5,900 research outputs found

    Time-varying model identification for time-frequency feature extraction from EEG data

    Get PDF
    A novel modelling scheme that can be used to estimate and track time-varying properties of nonstationary signals is investigated. This scheme is based on a class of time-varying AutoRegressive with an eXogenous input (ARX) models where the associated time-varying parameters are represented by multi-wavelet basis functions. The orthogonal least square (OLS) algorithm is then applied to refine the model parameter estimates of the time-varying ARX model. The main features of the multi-wavelet approach is that it enables smooth trends to be tracked but also to capture sharp changes in the time-varying process parameters. Simulation studies and applications to real EEG data show that the proposed algorithm can provide important transient information on the inherent dynamics of nonstationary processes

    Improving the performance of translation wavelet transform using BMICA

    Get PDF
    Research has shown Wavelet Transform to be one of the best methods for denoising biosignals. Translation-Invariant form of this method has been found to be the best performance. In this paper however we utilize this method and merger with our newly created Independent Component Analysis method – BMICA. Different EEG signals are used to verify the method within the MATLAB environment. Results are then compared with those of the actual Translation-Invariant algorithm and evaluated using the performance measures Mean Square Error (MSE), Peak Signal to Noise Ratio (PSNR), Signal to Distortion Ratio (SDR), and Signal to Interference Ratio (SIR). Experiments revealed that the BMICA Translation-Invariant Wavelet Transform out performed in all four measures. This indicates that it performed superior to the basic Translation- Invariant Wavelet Transform algorithm producing cleaner EEG signals which can influence diagnosis as well as clinical studies of the brain

    Exploring EEG Features in Cross-Subject Emotion Recognition

    Get PDF
    Recognizing cross-subject emotions based on brain imaging data, e.g., EEG, has always been difficult due to the poor generalizability of features across subjects. Thus, systematically exploring the ability of different EEG features to identify emotional information across subjects is crucial. Prior related work has explored this question based only on one or two kinds of features, and different findings and conclusions have been presented. In this work, we aim at a more comprehensive investigation on this question with a wider range of feature types, including 18 kinds of linear and non-linear EEG features. The effectiveness of these features was examined on two publicly accessible datasets, namely, the dataset for emotion analysis using physiological signals (DEAP) and the SJTU emotion EEG dataset (SEED). We adopted the support vector machine (SVM) approach and the "leave-one-subject-out" verification strategy to evaluate recognition performance. Using automatic feature selection methods, the highest mean recognition accuracy of 59.06% (AUC = 0.605) on the DEAP dataset and of 83.33% (AUC = 0.904) on the SEED dataset were reached. Furthermore, using manually operated feature selection on the SEED dataset, we explored the importance of different EEG features in cross-subject emotion recognition from multiple perspectives, including different channels, brain regions, rhythms, and feature types. For example, we found that the Hjorth parameter of mobility in the beta rhythm achieved the best mean recognition accuracy compared to the other features. Through a pilot correlation analysis, we further examined the highly correlated features, for a better understanding of the implications hidden in those features that allow for differentiating cross-subject emotions. Various remarkable observations have been made. The results of this paper validate the possibility of exploring robust EEG features in cross-subject emotion recognition
    • …
    corecore