth or breadth-
first search of the graph. Normally, this is a fairly quick operation, but the test needed
to be repeated for each pair of nodes, meaning there were in the order of n2 searches
for each operator. In order to reduce this time taken, two new methods were examined.
These methods follow on from those introduced by Daly et al. (2006a) and Daly and
Shen (2007).

The first of these methods seeks to reduce the amount of checks performed. It does
this by reformulating the validity tests of the operators so they are based on nodes rather
than pairs of nodes. The second method is a system that stores and removes valid moves

from a cache in order to avoid repeating tests.

4.2.1 Reducing the Number of Checked Nodes

As shown in Table 4.2, five of the operators take two nodes as parameters and one takes
three nodes. In the naive case, where n = | V| (the number of nodes in the graph), this
would mean 0(n2) checks. If the validity test includes a path condition, this will take
time in 0(n + e), where e is the number of edges on the graph. This could mean time in
0(n3 + n2e) to check the operators.

However, looking at the validity tests more closely, it can be seen that not all combi-
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Operator Effect Validity Tests Change in Score

InsertU

x-y

Add an

undirected arc

between x and y

1. Every undirected path
from x to y contains a

node in Nx,y

2. UX = Yly

s{y,N% unr)
■s(y,Nx,yuU.y)

DeleteU

x-y

Delete an

undirected arc

between x and y

NXty is a clique
s(y>Nx,yuny)

~s{y>Nx*y Uhj,)

InsertD Add a directed

x -* y arc from x to y

l. Every semi-directed path
from y to x contains a

node in fLLx,y

2. ClXty is a clique
■ s (y, ClXly u fly)

3- n* ^ n>

DeleteD

x -*■ y

Delete a

directed arc

from x to y

Ny is a clique
s(y,NyuTlyX)

-s(y,NyuUy)

ReverseD

x -* y

Reverse a

directed arc

from x to y

1. Every semi-directed path
from x to y that does not
include the edge x ->■ y

contains a node in

ClytX U Ny

2. ClytX is a clique

s{y,n-x)
+s(x,nxyucty,x)
-s(y,IIy)
~ S (^X, Ylx U Clytx^

Direct

MakeV undirected arcs

x -»• z <- y from x and y to

z

Every undirected path
between x and y

contains a node in N-x,y

s(z,n+/uN;*y+x)
+ s(y,TlyUN-x*y)
-s(z,nzuN;j+x)
-s(y,UyuNx,y)

Table 4.2: Validity conditions and change in score for each operator
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Operator Validity Tests valid-nodes

InsertU

x

1. Every undirected
path from x to y

contains a node in

Nx,y

2. el = rr

1. V\XNU CHECK (X,Nnx^(NxU{X}))

{fl£sv,£*x,|n?| = o} if|nx| = o
check (x,Enx) otherwise

DeleteU

x
NXty is a clique check (x,Nx)

InsertD

x

1. Every
semi-directed path
from y to x

contains a node in

Etx,y

2. QXty is a clique

3- EI* ^ Ely

1. V \ Xun u check (x,Nnx x nx)

2. V \xjvnu check (x, Afnx n nx)

3-
{^e v,|nf|*o} if |n*| = o
check (x, V \ fl* u {x}) otherwise

DeleteD

x
Ny is a clique check(Hx)

ReverseD

x

l. Every
semi-directed path
from x to y that
does not include

the edge x-*■ y

contains a node in

dyix u Ny

1. check(x,Sx)

2. check(x,Sx)

2. QyjX is a clique

Every undirected
MakeV path between x

check(x,Nnx ^ (Nx u{x}))
x and y contains a

node in Nx„

Table 4.3: Validity conditions and set of valid nodes for a node x
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nations of nodes need be checked. In particular, given a node x, two subsets of the nodes
V can be found

• A subset for which a move is valid; and

• A subset that needs to be checked by the original conditions.

E.g. with the InsertU operator, it is obvious if a node y is not in the same connected
component as a node x then there can be no undirected path between the nodes and
hence the first validity test is fulfilled.

Table 4.3 shows for each operator, the original validity tests used, and the set of nodes
for which this test is valid. The first column of the table shows the various operators
as defined in Table 4.2, except that instead of pairs or triples, they each take a single
argument x. The second column shows the various validity tests for which an instance of
a move would be valid. The third column shows a function valid-nodes which returns

a set of nodes Y such that the corresponding validity tests in the second column are true
for all y e Y.

In this table, some extra notation is used:

check is a function that uses the original validity test, i.e. check(x, Y) for a set of
nodes Y, will perform the validity test for x and all y e Y and return those nodes
that fulfil the test.

Ex is used to refer to the children of a node x.

XW|3|n is used to refer to those nodes that can be reached from node x by following
neighbours (N), children (S) or parents (II). E.g. are those nodes reachable
by following the neighbours and children from node x.

Nfix means the union over the neighbours of the parents of x, i.e. U«nx Nn.

A justification of the nodes returned by valid-nodes will now be provided.

InsertU

Validity Test 1 Since V \ Xjy is the set of nodes not connected to node x via undi¬
rected arcs, it is obvious that there is no undirected path between them and
hence they pass the test. For the second set of nodes check (x,N^x s Nxx)
it should be noticed that the only nodes that could be valid are the neigh¬
bours of neighbours of x. This is because only these nodes could have shared
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neighbours with x, as required in the validity test. Nx u {x} are deleted from
this set as an edge cannot be inserted from x to x or to a neighbour of x.

Validity Test 2 If x has no parents, then this test returns all those nodes that also
have no parents, trivially being true. Where x has parents, only those nodes
that are children of x's parents could possibly be valid, i.e. they must have at
least x's parents as their own parents.

DeleteU Only those nodes that are neighbours of x have an arc that could possibly be
deleted.

InsertD

Validity Test 1 V \ X^n gives all those nodes for which there is no semi-directed
path to x. These nodes trivially satisfy the test. Similar to Validity Test 1 in
InsertU, with check (x,Nnx \ nx), the only nodes that could be satisfied
are those that are neighbours of the parents of x. This is because only these
nodes could make the set ClXty non-empty and hence possibly block the
semi-directed paths to x, as required in the validity test. nx are deleted from
this set, as they trivially fail the test.

Validity Test 2 V \ Xhti gives all those nodes for which there is no semi-directed
path to x. Because of this, these nodes cannot be neighbours of the parents
of x, otherwise there would be a semi-directed path to x. Therefore ClXty is
empty and so the test is trivially satisfied. Similar to the validity test directly
above, only the neighbours of the parents of x could possibly make the set

ClXiy non-empty and hence fail the test.

Validity Test 3 If x has no parents, then this test returns all those nodes that have
no parents, trivially being true. Where x has got parents, any node except for
x and the parents of x could possibly pass this test.

DeleteD Trivially, only those nodes that are children of x could possibly be valid.

ReverseD Trivially, only those nodes that are children of x could possibly be valid, so

these are checked for both validity tests.

MakeV As the validity test is exactly the same as Validity Test 1 of InsertU, the same idea
prevails. The only difference is that as a consequence of the operation, x and y are

necessarily connected, there is no need for the V \ XN term; if this was included,
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(a) lnsertU(x,y) and (b) ... and are still valid after
lnsertU(x,z) are valid before

Figure 4.1: Validity of moves not changing

there would be no node z such that it is a neighbour of x and y and a member of
V\XN.

From looking at Table 4.3, it can be seen that the number of validity checks for a given
node x is now bounded by a number less than n, where n is the number of nodes on

the graph. E.g. Nnx is the set of neighbours of neighbours of x. Therefore, in this case,

the number of checks is bounded by the number of nodes that are of distance 2 from
x. If the number of parents, children and neighbours that a node can have is given an

upper bound k (as is normally the case) then there are at most k2 checks. This means

the number of times an operator now needs to be checked is in 0(nk2) as opposed to

0(n2). This behaviour should lead to a speed up ofvalidity checking, especially for large
values of n.

4.2.2 Caching

Looking again at the behaviour of a search though the problem space, it can be seen that
most moves affect only a subset of the nodes V. As an example consider Figure 4.1. If
node x is not connected to node y or z then adding an undirected arc between y and z

will not affect the validity of adding an undirected arc from x to y or z. This behaviour
can be taken advantage of, by caching the values of validity tests for particular moves.

Such a caching system would contain, e.g.,

• InsertU(x,y), InsertU(x,z) and InsertU(y,z) before the move above was made;
and

. InsertU(x,y) and InsertU(x,z) after the move was made.

There are four different situations that such a caching systems would need to handle:
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• Valid move is still valid;

• Valid move is no longer valid;

• Invalid move is now valid; and

• Invalid move is still invalid.

There are many ways that these semantics could be handled, e.g. the cache could be
completely dumb and remove all moves and recompute the valid moves at each stage.
Or, it could be more selective, and possibly only remove some entries that are still valid.
Because making a move in one part of the graph can influence possible moves in a far
away part of the graph, care needs to be taken in handling the cache entries.

4.2.2.1 A Caching Algorithm

In order to put the ideas above into practice an algorithm needs to be specified that
works according to their principles. An algorithm that performs the necessary operations
on a caching system is given in Algorithm 4.1. This algorithm, update-cache, is fairly

Algorithm 4.1 update-cache

Input: PDAG *Pnew, Vold, Operators O, Cache Cache
Output: Cache Cache

C CHANGED-NODES7^°'^)
for each operator 0 e O do

for each changed node c e C do
Check ■*- Check ucheck-nodes (o,c,Volci)
Check <- CheckucHECK-NODEs(o,c,Vnew)

end for

for each node x e Check do

Cache <- Cache\CACHE-VALiD(o,x,Cache)
valid ■<—valid-nodes(0,'Pnew, x)
Cache <- Cacheu (o,x,valid)

end for

end for

return Cache

conservative in its nature, as it tends to delete quite a lot of valid entries that are still valid.
However, it is quite simple in its operation. An explanation of the algorithm is as follows.
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Operator check-nodes

InsertU XN

DeleteU Nxu{x}

InsertD XNE

DeleteD Nx u{x}

ReverseD Xnti

MakeV XN

Table 4.4: The nodes that must be checked for a change at node x

The algorithm receives as input:

• the PDAG that has been modified by the last move in the search space Vnew;

• the PDAG before this modification took place Vold\

• the set of operators being used O; and

• a set of cached validity tests Cache.

The algorithm returns the modified cache Cache at the end of the procedure. Firstly,
update-cache calls the changed-nodes function. This calculates the set of nodes C,

such that any edges incident to each c e C have changed from Vold to Vnew. This set
cannot be calculated from the previous move taken, as in performing a single operation,

cascading changes can occur from one PDAG to the next. Next, for each operator o

and each node c e C associated with a change, the other nodes that might have been
affected by that change are identified by the check-nodes procedure. The value for this
is calculated differently for each operator - Table 4.4 gives values for each of Chickerings
six operators. As an example of why this is the case, consider Figure 4.2. It is possible to
add an undirected path between x and w, until an arc is added between y and z, even

though both x and w are far away from the added arc in the graph. In Figure 4.2, y

and z would be elements of the set C returned from changed-nodes. Therefore from

Table 4.4, both x and w would be returned from check-nodes. As has been mentioned,
the algorithm is quite conservative in removing entries from the cache. The procedure
cache-valid removes all cache entries with each x € Check as the first argument for



98 Chapter 4. Using ACQ in the Learning ofBayesian Network Equivalence Classes

® © ®
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(a) An undirected arc can be
added between x and w

(b) ... until an arc is added
from y to z

Figure 4.2: Adding edges can affect nodes far away

each operator o e O. Next, the new set of valid moves are calculated as the set of nodes
that is valid given the operator o, PDAG Vnew and first argument node x. The calculation
of this set of valid moves is performed as specified in Table 4.3. Finally the new set of
valid nodes are entered into the cache.

The correctness of this algorithm is quite easily seen. The set of nodes Check that is
calculated, consists of all the nodes that could possibly be affected by a particular move.

Any move involving these nodes is removed from the cache, which ensures that no

invalid moves are kept in the cache. The set of valid moves is then calculated anew, with
the correctness of these moves being shown in Section 4.2.1. This ensures that all valid
moves are in the cache.

It is hard to quantify the effect of the caching operations on the complexity of operator

validity testing. In any event, it is likely to lower the amount of nodes checked from n.

Informally it was noticed that this caching procedure works best when the graph is not

fully connected, e.g. when the graph is empty, almost no new checks need be done. And
although the actual effect might be hard to characterise, the worst-case complexity is
somewhat easier to see.

The worst-case complexity depends on the operators O that are passed into the
algorithm. However, assuming the standard operators given in Table 4.3, the following
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analyses can be given.
In all cases, the changed-nodes function needs a search over both sets of edges

and therefore is in 0(E). The maximum number of nodes returned from the changed-

nodes function can assumed to be V. The check-nodes function is in O (V + E) and
can be assumed to return V in the worst case. If the cache is structured as a hash map,

the removing and adding the entries can be achieved in constant time. This leaves the
function valid-nodes. At the end of Section 4.2.1 it was seen that at most k2 checks were

needed for each node. Each of these checks is in O (V + E) in the worst case. Therefore,
the complexity for each node is in 0(k2V + k2E). Therefore, for all of the nodes in
the graph, the complexity is in 0(k2V2 + k2EV). For a fully connected graph, E is in
V2. Therefore, the total worst case complexity for the update-cache algorithm is in
0(k2V3).

4.2.2.2 Implementation Issues

Although a caching algorithm can speed up move validity testing, it comes at the price of
having to store this information in memory. For reasonable sized data sets, this might be
an acceptable price, but for larger sizes, this procedure might not be feasible. Consider
the InsertU operator from Table 4.2. With an empty graph, there are roughly "2/2 valid
moves, each of which would be entered into the cache. For 10,000 variables there would
be io,ooo2/2 = 50,000,000 moves. Assuming it is possible to store the operator and two

arguments in a 32 bit word, this is roughly 200MB for each operator, bearing in mind
that not all operators are valid at all times. Still, this gives an idea of how many entries
the cache could store; anything above the limit would have to be calculated as needed.

4.3 Using Ant Colony Optimisation in Learning an

Equivalence Class

To date, many state-based search algorithms that create a Bayesian network structure
have relied on simple techniques such as greedy-based searches. These can produce good
results, but have the ever prevalent problem of getting caught at local minima. More
sophisticated heuristics have been applied, such as iterated hill climbing and simulated
annealing (Chickering et al., 1995), but so far, none of these have been applied to E-space.
A related approach, by Acid and de Campos (2003) applied tabu search to a space of
restricted partially directed acyclic graphs (RPDAGs), a halfway house between the
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spaces given by DAGs and CPDAGs.
This section seeks to apply the ACO metaheuristic to E-space, the space ofequivalence

classes of DAGs. To this end, two novel extensions are made to the basic metaheuristic.

The first is to allow multiple types of moves. This is to allow more than one operator to be
used in traversing the state space. This is needed, because in general, more than one type
of operator is used whilst searching in E-space. The second is to allow the pheromone to
be accessed (indexed) by arbitrary values - normally it is accessed by a single numerical
index or two indices. Again this is needed because of the operators used in E-space - the
MakeV operator takes three nodes as arguments.

The proposed algorithm, ACO-E, is a continuation of the work by Daly et al. (2006b)
and Daly and Shen (2008), and is based in large part, on the work of de Campos et al.
(2002a). In that work, an ACO algorithm called ACO-B was applied to learning Bayesian
networks. This current work differs in that it searches in E-space, uses more than one

operator (most other ACO applications use a single operator) and does not constrain
itself to using matrices to store pheromone. The algorithm is shown in Algorithm 4.2.

4.3.1 Relation of ACO-E to the ACO Metaheuristic

In this section, the relation of the various parts of the algorithm to the ACO framework
will be given. The problem of learning a Bayesian network structure can be stated as the
triple (S,f,Cl), where

• S, the set of all candidate solutions, is the set of all CPDAGs on the nodes of the

Bayesian network. This set has a massive cardinality, being super-exponential in
the number of nodes.

• /, the objective function, is the function used to score a candidate CPDAG. This
function would generally be one of the scoring criteria mentioned in Section 4.1

and in Section 2.4.6.

• Cl, the set of constraints, makes sure that only PDAGs that have consistent ex¬

tensions are generated as solutions. An explanation of the idea of a consistent
extension of a PDAG is given in Section 2.1.3. In the formulation being presented,
the constraints are implicit in the operators that will be used to move from state to
state.

Given this statement of the problem, the ACO-E algorithm can be described by the
following properties. These properties relate to the ACO metaheuristic described in
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Section 3.2.

4.3.1.1 The Construction Graph

The construction graph in an ACO algorithm describes the mechanism by which so¬

lutions can be assembled. It is specified as the complete graph given over the solution
components. As such, these components play a crucial part in the viability of the algo¬
rithm. An example construction graph is shown in Figure 4.3. It should be noted that
this construction graph is partial - nodes for the DeleteU and DeleteD operators are

missing and certain arcs connecting nodes are missing. Note that in this case, no InsertD
operators would be present. It should be noted that this graph represents all possible
moves at the start of the run - after certain moves, certain arcs would not be traversable.

E.g. after going to the three InsertU moves after the start, none of the MakeV moves

would be accessible.

In the ACO-E algorithm, the components (nodes) C of the construction graph are

the various moves that may be made, i.e. each move is an instantiation of a supplied
operator; in the experiments presented in this thesis, the six operators in Table 4.2 are

used. These operators are used as they have been verified to work correctly and effectively
by Chickering (2002a). Designing correct operators is difficult, as Chickering showed
by finding counter examples to the operators of Munteanu and Cau (2000). Each ant
constructs a solution by walking the construction graph. This corresponds to applying
a sequence of moves to a CPDAG. In order for the procedure to begin, a starting state
must be specified. In ACO-E this is given as the empty graph.

As usual, the states of the problem are sequences of moves. However, because every

state is a candidate solution, S - X in the ACO metaheuristic framework. This does not

imply that all states are feasible candidate solutions, but only that candidate solutions
can be of any length. This also means that S = X. Another way to view the state of an ant
is to consider the empty graph V (the starting state) and the current state as a sequence

of moves (components) x = (c,•,..., Cy). Applying each move c ex in order to V will give
a CPDAG that is another representation of the current state.

It should be noted that the constraints fl are implicitly taken care of by the operators,
i.e. the validity tests on the operators satisfy the constraint that each state is a valid PDAG.
It should also be stated that the usual definition of

g(s,t)= f(s,t), Vs e<S
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Figure 4.3: An example partial construction graph for the three node network shown
in Figure 4.4
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© ©
Figure 4.4: A three node network used for illustration by Figure 4.3

applies, and that there is no function J(x, t). This is because all x are candidate solutions
(and / is normally only needed for states that are not candidate solutions) and adding a

solution component can decrease the cost (and J should monotonically increase with
each component added).

4.3.1.2 The Problem Heuristic

In an ACO algorithm, the heuristic is used to guide the search to good solutions. It often
does this implicitly in terms of a cost associated with choosing a particular component
to add to the current state; adding a component with the least cost is often a good way of
proceeding in constructing a solution.

In ACO-E, the heuristic is used in the same manner, with the addition that the cost

for adding a component can be negative, i.e. adding a component to the current state can

improve the cost function g. The heuristic is dynamic in that it depends on the current
state of the ant. Also, it is associated with each component (node) ceCas opposed to
the arcs c,- - Cj between components.

The value of the heuristic rji is given by the score gain for each move c; 6 C that is
possible given the current state. In essence it corresponds to the change in score given by
performing a particular move on the current CPDAG. For the operators being used in
this thesis, this means the change in score given in Table 4.2.
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4.3.1.3 The Problem Pheromone

The pheromone in an ACO algorithm guides the search based on the results of previous
ants' searches. In many instances, it is associated with the arcs on the construction
graph, but in ACO-E it is associated with the nodes of the construction graph. This gives

pheromone values T; for each c,- 6 C.
The pheromone for each ris initialised to a value to given by

ro— i /T>+ \ i ■ (4*3)
n |score \ P ) \

In this formula, n is the number of variables that are in the data, score is the objective
function /, as defined in Section 4.3.1, and V+ is the best-so-far solution. At the start of
the algorithm, this is initialised to that found by a greedy search starting from the empty

graph.
In order that the pheromone may change to reflect the foraging of ants, pheromone

update rules are given. Similar to ACS, there is a local evaporation rule, whereby there is
a net removal of pheromone from a path as an ant traverses it

ri+1<-0--p)ri+pr0

This shows the effect of the parameter p, which is the pheromone evaporation and
deposition rate. With this formula, there are implicit bounds on how high and low the
pheromone at each component can get. Note that it is not strictly necessary to have the
evaporation and deposition rate be the same parameter - in some formulations of ACS
there is a separate parameter £ that controls evaporation. However in ACO-E, these
parameters were constrained to be the same value, so as to minimise the number of
parameters needed. Also similar to ACS, there is a global pheromone update rule that
deposits new pheromone on the best-so-far path

t/'+1 (1-p)^ + p/|score(p+)|

This occurs at the end of a run of ants. Again, score and P+ are defined as in equation
4.3. Also again, this formula implements implicit limits on the values that pheromone
can take.

4.3.1.4 Probabilistic Transition Rule

In choosing which component to visit next given a particular state, an ACO algorithm
utilises a probabilistic transition rule. This rule normally uses values given by the heuristic
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and pheromone to inform the choice of which node to pick. The actual choice is random
and is based on a distribution given by the heuristic and pheromone of each possible
choice. In ACO-E, the probabilistic choice rule is given by a pseudo random proportional
choice rule, very similar to the one used in ACS. This type of rule allows the balance
between exploration and exploitation to be varied. Being able to change this balance is

important, as it has been shown to produce quite different results (Dorigo and Stutzle,
2004). An ant chooses component c/, where / is given by

I argmaxh^{x) rl if 1 * <?o

random proportional, otherwise

In this formula, J\f (x) is the set ofcomponents that an ant at state x can move to, given the
problem constraints Cl. The rule is pseudo-random proportional, because it sometimes
behaves in a manner that is not random. A random number q is drawn uniformly in the
range [0, l]. If this number is less than or equal to a parameter qo, then the rule behaves
greedily; the best move possible is taken dependent on the value of 77 [qif for each
component c/. Here, T; and rji are the pheromone and heuristic as explained previously
and ft is a parameter that says how much to favour the heuristic over the pheromone.

If the number q is greater than qo than a random proportional rule is used to select
which component to visit next. The probability that the ant will visit component c; is

given by p;, where

Pi- l——-jj> V/eAf{x). (4.4)
Ti [??/]/

It can be seen that the probability that an ant moves to component c; is directly given by
r; [rji]^, normalised over the other possible moves so that it is in the range [0,1],

4.3.1.5 Properties of Ants

In terms of the ants used to construct solutions, the following properties of ant k should
be noted:

• The memory Mk can be equated to the current state of the problem given by ant
k. From this, the current CPDAG can be constructed in order to implement the
constraints Q, compute the heuristic values rj, evaluate the current solution and
lay pheromone on the tour. In practice, the current CPDAG is normally kept in
order to avoid having to recompute it at every step.
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• The start state xk is given by the empty sequence (), i.e. the empty CPDAG.

• The single termination condition ek, is to stop the ant's traversal of the construction

graph, when no improvement in score is possible.

• The neighbourhood J\fk(x) is the set of all valid moves given the current CPDAG
and node x.

4.3.1.6 Local Search Procedure

As is often the case with ACO algorithms, ACO-E can use a local search procedure
at intermediate points throughout the run of the algorithm and at the end. This local
search procedure can be used to quickly bring a solution to a local maximum. With the
current heuristic and the standard local search that would be used in these circumstances

- greedy search with the operators defined in Table 4.2, known here as GREEDY-E -

local search would provide no additional benefit over the solution found by an ant.
Nevertheless, the local search was put in the algorithm in case the problem heuristic were

to be implemented differently. An example of this would be a static heuristic obtained by
scoring operations on an empty graph. Since this is invariant over the algorithm run, it
would only need to be calculated once at the start of the run.

4.3.2 Description of ACO-E

This section will focus on giving an algorithmic description of ACO-E. This is done
in conjunction with the pseudo code given in Algorithms 4.2 and 4.3. ACO-E takes as

input a number of parameters and returns the best PDAG found according to a scoring
criterion, score, that is defined as the objective function /. It is assumed that scoring
criteria generally give negative values; the higher the value, the better the model. This is
the case of most of the standard criteria as discussed in Section 2.4.6. The meaning of
the parameters is as follows:

O This is a set of operators that can modify the current PDAG state in the search.
Examples of these are the ones given in Table 4.2, e.g. InsertU, DeleteU, etc. How¬
ever, other operators could be used, e.g. those of Munteanu and Cau (2000) and
Munteanu and Bendou (2001).

tmax This is the number of iterations of the algorithm to run. At each iteration, a number
of ants construct solutions. Pheromone deposition happens after all the ants have
finished their walks.
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tstep This is the gap, in iterations, between which local search procedures are run. If set
so that tstep > tmax> then local search only happens at the end of the algorithm run.

m This is the number of ants that run at each iteration.

p This, a value in [0, l], is the rate at which pheromone evaporates and is deposited. It
is used in both the pheromone evaporation and pheromone deposition rules in
Section 4.3.1.3.

qo This, a value in [0, l], gives the preference of exploitation over exploration. It is used
in the pseudo-random probabilistic transition rule as explained in Section 4.3.1.4.

[3 This exponent gives the relative importance of the heuristic over the pheromone levels
in deciding the chance that a particular trail will be followed. It is used in the
pseudo-random probabilistic transition rule in Section 4.3.1.4.

n This is the number of nodes in the PDAG.

There are also other variables in the algorithm. These include:

V+ the best-so-far PDAG;

Path+ the best-so-far path;

'pempty q^g empty PDAG; and

PathemPty the empty path, i.e. the path with no entries.

In starting the algorithm, a greedy search (called GREEDY-E) is performed. This is
a search through the space of equivalence classes using the framework and operators

given by Chickering (2002a) and shown in Table 4.2. It gives a starting best-so-far
graph and path from which the search can proceed. Pheromone levels for each solution
component are then initialised to To- The main loop of the algorithm then begins for
tmax iterations. At each iteration, m ants perform a search, given by algorithm ANT-E,
shown in Algorithm 4.3. Also, for every tstep iterations, a local search is performed on
the PDAGs returned from ANT-E, to try and improve results. Using local search as part
of an ACO algorithm is a very common technique (Dorigo and Sttitzle, 2004), as it is
an easy way to obtain good results with little effort. After the m ants have traversed the
graph, the best graph and path are selected from the best-so-far graph and path and the
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ones found by each of the ants in the current iteration. Finally, the global pheromone
update lays pheromone on the best-so-far path.

The ANT-E algorithm creates a PDAG by examining the various states that may be
proceeded to from the current state, given a set of operators that may act on the current
PDAG. It then selects a new state based on a random-proportional choice rule. The
parameters to the function have the same description as the ones to the ACO-E function.

Starting out, the algorithm constructs an empty PDAG. Then at each stage a move

is made to a new PDAG, which can be reached by applying one of the operators in O.
Initially, a number is given to each move by total-score, shown in Algorithm 4.4. This
number represents a weight given to each move I depending on the current pheromone
associated with making that move r/, and the heuristic associated with making the move

rji. This heuristic is given by the increase in score obtained by taking that move, higher
overall scores meaning better solutions. If there can be no increase in the score, the ant

stops and returns the solution V and the path followed. Otherwise there is a possible
move and the ant decides how to make it. Firstly a random number q is obtained. If
it is less than a specified value q0, then the best move is taken. If it is greater than qo,

then a random proportional choice is made, with the probability of better moves being
higher. After this, a local pheromone update is applied to the path just taken, the path is
updated with the new location at the end and the current state is updated to become the
new state given by /. Note that applying a move to a CPDAG to change state implies that
the resulting PDAG will be extended to a DAG by a suitable method (e.g. that of Dor
and Tarsi, 1992) and this DAG be changed back to a CPDAG. Details can be found in

(Chickering, 2002a).

4.3.3 Implementation Issues

In implementing the algorithms given in this section, care must be taken to avoid long run

times. The easiest method to speeding up any search for a Bayesian network structure is
to cache the score of a node given its parents. Secondly, the methods of Section 4.2, which
involve reducing the number of validity tests which must be performed and caching
the results of these tests, can again increase performance dramatically. These methods
were designed for algorithms such as ACO-E, which use multiple restarts from the same

starting state.

Care must also be taken in implementing the pheromone for the moves. Traditionally,
matrices of values are used, which allow fast access and updating. However in the case
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of the MakeV operator, which takes three indices, a three dimensional matrix would be
needed. This would quickly become infeasible as the problem size grew, especially as

only some of the entries would ever be used due to the algorithm never getting to those
states. Instead a structure such as a map can store this information. A map can scale
linearly with the number of elements actually being used. If the map is implemented as a

tree, entries can be accessed in logarithmic time and if a hash table is used, access can be
in constant time. In the experiments described in Section 5.3, the map is implemented as

a binary tree.

4.4 Summary

This chapter introduced methods to solve two different problems in learning the structure
of a Bayesian network. The first problem addressed long running times when running
algorithms with multiple restarts. The second problem dealt with trying to find the best
Bayesian network structure that 'fits' a set of data.

To help solve the first problems two new technique were demonstrated. The first
of these techniques involved reducing the number of validity tests that needed to be
performed whilst performing a search in the space of equivalence classes of Bayesian
networks. For each of the operators defined by Chickering (2002a), a new formula was

defined to calculate the validity tests needed to see whether a move is valid. These formulae
reduced the number of tests that need to be performed for each operator, from O (n2)
to O (nk2), where k is the bound on the number of parents and neighbours a node can

have.

The second technique involved caching the results of validity tests of a move, so that
they do not need to be recalculated. An algorithm called update-cache was developed
in order to update the cache after a move is made, in order that the entries in the cache
are correct. The effectiveness of this algorithm is dependent on the connectivity of the
graph; a less connected graph will tend to have better performance characteristics.

To help solve the second problem, that of finding a good Bayesian network structure,
an algorithm based on ant colony optimisation (ACO) was defined. This algorithm,
called ACO-E was based on the ACO-B algorithm of de Campos et al. (2002a) and the
search space defined by Chickering (2002a). A description of the algorithm was given in
terms of the ACO metaheuristic and high-level pseudocode.

In the next three chapters, the effectiveness of these algorithms will be tested. Chapter
5 defines a testing methodology and reports the results of experiments performed on
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both of the algorithms. Chapter 6 involves a discussion of the results that were found
and an interpretation of their significance. Chapter 7 will show an application of these
techniques to a real-world machine learning problem.
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Algorithm 4.2 ACO-E
Input: Operators O, tmax, tstep, m, p, q0, /?, n

Output: PDAGP+

(V+,Path+) +- GREEDY-E(VemPt>',PathemP{y)
to *- l/n |score(7:>+)|
for each operator 0 in O do

for each possible move I in 0 on /pemPty do
Ti <- r0

end for

end for

for t <-1 to tmax do
for k *- 1 to m do

(Vk,Pathk) <- ant-e(0,<jo>P>/3>To)
if (f mod tstep = 0) then

(Vk,Pathk) <- GREEE>Y-E(Vk,Pathk)
end if

end for

b <- argmax^=1 score (Vk)
if score (Vb) > score {V+) then

p+ -pb

Path+ <- Pathb

end if

for each move I in Path+ do

t1 *- (1-p)t;+p/|score('P+)|
end for

end for

return V+
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Algorithm 4.3 ANT-E
Input: Operators O, p, qo, ft
Output: PDAG V, Path Path

while true do

M <- All possible moves from V using O
if |M| = 0 v maxjeM total-score(/,/3) = 0 then

return (V,Path)
end if

q random number in [0,1)
if q<qo then

I *- argmax/gMTOTAL-scoRE(/,/?)
else

I <- random choice according to equation 4.4

end if

rl (1-P)^+P^*0
V 4- apply I to V
Path 4- append I to Path

end while

Algorithm 4.4 total-score

Input: Move /, /3
Output: Score s

return s such that s =
Tl (rjl) if ^72 > 0

0 otherwise



Chapter 5

Experimental Methodology

This chapter is concerned with testing the algorithms presented in Chapter 4 andthe evaluation of the results produced. In order to facilitate understanding of the
experimental methodology used, the chapter will be structured as follows.

Firstly, an account will be given of the objects on which the testing will be performed.
These objects are six gold-standard Bayesian networks that are well known in the field.
The various properties of the networks, along with a visual representation in the form
of their DAG structure, will be discussed. From these networks, data can be sampled
using a procedure that will be described and it is this data that can be used as input to
the algorithms.

Next, an explanation of experiments involving the methods presented in Section
4.2 will be given. This will involve a discussion of the methodology used to run the
experiments and the evaluation criteria that will be used.

Finally, experiments using the ACO-E algorithm described in Section 4.3 will be
shown. As before, the methodology used in running the experiments will be defined,
along with a description of the various evaluation criteria. These involve criteria well
known in the field, along with criteria developed as a result of this thesis. Two different
sets of experiments will be presented, one focused on the comparison of ACO-E against
similar algorithms, the other a comparison of ACO-E against state-of-the-art algorithms.
Also, the behaviour of the ACO-E algorithm for different parameters will be shown.

113
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5.1 Standard Bayesian Networks
In this section a set of six gold-standard Bayesian networks will be presented. These
networks will be the basis of the testing that will be showcased later. Various properties
of the networks will be given, covering:

• the number of nodes of the structure;

• the number of edges in the structure;

• the average number of incoming edges;

• the average number of outgoing edges; etc.

Also, diagrams of the various networks will be presented in order to gain an appreciation
of their topology and how this might affect the performance of the algorithms. To test
the algorithms that have been presented, data needs to be sampled off these Bayesian
networks. The procedure that is used to perform this sampling will be illustrated.

5.1.1 Six Gold-Standard Networks

In the experiments shown in this chapter, six gold-standard networks are used. These are

the ALARM (Beinlich et al., 1989), Barley (Kristensen and Rasmussen, 2002), Diabetes
(Andreassen et al., 1991), HailFinder (Abramson et al., 1996), Mildew (Jensen, 1995) and

Win95pts networks (Microsoft Research, 1995). These networks were chosen because
they covered a wide range of domains, were easily available and all contained discrete
attributes. The last property was important because the scoring criterion that has been
used in the experiments is implemented over multinomial random variables.

Figures A.i to A.6 in Appendix A show the structure of the Bayesian networks in

question. Various properties of these Bayesian networks are shown in Table 5.1. In this
table, Nodes and Edges specify the number of nodes and edges respectively in the graph.
Probabilities gives the total number of probabilities that are specified in the conditional
probability tables over all the nodes. The Mean In-Degree is the average number of arcs

coming into a node in the graph. This is equal to the Mean Out-Degree and the number
of edges divided by the number of nodes. The Max In and Out-Degree specify the largest
in and out-degree respectively of all the nodes in the graph. Mean and Max Outcomes
specify the mean and maximum number of possible outcomes (values a variable can

take on) over all the nodes in the graph. Finally, V-Structures and V-Struct/Nodes show
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Alarm Barley Diabetes HailFinder Mildew Win95pts

Nodes 37 48 36 56 35 76

Edges 46 84 48 66 46 112

Probabilities 752 130180 32705 3741 547158 1148

Mean In-Degree 1.24 1-75 1-33 1.18 1-31 1-47

Max In-Degree 4 4 3 4 3 7

Max Out-Degree 5 5 5 16 3 10

Mean Outcomes 2.84 8.77 11.25 3.98 17.6 2

Max Outcomes 4 67 21 11 100 2

V-Structures 26 66 21 37 37 135

V-Struct/Nodes 0.70 1.38 0.58 0.66 1.06 1.78

Table 5.1: Bayesian network properties

the amount of v-structures in the graph and the amount of v-structures divided by
the number of nodes. Following on from this, more detailed information about the
distribution of nodes into groups depending on their in-degree is given in Figures 5.1 to

5.6. In these figures each column represents the number of nodes in a graph with the
specified in-degree, i.e. the number of incoming arcs.

5.1.2 Sampling Data from a Network

In order to test the algorithms, data needs to be generated from the Bayesian networks
being used in the study. There are many methods used for sampling data from Bayesian
networks; examples are given in Section 2.2.9.1. However most of these methods are

designed for dealing with inference in Bayesian networks, which involves sampling with
evidence.

For the problem of generating samples for learning purposes, the complexity of these
algorithms is not needed, as no evidence is specified. Therefore the original technique
of Henrion (1988) can be used, knowing that samples will not be discarded as there is
no evidence to match them against. The problem of generating samples can therefore
be easily done; pseudocode for the algorithm is shown in Algorithm 5.1. In essence,

this algorithm generates values starting at the root nodes of a Bayesian network and
proceeding forward. At each step, it is possible to calculate the probability distribution for
a certain node, as the parents have already been specified. With the distribution in hand,
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Algorithm 5.1 Generating samples from a Bayesian network
Input: Bayesian Network B, Number of Samples N, Number of Nodes n

Output: Data D
O Total ordering of the nodes in B
for i <- 1 to N do

Datum d

for j <- 1 to n do
Node x <- Oj
Set of nodes px <- Ux
d.x <- value selected according to P (x,d.px)

end for

D <- Dud

end for

return D

a value for a node can be selected and entered into the current datum being generated.

5.2 Accelerating the Learning Process

This section contains details of the experiments performed using the methods described
in Section 4.2. Firstly, the methodology used in running the experiments will be presented,
including the design of the experiments themselves and an explanation of the evaluation
criteria.

5.2.1 Experimental Design

In order to test the effectiveness of the methods described in Section 4.2, experiments
were run to establish by how much they could speed up the runtime of algorithms over

the case when the methods were not implemented. Because these methods were designed
to speed up the runtime of the ACO-E algorithm, this is used as the testing algorithm for
the purposes of these experiments. The six standard networks presented in Section 5.1.1

were used and for each network, 100 experiments were run. Each individual run sampled
5000 data from the network in question, using the procedure in Section 5.1.2. From
this data a scoring function could be constructed, using one of the criteria described in
Section 2.4.6.

For these experiments, it was decided to use the BDeu criterion invented by Buntine
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Figure 5.1: Distribution of nodes across in-degree - Alarm
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Figure 5.2: Distribution of nodes across in-degree - Barley
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Figure 5.3: Distribution of nodes across in-degree - Diabetes
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Figure 5.4: Distribution of nodes across in-degree - HailFinder
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(1991) and described in Section 4.1. According to the study by Shaughnessy and Livingston
(2005), BDeu had the best tradeoff between precision and recall (confusingly BDeu is
called BAYES in their study, with BDeu in their study meaning the K2 metric). This
criterion gives a fully Bayesian score, with the assumption of Dirichlet parameter priors
and uniform parameter priors. The criterion is shown here again, in normal and log
formats.

n n T(N') n r(ML + Nijk)p(giD)=P(g)nnw1^T-n 7;w./ ''=1 f=l ^ ij '}) k=1

logP(£|D) =logP (G)
n <?i ju/ \jf

+ yyi°gr(N!p-iogr(N!; + Ny) + yiogr(--+N,vl)-iogr(—)
1=17=1 fc=l r'cii ' H'

In implementations, the log format is normally used, as it much more numerically stable
due to the multiplications and divisions being replaced by additions and subtractions,
and the logT function being directly available to avoid overflow. To fully specify the
BDeu criterion, two pieces of information are needed. First is a prior on structures P(^).
This could be a uniform prior, such that all structures have the same P(£). Another
method shown by Heckerman et al. (1995) was to have an expert specify a structure, and
have a method that penalises differences between the expert's structure and a candidate
structure.

The second piece of information needed is the equivalent sample size', N', a parameter
that encodes the confidence in the prior parameters and prior structure. Selecting this
value can be troublesome (Steck and Jaakkola, 2002; Silander et al., 2007), but 'reasonable'
values in the range [1,10] often work well.

There does not seem to be any consensus on the best type of prior to use in a Bayesian
score. Apart from a uniform prior and the method of Heckerman et al. (1995), there exist
methods by:

Chickering (2002a,b) that penalise structures depending on the number of free param¬

eters in the model;

Imoto et al. (2003) that penalise structures in a iterative manner, by obtaining prior
evidence from the the current hypothesis network; and

Bernard and Hartemink (2005) that penalise structures by using a p-value obtained
from transcription factor binding location data to generate prior knowledge.
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Parameter N' k

Value 4 0.2

tmax m p g0 P
100 5 0.1 0.9 3

Table 5.2: Parameter values for testing acceleration methods

These methods generally have the property that they penalise structures with more edges
than less. An obvious exception is the uniform prior, which assigns equal values to
each structure. Because there are more graphs with a higher number of edges than a

lower numbers of edges, there would be a bias to graphs with more edges in this case. In
recognition that simpler structures are often more appealing, the prior was specified by
the method shown by Heckerman et al. (1995). They specify a formula

where c is a normalisation constant that can be ignored, k is a parameter that needs to
be specified and S is given by the formula

where 5,- is the symmetric difference of the parent set between the current candidate
structure and the prior structure for node i. An empty structure prior was specified and
using the method specified in Heckerman et al., k was set to 1/ (N' +1). The parameters
of the scoring criterion and the ACO-E algorithm were set as in Table 5.2, with the set of
operators O being set to those of Chickering (2002a) as shown in Table 4.2. All of these
parameters are in the range of reasonable levels as shown by Dorigo and Stiitzle (2004).
The above experiments were performed using two conditions:

• The methods introduced in Section 4.2; and

• Without those methods.

Each of the experiments was run on identical machines, being the sole process whilst
running.

P (g) = cks,

n

a = £«<•
j'=l

5.2.2 Evaluation Criteria

In order to evaluate the performance of the experiments, criteria needed to be established
to quantify the effect produced. Reasonable criteria include:
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• Recording the wall clock time in each condition; and

• Counting the number of validation checks used in each condition.

In order to give as realistic a quantification of the behaviour as possible, it was decided
to record the wall clock time spent inside the programs code. This was possible, because
the code base for both conditions was exactly the same, apart from the differences of the
conditions themselves. It was also possible to control the machines where the experiments
took place, so there would be as little effect from outside influence as possible. Also,
counting the number of validation checks done would not be strictly accurate, as there
are overheads to each of the methods that differ.

With this criterion selected, it is possible to plot the behaviour of the algorithm as it

progressed and provide performance ratios between the two conditions.

5.3 Using Ant Colony Optimisation in Learning an

Equivalence Class

This section contains details of the experiments performed using the ACO-E algorithm
described in Section 4.3. Firstly, the methodology used in running the experiments
will be presented. This includes an analysis of the needed outcomes, the design of two

experimental conditions and an explanation of the evaluation criteria.

5.3.1 Experimental Design

In designing an experimental methodology to test the efficacy of the ACO-E algorithm,
three different outcomes were desired.

• The first was to analyse the behaviour of the algorithm as a function of the parame¬

ters and the test networks. This is needed in order to try and understand the range

of values in which parameters might be useful and to show the effect of the ACO
behaviour on outcomes.

• The next desired outcome was to test ACO-E against other similar algorithms. To
this end, ACO-E was tested against another ACO algorithm and algorithms that
searched in the space of equivalence classes.
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• Finally the last desired outcome was to test ACO-E against state-of-the-art algo¬
rithms from the literature. These tests would show the comparative usefulness of
ACO-E against other well-known and good-performing methods.

In order to obtain these outcomes, two experimental conditions were designed.

• The first, dealing with the behaviour of ACO-E with different parameter values
was used to obtain the first two outcomes.

• The second, which focused on using 'good' parameter values was used to obtain
the third outcome.

5.3.1.1 Experimental Condition 1

Experimental condition l was designed to analyse the behaviour of ACO-E across differ¬
ent parameters and to compare against other similar algorithms. These algorithms were

ACO-B (de Campos et al., 2002a), EPQ (Cotta and Muruzabal, 2004; Muruzabal and
Cotta, 2004) and a greedy search in the space of equivalence classes using Chickering's
operators (Chickering, 2002a) (called GREEDY-E here). A very brief description of these
will now be given.

ACO-B ACO-E is based in part on the design of this algorithm and so there are some

similarities. ACO-B is an ACO based algorithm that provides a search through
the space of DAGs, with each of its moves being the addition of a directed arc to
the current DAG. A more detailed description is given in Section 3.5.2.

EPQ This method uses an evolutionary programming algorithm that performs a search
over the space of equivalence classes of DAGs. Like Chickering (2002a), they
explicitly use CPDAGs (defined in Section 2.1.3) to represent the individuals, i.e.
equivalence classes of DAGs. At each generation, from a population P, members
of the population are selected using a binary tournament and mutated using the
operators of Chickering. The best P out of 2P members (the original P plus the
just-mutated P members) selected are then put forward into the next round, for T
rounds.

GREEDY-E This algorithm uses the operators of Chickering to perform a greedy search
in the space of CPDAGs. The results of tests performed by Chickering showed that
the search generally performed better than search in the space of DAGs.
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Parameter Value

N' 4

K 0.2

tmax 200

m 5, 7,10,12,15, 20

P 0.0, 0.1, 0.2, 0.3, 0.4, 0.5

qo 0.7, 0.75, 0.8, 0.85, 0.9, 0.95

P 0.0, 0.5,1.0,1.5, 2.0, 2.5

tstep 201

Table 5.3: Parameter values for testing ACO-E with experimental condition 1

For the experiments reported in this thesis, testing involved the six standard networks
presented in Section 5.1.1. Similar to Section 5.2.1 the BDeu scoring criterion was used. As

suggested by Kayaalp and Cooper (2002) and by Heckerman et al. (1995), an equivalent
sample size of 4 was used for the parameter priors. Also an empty structure prior with k

as defined by Heckerman et al. (1995) was used. For each individual run, 10,000 data
were sampled from the network and used to construct the scoring function. Then for
each combination of values for the parameter settings of p, qo, ft and m, a run of the
experiment was made for both the ACO-E and ACO-B algorithms. Different sets of
random seeds were used for both algorithms. Whilst not optimal, the large number of
experiments would negate the difference of individual results. The range of values that
these parameters were taken from are shown in Table 5.3. Note that with a tstep value of
201, the local optimisation part of the algorithm will not be run.

In total this gave 1296 runs for each algorithm, for each network. As a consequence,

this gave a total of 216 results for each setting of a parameter. In order to match this
number of runs, the EPQ and GREEDY-E algorithm were also run 216 times each. It
should be stressed that each run using a particular combination of parameters was

done with a different data set sampled from the network. This technique guards against
overfitting the parameters to a particular data set. As before, different data sets were

sampled for different algorithms. Again, the large number of experiments would negate

any differences due to different samplings.
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5.3.1.2 Experimental Condition 2

Experimental condition 2 was designed to test ACO-E against other state-of-the-art
Bayesian network structure learning algorithms. For these purposes the results found
in the study conducted by Tsamardinos et al. (2006) was used. This study produced a

thorough comparison of many different algorithms and made the results available, which
allows the results for ACO-E to be compared against all of the algorithms used in the
study. The various parameters used for ACO-E were kept as close as possible to those
used by Tsamardinos et al.. The various algorithms that were compared against were:

the max-min hill-climbing algorithm (MMHC) (Tsamardinos et al., 2006), the optimal
reinsertion algorithm (OR) (Moore and Wong, 2003), the sparse candidate algorithm (SC)
(Friedman et al., 1999c), a greedy search using the three standard operators as in Table 4.1

(GS), the PC algorithm (PC) (Spirtes et al., 2000), the three phase dependency analysis
algorithm (TPDA) (Cheng et al., 2002) and the greedy equivalent search algorithm (GES)
(Chickering, 2002b). A very brief description of these algorithms will now be given:

MMHC This algorithm is a hybrid based on the sparse candidate algorithm. It uses con¬

ditional independence testing as discussed in Section 2.4.7 to find good candidate
parents and then performs a greedy search in the space of DAGs. This strategy
limits the run time of the algorithm and makes it applicable to data sets with large
numbers of variables.

OR This score-and-search algorithm in the space of DAGs utilises a single operator. This
operator deletes all arcs incident to a node and then reinserts the best combination
of arcs. It can be efficient on large data sets.

SC This hybrid algorithm was created for the purpose of examining data sets with large
numbers of variables. It works by constraining the parent set a node can have
in order to limit the amount of scores that need to be computed. This is done
using a conditional independence based approach as discussed in Section 2.4.7.

A score-and-search algorithm can then be applied that respects the constraints
imposed in the first step.

GS This algorithm was one of the earliest used in the score-and-search paradigm of
Bayesian network structure learning. It is very simple to implement, normally
comprising the three operators of add, delete and reverse an arc. Scores can be
computed locally, with the algorithm proceeding until no higher score can be
found.



126 Chapter 5. Experimental Methodology

Parameter N' k tmax m p qo jS tstep
Value 10 0.09 200 20 0.4 0.75 0.75 201

Table 5.4: Parameter values for testing ACO-E experimental condition 2

PC A conditional independence style algorithm, PC works by performing a series of y1
statistical tests on a data set in order to find CIs it needs. The amount of tests that

need to be performed is constrained by the algorithm. Like all CI based approaches,
it can suffer from a lack of data.

TPDA This conditional independence based algorithm works by using a polynomially
bounded number of CI tests. However, it has been shown by Chickering and Meek
(2006), that an assumption it makes (monotone DAG-faithfulness) is a bad one.

Monotone DAG-faithfulness assumes that the more active paths between variables,
the higher the mutual information. In the classes of DAGs it can learn, there are

better algorithms that can learn in a smaller amount of time.

GES This score-and-search algorithm that works in the space of CPDAGs utilises two

phases. In the first phase, arcs are added greedily starting from the empty graph
using a given operator, until no improvement can be made. Then in the next phase,
arcs are deleted using another operator, until no improvement can be made. This
algorithm produces a perfect map of the probability distribution in the limit of a

large sample size of the data.

For these experiments, testing involved four of the six standard networks presented in
Section 5.1.1; Alarm, Barley, HailFinder and Mildew. These networks were used as the
experiments of Tsamardinos et al. did not use the other two (Diabetes and Win95pts).
For each run of the algorithm, 5000 data were generated by sampling the particular
networks in question. This was chosen as opposed to the 10,000 data in Section 5.3.1.1, as

this was the amount chosen by Tsamardinos et al.
As in condition 1, the BDeu scoring function was used. The value of both the equiv¬

alent sample size for this function and the ACO-E parameters are shown in Table 5.4.

These values were chosen as they represented reasonable values that should perform well
on most instances. The value of N', k and the prior function were identical to those used
by Tsamardinos et al.. Each experiment was run 100 times for each network.
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5.3.2 Evaluation Criteria

In the running of these experiments, various scoring metrics were picked to ascertain
how well certain algorithms behaved. These were

• The scoring function used in running the experiments;

• The structural Hamming distance (SHD); and

• The equivalence-class structural Hamming distance (ESHD).

which are explained below.

5.3.2.1 The Scoring Function

For all experiments, the BDeu scoring function was used with differing parameters,

depending on the experimental condition. Because these parameters were uniform given
the condition, the score value of a Bayesian network structure can be used to compare

the results of different algorithms. In terms of the BDeu score, this means that the higher
the average score achieved, the better the results.

5.3.2.2 Structural Hamming Distance

In order to provide an objective measure of network structure reconstruction behaviour
and to compare results against the work of Tsamardinos et al. (2006), the value of the
structural Hamming distance (SHD) metric is given. This measures the difference be¬
tween the learnt network and the gold-standard generating network. The definition of
this measure as given by Tsamardinos et al. is shown in Algorithm 5.2. Both networks are

transformed from DAG to CPDAG if not already in this representation and a uniform
penalty is given for each missing and extra edge and for each incorrectly directed arc. The
SHD is a useful measure for comparing structural dissimilarity. However, upon examina¬
tion, it can be noticed that this metric over penalises certain structures. In particular,
edges in a graph that are compelled but do not participate in a v-structure can become
reversible by the removal of the v-structures that ultimately compel those edges and
vice-versa. From this, a single change in a graph can have cascading effects that cause a

large subset of arcs to become compelled or reversible. Because the SHD does not take
into account whether a compelled arc participates in a v-structure or not, it can over

differentiate between two graphs. To stop this happening a metric is needed that can

take the above into account.
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Algorithm 5.2 The SHD metric
Input: PDAG EL, Q
Output: shd

shd <- 0

for every edge E different in El than Q do
if E is missing in EL then

shd +- shd +1

end if

if E is extra in EL then

shd «- shd + l

end if

if E is incorrectly oriented in EL then
{i.e. if E is reversed or the directedness is different}
shd«- shd + l

end if

end for

return shd

5.3.2.3 The Equivalence-Class Structural Hamming Distance

According to Verma and Pearl (1991), two PDAGs representing equivalence classes are

equal if they contain the same skeleton and same set of v-structures. Looking at this, the
task of finding the distance between two PDAGs can be broken down into finding the
distance between the skeletons of the PDAGs and the set of v-structures of the PDAGs.

The difference between the skeletons can be given two quantities - the number ofarcs that
need to be added and the number of arcs that need to be deleted in order to change one

PDAG skeleton to the other. Finding the difference between the two sets of v-structures
could be given in a similar fashion. However, directing an arc, or adding a directed arc

from x to y results in an increase to the number ofv-structures by the number of directed
arcs incident to y. I.e. a single change to an arc can result in a large change to the number
of v-structures. An example of this is shown in Figure 5.7. Here, when a single arc is
added from y to x, 3 extra v-structures are added.

To counter this, instead of counting differences between v-structures, the number
of arc directings (i.e. transforming an undirected arc into a directed arc), directed arc

additions and or arc reversals between the PDAGs that produce at least one new v-

structure are counted. The same is done for arc indirectings (i.e. transforming a directed
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(a) 3 v-structures (b) 6 v-structures

Figure 5.7: Adding v-structures

arc into an undirected one), directed arc deletions and arc reversals between the PDAGs
that remove at least one v-structure. Both of these procedures give two quantities that
give a measure related to the number of v-structures added and deleted between two
PDAGs. In the case of Figure 5.7, the distance between the two graphs is 1 for the skeleton
arc added and 1 for the v-structure compulsion.

Given these four quantities (Skeleton arcs added, Skeleton arcs removed, V-structure

compulsions, V-structure removals), a single measure that shows the distance between
two PDAGs can be obtained. An example of a simple measure that will be used in
this work is obtained by adding all the quantities together. This will be defined as the
Equivalence-Class Structural Hamming Distance (ESHD). Whilst similar to the SHD
metric, it is intended to better capture differences between PDAGs, by taking into account

cascading changes. As such, it is a better representation of a Hamming distance between
two PDAGs, in that it measures how many basic edits are needed to change one PDAG
to another.

5.4 Summary

In this chapter, the methodology used for conducting experiments into the effectiveness
of the techniques of Chapter 4 was given. This was presented in three parts:

• an explanation of the standard Bayesian networks used for testing the methods;

. the design and evaluation criteria for testing the methods to speed up the learning
process; and

• the design and evaluation criteria for testing the effectiveness of the ACO-E algo¬
rithm.
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For the standard networks, six well-known Bayesian networks were described, with
pointers to their structure and a list of some of their properties.

With the methods to speed up the learning process, the design of the experiments
involved the amount of experiments to be run, the amount of data to sample, the scoring
criteria to use and the selection of the algorithm they would be used with. For this cache
updating algorithm, various parameters were specified, including the various operators to
be used. Evaluation criteria were selected to specify what information would be recorded.

For the experiments involving ACO-E, their design involved two conditions. Condi¬
tion 1 involved testing ACO-E with parameters being set to various values. This would
enable the behaviour of the algorithm to be better understood and allow testing against
other metaheuristic algorithms that are similar. Condition 2 involved testing ACO-E
with parameters being set to reasonable values that should produce good results in
most circumstances. This would enable testing the algorithm to be tested against other
state-of-the-art Bayesian network structure learning methods.

The next chapter will present the results of the experiments run with these conditions
and also give a discussion of, and interpretation to, the meaning of the results.



Chapter 6

Results and Discussion

This chapter will present the results arising from experiments conducted accordingto the methodology in Chapter 5. Following this will be a discussion into the
behaviour of the various methods of Chapter 4, depending on any parameters and other
conditions that might influence their behaviour.

In order to investigate the methods of Section 4.2 that are designed to speed up the
running time of structure learning algorithms, this discussion will look at the behaviour
of these methods as a function of the number of variables in the data set.

For the ACO-E algorithm, the discussion will focus on different aspects:

• The behavior of ACO-E as a function of its main parameters: heuristic power,

pheromone deposition and exploration/exploitation tradeoff;

• The behaviour of ACO-E compared to other metaheuristic algorithms, both as a

function of time and final result behaviour; and

• The behaviour of ACO-E compared to state-of-the-art algorithms for Bayesian
network structure learning, as a function of reconstructive ability.

6.1 Accelerating the Learning Process

In this section, the results from the experiments described in Section 5.2 will be presented,
followed by a discussion of the effectiveness of the methods as described in Section 4.2.

131
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Original New Original/New \v\

Alarm (I0~3s) 3.5603 ±0.0390 0.9753 ±0.1363 3.6505 37

Barley (10~3s) 8.5345 ±0.0465 1.7223 ±0.2844 4.9553 48

Diabetes (I0~3s) 3.8889 ±0.0666 1.0241 ±0.2093 3.7974 36

HailFinder (1CT4s) 1.1404 ±0.1512 0.1431 ±0.0260 7.9693 56

Mildew (l0~3s) 2.3267 ±0.3299 0.6540 ±0.0394 3.5576 35

\V1n95pts (l0_4s) 7.3302 ±1.2948 0.6527 ±0.1014 11.2306 76

Table 6.1: Mean and standard deviation of running times at t = 100 over 100 runs

6.1.1 Results

The first results illustrated are those as a function of time and are presented in Figures 6.1
to 6.6. The analysis of these results occurs in the next section. Results for each of the two
conditions (using the methods described in Section 4.2 and not using these methods)
are indicated on each of the graphs. Here, the run time is given for an experiment at each
iteration of the ACO-E algorithm, averaged across the 100 experiment runs. Note that
the graphs are designed to show the difference between the two experimental conditions.
As such the absolute scale on each graph varies according to the example network. To
quantify these results further, the original running times and improved running times
for each of the test networks at iteration t = 100 are shown in Table 6.1. Also given are

the ratio of original to improved running times and the number of nodes | V| in each
network. Finally, Figure 6.7 gives the average runtimes over all datasets presented in
Table 0.1 as a function of the number of nodes in the network and Figure 6.8 shows the
speed-up ratio as a function of the number of nodes in the network.

6.1.2 Discussion

The results given in Figures 6.1 to 6.6 show that there is a speed-up effect across the data
sets. In all the examples, the methods from Section 4.2 make the ACO-E algorithm faster
than when the methods are not employed. This is most evident at the ends of the runs,

i.e. at ant iteration 100.

It also appears that for each network, this speed-up is linear with respect to the time
the algorithm is run. In other words, the ratio of times is constant at any given point
in the algorithm, for a given network. This is because the rate of both of the conditions
appears constant, so therefore their ratio would also be constant.
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Ant Iteration

Figure 6.1: Comparison of original and new validity checking - Alarm

Ant Iteration

Figure 6.2: Comparison of original and new validity checking - Barley
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Ant Iteration

Figure 6.3: Comparison of original and new validity checking - Diabetes

Figure 6.4. Comparison of original and new validity checking — HailFinder
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Ant Iteration

Figure 6.5: Comparison of original and new validity checking - Mildew

x 10

Original Validity Test;
New Validity Tests

Figure 6.6: Comparison of original and new validity checking - Win95pts
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Figure 6.7: Original and new running times

Number of Variables

Figure 6.8: Speed-up ratio
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Finally, looking at Figures 6.7 and 6.8 it appears that the ratio of times is linear in
the number of variables in the test network. If this is true and if it turns out that the

running time using the speeded up methods is linear in the number of variables, then
the running time without the speeded up methods would be quadratic in the number of
variables. Another way of saying this would be that the running time using the speeded
up methods would be a function of the square-root of the running time without using
these methods.

In the next sections, these ideas will be tested statistically in order to provide a

more quantitative answer as to their validity. This will also provide confirmation of the
analytical results obtained in Section 4.2.1. In order that this can be done, certain standard
statistical tests will be used.

6.1.2.1 Pearson's Correlation Coefficient

The first of these is the product-moment correlation coefficient as given by Pearson
(1896). This statistic is a measure of the linear relationship between two random variables
and is defined by

cov(X, Y)
r= ,

5x5 y

where Sx and sy are the sample standard deviations of X and Y and cov(X, Y) is the
covariance of X and Y, given by

cov(X,Y) = —I_£(X(-X)(Y,-Y),
n 1 i=i

where X and Y are the sample arithmetic means of X and Y respectively, r can range

between the values -1 and 1:

• At r = 1 there is a definite positive linear relationship between the variables;

• At r = -1 there is a definite negative linear relationship between the variables; and

• At r = 0 there is no linear relationship between the variables.

In calculating whether a particular value of r indicates that a null hypothesis can be
rejected, critical values of r can be looked up in tables. These critical values indicated the
boundary between which a statistic will confirm or reject the null hypothesis. If |r| as

calculated is greater than the critical value used, then the null hypothesis can be rejected.
To find the needed critical value, two pieces of information are needed: the degrees of
freedom of the sample v and the significance level a at which the test will be made, a
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indicates the probability that an error will be made in rejecting the null hypothesis. With
two variables, v for a sample is equal to n - 2, where n is the size of the sample.

6.1.2.2 Welch's f-test

Another statistical test which will be used is the f-test proposed by Welch (1947). As
opposed to the more widely known f-test by Student (1908), Welch's test can operate
on samples with unequal variances. It is generally used to compare the means of two
different samples. The statistic t is calculated as

where X and Y are the sample arithmetic means of X and Y, s2x and sy are the sample
variances ofX and Y and nx and ny are the sample sizes for X and Y. Similar to Pearson's
correlation coefficient, to calculate whether a significant difference has been found, a

critical value must be looked up. If the calculated t is greater than this critical value, then
the null hypothesis can be rejected. Also similar to Pearson's correlation coefficient, to find
this critical value, two other pieces of information are needed, the degrees of freedom
of the sample v and the significance level a. To calculate v, the Welch-Satterthwaite
approximation (Satterthwaite, 1946) is normally used

If the value of v is much over 120, then the distribution of t is roughly normal, so a

check can be made against a table of normal values.

6.1.2.3 Testing Whether Run-times are Significantly Different

The first test to be conducted will be comparing the run times of each condition of a

given network. These results are given in Table 6.1 and the tests will check whether
the difference between the means are significant. To do this, Welch's f-test as shown
in Section 6.1.2.2 will be used. In this case, the test will be two-tailed. Table 6.2 shows

the results from performing this test across the six networks. As can be seen from the
p-value column, there is very strong evidence to reject the null hypothesis, i.e. it is very

likely that the means are different. Therefore, the methods of Section 4.2 are effective in

speeding up the running times of the ACO-E algorithm. The next sections will seek to

x-y
t =

V =
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t V p-value

Alarm 62.56 122.85 5.0 xl(T95

Barley 124.76 164.20 1.3 xlO-164

Diabetes 41.05 118.37 7.5 x 10~72

HailFinder 64.99 104.85 1.6 xlO"86

Mildew 50.35 101.82 9.1 x IO-74

Win95pts 51.41 100.22 7.7 x IO-74

Table 6.2: t values and p-values for comparing the average run times

determine the nature of this speed-up, i.e. is it possible to determine how much faster
this speed-up will be?

6.1.2.4 Testing Whether the Speed-up Ratio is Constant Across Iterations

Looking at Figures 6.1 to 6.6, it appears that the rate at which the algorithm's runtime
increases is constant, both for the original validity tests and the new validity tests, i.e.

0 F
A

7 7

where O is the value of the run time up to the current iteration using the original validity
tests, F is the value of the run time up to the current iteration using the new validity tests
and I is the number of iterations.

If this is the case, then the speed-up ratio is also constant

O
_ j _ c

F~ l~~d'

In order to conclude that the rates are constant at each iteration, a test using Pearsons
correlation coefficient can be used. Table 6.3 shows r values and p-values for each of the
six networks using both the original and faster validity tests. These r values are obtained
from the mean of the time at each point t from 1 to 100. In a sense, they are measuring
the linearity of the slope on each of the graphs in Figures 6.1 to 6.6. It can be seen that
the r values are consistently high and the p-values consistently low; in all cases there is
very strong evidence that the relationships are linear. Because of this, it can be said that
the speed-up ratio is constant over all iterations. In other words, the speed-up ratio is
invariant to the number of iterations.
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Original New

r p-value r p-value

Alarm 1.0000 3.3 xlO"307 0.999 9 5.2 xlO"190

Barley 1.0000 2.0 xlO"198 1.0000 2.2 xlO"202
Diabetes 0.9986 2.7 xl0~127 0.9949 2.5x10-"

HailFinder 1.0000 1.0 xlO"229 1.0000 5.1 xKT213

Mildew 1.0000 3.1 xlO"240 0.9999 2.1 xlO~190

Winpspts 1.0000 1.8 x 10"239 1.0000 1.8 x 10~223

Table 6.3: r values and p-values for comparing the average run times across iterations

6.1.2.5 Testing Speed-up Ratio as a Function of the Number of Variables

Looking at Figure 6.8 it seems that there might be a linear relationship between the
speed-up ratio and the number of variables in the network, i.e. the amount of speed-up
depends on the number of variables. To test this, the Pearson correlation coefficient was

calculated over the ratio and number of nodes and came to the figure r = 0.9870 and a

p-value of 0.00025. The critical value of r for v = 4 degrees of freedom and a = 0.01 was

found to be r = 0.917. Therefore there is a very high probability that a linear relationship
exists between the number of variables in a model and the speed-up ratio given by the
methods introduced in this paper. Put another way

where k is a constant and N is the number of variables in a network.

Looking again at Figure 6.7, there appears to be a linear relationship between the
number of variables in a network and the runtime with the new acceleration techniques
given that network. This was tested by calculating the Pearson correlation coefficient
over these values. This came to a figure of r = 0.9144 and a p-value of 0.0107. Whilst
not definitive, these results are evidence that there is a linear relationship between the
number of variables in a network and the faster running time, i.e. that

(6.1)

F = IN.

From Equation 6.1, this implies that

O = IkN2

i.e. that the original running time is quadratic in the number of variables.
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6.1.2.6 A Comparison of the Results to the Theory

Recalling the content of Section 4.2.1, it was shown that the number of validity tests that
needed to be performed was reduced from being in 0(n2) to 0(nk2), where n is the
number of nodes and A: is a constant which bounds the number of parents, children and
neighbours a node can have. This reduction in complexity from quadratic behaviour
to linear reflects that of the empirical results obtained, where there is evidence that a

similar reduction has taken place. From these two pieces of information, there are strong

grounds to believe that using the faster validity testing scheme speeds up the run time of
ACO-E, a heuristic search algorithm that comprises multiple restarts.

Quantifying the behaviour of the caching system is more problematic, as there exists
no theory as to how it might work. Generally, by looking at a typical trace of an algorithm
it could be seen how the cache might work, in this case for the InsertU operator:

• Initially the graph is sparsely connected by undirected links. This will mean that
fewer cache entries need to be updated.

• Eventually the graph becomes densely connected by undirected links. This means

at each stage, each entry in the cache must be updated.

. At some stage, the MakeV operator directs two edges. This causes a cascade of
edges to become directed.

• This means that the graph is disconnected by undirected links and so returns to
the early behaviour of having fewer InsertU cache entries updated. At this point,
cache entries for InsertD and ReverseD will be prevalent.

Each operator might have its own typical behaviour, which works differently depending
on the connectivity of the graph. Because of this, analysis of the computational complexity
is difficult. However, looking at how the algorithm behaves as above, the cache performs
better with a sparse graph. With an almost empty graph, the cache needs to update very

few entries, and so the validity checking procedure would finish in a small constant time,
irrespective of the number of nodes in the graph. In this case, the speed-up is in the
order of 0(n2).

With a graph that is almost completely connected, many entries would have to be
updated. In this case, there would be no benefit to the cache. The applicability of this
method would, therefore, depend on how highly connected the final graph would be.
With a high degree of connectivity, any benefits of using a cache would be confined to
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the start of a run. With a lower degree of connectivity, these would be felt throughout
the run.

6.2 Using Ant Colony Optimisation in Learning an

Equivalence Class

In this section the results of experiments performed according to the methodologies
given in Section 5.3 will be presented. In 5.3, two experimental conditions were given.
The first dealt with analysing the behaviour of ACO-E with respect to its parameters
and in comparison to other metaheuristic algorithms that shared similar behaviour.
The second condition dealt with comparing ACO-E to other state-of-the-art Bayesian
network structure learning algorithms. These results will be presented in this order,
followed by a discussion and interpretation of these results.

6.2.1 Results

The results for experimental condition 1 and condition 2 are presented below.

6.2.1.1 Experimental Condition 1

The results of the runs using experimental condition 1 are shown in two sets, which
reflect how they will be analysed later. Firstly, detailed results for ACO-E are shown in
Tables 6.4, 6.5, 6.6 and 6.7. In these tables, the figures given for each parameter value
are the results averaged over all other parameters; e.g. the figure for p = 0.1 is given by
calculating the mean and standard deviation over all results with p = 0.1. In this case,

the size of the samples will be 216, and will be calculated over all combinations of the
values of the other parameters m, p, qo and ft as shown in Table 5.3 and using the values
of N', k, tmax and tstep specified in that table. It should be noted that the specific values
of p = 0 and ft = 0 are special cases. When p = 0, there is no pheromone evaporation and
no pheromone deposition on the graph; i.e. pheromone plays no part in the algorithm.
With ft = 0, there is no heuristic used whilst the ants traverse the construction graph.

The same results are presented differently in Table 6.8 and Figures 6.9 to 6.26. These
show the behaviour of ACO-E against other algorithms, both as a function of the al¬
gorithm iteration (Figures 6.9 to 6.26) and as a final value (Table 6.8). In these results,
the iterations figure is that for ACO-E and ACO-B. The EPQ iteration number is three
times that of the shown iteration. As such, whilst ACO-E and ACO-B were run for 200
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iterations, EPQ was run for 600 and the results scaled to 200. This was done so as to

compare the steady state behaviour of the algorithms when they were close to their
limiting values. As such, the number of iterations is somewhat arbitrary.



0.0

0.1

0.2

0.3

0.4

0.5

Alarm(x-105) Barley(x-105) Diabetes(x-105) HailFinder(x—105) Mildew(x—105) Win95pts(x—104)
1.0383±0.0037 5.0756±0.0136 1.9394±0.0032 4.9207±0.0039 4.5426±0.0096 9.4322±0.0448
1.0385±0.0036 5.0697±0.0039 1.9391±0.0034 4.9206±0.0038 4.5412±0.0091 9.4169±0.0433
1.0387±0.0035 5.0702±0.0096 1.9394±0.0029 4.9204±0.0042 4.5417±0.0101 9.4086±0.0452
1.0385±0.0037 5.0696±0.0039 1.9386±0.0034 4.9210±0.0034 4.5401±0.0094 9.4125±0.0454
1.0388±0.0037 5.0699±0.0041 1.9395±0.0034 4.9202±0.0040 4.5388±0.0083 9.4154±0.0457
1.0380±0.0038 5.0699±0.0041 1.9393±0.0035 4.9207±0.0037 4.5395±0.0090 9.4210±0.0468

0.7

0.75

0.8

0.85

0.9

0.95

Alarm(x-105) Barley(x-105) Diabetes(x—105) HailFinder(x—105) Mildew(x-105) Win95pts(x—104)
1.0385±0.0035 5.0703±0.0066 1.9391±0.0035 4.9207±0.0039 4.5362±0.0069 9.4200±0.0453
1.0388±0.0035 5.0704±0.0065 1.9391±0.0033 4.9208±0.0035 4.5378±0.0074 9.4183±0.0441
1.0383±0.0035 5.0705±0.0060 1.9393±0.0032 4.9208±0.0038 4.5389±0.0084 9.4199±0.0462
1.0382±0.0035 5.0708±0.0057 1.9393±0.0035 4.9205±0.0038 4.5410±0.0098 9.4192±0.0481
1.0386±0.0039 5.0710±0.0073 1.9393±0.0035 4.9204±0.0040 4.5430±0.0097 9.4160±0.0468
1.0383±0.0040 5.0720±0.0126 1.9390±0.0030 4.9204±0.0040 4.5472±0.0092 9.4130±0.0439

Table6.4:MeanandstandarddeviationoftheBDeuscoreforACO-Eforeachparametersetting(theboldfigureisthebestforthatrow)



0.0

0.5

1.0

1-5

2.0

2.5

Alarm(x-105) Barley(x—105) Diabetes(x-105) HailFinder(x—105) Mildew(x—105) Win95pts(x—104)
1.0387±0.0036 5.0775±0.0121 1.9389±0.0033 4.9212±0.0039 4.5378±0.0075 9.4515±0.0505
1.0378±0.0038 5.0694±0.0043 1.9390±0.0034 4.9205±0.0037 4.5371±0.0075 9.4092±0.0404
1.0383±0.0036 5.0689±0.0035 1.9394±0.0034 4.9203±0.0040 4.5392±0.0090 9.4135±0.0420
1.0386±0.0035 5.0696±0.0040 1.9393±0.0032 4.9206±0.0038 4.5404±0.0094 9.4101±0.0385
1.0387±0.0040 5.0697±0.0055 1.9394±0.0032 4.9205±0.0038 4.5440±0.0102 9.4116±0.0444
1.0387±0.0034 5.0698±0.0097 1.9391±0.0035 4.9205±0.0040 4.5456±0.0090 9.4106±0.0427

m

5

7

10

12

15

20

Alarm(x—105) Barley(x—105) Diabetes(x—105) HailFinder(x-105) Mildew(x—105) Win95pts(x—104)
1.0383±0.0036 5.0721±0.0120 1.9392±0.0031 4.9202±0.0041 4.5440±0.0097 9.4201±0.0452
1.0386±0.0036 5.0707±0.00061 1.9392±0.0036 4.9209±0.0037 4.5427±0.0097 9.4190±0.0452
1.0381±0.0037 5.0709±0.0083 1.9391±0.0032 4.9201±0.0039 4.5409±0.0093 9.4178±0.0457
1.0389±0.0037 5.0704±0.0066 1.9392±0.0032 4.9210±0.0040 4.5392±0.0092 9.4188±0.0458
1.0384±0.0039 5.0704±0.0061 1.9391±0.0033 4.9204±0.0036 4.5386±0.0082 9.4164±0.0462
1.0384±0.0036 5.0705±0.0060 1.9394±0.0034 4.9210±0.0037 4.5385±0.0085 9.4145±0.0467

Table6.5:MeanandstandarddeviationoftheBDeuscoreforACO-Eforeachparametersetting(theboldfigureisthebestforthatrow)
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p

o.o O.l 0.2 0-3 0.4 0.5

Alarm 6.9 ± 4.9 5.6±3.1 6.0±3.2 5.6±3.3 5.9 ±3.0 5.5±3.0

Barley 56.4±10.8 52.8 ±3.9 53.0 ±4.1 53.2 ±4.4 52.6 ±4.0 52.9 ±4.8

Diabetes 63.5 ±5.8 65.5 ±5.3 65.0±5.4 65.1 ±5.6 64.2±5.4 63.7 ±4.8

HailFinder 50.6 ±6.9 50.5±6.8 51.0 ±7.8 51.8±7.8 51.8 ±6.7 51.1 ±7.9

Mildew 25.7±5.8 22.6± 5.0 22.8 ±5.1 22.0 ±4.9 21.4 ±4.7 21.9±4.8

Win95pts 94.6 ±27.7 83.3± 24.3 81.7 ±20.3 81.9 ±22.9 81.9 ±24.2 83.5 ±21.9

10

0.7 0.75 0.8 o 00 V^I 0.9 0.95

Alarm 5.2±2.5 5.6±3.1 5.4±3.0 6.1 ±3.7 6.4±4.2 6.7 ±4.1

Barley 53.9 ±5.9 53.6 ±5.8 53.3±5.4 53.4 ±5.9 53.1±5.8 53.6 ±7.2

Diabetes 62.1±4.8 62.6 ±4.9 63.4 ±4.9 64.7 ±5.4 66.1 ±5.3 68.1±4.7

HailFinder 52.1 ±7.3 51.9 ±7.5 51.5 ±8.2 50.7±7.1 50.6±7.7 50.0±5.9

Mildew 20.2±3.8 21.1 ±4.7 21.5 ±4.8 22.6 ±5.1 24.3 ±5.4 26.6±4.9

Win95pts 90.3 ±23.5 88.1 ±24.5 84.9 ±22.6 83.2 ±22.5 81.0 ±22.2 79.3 ±27.1

P

0.0 0.5 1.0 i-5 2.0 2-5

Alarm 7.4±5.1 4.3 ±1.1 4.9 ±2.4 5.4 ±2.8 6.2±3.6 7.2± 3.7

Barley 61.4±9.0 52.0 ±3.9 51.9±3.0 51.7 ±3.3 51.9±3.3 52.0 ±3.7

Diabetes 64.3 ±4.9 64.3±5.5 64.2 ±5.5 64.7±5.1 64.6±5.9 64.8±5.5

HailFinder 52.2±7.0 52.0± 6.5 51.5 ±6.7 50.1±8.0 50.3±8.0 50.5±7.5

Mildew 20.9±4.9 20.9±4.0 21.9±5.0 22.4±5.1 24.6 ±5.4 25.7±5.2

Win95pts 109.1±28.6 89.6 ±23.9 79.8 ±17.9 77.0 ±17.2 77.1 ±19.3 74.4 ±15.5

m

5 7 10 12 15 20

Alarm 7.1 ±4.3 6.6 ± 3.8 5.9±3.5 5.2±2.8 5.7±3.6 5.1±2.4

Barley 54.3 ±7.3 52.8 ±5.3 53.8 ±6.6 53.2 ±5.7 53.7 ± 5.8 53.1±5.1

Diabetes 66.2±5.1 65.8±5.9 64.1±5.4 64.5±5.6 63.5±5.4 62.8±4.7

HailFinder 50.5 ±7.2 50.5±6.7 51.0 ±6.5 51.8±7.0 51.4±8.5 51.6±7.9

Mildew 24.6 ±5.3 23.9 ±5.6 22.7 ±5.5 22.2 ±4.9 21.6±4.7 21.4±4.7

Win95pts 83.3 ±23.3 83.0 ±21.9 85.6 ±26.2 85.5 ±22.1 85.5 ±25.0 84.0 ±25.5

Table 6.6: Mean and standard deviation of the SHD for ACO-E for each parameter

setting (the bold figure is the best for that row)
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p

0.0 0.1 0.2 0.3 0.4 0.5

Alarm 4.6±3.0 3.8 ±1.7 4.0 ±1.6 3.8 ±1.8 3.9 ±1.6 3.7 ±1.6

Barley 41.1±7.8 38.4±3.2 38.8 ±3.5 38.8±3.2 38.2±3.2 38.2±3.4

Diabetes 43.2 ±3.7 44.4 ±3.4 44.2 ±3.6 44.0±3.6 43.5 ±3.6 43.1±3.2

HailFinder 30.3±4.7 30.0±4.9 30.5±5.2 31.1 ±5.8 31.0±4.8 31.2 ±5.1

Mildew 19.5 ±4.3 17.3 ±4.1 17.4 ±4.1 16.7±4.0 16.3 ±3.8 16.7±3.9

Win95pts 78.2 ±22.2 68.3± 19.6 67.1 ±16.6 67.4 ±18.1 66.9 ±19.8 69.1 ±18.0

Ho

0.7 0.75 0.8 0.85 0.9 0.95

Alarm 3.6 ±1.4 3.8 ±1.7 3.7 ±1.7 4.1±2.1 4.3 ±2.4 4.4±2.3

Barley 39.2 ±4.5 38.9 ± 4.1 38.8±4.0 38.8±4.4 38.7±4.2 39.1±5.4

Diabetes 42.3±3.2 42.5 ±3.2 43.0 ±3.2 43.9 ±3.6 44.7 ±3.4 46.2±3.0

HailFinder 31.3 ±5.6 31.3 ±5.6 31.3 ± 5.8 30.7±4.8 30.0±4.9 29.5±3.1

Mildew 15.3±3.0 15.9 ±3.5 16.3 ±3.8 17.3 ±4.1 18.5 ±4.3 20.4 ±3.9

Win95pts 74.1 ±18.9 72.4 ±19.9 70.1 ±18.1 68.7 ±18.6 66.8±17.9 65.1 ±22.1

P

0.0 0.5 1.0 1-5 2.0 2.5

Alarm 5.1 ±3.2 3.2±0.6 3.4±1.2 3.7 ± 1.4 4.0 ±1.8 4.9 ±1.9

Barley 43.8 ±6.5 38.0±3.5 38.0±2.9 37.7 ± 3.2 37.9±3.0 38.1 ±3.4

Diabetes 43.7 ±3.2 43.8 ±3.8 43.6±3.6 43.8 ±3.5 43.7 ±3.8 43.8±3.4

HailFinder 31.3 ±5.2 30.9±5.0 30.9±5.2 30.3±5.1 30.6±5.0 30.2±5.0

Mildew 15.8 ±3.6 15.7 ±3.2 16.6±4.0 17.1 ±4.1 18.8±4.3 19.7 ±4.2

Win95pts 90.1±22.8 73.1 ±19.5 66.0 ±14.3 63.1 ±13.9 63.8 ±15.5 60.9±12.4

m

5 7 10 12 15 20

Alarm 4.6 ±2.5 4.3 ±2.1 3.9 ±1.9 3.6±1.6 3.8 ±2.0 3.6±1.4

Barley 39.5 ±5.5 38.4±3.9 39.2±4.8 38.6±4.2 39.1±4.4 38.7±3.9

Diabetes 44.8 ±3.4 44.6 ±3.7 43.6±3.5 43.7 ±3.6 43.1 ±3.6 42.7±3.1

HailFinder 30.2±5.6 30.0 ± 4.4 30.5±4.6 31.1 ±5.1 30.9 ±5.6 31.5 ±5.8

Mildew 18.8±4.2 18.2±4.4 17.3 ±4.2 16.9±4.0 16.3±3.8 16.2±3.8

Win95pts 68.8±19.4 68.5 ±17.8 70.5 ±21.1 70.0 ±17.9 70.3 ±19.9 69.0±20.7

Table 6.7: Mean and standard deviation of the ESHD for ACO-E for each parameter

setting (the bold figure is the best for that row)



ACO-EGREEDY-EACO-BEPQ
SHD5.9±3.521.9±9.011.9±11.926.1±13.4

AlarmESHD4.0±2.013.5±6.08.1±8.118.6±9.7 BDeuScore(x-105)1.0385±0.00371.0389±0.00391.0388±0.00381.0415±0.0045 SHD53.5±6.0104.8±9.767.3±21.6101.4±14.4
BarleyESHD38.9±4.578.5±8.350.4±16.576.9±11.4 BDeuScore(x-105)5.0708±0.00785.2449±0.01245.0944±0.04235.2354±0.0628 SHD64.5±5.469.2±3.070.7±8.577.2±7.1

DiabetesESHD43.7±3.646.5±1.950.0±6.355.1±4.5 BDeuScore(x-105)1.9392±0.00331.9394±0.00331.9406±0.00411.9457±0.0048 SHD51.1±7.349.1±0.874.1±19.782.8±18.2
HailFinderESHD30.7±5.128.1±0.753.8±14.062.9±13.2 BDeuScore(x-105)4.9206±0.00384.9213±0.00364.9248±0.00584.9481±0.0177 SHD22.7±5.329.3±0.736.1±14.050.3±13.8

MildewESHD17.3±4.222.7±0.526.7±10.239.2±10.7 BDeuScore(x-105)4.5407±0.00934.5531±0.00394.5548±0.01704.6148±0.0369 SHD84.5±24.1104.9±15.5178.9±58.8220.1±31.6
WinpsptsESHD69.5±19.588.3±12.9146.7±48.7184.9±26.6 BDeuScore(x-104)9.4178±0.04579.4649±0.04669.4589±0.07179.9181±0.0970

Table6.8:Meanandstandarddeviationformetaheuristicalgorithms(theboldfigureisthebestforthatrow)
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Figure 6.9: BDeu scores for metaheuristic algorithm comparison - Alarm
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Figure 6.12: BDeu scores for metaheuristic algorithm comparison - HailFinder



6.2. Using Ant Colony Optimisation in Learning an Equivalence Class 151

-4.5

-4.5S

-4.6-

HI

8 -4 6
CO

-4.

-4.7;

X 10

-4.8 _1 L. _J I L.

ACO-E
ACO-B
EPQ
GREEDY-E

0 20 40 60 80 100 120 140 160 180 200
Iterations

Figure 6.13: BDeu scores for metaheuristic algorithm comparison - Mildew
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Figure 6.14: BDeu scores for metaheuristic algorithm comparison - Win95pts
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Figure 6.16: SHD for metaheuristic algorithm comparison - Barley
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Figure 6.17: SHD for metaheuristic algorithm comparison - Diabetes
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Figure 6.18: SHD for metaheuristic algorithm comparison - HailFinder
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Figure 6.20: SHD for metaheuristic algorithm comparison - Win95pts
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Figure 6.22: ESHD for metaheuristic algorithm comparison - Barley
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Figure 6.23: ESHD for metaheuristic algorithm comparison - Diabetes
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Figure 6.24: ESHD for metaheuristic algorithm comparison - HailFinder
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Alarm Barley HailFinder Mildew

ACO-E 16.4± 4.7 80.9 ±5.3 55.0 ±5.3 31.0±3.6

MMHC 9.6±7.0 102.6 ±9.2 208.0 ±1.6 58.4±7.4

ORi k = 5 27.8 ±10.0 109.6 ±9.5 190.8 ±14.1 70.6 ±4.2

ORi k = 10 31.2 ±11.1 113.6 ±15.6 183.2 ±14.9 75.6 ±6.3

ORi k = 20 37.8±9.4 136.4±2.9 184.6 ±17.2 75.0 ±4.8

OR2 k = 5 21.2± 4.6 120.0 ±4.5 184.6 ±14.5 69.2±3.3

OR2 k = 10 33.2±5.4 109.2 ±16.2 187.0 ±15.7 64.0 ±4.4

OR2 k = 20 39.4±6.5 116.8 ±18.4 200.8 ±9.2 67.4 ±3.4

SCk = 5 34.2±3.6 129.6 ±13.1 194.2 ±2.5 N/A

SC k = 10 20.4±11.8 N/A N/A N/A

GS 58.8±6.5 143.3 ±7.3 204.2± 9.9 62.2 ±12.2

PC 15.2± 1.5 610.0 ±10.6 385.6 ±12.5 421.2 ±10.7

TPDA 9.6± 1.5 207.2 ±4.0 255.4 ±3.4 97.8±6.8

GES N/A 159.0 ±0.0 154.6 ±54.3 38.8±0.8

Table 6.9: SHD mean and standard deviation for state-of-the-art algorithms (the bold
figure is the best for that column)

6.2.1.2 Experimental Condition 2

The results of the experiments conducted to experimental condition 2 are reported here.
The second set of comparisons involved ACO-E against other state-of-the-art Bayesian
network structure learning algorithms.

The results of this comparison are shown in Table 6.9 and Figures 6.27 to 6.30. The
acronyms specified are as given by Tsamardinos et al. (2006) and are indicated in Section
5.3.1.2. Some of the results as supplied by Tsamardinos et al. are missing and are marked
by 'N/A' in Table 6.9 and are not stated in Figures 6.27 to 6.30. If a result is out of the
range of most others, it is represented as a number stating the median. An example of
this is in Figure 6.28, where the median of the PC algorithm results is shown as 620.
Note that this is different to the value in Table 6.9, where the value 610 is the mean

value. The format of the figures is a notched box-and-whisker plot. The centre line in
the box is the median, whilst the ends of the box mark the upper and lower quartiles.
The whiskers extend to the most extreme value inside 1.5 times the interquartile range,
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with the red crosses marking outliers. The notches in the boxes represent the confidence
surrounding the median. The length of the notch indicates a 95% confidence interval, cal¬
culated as Median± (1.574 x Interquartile Range) /-^Number of Samples (McGill et ah,
1978). Smaller distances from the top notch to the bottom notch indicate more certainty
of the median. If the notches of two boxes do not overlap, then they differ at the 5%

significance level.

6.2.2 Discussion

The section will discuss the results presented in the previous section. In general, the
discussion will involve looking at the BDeu score, SHD and ESHD values (as defined in
Section 5.3.2) obtained by the algorithms. It should be noted that a better BDeu score does
not necessarily mean a better SHD or ESHD value and vice-versa. This can occur because
of small sample sizes and because of the parameters given to the scoring function (such
as the estimated sample size and k value) which have been shown to produce differences
in scoring function behaviour (Kayaalp and Cooper, 2002). In general, different data sets
are associated with different parameter values at which the algorithms behave optimally
and there does not seem to be a general method to find the optimal values. This problem
has been looked at in some depth by Silander et al. (2007).

The first figures to be looked at will be those in Tables 6.4 to 6.7. These presented
the results of experiments that varied the parameter values of the ACO-E algorithm.
Looking at these figures, there is evidence that the ACO-E algorithm provides behaviour
that is better than a simple greedy search for a wide range of values of the parameters.

The next results that will be looked at are Table 6.8 and Figures 6.9 to 6.26. These
present ACO-E against other metaheuristic algorithms that are similar. In these results
there is strong evidence that ACO-E is performing well against the other algorithms.

Finally, the results given in Table 6.9 and Figures 6.27 to 6.30 will be discussed. These
present a series of tests comparing ACO-E to other state-of-the-art Bayesian network
structure learning algorithms. Again, looking at the figures, there is strong evidence that
ACO-E is competitive in its performance.

In order to perform a comparison, statistical tests will be needed. Because of the
non-normality of the distributions of some of the results, tests other than the one shown
in Sections 6.1.2.1 and 6.1.2.2 will be used. These are presented below.
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Figure 6.27: SHD results across various state-of-the-art algorithms - Alarm

Figure 6.28: SFID results across various state-of-the-art algorithms - Barley
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6.2.2.1 Jarque-Bera Test

The Jarque-Bera Test (Jarque and Bera, 1980) is used to detect whether a given sample of
data is normally distributed and is based on the skewness and kurtosis of the data, i.e.
how predominant a tail is and how squat the distribution is. A statistic JB is found using

where S is the sample skewness and K is the sample kurtosis and n is the number of
observations. The distribution of JB is asymptotically x2 with 2 degrees of freedom.
Therefore, given a significance level a, a critical value can be found by looking up the x2
table at v = 2 and a. It can be useful to note that the convergence to the x2 distribution is
quite slow, so it can be safer to use a special table of JB distribution quantiles.

6.2.2.2 The Mann-Whitney U Test

The Mann-Whitney U test (Mann and Whitney, 1947) (also known as the Wilcoxon
(1945) rank-sum test) is a non-parametric test (i.e. it does not assume any particular
distribution of the data, such as the normal distribution). In general, it is used to test
whether two samples come from the same distribution - in particular, it is used to test
whether the means are the same. Firstly consider two samples X and Y. Rank all the data
in X and Y together. Let Rx be the sum of the ranks of the X data in the ranking and
similarly for Y. A statistic U is calculated for sample X as

where rix is the number of samples in X and similarly for Y. Given a significance level a

and nx and riy, such that nx < ny, a critical value can be found. The null hypothesis is
that X = Y. For a lower one-tailed test, X < Y if Ux is less than this critical value. For an

upper one-tailed test, X > Y if Ux is greater than the 1- a critical value. For a two-tailed
test, the significance level used is «/2 and the smaller of Ux and Uy is checked.

If the sizes of both samples are above 20, then the distribution of U is roughly normal.

6.2.2.3 Conover's Squared Ranks Test

Conover s (1999) squared ranks test is a non-parametric test, that is used to check whether
the variances of two distributions are the same. It works in a similar fashion to the Mann-

Whitney U discussed above. Instead of ranking the data, the absolute difference from the
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mean of the data is ranked, i.e. |X; - X| and \Yj- Y| are ranked together, for all i and j. A
statistic T is calculated as the sum of the squares of all the rankings of the variable X, i.e.

»x

T=£(R(X,))2,
1=1

where R(X,) is the ranking of datum X;. Given nx, ny and a significance level a, a

critical value can be looked up in a table. To check if Var(X) is less than Var( Y), T is
checked to be less than this value. If so, then the null hypothesis can be rejected. To check
if Var (X) is greater than Var (Y),T is checked to be greater than the I-a critical value.
In a two-tailed test, both checks are done, at the a/2 and 1 - «/2 significance levels.

6.2.2.4 ACO-E Behaviour

In this section the behaviour of ACO-E as its parameters are varied will be analysed. As
shown in Tables 6.4 to 6.7 there is evidence that there is a difference in the behaviour
of the ACO-E algorithm depending on the input parameters. These differences will
be analysed using the two-tailed Mann-Whitney U test described above or a standard
Student's T test. The particular test used depends on the normality of the data, which
can be tested with the Jarque-Bera test.

In order to perform this comparison, the best figures from Tables 6.4 to 6.7 will
be compared to the situation where that particular part of the ACO-E algorithm has
been turned off. E.g. in Table 6.4 on the Alarm row, the best figure is at p = 0.5. This is
compared to the value at p = 0.0, as at this value no pheromone deposition or evaporation
is occurring. The values at which the various parts of the ACO-E algorithm have been
'turned off' are p = 0.0, qo = l and /? = 0.0. For the value of qo = 1, the algorithm behaves
purely in a greedy fashion. Therefore for the purposes of testing, the value of the GREEDY-
E algorithm in Table 6.8 will be used for comparison, as these results would be exactly
the same as the case where qo = 1. The results of these comparisons are shown in Table
6.10. This table shows p-values for each comparison.

The Behaviour of p Looking at Table 6.10 the results for p that seem most certain
are those for Barley, Mildew and Win95pts. Looking at Tables 6.4, 6.6 and 6.7 for these
networks, the best values of p are in the 0.2-0.4 range. Also looking at the features of
these networks in Table 5.1 there is a correspondence of p = 0.2 to 76 nodes (Win95pts),
p = 0.3 to 48 nodes (Barley) and p = 0.4 to 35 nodes (Mildew). Whilst not conclusive,
this suggests that p behaves well in the region 0.2 - 0.4 (for those data sets that it works
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P <?0 P

Alarm

SHD

ESHD

BDeu Score

8.0 xlO"4

6.5 xl0~5

1.7 xlO"1

4.3 x 10-91

3.0 xlO-80

2.1 xlO-2

1.3 xlO"16

2.1 xlO"16

9.1 xlO-3

Barley

SHD

ESHD

BDeu Score

1.3 xlO"6

5.0 xlO-7

1.3 xlO"9

4.2 xlO"230

2.0 x 10-182

2.9 x 10"72

6.9 xlO-41

1.5 xlO-30

2.5 xlO-26

Diabetes

SHD

ESHD

BDeu Score

1.0x10°

9.4 xlO"1

9.2 xlO-3

3.6 x10-42

4.8 xlO-39

2.8 xlO"1

8.7 xlO-1

8.0 xlO-1

1.0x10°

HailFinder

SHD

ESHD

BDeu Score

9.3 xlO"1

4.9 xlO-1

1.9 xlO"1

3.3 xl0~2

3.3 xlO-10

1.1 xlO"2

5.5 xKT3

3.3xl0-2

2.7xl0-2

Mildew

SHD

ESHD

BDeu Score

5.1 xlO-16

6.8 xlO"15

1.4 xlO"5

3.6 xlO-125

8.8 xlO"131

8.0 xlO-63

1.0x10°

9.1 xlO"1

3.5 x 10_1

Win95pts

SHD

ESHD

BDeu Score

4.9 xlO"8

4.2 xlO-8

1.3 xlO"7

9.0 xlO-41

1.7 x 10~44

2.0 xlO-26

5.3 xlO-44

8.1 xlO-48

2.2 xlO-18

Table 6.10: Comparisons of parameter behaviour
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at all). As an example consider the Barley values for p = 0.0 and p = 0.3 in Table 6.4. At
p = 0.0, there is a mean score of-5.0756 x 105, with a standard error of 0.0136/\/216 =

0.0009 x 105. At p = 0.3, there is a mean score of -5.0696 x 105, with a standard error

of 0.0039/V/216 = 0.0003 x 105. It is obvious from these figures that there is a definite
difference between the mean scores.

Looking again at the figures, there is a suggestion that datasets with more nodes
would use smaller values of p. This makes sense, as larger networks would probably need
to spend more time following the best solutions, as a low value of p would provide.

The Behaviour of qo The parameter qo appears to have an effect on most of the
networks, with the possible exception ofHailFinder. For some ofthe networks (Alarm and
Barley) the parameter has a large effect over a wide range, whereas for others (Diabetes,
Mildew and \Vin95pts), the effect depends to a large extent on the value for q0. The
largest effects from a scoring function point of view appear to be on the Barley, Mildew
and Win95pts networks.

Looking at these networks, the large variations in behaviour across different values
of qo make it difficult to predict what the best value of the parameter might be for a

particular data set. One rule of thumb might be that smaller values of qo create more

exploration and so might be useful for smaller data sets, whereas larger data sets need
more exploitation in order to get to a reasonable answer.

The Behaviour of (3 From Table 6.10, the networks for which the parameter (3 plays
the most role appear to be Alarm, Barley and \Vin95pts. Because of the differences of the
best values between the scoring function and the SHD it is difficult to predict the best
value for (3. In the case of Barley, the behaviour is quite robust to values of /3 in the range

0.5 - 2.5. However, for Alarm and Win95pts, the behaviour depends on the value of the
parameter, with a smaller value being better for Alarm and a larger value for Win95pts.
As a rule of thumb it appears that networks with fewer numbers of nodes need smaller
values of f3 to help avoid local minima, whereas networks with more nodes need larger
values of /3 in order to focus the search more effectively.

The Behaviour of m Looking at Tables 6.5, 6.6 and 6.7 it can be seen that the value
of m can sometimes have a small effect on the effectiveness of ACO-E. In this case, the

effect is most pronounced on the Alarm, Diabetes and Mildew networks, with higher
values of m giving a smaller SHD and ESHD. Indeed in all cases, higher values of m
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never produce statistically worse results, as is to be expected. However, it is important to
bear in mind the increased running times with larger values of m.

General Discussion The reason for the strange behaviour of the HailFinder results can

possibly be explained by examining its graphs of BDeu score function and SHD/ESHD
against time (Figures 6.12, 6.18 and 6.24). It can be seen that as the BDeu score is im¬
proving over iterations, the SHD/ESHD value is deteriorating. This might lead one to the
conclusion that there is a problem with the BDeu scoring function for the HailFinder case,

perhaps with its parameters. Another plausible reason for the HailFinder and Win95pts
results being out of sync with the others is that they are larger networks, which might
favour more aggressive exploitation of the best-so-far solution than the smaller ones.

In this case, this would correspond to lower values of p and higher values of qo■ Also
heuristic information might be more useful with large numbers of variables, leading to
the better results with large values of /3. Note that these problems with the HailFinder
network have also been seen by de Campos and Castellano (2007).

Comparing the values for SHD and ESHD, it is seen that the optimum values are

identical in almost every case; any discrepancies are most likely due to rounding. This
lends evidence to the assertion that the ESHD is as at least as useful as the SHD in

measuring the quality of reconstructed network structures. Also, in all cases the ESHD
value is less than the SHD value. This behaviour is expected from the ESHD's role in

seeing how many edits would be needed to turn one structure into another.

6.2.2.5 Behaviour of ACO-E with Respect to Test Network

In the previous section, it was seen that ACO-E can be a useful algorithm in learning the
structure of Bayesian networks. It was also seen that the values of the parameters that
produced the best behaviour depended on the network that was being tested. Some rules
of thumb that consolidate the characteristics observed in the previous section were:

• For data with more variables, use lower values of p, higher values of qo and higher
values of /3.

• For data with less variables, use higher values of p, lower values of qo and lower
values of /3.

However, it was also seen that ACO-E is not always very successful in learning. This was

because little difference was seen when certain parameters were 'turned off' with certain
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networks. Looking again at Table 6.io, it seems that the networks for which the effect
was most felt were the Barley, Mildew and Win95pts networks. But why is this?

Looking at Table 5.1 there does not seem to be any discernible pattern between
the network properties and the suitability of the algorithm. However, the values of the
number of v-structures normalised by the number of nodes in the graph, along with
the distributions of the nodes across in-degree, as shown in Figures 5.1 to 5.6 show a

more definite reason. The networks with which ACO-E performed well all have a larger
number of nodes that have a higher in-degree. As a result of this, data sampled from
these networks is better going to match a similar network in the scoring function, i.e. one

that is similar to the standard network. Because the search starts from the empty graph,
it is more likely that the search would get trapped in a local minimum in trying to add
enough arcs to get to the needed number. Due to ACO-E being a stochastic algorithm, it
is able to avoid these local minima.

The upshot of this is that ACO-E would be a good candidate algorithm for data that
contains variables with a large degree of dependence on many other variables.

6.2.2.6 Metaheuristic Algorithm Comparison

Figures 6.9 to 6.26 and Table 6.8 show the results of comparing ACO-E against other
metaheuristic algorithms. It can be seen that ACO-E performs better than the other
algorithms shown, except in the case of the HailFinder network, where GREEDY-E gives
a better result for the SHD/ESHD. However, in this case, ACO-E gives a better BDeu
score value. This is the same as the problem discussed in Section 6.2.2.4, that gave a

better score for a worse structure.

These statements can be backed up by looking at Table 6.11 which gives p-values for a

two-tailed Mann-Whitney U test comparing ACO-E results against the other algorithms
after runs had ended. With this statistic, the smaller the number, the more significant
the test. Since the results from each of the runs come from a separate sample of the
network, the correct tests would be unpaired. The data used in the tests were those from
the metaheuristic algorithm comparison, i.e. over all combinations of the parameters for
ACO-E and ACO-B. It seems that in most cases, the results are highly significant, which
supports the assumption that ACO-E performs well. In the cases where the significance
is not so high (ACO-E BDeu score compared to GREEDY-E BDeu score with the Alarm
network and ACO-E score compared to GREEDY-E BDeu score with the Diabetes
network), it should be noted that tiny changes to the BDeu score value can lead to large
structural changes as an algorithm converges towards the optimum (generating) network.
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In these cases, the SHD and ESHD p-values show a highly significant difference.
Comparisons were also made between the variances of the results as seen in Table

6.12, which gives p-values for Conover's Squared Ranks one tailed test. From this table
it can be seen that ACO-E generally has a lower standard deviation in its results after
finishing its run compared to ACO-B and EPQ. Whilst the standard deviation of results
compared to GREEDY-E are significantly lower with respect to the Alarm and Barley
networks, in the other cases GREEDY-E seems to be the most consistent with regards to
its final results.

It should be noted that non-parametric tests were used, as the results in general, had
non-normal distributions. It should also be noted that some of the results in the tables

might seem incorrect. E.g. in Table 6.11, in the Win95pts-Score row, the test for ACO-B is
more significant than that for GREEDY-E, even though the mean ofGREEDY-E is further
from ACO-E than that of ACO-B in Table 6.8. This is because of the non-normality of
the data, the main reason that non-parametric tests were used.

6.2.2.7 State-of-the-art Algorithm Comparison

In this section, the comparison ofACO-E against other state-of-the-art Bayesian network
structure learning algorithms will be analysed. As shown in Table 6.9 and Figures 6.27
to 6.30, ACO-E appears to have good performance against these other algorithms. The
results of statistical comparisons of ACO-E against these algorithms are shown in Table
6.13.

In this table are shown p-values for individual comparisons of ACO-E against the
other algorithms. The test used for all these comparisons was the Mann-Whitney U
test. This test was used, as the distributions were found to be not normal. At the foot of

the table is the combined p-value found from the individual p-values above it. This is
the total p-value for comparing ACO-E against all the other algorithms. The method of
combining these values was

n

Pcombined ~ 1 — I~T (l~Pi) >
i'=l

where pi is the p-value of entry i in the table, there being n values in total. This method
of combining the p-values is needed because of the chance of causing a Type I error

otherwise. A Type I error is a false positive result, i.e. the null hypothesis is rejected when
it should not be. This can occur in this case because if an experiment with a small chance
of failing is repeated enough times, there will be a large chance that at least one of them
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GREEDY-E ACO-B EPQ

SHD I—1 X o 1 1.6 xlO"31 1.9 xlO-"8

Alarm ESHD 2.0 x 10~112 2.5 x 10-34 1.5 xlO"126

Score 4.3xl0-2 6.0 xlO-3 1.8 x 10-'8

SHD 9.6 x 10-124 1.8 xlO"92 9.3 xlO-123

Barley ESHD 6.3 xl0~124 5.4 xlO"126 2.6 x 10-'23

Score 5.0 xlO-123 5.9 xlO"96 7.0 x 10-'23

SHD 3.1 xlO-34 4.7 xlO-104 1.5 xlO-88

Diabetes ESHD 1.4 xlO"30 6.7 xlO"188 6.6 x 10-"4

Score 2.5x10-' 2.3 xlO-18 4.5 x10"69

SHD 3.8 xlO-12 2.7 x 10-237 1.8 x 10-"

HailFinder ESHD 5.9xlO-20 0 5.5 x 10-"9

Score 4.4 xlO"3 2.2 x 10-93 4.6 x 10-"3

SHD 2.3 x 10-50 4.7 x io-'60 7.5 x 10-"5

Mildew ESHD 7.2 x KT57 1.4 xlO-134 1.9 x 10-"6

Score 7.4 x 10-62 5.7 xlO-"4 5.3 x 10-"8

SHD 1.5 x 10"42 0 4.8 x 10-'23

Win95pts ESHD 5.6 x 10"49 0 4.7 x 10"123

Score 3.0 xlO-37 4.1 x 10-53 5.0 x 10"123

Table 6.11: p-values for Mann-Whitney U test, 10,000 samples
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GREEDY-E ACO-B EPQ

SHD 3.6 xlO-84 2.4 x 10-252 5.3 xlO"104

Alarm ESHD 4.1 xKT103 0 7.3 x 10-117

Score 8.0xl0-2 1.3 xlO-1 5.0xl0-5

SHD 1.3 xlO"61 1.5 x 10-274 2.3 x10-66

Barley ESHD 6.2 xlO-44 7.6 x 10"277 1.6 x 10-69

Score 1.5 xlO-66 0 4.6 x 10-146

SHD 1 1.5xl0-3 1.0 xlO"4

Diabetes ESHD 1 1.2 xlO-13 3.1xl0-5

Score 4.8 xlO"1 2.1 xlO"4 7.3 xlO"8

SHD 1 2.0 x 10-153 2.6 x 10-62

HailFinder ESHD 1 2.5 x 10~169 2.0 xlO"58

Score 9.1 xlO-1 4.3 x 10-23 1.3 x 10"143

SHD 1 1.5 xlO"111 9.3 xlO"54

Mildew ESHD 1 1.3 xlO-77 1.9 xlO"49

Score 1 1.5 x 10-85 8.3 x 10-79

SHD 1 5.7 x 10-209 5.4 xlO-12

Win95pts ESHD 1 8.7 xlO-210 1.4 xlO-13

Score 5.8 xlO"1 2.6 x 10"26 3.2 xlO"38

Table 6.12: p-values for Conover's squared ranks test, 10,000 samples
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Alarm Barley HailFinder Mildew

MMHC 3.2 xlO"2 2.1 xlO"8 2.1 xlO-8 2.1 xlO"8

ORi k = 5 5.9 xl(T4 2.1 xlO-8 2.1 xlO-8 2.1 xlO"8

ORi k = 10 1.9 xlO"5 2.1 xlO-8 2.1 xlO-8 2.1 xlO"8

ORi k = 20 4.1 xlO"8 2.1 xlO"8 2.1 xlO-8 2.1 xlO-8

OR2 k = 5 3.5xl0-2 2.1 xlO-8 2.1 xlO-8 2.1 xlO-8

OR2 k = 10 1.4 xlO-7 l.lxlO-5 2.1 xlO"8 2.1 xlO-8

OR2 k = 20 2.1 xlO"8 3.8 xlO"6 2.1 xlO-8 2.1 xlO-8

SCk = 5 2.1 xlO"8 2.1 xlO"8 2.1 xlO"8 N/A

SC k = 10 8.1 xlO-1 N/A N/A N/A

GS 2.1 x 10-8 4.3 xlO-7 2.1 xlO"8 2.1 xlO"8

PC 4-OxlO-1 2.1 xlO-8 2.1 xlO-8 2.1 xlO-8

TPDA 6.5 xlO"4 2.1 xlO-8 2.1 xlO"8 2.1 xlO"8

GES N/A 2.1 xlO-8 2.1 xlO-8 2.1 xlO-6

Pcombined 3.3x10 2 1.6x10 5 2.5x10 7 2.3x10 6

Table 6.13: p-values comparing ACO-E against state-of-the-art algorithms

will fail. It should be noted that the value at the foot of Alarm does not combine all the

p-values above it. Instead it leaves out those of 'SC k = 10', 'PC' and 'OR2 k = 5'. Using
these results would have resulted in a high combined p-value. Therefore, it could not be
said that the ACO-E results are significantly different from the three results mentioned.
Note that combining the p-values in this manner is not intended to produce a very

accurate figure whether the results are different or not. It is more intended to provide
an illustration of the chance a Type I error occurred. In this case, leaving out the three
aforementioned results is valid as they are explicitly not being compared against.

The results given in Table 6.9 and Figures 6.27 to 6.30 appear to be indicative of
the results as given in Section 6.2.2.4. As discussed there, ACO-E had some effect with
learning in the Alarm network, especially against a straight greedy search. However, most
of this effectiveness appeared to come from the randomness of the search, and did not
make much use of the p and (3 parameters.

On the networks which ACO-E performed well on, Barley and Mildew, this perfor¬
mance is reflected across to the current results as it also performed well here. The results
for the HailFinder network seem surprising, as the ACO-E algorithm did no better than
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a search using GREEDY-E. However, in this figure (6.29), the performance of GES can

also seen to be doing well. As GES works in the space of equivalence classes of Bayesian
networks, it is postulated that ACO-E performs well because of the structure of the search
space.

As ever, comparisons must be taken tentatively, especially in this case, as the results
given by Tsamardinos et al. only have five samples.

6.3 Summary

In this chapter, two main topics were presented; results from the experiments described
in Chapter 5 and a discussion of these results. Similar to previous chapters, two threads
ran through these topics. These were speeding up the learning of Bayesian network
structures as described in Section 4.2 and the ACO-E algorithm as described in Section
4-3-

Firstly the results and discussion of the speeding-up methods were illustrated. The
results suggested a possible improvement in the running time of the ACO-E algorithm.
These suggestions were tested statistically and the results indicated a strong rejection
of the hypothesis that there was no improvement. Other tests were run that attempted
to quantify the speed-up found. It was seen that the speed-up depends on the number
of variables being dealt with. Bringing the theoretical results of Section 4.2.1 into play,
it was shown that the running time was a constant function of the square root of the
running time of the algorithm without the speeding-up methods.

After this, the results and discussion of the ACO-E thread were given. The results
of the experiments with conditions 1 and 2 as presented in Sections 5.3.1.1 and 5.3.1.2

were presented in three parts. These were to enable comparison of the behaviour of the
ACO-E algorithm as its parameters were varied, comparison of the ACO-E algorithm
against other metaheuristic algorithms that were similar and comparison of the ACO-E
algorithm against other state-of-the-art Bayesian network structure learning algorithms.

From the first comparison, certain traits of ACO-E were found. It was seen that
ACO-E does not always work well on all data sets; it performed well on those data sets
that had a high degree of connectivity in a large number of variables. It was postulated
that this is due to local maxima in the learning surface. Being a stochastic algorithm,
ACO-E was able to work around these. The behaviour of the various parameters was

also looked at and it was found that in data sets with many features, ACO-E performed
well with low values of p, high values of qo and high values of /3.
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ACO-E compared well to other metaheuristic algorithms, doing better in all cases. It
also performed well against other state-of-the-art algorithms, doing better against many

of them by a large margin. Part of this performance was attributed to the properties
investigated in Section 6.2.2.5 and also to the search space that ACO-E is defined in.



Chapter 7

Modelling the Circadian Clock of
Arabidopsis Thaliana using a

Dynamic Bayesian Network

The analysis of data obtained from experiments looking at the expression of geneshas become an important topic in the realm of bioinformatics. Whilst other bioin-
formatics tasks such as sequence alignment, gene finding, genome assembly and genome

annotation have proven very amenable to computational analysis, there are tasks which
are intrinsically difficult at the current level ofknowledge. These include protein structure

prediction and modelling gene regulatory networks. The latter will be examined in this
chapter.

These gene regulatory networks will be modelled by using a modified version of
ACO-E to build dynamic Bayesian networks (DBNs). DBNs, as explained in Section
2.1.4.2, are an extension of Bayesian networks. They consist of a prior network, used to
model initial conditions, and a transition network, used to model the effect of interactions

over time. The set of operators used in the ACO-E algorithm will be slightly modified in
order to generate a valid DBN. Whilst DBNs have been used to model gene regulatory
networks by Husmeier (2003), Kim et al. (2003), Perrin et al. (2003), Zou and Conzen
(2005) and others, the method presented here differs in how the data is treated and in
how it can infer interactions at multiple time periods.

With these modifications in place, a set of gene expression data obtained from exper¬

iments observing particular genes of the plant Arabidopsis thaliana will be used. These
genes are known to behave in a clock-like fashion that regulates the function of the plant.

175
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Experiments will be conducted to learn the structure of DBNs using ACO-E. These net¬
works will be compared to a standard network developed by an expert in the field being
analysed. Using these results, the behaviour of ACO-E in constructing gene-regulatory
networks will be investigated.

7.1 Background

Bioinformatics is the marriage of the two fields of biology and informatics. Algorithms
and statistical techniques from various subfields of informatics such as machine learning
are applied to problems in the biology domain that would take much longer if done by
hand. These problems include:

Sequence alignment Arranging sequences of DNA from the the genes of organisms in
order to overlap similar patterns, i.e. to match the sequences as much as possible.
This can enable the identification of the functionality of a gene given that the
functionality of the other gene is known.

Gene prediction Finding out the areas of a gene that are functional and in some cases,

predicting what functionality they have.

Genome assembly Assembling a number of DNA sequences into a single coherent
sequence.

Protein structure prediction Anticipating the structure of a protein (and hence its func¬
tionality) from the sequence of amino acids that compose it.

Genome expression analysis Predicting how genes are expressed (that is, how they turn
'on and 'off' with respect to how other genes are 'on or 'off'). With many genes,
this turns into the study of networks of genes that interact with each other. These
are referred to as gene regulatory networks.

These problems and others are explained in many introductory texts on the subject (Lesk,
2002). The analysis of gene regulatory networks is a hard task. In order to see how various
genes interact, experiments must be performed which measure the expression levels of
these genes. Using this data, it is possible to develop models of genetic systems behaviour.
One of the earliest and still commonly used techniques is to use differential equations
that show how expression levels vary with respect to other expression levels.
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Figure 7.1: Arabidopsis thaliana

However, recent advances in measurement ofgene expression levels, using techniques
such as DNA microarrays, have allowed the measurements of tens of thousands of genes

to be performed simultaneously. With this amount of genes in an organism, all possible
interactions between all the genes cannot be looked at. Therefore, methods involving
graphical representations have become more widely used. These include Boolean net¬
works, networks similar to neural networks, stochastic process calculi and Bayesian
networks.

7.1.1 Data from Arabidopsis thaliana Experiments

The experimental study in this chapter will involve data obtained from experiments on

Arabidopsis thaliana, a small flowering plant shown in Figure 7.1. It has long been used as

a model plant for research (Meyerowitz, 2001), and was the first plant to have its genome

sequenced, by The Arabidopsis Genome Initiative (2000).
The particular experiments in question were designed to study the 'plant circadian

rhythms' of Arabidopsis thaliana, i.e. the oscillating behaviour of plants as they respond
to the change in sunlight (McClung, 2006). Briefly, the expression levels of the genes

in plants tend to synchronise with the rising and setting of the sun, oscillating between
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Condition AT0029 AT0030 AToo3ib AT0032 AT0033 AT0047
Ratio 6:18 9:15 12:12 15:9 18:6 3:21

Table 7.1: Ratio of light to darkness for each experimental condition

high and low levels. However, when the light source is removed, the expression levels
continue to oscillate with the same frequency, with the behaviour decaying over time.

In the experiments, there were in general two phases. The first phase, called the
entrainment, switched the light on and off at regular intervals and lasted three days.
The second phase had constant light and also lasted three days. At intervals of 1.5 hours,
readings were taken of the expression levels of the genes being investigated.

The experiments involved ten different genes: CAB, GI, CCAi, CCR2, LHY, CAT3,
ELF3, PRR9, TOCi and ELF4. Further information about these genes can be found in

(McClung, 2006). There were also six different conditions under which the experiments
were conducted; each condition had a different light period for the entrainment phase of
the experiment. Table 7.1 shows, for each experimental condition, the ratio of light to
dark for that condition. E.g. for condition AT0029, there are 6 hours of light followed by
18 hours of darkness in the entrainment phase. Because the experiments lasted six days,
and a sample was taken every 1.5 hours, there were a total of 96 samples taken for each
condition. The first of these was taken as a reference datum and subtracted from each of

the following samples, leading to 95 samples with which to work.

7.2 Modelling Gene Expression Data using DBNs

It is the stochastic nature of the gene expression process that makes probabilistic models
an appropriate choice in modelling them. One interesting approach is in using Bayesian
networks as a probabilistic model. This enables large scale, non-linear interactions be¬
tween many genes to be represented and simulated. E.g., recent studies by Huang et al.
(2007) have looked at learning Bayesian networks with thousands of genes. The large
amounts of data present in microarray studies can be used to learn both the structure
and parameters of the network - missing values and noise can also be taken care of. Also,
Bayesian networks can be given a causal interpretation. A problem arises however in
that loops are not permitted in Bayesian networks. Therefore, feedback processes cannot
be represented.

A solution to this problem is to use dynamic Bayesian networks. With DBNs, it is
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(a) A cyclic network (b) The loop unrolled into a DBN

Figure 7.2: A Bayesian network unrolled to a dynamic Bayesian network

possible to 'unroll' what would be a loop in a Bayesian network across time. E.g. Figure
7.2 shows a network with a loop being unrolled. Here, the loop involving the variables X,
Y and Z has been transformed into a dynamic Bayesian network, with a time delay of i.
Hence, a feedback loop has been established, with a period of 3i. Note that the looped
network in Figure 7.2 is not properly a Bayesian network, but a representation of what is
wanted (i.e. a feedback loop amongst variables).

7.2.1 Using ACO-E to Learn a Dynamic Bayesian Network

Like most Bayesian network structure learning algorithms, ACO-E is designed to learn
a static structure. Whilst dynamic Bayesian networks are very similar to static networks,
there are slight differences that mean extra care has to be taken when trying to learn
them. Bearing in mind that a DBN has two parts, the prior and transition network, this
section will focus on learning the transition network; the prior network is exactly the
same as a normal Bayesian network.

In a transition network, the nodes are grouped into multiple layers that designate
different timepoints. Arcs can never go back in time and the head of any arc can only be
in a single layer, normally that layer at time t. It is very normal to have two layers, such
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t-3 t-2 t-1 t

Figure 7.3: A 4-layer dynamic Bayesian network

that they correspond to variables at time t and t -1. In fact, in all the general literature
on Bayesian networks surveyed, learning DBNs amounted to learning DBNs with two

layers. However, in general, n +1 layers can be specified, from t - n to t. An example of a

4-layer DBN is shown in Figure 7.3.

When learning such a DBN, it is sufficient to add an extra constraint to the learning
algorithm, i.e. the head ofan arc must always be in the layer at time t. By following this, any

Bayesian network structure learning algorithm that searches through the space of DAGs
can be used and will produce a valid network. Things are more difficult when searching
through E-space. E.g. it does not make sense to insert an undirected arc between the
nodes in two layers, as this implies the arc could be directed either way, whereas it must
be directed forward in time. Therefore, extra conditions must be attached to each of the

operators that are being used to traverse E-space. For each of the operators defined in
Table 4.2 the extra conditions are shown in Table 7.2.

Another change that must be made whilst searching for a DBN through E-space is
to change the DAG-to-CPDAG procedure. This method, as explained by Chickering
(2002a), is used as a subroutine in a search, after an operator has been applied and the
PDAG-to-DAG subroutine has been called. It is used to turn a DAG into the CPDAG

representing the equivalence class of that DAG. When used with a dynamic Bayesian
network, it must be modified so that edges that go forward in time in a DAG are labelled
as compelled in order that they go forward in time in the CPDAG.

Finally, because each datum in the data set corresponds to a different time point, the
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Operator Conditions

InsertU
x and y must be elements of the layer at time t

x-y

DeleteU
No extra conditions

x-y

• y must be an element of the layer at time t

• If x is not an element of the layer at time t, no

other conditions need be checked

DeleteD

x -* y
No extra conditions

ReverseD
x must be an element of the layer at time t

x -> y

MakeV

x -> z<- y
No extra conditions

Table 7.2: Extra conditions for operators in a dynamic Bayesian network

InsertD

x -> y
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scoring function must also look back in time in order to capture past behaviour. E.g.
with the DBN in Figure 7.3 the scoring function must look at the data at the current row

and each row up to three rows back. This can easily be achieved by duplicating data with
variables Xi to Xn to extra variables and offsetting the data forward corresponding to the
offset from t in the DBN. E.g. with the DBN in Figure 7.3 there would be extra variables
Xn+\ to X2n, X2n+\ to X^„ and X^n+i to X4„. The first set of extra variables would have
the data offset by 1 datum, the second by 2 data and the third by 3 data.

With these changes in place, ACO-E can be used to conduct a search for a DBN in
E-space, without any differences in the algorithm itself.

7.3 Experimental Methodology

In order to test the ability of ACO-E to learn a genetic regulatory network, experiments
were conducted using the Arabidopsis thaliana data discussed in Section 7.1.1. This
section will describe the steps taken to achieve this. This includes preprocessing the data,
formulating prior knowledge, designing a methodology to run the algorithm and testing
the results obtained against expert knowledge.

7.3.1 Preprocessing the Data

The data obtained from the experiments described in Section 7.1.1 are continuous in
nature, i.e. they show the level of gene expression as measured. However, most scoring
functions for use with structure learning are based on nominal data, i.e. data that is of a

discrete nature. For the purposes of these experiments, the BDeu scoring function as

described in Section 4.1 was used. For this to be utilised, the data has to be discretised.
Whilst discretising the data is an easy option, there is a problem with this as shown

by Figure 7.4. It can be seen that as the expression level decays after entrainment, the
discretised expression level flatlines, even though there is still oscillatory action occurring.
One way to counter this is to discretise the data into multiple levels. However, in doing so,

the amount of data at each level is reduced. This can lead to less support for dependencies
when a model is fitted to the data, something that should be avoided when there is not
much data to begin with.

In order to avoid this problem the first derivative of the data was taken and the data
discretised as to whether this derivative was greater than or less than zero. The results of
this procedure are shown in Figure 7.5. It can be seen that this discretisation captures the
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Figure 7.4: Expression level of PRR9 in the AT0029 condition

x 104

Figure 7.5: Expression level derivative of PRR9 in the AT0029 condition
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oscillations present in the original data. To the author's knowledge, this is the first time
this has been done when learning gene regulatory networks.

Finally due to the expert being able to provide knowledge on the behaviour of five of
the genes and the light source, these were selected as the variables that would be used
in the construction of the DBN. The genes in question were GI, CCAi, LHY, PRR9 and
TOCi.

7.3.2 Prior Knowledge

In order to provide more meaningful results and to compensate for the absence of much
data, prior knowledge was incorporated into the learning algorithm in the form of
constraints as to the allowable edges. These constraints are summarised below:

• Connections from a variable to the same variable at a later time point were disal¬
lowed. This type of information is trivial and does not add anything interesting to
the model.

• No connection was allowed to the light variable, as this was causally independent
of the gene expression values.

• Since interactions at this genetic level took time in the region of at least one time

step, no connections were allowed among the variables at time t.

• A dynamic constraint was introduced that specified that if a connection was made
from a variable X at time t-i to a variable Y at time t, then no other connection

could be made from X to Y. This is equivalent to saying that variables only affect
each other temporally in a single manner, i.e. from X to Y only ever takes a set
amount of time. Without a constraint such as this, in the absence of much data,

multiple interactions between the same genes at different time points could easily
be inferred.

• The number of slices of a possible dynamic Bayesian network was set to 9, i.e. the
time slice at t and 8 slices back. Xing and Wu (2006) show using DBNs with multiple
layers to model gene regulatory networks with multiple time lags. Flowever, their
methods consider arcs between arbitrary layers that are not at time t. This method
is incorrect, as it means that arcs could be added between nodes without taking
into account the other parents these nodes have.
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7.3.3 Testing Methodology

In order to test the performance of ACO-E in recreating the expert's knowledge, a

series of experiments were conducted. Each experiment used the data described in the
preprocessing section, with the prior knowledge as described above. Also, the BDeu
scoring criterion was used with an empty structure prior. The parameters ofACO-E were

set as p - 0.3, qo = 0.8 and /? = 1. These were selected as reasonable values that should
perform well in most cases.

For each condition described in Table 7.1, experiments were performed, varying the
equivalent sample size Nf over 15 values ranging from 0.0001 to 500. These values were

0.0001, 0.001, 0.01, 0.1,1, 3, 7,10, 20, 30, 50, 80,100, 300, 500. At each level of N', 10

experiments were performed. Also, the data from all the conditions was concatenated
and experiments performed, varying N' over 20 values ranging from 0.01 to 8000. These
values were 0.01, 0.1,1, 3, 7,10, 20, 30, 50, 80,100, 300, 500, 750,1000, 2000, 4000, 6000,

7500, 8 000. Again, at each level of N', 10 experiments were performed.
For each experiment, the resulting DBN was saved for later comparison against the

expert supplied knowledge.

7.3.4 Evaluation Criteria

Evaluating the learnt DBNs was achieved by comparing them against the expert supplied
knowledge. For this task, the knowledge was transformed into a DBN representing the
state of the experts knowledge on the domain. The DBN was validated by the expert
and is shown in Figure 7.6. Note that nodes are not shown if they have no connection to

any other node. Also, although the arcs in the network are definite, the knowledge of
the domain expert was not as definite. Often the time points supplied were of the order
of six hours long, i.e. instead of a definite time lag being given, the lag was bounded by
two times roughly six hours apart. The effect of this would be to reduce the measured
accuracy of any learned network.

To compare a learned network against the standard network, two measures were

used: the true positive rate (TPR) and the false positive rate (FPR). These are defined as

TP
TPR= ———

TP + FN

and
FP

FPR = ————,
FP + TN

where
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Figure 7.6: Expert developed DBN for Arabidopsis thaliana circadian clock
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TP is the number of true positives, i.e. the number of arcs computed present, that are

present. For the evaluation of the networks, this was calculated in two different
ways:

Time Independent True Positive If there was an arc from gene X to gene Y in
the standard network and also an arc from gene X to gene Y in the testing
network, irrespective of the time slice that X is in, then this counts as a true

positive.

Time Dependent True Positive If there was an arc from gene X to gene Y in
the standard network and also an arc from gene X to gene Y in the testing
network, then this counts as a time dependent true positive. The degree to
which it is a true positive depends on the difference of time slices that the
tail of each arc comes from. A difference of 0 gives a true positive of 1 and a

difference of 8 gives a true positive of 0. Other values are calculated linearly
between these two values. E.g. with an arc in the standard network having
the tail in slice 4 and an arc in the testing network having a tail in slice 2,
this leads to a difference of 2, which gives a time dependent true positive of
1 - 2/s = 6/8.

FP is the number of false positives, i.e. the number of arcs computed present that are

absent. If there exists an arc from gene X to gene Y in the testing network and
there does not exist an arc in the standard network, then this counts as a false

positive.

TN is the number of true negatives, i.e. the number of arcs computed absent that are

absent. If there does not exist an arc from gene X to gene Y in the testing network
and there does not exist an arc in the standard network, then this counts as a true

negative.

FN is the number of false negatives, i.e. the number of arcs computed absent that are

present. If there does not exist an arc from gene X to gene Y in the testing network
and there does exist an arc in the standard network, then this counts as a false

negative.

In the work ofXing and Wu (2006), evaluating the learned network proceeds in a different
manner than above. Some problems in their methods include:
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Condition Time Independent AUC Time Dependent AUC Light Ratio

All 0.7913 0.6749 —

AT0029 0.6943 0-5749 6:18

AT0030 0.6597 0.5942 9:15

AToo3ib 0.8234 0.7046 12:12

AT0032 0.7135 0.5696 15:9

AT0033 0.8156 0.7155 18:6

AT0047 0.5200 0.4326 3:21

Table 7.3: Area under the ROC curve for both the time independent and time

dependent true positive cases

• Firstly, as mentioned in Section 7.3.2, the method they use to add arcs can lead to
incorrect conclusions about the structure of the dynamic network;

• Secondly, they don't take into account the time delay when evaluating the learned
network; and

• Thirdly, they don't take any false positive rate into account.

7.4 Results and Discussion

For each condition and each level of N', the mean of the TPR and that of the FPR were

taken over the 10 experiments. This was done for the Time Independent TP (TITP) and
the Time Dependent TP (TDTP). With these results, two different types of graphs were

plotted. The first was the receiver operating characteristic (ROC) curve, which plots the
FPR against the TPR. The second plots the FPR and TPR as a function of N'. The results
of these plots are shown in Figures 7.7 to 7.16. Figures 7.7 to 7.10 show the results for the
concatenated data, i.e. the data from all of the experimental conditions. Figures 7.11 to

7.16 show the results for each of the experimental conditions, from AT0029 to AT0047.
As well as the plots referred to above, the area under the curve (AUC) statistic is

given in Table 7.3. The AUC is the area under the line of the ROC curve. It provides
a single measure of the performance of an algorithm by integrating the FPR and TPR
statistics. As a result of this, the distinction of the tradeoff between FPR and TPR is

lost. However, it can sometimes be useful to have this measure as a means of comparing
different algorithms.
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7.4.1 Discussion of Experimental Results

The value of the equivalent sample size N' has a large effect on learning structure, as

shown by Steck and Jaakkola (2002), Silander et al. (2007) and Kayaalp and Cooper
(2002). Therefore, in learning a Bayesian network structure from data, it is important to
see how this parameter will affect the learnt graph. This is the reason why the experiments
described above were conducted over various values of N'.

Looking first at Figures 7.7 and 7.8, it can be seen that ACO-E does a good job of
identifying all of the connections between the genes as supplied by the domain expert. In
this case, the best value of N' is at 1, where the true positive rate is 1 and the false positive
rate at just over 0.3. With the time dependent TPRs as seen in Figures 7.9 and 7.10, again
the best value of N' is at 1, with a time dependent TPR of around 0.8 and a false positive
rate of 0.3. In this case, 'best' is being taken as the absolute difference between the TPR
and FPR.

These results show that ACO-E is efficient at finding all the connections between the
genes, but not as proficient at keeping out bad connections. Indeed, when examining
a trace of the algorithm it can be seen that spurious connections between highly syn¬

chronised genes are often inserted. E.g. if X causes Y and X causes Z, then a connection
between Y and Z can easily appear. Problems such as these often appear with a small
amount of data and prior knowledge becomes increasingly important in these situations.

With the results of the individual conditions, different behaviours can be observed.

The value of N' for which best results are obtained differs widely depending on the
condition used, ranging from 1 to 100. The different conditions also differ in how good
the results are. E.g. the best performance came from the results with the larger light to
dark ratio, i.e. AToo3ib, AT0032 and AT0033. The worst performance came from the
other conditions, i.e. AT0029, AT0030 and AT0047. Results such as these are plausible,
as having more light in the entrainment phase equates to higher expression levels, which
are less likely to be affected by noise.

It should be noted that not all the expert supplied knowledge is as accurate as may

seem from the standard network. Whilst the time in that network was given in time

steps of 1.5 hours, the knowledge of the expert was often given in terms of much larger
grained steps (e.g. 'the morning'), as opposed to a definite time period. This is an artifact
of the domain in question, as it is not completely understood at the present time. In turn,
it has an effect on the time dependent true positive values obtained from comparing two

networks; with better prior knowledge a more accurate comparison could be used that
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bounds what the correct time lags might be for an arc.
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Figure 7.7: ROC for the time independent TPR and FPR for all data

Equivalent Sample Size

Figure 7.8: The time independent TPR and FPR as a function of N' for all data
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Figure 7.9: ROC for the time dependent TPR and FPR for all data
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7.5 Summary
This chapter developed an application of the ACO-E algorithm that involved learning
gene regulatory networks from gene expression data. This was achieved by learning a

dynamic Bayesian network. For this purpose the following tasks were completed.
Firstly, data from experiments involving the circadian clock of the Arabidopsis

thaliana plant were obtained. The data involved six experimental conditions that varied
the length of the day the plants perceived. This data was preprocessed by a novel method
in relation to learning gene regulatory networks; the first difference was obtained and
this difference discretised into two bins - rising or falling. Then the attributes that could
be validated were selected and data to model the lighting conditions added.

Next the ACO-E algorithm was modified in order that valid dynamic Bayesian
networks would be produced. This was achieved by making sure that arcs always went
forward in time in the DBN. After this, prior knowledge was identified that would enable
meaningful DBNs to be generated. The prior knowledge was needed because of the small
amount of data available to the learning algorithm.

Because of the lack of much previous work on learning higher-order DBNs, new

evaluation criteria had to be defined to judge how well the learned network reconstructed
the expert supplied network. These criteria include:

• A method to provide a time dependent true positive rate depending on how close
an arc is to the expert defined arc; and

• A consistent method to judge the true positives, true negatives, false positive and
false negatives of a learned network compared to a standard network.

The algorithm was then tested over the different conditions and different equivalent
sample size parameters. This was done in order to see whether the algorithm was under
or over-estimating the amount of arcs that were added into a candidate network. Receiver
operator characteristic (ROC) curves and plots of the true and false positive rates against
N' were produced. These showed that the algorithm was adding in slightly too many

arcs; the true positive rate was very high, with the false positive rate quite low. The area

under the curve statistic was also shown for each of the conditions. This showed that the

best results were for the conditions that had the most light in the entrainment phase of
the experiment.



 



Chapter 8

Conclusions and Future Work

In summing up the work of this dissertation, the motivation and objectives given inChapter 1 should be recalled. Accordingly, the main points of these are given here.
The motivations of this work were that:

• Bayesian networks are a useful tool to encode knowledge, but can be difficult to

specify manually;

• Machine learning techniques are advantageous in building Bayesian networks, but
often fall into problems with local maxima; and

• Ant colony optimisation is a useful tool in solving optimisation problems, that can

avoid local maxima in a search space.

With these motivations, the broad aims of this thesis were to:

• Investigate strategies for building Bayesian network structures using machine
learning techniques;

• Seek out and implement solutions to these problems;

• Test these solutions, against themselves with different parameter settings and
against other competing techniques;

• Analyse the results of these tests in order to characterise the performance of the
algorithms; and

• Test the solutions on a real-life problem in order to determine their effectiveness
in an uncontrolled domain.
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8.1 Conclusions

Although the main work of this thesis is on learning Bayesian network structures using
ant colony optimisation, the aims given in the introduction and summarised above are

more generic. In addition, they also specify extra objectives to be met. Therefore, the
summary of the work done will be broken into three sections: speeding up searching
through the space of equivalence classes of Bayesian networks, the ACO-E algorithm and
the application of the ACO-E algorithm to data gathered from experiments performed
on Arabidopsis Thaliana.

8.1.1 Accelerating the Search Through the Space of Equivalence
Classes of Bayesian Network Structures

It was the comparative slowness of the ACO-E algorithm that motivated the techniques
developed in Section 4.2. These methods were designed to speed up the run time of
ACO-E, but are generic enough that they can be utilised on any technique that searches
through the space of equivalence classes of Bayesian networks.

The results of Section 6.1 show that there is a significant difference between the run

time of the ACO-E algorithm when the methods of Section 4.2 are used and when they
are not used. These differences were found by running statistical tests across different
gold-standard networks.

Furthermore, it was found that the speed-up was given as a function of the square

root of the original running time. This was verified both empirically and analytically. In
other words, the speed-up was dependent on the number of variables in the structure;
the more variables, the greater the speed-up.

Finally it was found that any speed-up gained was the same for all the iterations of
the algorithm, i.e. that it was invariant to the length of time that the algorithm was run.

8.1.2 Using Ant Colony Optimisation in Learning Equivalence
Classes of Bayesian Network Structures

The main results in this thesis were on the development of the ACO-E algorithm as an

implementation of the ACO metaheuristic to the problem of learning a Bayesian network
structure that provides a good fit to a set of data. In a nutshell, ACO-E performed well
in reconstructing a test network, from which data was sampled. A more detailed look
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at the behaviour of ACO-E depending on its parameters, the type of test network and
compared to other algorithms will now be given.

8.1.2.1 ACO-E Behaviour as its Parameters are Varied

In analysing the behaviour of ACO-E as a function of its parameters, the best and worst

performing figures were compared, across each range of parameter. The best result was
found when the parameter setting produced either the highest score or the smallest
difference from the test network. The worst result was found when the parameter was

'switched off', i.e. when it had no effect on the algorithm's behaviour.
For all parameters, there was a difference between the behaviour of the best and the

worst settings. Whether this difference was significant or not depended on the particular
network being used as a test; some networks responded better to the algorithm than
others. For those networks that ACO-E worked well with, the following trends were

noticed:

• For data with more features, lower values ofp, higher values of qo and higher values
of jl worked better; and

• For data with less features, higher values of p, lower values of qo and lower values
of p worked better;

where p is the rate of pheromone deposition/evaporation, qo is the balance between
exploration and exploitation and P is the power of the heuristic in the probabilistic
transition rule.

8.1.2.2 The Utility of ACO-E as a Function of the Test Network

It was noticed that ACO-E performed better on some of the test networks than others.
The networks that it fared best with were Barley, Mildew and \Vin95pts, described in
Section 5.1.1. On closer examination of these networks it was found that they had nodes
with a higher distribution of large in-degrees. This corresponded to a large average

number of v-structures (as discussed in Section 2.1.3) Per node value.
The reason that this might make a difference is because nodes with a large number

of v-structures imply more possible local maxima in the search space. Greedy methods
would run into these maxima, whereas ACO-E is able to find its way around them because
of its stochastic nature of not always choosing the best move.
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8.1.2.3 ACO-E Performance Compared to Similar Algorithms

The results of Section 6.2.2.6 show that ACO-E performs well against other algorithms
that are similar in nature. These other algorithms were:

• GREEDY-E, which performs a greedy search in the space of equivalence classes of
Bayesian network structures (Chickering, 2002a);

• EPQ, which performs an evolutionary programming search in the space of equiva¬
lence classes (Cotta and Muruzabal, 2004; Muruzabal and Cotta, 2004); and

• ACO-B, which performs a search using ACO in the space of DAGs (de Campos
et al., 2002a).

In all cases, the BDeu score of ACO-E was better than the score of the other algorithms,
at every iteration. In the case of the structural differences, it was better in all cases, except
that of the HailFinder network, where the odd behaviour of the scoring function meant
better BDeu scores implied worse structural differences. Concurring with the discussion
above in 8.1.2.2, the networks for which ACO-E performed best were the Barley, Mildew
and Win95pts networks.

8.1.2.4 ACO-E Performance Compared to Alternative State-of-the-Art Algo¬
rithms

Similar to the section above, ACO-E performed well in comparison to other state-of-
the-art Bayesian network structure learning algorithms, performing better in 3 out the 4

tested: Barley, Mildew and HailFinder. The first two are networks in which it performed
well in the self test. With the HailFinder network it is postulated that the results are

good because of the search space; good results were also shown for the greedy equivalent
search (GES) algorithm, which also searches through the space of equivalence classes.

Whilst ACO-E did not perform best with the Alarm network, it did not perform
badly either, coming joint third in the rankings. The reasons for the performance on the
Alarm network are discussed in Section 6.2.2.5.

8.1.3 Building a Dynamic Bayesian Network using ACO-E to

Model the Circadian Clock of Arabidopsis Thaliana

Looking at the results of Section 7.4, it can be seen that ACO-E performed well in

reconstructing the gene regulatory network of the circadian clock of the Arabidopsis
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Thaliana plant. With these results there were two main points of interest:

• The equivalent sample size parameter N' of the BDeu scoring function played a

large part in the accuracy of the reconstruction. In most cases, reasonable values
of N' in the range [1,100] provided the best results. However, there was a tradeoff
in the true positive rate and false positive rate as N' was varied.

• Spurious connections can easily be made between genes because of the hardness
of detecting the correct parent given multiple possible time lags. E.g. if in reality,
X causes Y with a lag of 3 and X causes Z with a lag of 8, then the data could
also support X causing Y with a lag of 3 and Y causing Z with a lag of 5. Another
example is if two genes happen to be synchronised, even through there is no

relation between them. In this case, there is a high chance that a link will be placed
between them.

• Because of the high chance of spurious connections, prior knowledge is very

important in these situations, especially with small sample sizes. This knowledge
can help constrain the possible states that a Bayesian network structure can take
and so provide more meaningful results.

• The results are not conclusive because ACO-E was not compared against other
algorithms with this data set.

8.2 Future Work

In performing the work in this thesis, there were many occasions that ideas had to be
left untested due to time constraints. In this section it is hoped to note some of these, so

that the current work can be built upon. ACO-E has shown good potential in accuracy

of learning and there remain directions to be explored that could further improve this
accuracy.

For the purposes of this section, any possible future work will be divided into three
sections: the slowness of the ACO-E algorithm, extending the ACO-E algorithm so as to

produce better results and the application of ACO-E to real-life data.

8.2.1 Speeding up ACO-E and Similar Algorithms

Because of the relative slowness of ACO-E in running, techniques were developed in
Section 4.2 to speed this up. However, although these methods sped up the running time
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tremendously, validity checking still remains the bottleneck when running ACO-E. Also,
the methods are rather cumbersome to implement, especially in terms of updating the
validity cache.

The main problem with these validity checks are the 'path' conditions that must be
satisfied. Each of these requires a traversal of the graph that takes time in 0(v + e) at
the very least, where v is the number of vertices and e is the number of edges. A better
solution would be to have a single traversal of the graph find out all possible moves. For
this to work, the properties of CPDAGs (as discussed in Section 2.1.3) would have to be
examined, and a characterisation given of the types of moves allowed based on distance
between vertices. Some of these characteristics have already been looked at with Section
4.2.1.

8.2.2 Extending ACO-E to Increase Performance and Scalability

Since validity checking is the slowest part of the ACO-E algorithm, it currently remains
the first issue which must be dealt with, in order to improve running times. However, if
that problem is solved then the focus will turn back to the other parts of the algorithm,
particularly the scoring function.

Reducing the Number of Scoring Function Evaluations One very easy way in

cutting down the number of score evaluations would be to have a static heuristic defined
that could say, e.g. what would be the benefit of adding an arc to the empty graph. In this
way, scoring functions would only have to be evaluated once per move and hence lead to
a speeding up of the algorithm. With a situation like this, local search would become
more important in order to 'finish off' traversals to the best possible positions.

Comparing the Computational Complexity of ACO-E to Other Algorithms

Scoring function evaluations are often used as a measure of complexity in Bayesian
network structure learning algorithms. However, this quantity was not measured for
experiments on ACO-E. In the future, a proper comparison of this figure to those ofother
structure learning algorithms would enable the complexity of ACO-E to be quantified.
This is useful as it would provide a measure of the scalability of ACO-E to situations with
large numbers of variables.

Pruning the Search Space Recently, hybrid learning algorithms, as discussed in
Section 2.4.8, have shown good success in learning Bayesian network structures, whilst
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cutting down on running time, sometimes dramatically. They generally work by using a

conditional independence test to discover nodes that would likely be connected to a given
node and remove the rest of them from consideration. This has the effect of requiring less
scoring function evaluations, thus speeding up the algorithm and requiring less memory

to store the results of evaluations. With no bound on the number of possible parents, the
number of cached values would grow at least quadratically with the number of variables
and eventually exhaust the computer's memory.

Applying ACO-E with Different Search Operators to Better Avoid Local Maxima

According to Castelo and Kocka (2003), there are certain operators that are able to
avoid local maxima in a search space, provided that the sample size tends to infinity. An

example of these are the operators given by Chickering (2002b) that are used in a greedy
search in the space of equivalence classes of structures (GES).

However, at small sample sizes these guarantees are not strictly true and search
algorithms can still get caught in maxima. An example of a method that tries to avoid
these is the KES algorithm of Nielsen et al. (2003) that uses the operators in GES, but
has a parameter that controls how often the algorithm acts greedily; when the algorithm
does not act greedily, it chooses a move that is not necessarily the best. Experiments
show that KES behaves better than GES most of the time.

This procedure bears some similarities to ACO-E. If the randomness was augmented
by pheromone and heuristics, there is a possibility that performance would improve
even more.

8.2.3 Applying ACO-E to Real-Life Data

In real-life situations, it is not normal to apply a learning method to a set of data without
sanitising it in some way, especially when the size of the sample is small. When applying
ACO-E to the Arabidopsis Thaliana data, the only preprocessing that was done to the
data was to take the first difference and discretise it.

When the raw data and this difference was analysed, it was found to contain noise,
particularly in the conditions where there was not much light in the entrainment phase.
Without enough light, certain genes were not able to start expressing themselves and get
in phase with the clock. Hence the signal to noise ratio was quite low and artifacts crept
into the discretised data, with spikes appearing at the areas with a low expression level.
This noise would generally have the property of making the results of the various tests
worse.
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In order to handle this, some filtering could be used to clear up the signal. A low-width
median filter applied to the discretised domain would remove the spikes; more trouble¬
some noise could use a wider-band filter. Applying these techniques in consultation with
a domain expert would ensure that minimal information was discarded.

Also, comparing ACO-E against other Bayesian network structure learning tech¬
niques on this data would better characterise its performance and provide a measure of
the problem difficulty.

8.3 Summary

This thesis was concerned with using ACO in learning Bayesian network structures.
In investigating this topic, two novel techniques were devised. The first new technique
dealt with speeding up the learning of Bayesian network structures whilst searching
through the space of equivalence classes of structures. This approach produced an order
of magnitude speed-up in learning structures.

The second new technique devised was the ACO-E algorithm. This used ACO to
conduct a search through the space of equivalence classes of Bayesian network structures.
The algorithm performed better than many other state-of-the-art structure learning
algorithms, over a range of performance measures, in six benchmark data sets. ACO-E
was also able to partially reconstruct a gene regulatory network of Arabidopsis Thaliana.
It did this by constructing an eighth-order dynamic Bayesian network, as opposed to the
first-order networks that are normally created.

ACO-E is a practical algorithm, that has shown great promise in the field of Bayesian
network structure learning. Whilst it performs well in many diverse problem domains,
there are additional innovative directions to be explored, which may further improve on

the results reported in this thesis.



Appendix A

Experimental Bayesian Networks

In the experiments shown in this thesis, six gold-standard networks are used. Theseare the Alarm (Beinlich et al., 1989), Barley (Kristensen and Rasmussen, 2002),
Diabetes (Andreassen et al., 1991), HailFinder (Abramson et al., 1996), Mildew (Jensen,

1995) and Win95pts networks (Microsoft Research, 1995). These networks were chosen
because they covered a wide range of domains, were easily available and all contained
discrete attributes. The last property was important because the scoring criterion that
would be used in the experiments is implemented over multinomial random variables.

Figures A.i to A.6 show the structure of the Bayesian networks in question. Various
properties of these Bayesian networks are shown in Table 5.1.
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Figure A.I: The Alarm Bayesian network
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