141 research outputs found

    Design of reverse converters for the multi-moduli residue number systems with moduli of forms 2a, 2b - 1, 2c + 1

    Get PDF
    Residue number system (RNS) is a non-weighted integer number representation system that is capable of supporting parallel, carry-free and high speed arithmetic. This system is error-resilient and facilitates error detection, error correction and fault tolerance in digital systems. It finds applications in Digital Signal Processing (DSP) intensive computations like digital filtering, convolution, correlation, Discrete Fourier Transform, Fast Fourier Transform, etc. The basis for an RNS system is a moduli set consisting of relatively prime integers. Proper selection of this moduli set plays a significant role in RNS design because the speed of internal RNS arithmetic circuits as well as the speed and complexity of the residue to binary converter (R/B or Reverse Converter) have a large dependency on the form and number of the selected moduli. Moduli of forms 2a, 2b- 1, 2c + 1 (a, b and c are natural numbers) have the most use in RNS moduli sets as these moduli can be efficiently implemented using usual binary hardware that lead to simple design. Another important consideration for the reverse converter design is the selection of an appropriate conversion algorithm from Chinese Remainder Theorem (CRT), Mixed Radix Conversion (MRC) and the new Chinese Remainder Theorems (New CRT I and New CRT II). This research is focused on designing reverse converters for the multi-moduli RNS sets especially four and five moduli sets with moduli of forms 2a, 2b- 1, 2c + 1 . The residue to binary converters are designed by applying the above conversion algorithms in different possible ways and facilitating the use of modulo (2k) and modulo (2k – 1) adders that lead to simple design of adder based architectures and VLSI efficient implementations (k is a natural number). The area and delay of the proposed converters is analyzed and an efficient reverse converter is suggested from each of the various four and five moduli set converters for a given dynamic range

    Fast Overflow Detection Scheme by Operands Examinations Method for Length Three Moduli Sets

    Get PDF
    In this paper, we present a fast overflow detection scheme by Operands Examination Method (OEM) for 3-Moduli Sets. The method examines the sum of the Mixed Radix Digits (MRDs) computed using the Mixed Radix Conversion (MRC) method to detect overflow for the sum of operands. It is observed that by reducing larger numbers into smaller numbers, the OEM approach makes computations easier and faster. The proposed scheme is further implemented on the Moduli Set for validation purposes. Theoretically, the scheme proves to be more efficient in detecting overflow as compared to current existing overflow detection schemes. Keywords: Residue Number System, Operands Examination Method, Overflow Detection, Mixed Radix Digits, Mixed Radix Conversion

    Optimization of new Chinese Remainder theorems using special moduli sets

    Get PDF
    The residue number system (RNS) is an integer number representation system, which is capable of supporting parallel, high-speed arithmetic. This system also offers some useful properties for error detection, error correction and fault tolerance. It has numerous applications in computation-intensive digital signal processing (DSP) operations, like digital filtering, convolution, correlation, Discrete Fourier Transform, Fast Fourier Transform, direct digital frequency synthesis, etc. The residue to binary conversion is based on Chinese Remainder Theorem (CRT) and Mixed Radix Conversion (MRC). However, the CRT requires a slow large modulo operation while the MRC requires finding the mixed radix digits which is a slow process. The new Chinese Remainder Theorems (CRT I, CRT II and CRT III) make the computations faster and efficient without any extra overheads. But, New CRTs are hardware intensive as they require many inverse modulus operators, modulus operators, multipliers and dividers. Dividers and inverse modulus operators in turn needs many half and full adders and subtractors. So, some kind of optimization is necessary to implement these theorems practically. In this research, for the optimization, new both co-prime and non co-prime multi modulus sets are proposed that simplify the new Chinese Remainder theorems by eliminating the huge summations, inverse modulo operators, and dividers. Furthermore, the proposed hardware optimization removes the multiplication terms in the theorems, which further simplifies the implementation

    Systematic redundant residue number system codes: analytical upper bound and iterative decoding performance over AWGN and Rayleigh channels

    No full text
    The novel family of redundant residue number system (RRNS) codes is studied. RRNS codes constitute maximum–minimum distance block codes, exhibiting identical distance properties to Reed–Solomon codes. Binary to RRNS symbol-mapping methods are proposed, in order to implement both systematic and nonsystematic RRNS codes. Furthermore, the upper-bound performance of systematic RRNS codes is investigated, when maximum-likelihood (ML) soft decoding is invoked. The classic Chase algorithm achieving near-ML soft decoding is introduced for the first time for RRNS codes, in order to decrease the complexity of the ML soft decoding. Furthermore, the modified Chase algorithm is employed to accept soft inputs, as well as to provide soft outputs, assisting in the turbo decoding of RRNS codes by using the soft-input/soft-output Chase algorithm. Index Terms—Redundant residue number system (RRNS), residue number system (RNS), turbo detection

    Secure and Efficient RNS Approach for Elliptic Curve Cryptography

    Get PDF
    Scalar multiplication, the main operation in elliptic curve cryptographic protocols, is vulnerable to side-channel (SCA) and fault injection (FA) attacks. An efficient countermeasure for scalar multiplication can be provided by using alternative number systems like the Residue Number System (RNS). In RNS, a number is represented as a set of smaller numbers, where each one is the result of the modular reduction with a given moduli basis. Under certain requirements, a number can be uniquely transformed from the integers to the RNS domain (and vice versa) and all arithmetic operations can be performed in RNS. This representation provides an inherent SCA and FA resistance to many attacks and can be further enhanced by RNS arithmetic manipulation or more traditional algorithmic countermeasures. In this paper, extending our previous work, we explore the potentials of RNS as an SCA and FA countermeasure and provide an description of RNS based SCA and FA resistance means. We propose a secure and efficient Montgomery Power Ladder based scalar multiplication algorithm on RNS and discuss its SCAFA resistance. The proposed algorithm is implemented on an ARM Cortex A7 processor and its SCA-FA resistance is evaluated by collecting preliminary leakage trace results that validate our initial assumptions

    Image processing using a two-dimensional digital convolution filter.

    Get PDF

    Comments on "An arithmetic free parallel mixed-radix conversion algorithm"

    Full text link

    Emerging Design Methodology And Its Implementation Through Rns And Qca

    Get PDF
    Digital logic technology has been changing dramatically from integrated circuits, to a Very Large Scale Integrated circuits (VLSI) and to a nanotechnology logic circuits. Research focused on increasing the speed and reducing the size of the circuit design. Residue Number System (RNS) architecture has ability to support high speed concurrent arithmetic applications. To reduce the size, Quantum-Dot Cellular Automata (QCA) has become one of the new nanotechnology research field and has received a lot of attention within the engineering community due to its small size and ultralow power. In the last decade, residue number system has received increased attention due to its ability to support high speed concurrent arithmetic applications such as Fast Fourier Transform (FFT), image processing and digital filters utilizing the efficiencies of RNS arithmetic in addition and multiplication. In spite of its effectiveness, RNS has remained more an academic challenge and has very little impact in practical applications due to the complexity involved in the conversion process, magnitude comparison, overflow detection, sign detection, parity detection, scaling and division. The advancements in very large scale integration technology and demand for parallelism computation have enabled researchers to consider RNS as an alternative approach to high speed concurrent arithmetic. Novel parallel - prefix structure binary to residue number system conversion method and RNS novel scaling method are presented in this thesis. Quantum-dot cellular automata has become one of the new nanotechnology research field and has received a lot of attention within engineering community due to its extremely small feature size and ultralow power consumption compared to COMS technology. Novel methodology for generating QCA Boolean circuits from multi-output Boolean circuits is presented. Our methodology takes as its input a Boolean circuit, generates simplified XOR-AND equivalent circuit and output an equivalent majority gate circuits. During the past decade, quantum-dot cellular automata showed the ability to implement both combinational and sequential logic devices. Unlike conventional Boolean AND-OR-NOT based circuits, the fundamental logical device in QCA Boolean networks is majority gate. With combining these QCA gates with NOT gates any combinational or sequential logical device can be constructed from QCA cells. We present an implementation of generalized pipeline cellular array using quantum-dot cellular automata cells. The proposed QCA pipeline array can perform all basic operations such as multiplication, division, squaring and square rooting. The different mode of operations are controlled by a single control line
    • 

    corecore