8 research outputs found

    Graph classes and forbidden patterns on three vertices

    Full text link
    This paper deals with graph classes characterization and recognition. A popular way to characterize a graph class is to list a minimal set of forbidden induced subgraphs. Unfortunately this strategy usually does not lead to an efficient recognition algorithm. On the other hand, many graph classes can be efficiently recognized by techniques based on some interesting orderings of the nodes, such as the ones given by traversals. We study specifically graph classes that have an ordering avoiding some ordered structures. More precisely, we consider what we call patterns on three nodes, and the recognition complexity of the associated classes. In this domain, there are two key previous works. Damashke started the study of the classes defined by forbidden patterns, a set that contains interval, chordal and bipartite graphs among others. On the algorithmic side, Hell, Mohar and Rafiey proved that any class defined by a set of forbidden patterns can be recognized in polynomial time. We improve on these two works, by characterizing systematically all the classes defined sets of forbidden patterns (on three nodes), and proving that among the 23 different classes (up to complementation) that we find, 21 can actually be recognized in linear time. Beyond this result, we consider that this type of characterization is very useful, leads to a rich structure of classes, and generates a lot of open questions worth investigating.Comment: Third version version. 38 page

    Combinatorial algorithms for the seriation problem

    Get PDF

    Combinatorial algorithms for the seriation problem

    Get PDF
    In this thesis we study the seriation problem, a combinatorial problem arising in data analysis, which asks to sequence a set of objects in such a way that similar objects are ordered close to each other. We focus on the combinatorial structure and properties of Robinsonian matrices, a special class of structured matrices which best achieve the seriation goal. Our contribution is both theoretical and practical, with a particular emphasis on algorithms. In Chapter 2 we introduce basic concepts about graphs, permutations and proximity matrices used throughout the thesis. In Chapter 3 we present Robinsonian matrices, discussing their characterizations and recognition algorithms existing in the literature. In Chapter 4 we discuss Lexicographic Breadth-First search (Lex-BFS), a special graph traversal algorithm used in multisweep algorithms for the recognition of several classes of graphs. In Chapter 5 we introduce a new Lex-BFS based algorithm to recognize Robinsonian matrices, which is derived from a new characterization of Robinsonian matrices in terms of straight enumerations of unit interval graphs. In Chapter 6 we introduce the novel Similarity-First Search algorithm (SFS), a weighted version of Lex-BFS which we use in a multisweep algorithm for the recognition of Robinsonian matrices. In Chapter 7 we model the seriation problem as an instance of Quadratic Assignment Problem (QAP) and we show that if the data has a Robinsonian structure, then one can find an optimal solution for QAP using a Robinsonian recognition algorithm. In Chapter 8 we discuss how to solve the seriation problem when the data does not have a Robinsonian structure, by finding a Robinsonian approximation of the original data. Finally, in Chapter 9 we discuss some experiments which we have carried out in order to compare the performance of the algorithms introduced in the thesis

    Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020)

    Get PDF
    International audienceOriginating in arithmetics and logic, the theory of ordered sets is now a field of combinatorics that is intimately linked to graph theory, universal algebra and multiple-valued logic, and that has a wide range of classical applications such as formal calculus, classification, decision aid and social choice.This international conference “Algebras, graphs and ordered set” (ALGOS) brings together specialists in the theory of graphs, relational structures and ordered sets, topics that are omnipresent in artificial intelligence and in knowledge discovery, and with concrete applications in biomedical sciences, security, social networks and e-learning systems. One of the goals of this event is to provide a common ground for mathematicians and computer scientists to meet, to present their latest results, and to discuss original applications in related scientific fields. On this basis, we hope for fruitful exchanges that can motivate multidisciplinary projects.The first edition of ALgebras, Graphs and Ordered Sets (ALGOS 2020) has a particular motivation, namely, an opportunity to honour Maurice Pouzet on his 75th birthday! For this reason, we have particularly welcomed submissions in areas related to Maurice’s many scientific interests:• Lattices and ordered sets• Combinatorics and graph theory• Set theory and theory of relations• Universal algebra and multiple valued logic• Applications: formal calculus, knowledge discovery, biomedical sciences, decision aid and social choice, security, social networks, web semantics..
    corecore