941 research outputs found

    Meditation effects within the hippocampal complex revealed by voxel-based morphometry and cytoarchitectonic probabilistic mapping.

    Get PDF
    Scientific studies addressing anatomical variations in meditators' brains have emerged rapidly over the last few years, where significant links are most frequently reported with respect to gray matter (GM). To advance prior work, this study examined GM characteristics in a large sample of 100 subjects (50 meditators, 50 controls), where meditators have been practicing close to 20 years, on average. A standard, whole-brain voxel-based morphometry approach was applied and revealed significant meditation effects in the vicinity of the hippocampus, showing more GM in meditators than in controls as well as positive correlations with the number of years practiced. However, the hippocampal complex is regionally segregated by architecture, connectivity, and functional relevance. Thus, to establish differential effects within the hippocampal formation (cornu ammonis, fascia dentata, entorhinal cortex, subiculum) as well as the hippocampal-amygdaloid transition area, we utilized refined cytoarchitectonic probabilistic maps of (peri-) hippocampal subsections. Significant meditation effects were observed within the subiculum specifically. Since the subiculum is known to play a key role in stress regulation and meditation is an established form of stress reduction, these GM findings may reflect neuronal preservation in long-term meditators-perhaps due to an attenuated release of stress hormones and decreased neurotoxicity

    Parcellation of the primary cerebral cortices based on local connectivity profiles

    Get PDF
    Connectivity-based parcellation using diffusion MRI has been extensively used to parcellate subcortical areas and the association cortex. Connectivity profiles are vital for connectivity-based parcellation. Two categories of connectivity profiles are generally utilized, including global connectivity profiles, in which the connectivity information is from the seed to the whole brain, and long connectivity profiles, in which the connectivity information is from the seed to other brain regions after excluding the seed. However, whether global or long connectivity profiles should be applied in parcellating the primary cortex utilizing connectivity-based parcellation is unclear. Many sources of evidence have indicated that the primary cerebral cortices are composed of structurally and functionally distinct subregions. Because the primary cerebral cortices are rich in local anatomic hierarchical connections and possess high degree of local functional connectivity profiles, we proposed that local connectivity profiles, that is the connectivity information within a seed region of interest, might be used for parcellating the primary cerebral cortices. In this study, the global, long, and local connectivity profiles were separately used to parcellate the bilateral M1, A1, S1, and V1. We found that results using the three profiles were all quite consistent with reported cytoarchitectonic evidence. More importantly, the results using local connectivity profiles showed less inter-subject variability than the results using the other two, a finding which suggests that local connectivity profiles are superior to global and long connectivity profiles for parcellating the primary cerebral cortices. This also implies that, depending on the characteristics of specific areas of the cerebral cortex, different connectivity profiles may need to be adopted to parcellate different areas

    In praise of tedious anatomy

    Get PDF
    Functional neuroimaging is fundamentally a tool for mapping function to structure, and its success consequently requires neuroanatomical precision and accuracy. Here we review the various means by which functional activation can be localized to neuroanatomy and suggest that the gold standard should be localization to the individual’s or group’s own anatomy through the use of neuroanatomical knowledge and atlases of neuroanatomy. While automated means of localization may be useful, they cannot provide the necessary accuracy, given variability between individuals. We also suggest that the field of functional neuroimaging needs to converge on a common set of methods for reporting functional localization including a common “standard” space and criteria for what constitutes sufficient evidence to report activation in terms of Brodmann’s areas

    Functional sex differences in human primary auditory cortex

    Get PDF
    Background We used PET to study cortical activation during auditory stimulation and found sex differences in the human primary auditory cortex (PAC). Regional cerebral blood flow (rCBF) was measured in 10 male and 10 female volunteers while listening to sounds (music or white noise) and during a baseline (no auditory stimulation). Results and discussion We found a sex difference in activation of the left and right PAC when comparing music to noise. The PAC was more activated by music than by noise in both men and women. But this difference between the two stimuli was significantly higher in men than in women. To investigate whether this difference could be attributed to either music or noise, we compared both stimuli with the baseline and revealed that noise gave a significantly higher activation in the female PAC than in the male PAC. Moreover, the male group showed a deactivation in the right prefrontal cortex when comparing noise to the baseline, which was not present in the female group. Interestingly, the auditory and prefrontal regions are anatomically and functionally linked and the prefrontal cortex is known to be engaged in auditory tasks that involve sustained or selective auditory attention. Thus we hypothesize that differences in attention result in a different deactivation of the right prefrontal cortex, which in turn modulates the activation of the PAC and thus explains the sex differences found in the activation of the PAC. Conclusion Our results suggest that sex is an important factor in auditory brain studies

    Eye muscle proprioception is represented bilaterally in the sensorimotor cortex

    Get PDF
    The cortical representation of eye position is still uncertain. In the monkey a proprioceptive representation of the extraocular muscles (EOM) of an eye were recently found within the contralateral central sulcus. In humans, we have previously shown a change in the perceived position of the right eye after a virtual lesion with rTMS over the left somatosensory area. However, it is possible that the proprioceptive representation of the EOM extends to other brain sites, which were not examined in these previous studies. The aim of this fMRI study was to sample the whole brain to identify the proprioceptive representation for the left and the right eye separately. Data were acquired while passive eye movement was used to stimulate EOM proprioceptors in the absence of a motor command. We also controlled for the tactile stimulation of the eyelid by removing from the analysis voxels activated by eyelid touch alone. For either eye, the brain area commonly activated by passive and active eye movement was located bilaterally in the somatosensory area extending into the motor and premotor cytoarchitectonic areas. We suggest this is where EOM proprioception is processed. The bilateral representation for either eye contrasts with the contralateral representation of hand proprioception. We suggest that the proprioceptive representation of the two eyes next to each other in either somatosensory cortex and extending into the premotor cortex reflects the integrative nature of the eye position sense, which combines proprioceptive information across the two eyes with the efference copy of the oculomotor comman

    Functional coupling between CA3 and laterobasal amygdala supports schema dependent memory formation

    Get PDF
    The medial temporal lobe drives semantic congruence dependent memory formation. However, the exact roles of hippocampal subfields and surrounding brain regions remain unclear. Here, we used an established paradigm and high-resolution functional magnetic resonance imaging of the medial temporal lobe together with cytoarchitectonic probability estimates in healthy humans. Behaviorally, robust congruence effects emerged in young and older adults, indicating that schema dependent learning is unimpaired during healthy aging. Within the medial temporal lobe, semantic congruence was associated with hemodynamic activity in the subiculum, CA1, CA3 and dentate gyrus, as well as the entorhinal cortex and laterobasal amygdala. Importantly, a subsequent memory analysis showed increased activity for later remembered vs. later forgotten congruent items specifically within CA3, and this subfield showed enhanced functional connectivity to the laterobasal amygdala. As such, our findings extend current models on schema dependent learning by pinpointing the functional properties of subregions within the medial temporal lobe

    Three-dimensional digital atlas construction of Chinese brains by magnetic resonance imaging

    Get PDF
    This paper describes the construction of an atlas of the human brain by magnetic resonance imaging. The successive steps of the construction were performed with images acquired by three-dimensional fast spoiled gradient-echo recalled acquisition sequences in 1.5T. Data from the young and middle-aged healthy volunteers were spatially normalized into MNI coordinate frame in SPM2 software based on MATLAB. Three-dimensional brain atlas were reconstructed in the MNI coordinate system. There atlases enable efficient structure localization and morphometric comparison, which play important roles in the computer aided surgery, image guide surgery minimal invasive surgery and other frontier areas

    The impact of aging on subregions of the hippocampal complex in healthy adults

    Get PDF
    The hippocampal complex, an anatomical composite of several subregions, is known to decrease in size with increasing age. However, studies investigating which subregions are particularly prone to age-related tissue loss revealed conflicting findings. Possible reasons for such inconsistencies may reflect differences between studies in terms of the cohorts examined or techniques applied to define and measure hippocampal subregions. In the present study, we enhanced conventional MR-based information with microscopically defined cytoarchitectonic probabilities to investigate aging effects on the hippocampal complex in a carefully selected sample of 96 healthy subjects (48 males/48 females) aged 18-69 years. We observed significant negative correlations between age and volumes of the cornu ammonis, fascia dentata, subiculum, and hippocampal-amygdaloid transition area, but not the entorhinal cortex. The estimated age-related annual atrophy rates were most pronounced in the left and right subiculum with -0.23% and -0.22%, respectively. These findings suggest age-related atrophy of the hippocampal complex overall, but with differential effects in its subregions. If confirmed in future studies, such region-specific information may prove useful for the assessment of diseases and disorders known to modulate age-related hippocampal volume loss.NC is funded by Australian Research Council Future fellowship number 120100227. EL is funded by the Eunice Kennedy Shriver National Institute of Child Health & Human Development of the National Institutes of Health under award number R01HD081720 and further supported by the Cousins Center for Psychoneuroimmunology at the University of California, Los Angeles (UCLA)

    Atypical Balance between Occipital and Fronto-Parietal Activation for Visual Shape Extraction in Dyslexia

    Get PDF
    Reading requires the extraction of letter shapes from a complex background of text, and an impairment in visual shape extraction would cause difficulty in reading. To investigate the neural mechanisms of visual shape extraction in dyslexia, we used functional magnetic resonance imaging (fMRI) to examine brain activation while adults with or without dyslexia responded to the change of an arrow’s direction in a complex, relative to a simple, visual background. In comparison to adults with typical reading ability, adults with dyslexia exhibited opposite patterns of atypical activation: decreased activation in occipital visual areas associated with visual perception, and increased activation in frontal and parietal regions associated with visual attention. These findings indicate that dyslexia involves atypical brain organization for fundamental processes of visual shape extraction even when reading is not involved. Overengagement in higher-order association cortices, required to compensate for underengagment in lower-order visual cortices, may result in competition for top-down attentional resources helpful for fluent reading.Ellison Medical FoundationMartin Richmond Memorial FundNational Institutes of Health (U.S.). (Grant UL1RR025758)National Institutes of Health (U.S.). (Grant F32EY014750-01)MIT Class of 1976 (Funds for Dyslexia Research
    • …
    corecore