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1
Introduction

In many real-world applications it is required to order a given set of objects when
the only available information among the objects is their pairwise similarity (or
dissimilarity). This is becoming increasingly important, for instance, in appli-
cations where companies have to analyze large sets of data which do not have a
natural order, like user ratings, images, music, movies, or nodes in social networks.
In fact, especially for large data sets, it is often more practical to express prefer-
ences as (pairwise) relative comparisons between any two objects rather than as
absolute comparisons among all the objects to order (see, e.g., [111]). Suppose,
for example, that you would like to rank two thousand movies you have watched,
from your most preferred to your least preferred. Then, most likely it is hard for
you to give an absolute ranking value to each movie. However, if you only have
two movies, then it is much easier to decide which of the two movies is better by
giving a binary preference (i.e., say which one is the best one among the two).
Then, based on the set of pairwise preferences, one can attempt to construct a
ranking of the movies which respects these preferences (see, e.g., [55]).

In general, the problem of ordering objects according to their (pairwise) sim-
ilarities is a relevant topic in data analysis. Given a collection of objects and
their pairwise similarities, the objective of data analysis is to extract information
from the data such as patterns or an underlying structure, which are easier to
visualize and can help a decision making process. The field of data analysis com-
prehends two famous techniques: classification and clustering. Both approaches
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2 Chapter 1. Introduction

aim to group together similar objects, called respectively classes and clusters.
The main difference is that in classification the classes are defined in advance,
while in clustering the clusters are identified later (see, e.g., [89]).

As example of structure retrieved with data analysis, consider the matrices in
Figure 1.1, where each row (column) represents an object and each entry corre-
sponds to the pairwise relative measurements among two objects. The intensity of
the color in the greyscale reflects the values of the matrix. The closer to black, the
higher the value. Vice versa, the closer to white, the lower the value. Note that
both matrices contain the same information, but Figure 1.1b reveals two clusters,
while from Figure 1.1a the same property cannot be retrieved immediately.

In this thesis we will focus on a third well known data analysis technique,
which is used to sort objects according to their similarity: seriation.

(a) Original unordered matrix. (b) Ordered matrix.

Figure 1.1: Example of hidden information of the iris data set for 50 flowers from
each of 3 species of the iris family (Iris setosa, versicolor and virginica) [63].

1.1 Background and motivation

The seriation problem is a combinatorial problem arising in data analysis, which
asks to sequence a set of objects in such a way that similar objects are ordered
close to each other. The pioneer of seriation is considered to be Flinders Petrie, an
egyptologist and archaeologist who introduced seriation to sequence chronologi-
cally the tombs found in Egypt at the end of XIV century [93]. Since common
dating techniques such as stratigraphy or radio carboning were not available,
Petrie invented a relative dating procedure to sequence the tombs. Specifically,
he assumed that, as we now have trends for clothes, objects, etc, also Egyptian
had. Hence, he classified the potteries in the tombs according to their style, and
then he tried to reorder the objects according to their similarity, with the idea
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that similar potteries would belong to closer periods in time. Finally, the order
of the tombs was obtained by linking each tomb to the corresponding sequenced
pottery element.

One can map the set of pairwise relative measurements among the objects
to a (similarity) matrix A, which represents the information of the objects to
order (e.g., the similarities among potteries in the example of Petrie). Then,
the seriation problem can be modeled as a discrete optimization problem, where
the goal is to find a permutation of the rows and columns of A which minimizes
(resp., maximizes) a given loss (resp., merit) objective function, called seriation
criterion [62] or seriation measure [60].

In what follows, we let Pn denote the set of all possible permutations of
[n] = {1, . . . , n} and (Aπ(i),π(j))

n
i,j=1 be the matrix obtained by symmetrically

permuting the rows and columns of A according to π. A classic seriation criterion
is then 2-SUM (corresponding to the seriation measure ‘Inertia’ in [63]), which is
considered, e.g., in [58, 5, 56] and consists in solving the following program:

min
π∈Pn

n∑

i=1

n∑

j=1

Aπ(i),π(j)|i− j|2. (1.1)

An analogous measure is the ‘Least Square’ criterion discussed in [24], which
consists in solving the following program:

max
π∈Pn

n∑

i=1

n∑

j=1

(
Aπ(i),π(j) − |i− j|

)2
. (1.2)

The idea behind both seriation measures (1.1) and (1.2) is that, intuitively,
objects with high similarity Aπ(i),π(j) are pushed close to the diagonal. Finally,
another common seriation criterion is the so-called ‘Measure of effectiveness ’,
originally defined by McCormick et al. [86], where the goal is to reorder A in such
a way that each object has a value similar to the one of its two adjacent vertices
in π, or equivalently, in such a way that each entry in Aπ has similar value with
respect to its four neighboring elements, i.e.,

max
π∈Pn

1

2

n∑

i=1

n∑

j=1

Aπ(i),π(j)(Aπ(i),π(j+1) +Aπ(i),π(j−1) +Aπ(i+1),π(j) +Aπ(i−1),π(j)). (1.3)

For a complete list of seriation measures we refer the interested reader to [63]
and [60]. Seriation has many applications in a wide range of different subjects. As
discussed before, it was originally introduced for applications arising in archaeol-
ogy [93, 75]. It can also be used in paleontology, where the objects to be ordered
are the sites of excavation and the proximity measures are mammal genera whose
remains are found at these sites [85]. Furthermore, seriation can be used for data
visualization and exploratory analysis [69, 18], with applications in bioinformatics
(e.g., microarray gene expression [109]) and psychiatric data [27, 112].
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In machine learning, seriation is used to pre-estimate the number of clusters or
the tendency of data patterns to form clusters [65], with applications to text min-
ing [46]. Further applications comprehend anthropology, cartography, database
design, document processing, network analysis, ecology, linguistics, manufactur-
ing, circuit design and ranking [1, 84, 63, 55]. For a more exhaustive and complete
list of applications of seriation we refer the interested reader to the survey [81].

Seriation is conceptually similar to clustering. However, while clustering aims
to order the data into groups whose members are similar to each other, seriation
seeks for a linear order of the objects such that similar objects are close to each
other, which is more restrictive. Hence, although related, the two problems are
substantially different.

There exist several packages to solve seriation. The package ‘seriation’ is
implemented in the open source statistical software R 1 [63] and uses different
algorithms depending on the seriation measure chosen to model the seriation
problem. For example, to solve 2-SUM (1.1) and Least Square (1.2), partial enu-
meration methods (e.g., dynamic programming [69] and branch-and-bound [18])
are used, as well as QAP’s solvers (see, e.g., [19]). To solve the seriation criterion
‘Measure of effectiveness’ (1.3), ‘Bond Energy’ algorithms (see, e.g., [86, 4]) are
used. The seriation measure 2-SUM (1.1) can be additionally solved via spectral
methods (see [5]) and through convex relaxations (see [56]).

There also exist some packages tailored for specific applications. For example,
in the domain of matrix visualization and exploratory data analysis there exist
the softwares ‘GAP’ 2 [27], and ‘SPIN’ 3 [110].

The goal of seriation to order similar objects close to each other is best
achieved by a special class of structured matrices, namely Robinson(ian) ma-
trices, introduced by Robinson in [100]. Specifically, a symmetric n×n matrix A
is called a Robinson similarity if its entries are monotone nondecreasing in the
rows and columns when moving towards the main diagonal, i.e., if

Axz ≤ min{Axy, Ayz} for each 1 ≤ x < y < z ≤ n. (1.4)

If the rows and columns of A can be symmetrically reordered by a permuta-
tion π to get a Robinson similarity, then A is said to be a Robinsonian similarity
and π is called a Robinson ordering of A. The unimodal structure of Robinsonian
matrices is shown in Figure 1.2.

In the literature, a distinction is made between Robinson(ian) similarities and
Robinson(ian) dissimilarities matrices. A symmetric n× n matrix D is called a
Robinson dissimilarity if its entries are monotone nondecreasing in the rows and
columns when moving away from the main diagonal, i.e., if Axz ≥ max{Axy, Ayz},
for each 1 ≤ x < y < z ≤ n.

1https://cran.r-project.org/web/packages/seriation/index.html
2http://www.hmwu.idv.tw/gapsoftware/
3https://webhome.weizmann.ac.il/home/tsafriri/spin.html
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The concepts of Robinsonian dissimilarity and Robinson ordering naturally
extend to dissimilarities. In fact, any result on one class can be transferred to
the other class, as A is a Robinson(ian) similarity if and only if D = −A is a
Robinson(ian) dissimilarity. Therefore, in the rest of the thesis we will often use
the term Robinson(ian) matrix, meaning a Robinson(ian) similarity matrix.

(a) Unordered Robinsonian ma-
trix.

(b) Ordered Robinsonian matrix.

Figure 1.2: Heatmaps representing the unimodal structure of a Robinsonian sim-
ilarity matrix.

Robinsonian matrices represent an ideal seriation instance, because for any
three objects x <π y <π z in a Robinson ordering π, in view of (1.4) we have
that objects x, y (which are ordered closer in π than objects x, z) are more sim-
ilar to each other than objects x, z. The same holds for objects y, z. Hence,
even though real world data is unlikely to have a Robinsonian structure, Robin-
sonian recognition algorithms can be used as core subroutines to design efficient
heuristics or approximation algorithms to solve the seriation problem, e.g., by
approximating the Robinsonian structure [30] (see Chapter 8 for more details).
Furthermore, Robinsonian matrices can be used, e.g., in defining the Robinson
violation seriation criterion appearing in [96, 27, 109], where the goal is to find
the permutation which minimizes the number of triples violating the Robinson
property (1.4), i.e.,

min
π∈Pn

∑

i<j<k

g(Aπ(i),π(j), Aπ(i),π(k)) +
∑

i<j<k

g(Aπ(j),π(k), Aπ(i),π(k)), (1.5)

where:

g(x, y) =

{
1 if x < y

0 otherwise.

Hence, the objective function in (1.5) quantifies the divergence of π from being
a Robinson ordering.
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Robinsonian matrices play a role also in ranking problems where, given pair-
wise comparisons among the items, the goal is to find a consistent ordering of
the items (meaning that if item i is preferred to item j, then there exists a linear
order π where i <π j, for each i, j). Fogel et al. [55] show how to build such a
ranking by constructing a Robinsonian similarity matrix A consistent with the
pairwise comparisons. Roughly speaking, an element Aij represents the number
of matching comparisons between items i and j, i.e., a counter of how many times
items i and j are both preferred (or, vice versa, both not preferred) with respect
to a third item k, with k 6= i, j. Then, the authors show that a Robinson ordering
of A leads to a ranking of the original items consistent with the comparisons.

The importance of Robinsonian matrices in the seriation problem and their
application to other ordering problems motivate our interest for Robinsonian
recognition algorithms. Therefore, Robinsonian matrices will play a fundamental
role in this thesis.

1.2 Contributions

In this thesis we study the seriation problem focusing on the combinatorial struc-
ture and properties of Robinsonian matrices. Our contribution is both theoretical
and practical, with a particular emphasis on algorithms.

Recognition algorithms for Robinsonian matrices As first contribution,
we introduce two new algorithms to recognize Robinsonian matrices, i.e., to de-
cide if a given matrix A is Robinsonian (and then return a Robinson ordering π
of A) or not. Both algorithms are inspired by Lexicographic Breadth-First Search
(abbreviated Lex-BFS), which is a variant of the well known graph traversal
algorithm Breadth-First Search (BFS) where vertices are explored by giving pref-
erence to those vertices whose neighbors have been visited first. A central role will
be played by a simple main task about sets, namely partition refinement, which
will be repeatedly used in both recognition algorithms as core subroutine. In both
cases, we introduce a new characterization of Robinsonian (similarity) matrices,
which we will exploit to design new recognition algorithms. Nevertheless, the two
algorithms are substantially different.

The first recognition algorithm is based on a new characterization of Robinso-
nian similarity matrices in relation to unit interval graphs. A unit interval graph
G = (V = [n], E) is a graph whose vertices can be mapped to unit intervals and
whose edges consist of the pairs of vertices whose corresponding intervals inter-
sect. The interesting aspect of unit interval graphs is that they coincide with the
class of graphs whose (extended) adjacency matrices are 0/1 Robinsonian matri-
ces [97]. Hence, general (not necessarily 0/1) Robinsonian matrices can be seen
as a generalization of unit interval graphs to weighted graphs.
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Throughout the thesis we will always assume (Robinsonian) matrices to be
nonnegative. This assumption can be done without loss of generality (see Sub-
section 3.1.1). Let 0 = α0 < α1 < · · · < αL denote the distinct values taken by
the entries of A. The graph G(`) = (V,E`), whose edges are the pairs {x, y} with
Axy ≥ α`, is called the `-th level graph of A, and AG(`) denotes the corresponding
(extended) adjacency matrix, for ` ∈ {1, . . . , L}. Then, it is well known that
one can decompose a given similarity matrix A as a conic combination of 0/1
matrices, i.e.,

A = α0J +
L∑

`=1

(α` − α`−1)AG(`) .

Our main contribution is the introduction of a new characterization of the level
graphs G(1), . . . , G(L) in the above decomposition when A is a Robinsonian (sim-
ilarity) matrix, using the concept of straight enumerations.

Given a vertex x of a graph G = (V,E), the closed neighborhood of x is
the subset of V consisting of the adjacent vertices of x and x itself. A straight
enumeration is then a special ordered partition φ = (B1, . . . , Bp) of V , where
each block Bi is a subset of vertices having the same closed neighborhood and
with the property, roughly speaking, that consecutive blocks induce a clique in G
(for a formal definition see Definition 2.3.4). The reason we are interested in
straight enumerations is that a graph is a unit interval graph if and only if it
has a straight enumeration (see [43, 67]). In fact, straight enumerations of a unit
interval graph G embed all the Robinson orderings of the (extended) adjacency
matrix AG. Roughly speaking, given a unit interval graph G = (V,E) and a
straight enumeration φ = (B1, . . . , Bp) of V , any linear order π of V obtained by
rearranging the elements within each block Bi of φ induces a Robinson ordering
for AG. We then say that such π is compatible with φ. Our main result is that A
is Robinsonian if and only if there exists a linear order π of V and straight enu-
merations φ1, . . . , φL of its level graphs G(1), . . . , G(L) such that π is compatible
with φi for all i = 1, . . . , L. Since straight enumerations can be found in lin-
ear time using Lex-BFS, this motivated us to introduce a new Lex-BFS based
polynomial-time algorithm to recognize Robinsonian matrices.

Roughly speaking, our algorithm computes straight enumerations of the level
graphs and it returns a linear order π compatible with all of them (if one exists).
However, instead of refining the level graphs one by one on the full set V , we
use a recursive algorithm based on a divide-and-conquer strategy, which splits
the problem in subproblems according to the connected components of the level
graphs, to exploit the sparsity of the matrix. In addition, since the Robinson
ordering might not be unique, we also show how to modify our algorithm to
return all the possible Robinson orderings of a given Robinsonian matrix.

Our algorithm uncovers an interesting link between (straight enumerations of)
unit interval graphs and Robinsonian matrices which, to the best of our knowl-
edge, has not been observed before, as Robinsonian matrices have been mainly
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studied in relation to interval (hyper)graphs. Moreover it provides an answer to
an open question posed by M. Habib at the PRIMA Conference in Shanghai in
June 2013, who wondered about the possibility of using Lex-BFS to recognize
Robinsonian matrices (see [39]).

The second recognition algorithm is based on novel combinatorial properties
of Robinsonian similarity matrices, derived in particular by introducing the con-
cept of ‘path avoiding a vertex ’ (see Definition 6.2.2) and by characterizing the
end points of Robinson orderings (called ‘anchors ’). As mentioned before, Robin-
sonian similarities matrices can be seen as an extension of unit interval graphs
to weighted graphs. Then, the motivation for our second approach is to extend
some of the immense work present in the literature for unit interval graphs to
Robinsonian similarity matrices. In particular, since unit interval graphs can
be recognized with a simple Lex-BFS algorithm [33], we introduce a novel al-
gorithm, named Similarity-First Search (SFS), which represents a generalization
of the classical Lex-BFS algorithm to weighted graphs. Intuitively, the SFS al-
gorithm traverses vertices of a weighted graph in such a way that most similar
vertices (i.e., corresponding to largest edge weights) are visited first, while still
respecting the priorities imposed by previously visited vertices. By definition, the
SFS algorithm reduces to Lex-BFS when applied to an unweighted graph. As we
will show, the SFS algorithm captures the Robinsonian structure, and it will play
a central role in our second Robinsonian recognition algorithm.

In fact, we introduce a multisweep algorithm, where we compute repeated
SFS iterations, each named a sweep, which uses the order returned by the pre-
vious sweep to break ties in the (weighted) graph search. Our main result is
that our multisweep algorithm can recognize in polynomial time after at most
n − 1 sweeps whether a given n × n matrix A is Robinsonian. Our algorithm
represents the first multisweep search algorithm for weighted graphs (while mul-
tisweep algorithms for unweighted graphs are well studied). We consider this
algorithm to be the simplest combinatorial Robinsonian recognition algorithm in
the literature (both conceptually and to implement), although it is not proven to
be the best one complexity wise (see Table 3.6). In addition, we introduce some
concepts extending analogous notions in graphs and we develop some combinato-
rial tools for the study of Robinsonian similarities matrices that could be useful
to further characterize the Robinsonian structure, e.g., defining a certificate for
non-Robinsonian similarity matrices.

From a practical point of view, we implemented in C++ the new recogni-
tion algorithms. Both algorithms perform well, recognizing 1000 × 1000 dense
Robinsonian matrices in few seconds (or even milliseconds). Therefore, the code
developed could be potentially included in some software libraries (e.g., R) to
make it available for the scientific community to solve real world problems.
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QAP and Robinsonian approximation The second contribution of this the-
sis is related to solving the seriation problem when the similarity matrix A is not
Robinsonian.

Our first result is theoretical and motivates our interest in Robinsonian ma-
trices recognition algorithms. Following [71], we model seriation as a special case
of the quadratic assignment problem (QAP). Given n× n symmetric matrices A
and B, QAP is the following optimization problem [76]:

min
π∈Pn

n∑

i,j=1

Aπ(i),π(j)Bij. (1.6)

As we have seen in Section 1.1, a possible choice of the matrix B is the one
appearing in the 2-SUM problem (1.1), where Bij = |i− j|2.

QAP is a hard problem which has been extensively studied in the literature
(see [23] and references therein). Recently, many authors have focused on some
special cases which are solvable in polynomial time by exploiting the structure
of the matrices A,B. In our thesis we introduce a new instance of polynomi-
ally solvable QAP related to Robinsonian matrices and seriation. Specifically, a
symmetric matrix B is Toeplitz if it has constant values on its diagonals, i.e.,
Bij = Bi+1,j+1, for each 1 ≤ i, j ≤ n− 1. Our main result is the following: if A is
a Robinson similarity matrix and B is a Toeplitz Robinson dissimilarity matrix,
then the identity permutation is optimal for (1.6). This result generalizes two
results in the literature, namely in [56] and [31] (see Subsection 7.2.4 for more
details). Moreover, as an application, if A is a Robinsonian similarity matrix
then any Robinson ordering π of A optimally solves (1.1). This also motivates
our interest in recognizing Robinsonian matrices.

As a second result, we introduce a new heuristic to solve seriation, based on a
generalization of the SFS algorithm. Specifically, given a symmetric matrix A, we
are interested in finding a ‘close’ Robinsonian approximation AR of A. Following
previous works in [29, 30], we relax the notion of Robinsonian matrix: for a
fixed real ε > 0, we consider the concept of ε-Robinsonian similarity, defined as a
matrix whose rows and columns can be reordered in such a way that the following
relaxed version of (1.4) holds:

Axz ≤ min{Axy, Ayz}+ ε for each 1 ≤ x < y < z ≤ n.

Then, the output of our research is a simple extension of the SFS algorithm,
named ε-SFS, to the recognition of ε-Robinsonian similarities. However, differ-
ently from the above two algorithms, this is a heuristic and represents a prelim-
inary work. The main reason we discuss it is to show that the SFS algorithm
could be easily modified and potentially applied to other classes of matrices (not
necessarily having a Robinson structure).
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1.3 Outline of the thesis

The results in this thesis are organized in three parts. The first part (Chapters 2-
4) contains preliminaries and basic concepts related to Robinsonian matrices and
Lex-BFS, which as we have seen above play a central role in this thesis. The
second part (Chapters 5-6) is focused on the description of the two new recognition
algorithms for Robinsonian matrices. Finally, in the third part (Chapters 7-9)
we show a new instance of QAP involving Robinsonian matrices that admit an
optimal solution in closed form and we introduce a heuristic to solve the seriation
problem by approximating the Robinsonian structure. We conclude the thesis
with giving some computational experiments.

Part I. Robinsonian matrices and seriation

Chapter 2. Preliminaries In this chapter we introduce some concepts, nota-
tion and important facts recurrent in the whole thesis. In particular, we define the
concepts of proximity matrix, permutation, linear order, weak linear order, PQ-
trees, and we discuss a basic algorithm about sets, namely partition refinement,
which plays an important role in the recognition algorithms for Robinsonian ma-
trices. We also introduce some basic concepts in graph theory and discuss the
graph classes of chordal, interval (hyper)graphs and unit interval graphs. For the
latter graphs, we introduce the important concept of straight enumerations.

Chapter 3. Robinsonian matrices In this chapter we present Robinsonian
matrices, giving a formal definition and outlining their applications in some im-
portant combinatorial and classification problems. We discuss the main known
characterizations of Robinsonian matrices in terms of interval, unit interval graphs
and interval hypergraphs, and we discuss the combinatorial and spectral recogni-
tion algorithms existing in the literature.

Chapter 4. Lexicographic Breadth-First Search In this chapter we dis-
cuss Lexicographic Breadth-First search (Lex-BFS), which is a special graph
traversal algorithm used for the recognition of several classes of graphs and Robin-
sonian matrices. We present in detail how Lex-BFS and its variant Lex-BFS+

work and discuss their linear time implementation using the partition refinement
paradigm introduced in Chapter 2. Finally, we show their use in multisweep al-
gorithms, and we discuss some structural properties of Lex-BFS when applied to
special graph classes.
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Part II. Recognition algorithms for Robinsonian matrices

Chapter 5. Lex-BFS based algorithm In this chapter we introduce a new
Lex-BFS based algorithm to recognize Robinsonian matrices. First we discuss a
new characterization of Robinsonian matrices in terms of straight enumerations
of unit interval graphs. Based on this characterization, we present the main
subroutines constituting the new Robinsonian recognition algorithm. In the last
part of the chapter we show how to extend the above recognition algorithm to
return all the Robinson orderings of a given Robinsonian similarity matrix using
the PQ-Tree structure presented in Chapter 2. The content of this chapter is
based on our work [77].

Chapter 6. Similarity-First Search In this chapter we introduce the novel
Similarity-First Search algorithm (SFS) and its application to the recognition of
Robinsonian matrices. We introduce the fundamental concepts of ‘path avoiding
a vertex’, valid vertex and anchors, which we will use to provide new properties
for Robinsonian matrices. We then describe the SFS algorithm, we show many
properties when applied to Robinsonian matrices, and we present the multisweep
recognition algorithm. The content of the chapter is based on our work [79].

Part III. QAP and Robinsonian approximation

Chapter 7. Seriation and the quadratic assignment problem In this
chapter we model the seriation problem as an instance of QAP as in (1.6). We
show that if both matrices A and B are Robinsonian, one can find an explicit
solution to QAP by using a Robinsonian recognition algorithm to find Robinson
orderings of A and B. The content of the chapter is based on our work [78].

Chapter 8. Robinsonian matrix approximation In this chapter we dis-
cuss how to solve the seriation problem by finding a Robinsonian approximation of
the original proximity matrix. We define the l∞-FITTING-BY-ROBINSONIAN
problem and the ε-ROBINSONIAN-RECOGNITION problem. Then, we intro-
duce the ε-Similarity-First Search algorithm (ε-SFS), an extension of the SFS
algorithm presented in Chapter 6, and we discuss a multisweep algorithm based
on ε-SFS aiming to recognize ε-Robinsonian matrices.

Chapter 9. Computational experiments In this final chapter we discuss
some experiments which we have carried out in order to compare our algorithms
introduced in Chapters 5, 6 and 8, and the spectral algorithm presented in Chap-
ter 3. We explain how we designed the experiments and discuss the performance
of the aforementioned algorithms depending on the structure of the input matrices
(e.g., density and/or number of distinct values).
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2
Preliminaries

In this chapter we introduce some notations and important facts used throughout
the thesis. Whenever necessary, they will be reintroduced in the specific chapters
to help the reading of the manuscript. In Section 2.1 we introduce the concept
of proximity matrix. In Section 2.2 we introduce the concepts of permutations,
linear orders, weak linear orders, PQ-trees, and we discuss a basic operation about
sets, namely partition refinement. Finally, in Section 2.3 we introduce some basic
concepts in graph theory and we discuss the classes of chordal, interval, unit
interval graphs, and of interval hypergraphs.

2.1 Proximity matrices

In this thesis we deal with proximity matrices, a common term in the litera-
ture to refer to any numerical measure between elements or objects mapped into
a matrix. Specifically, rows and columns represent a set of objects, while the
numerical measure in each entry represents the similarity or dissimilarity infor-
mation between the objects (i.e., how similar or dissimilar two objects are). The
main difference between similarity and dissimilarity matrices relies on the fact
that similarities have the largest values on the main diagonal (since the similarity
between an element and itself is maximum), while dissimilarities have the small-
est value on the main diagonal (because the dissimilarity between an element and
itself is minimum). To help distinguishing between these two classes, through-
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out the thesis we will use the symbol A to denote similarity matrices and the
symbol D to denote dissimilarity matrices.

An example of similarity matrix is a correlation matrix A = (Aij) ∈ Rn×n,
where we have n random variables and each entry Aij represents the correlation
between the ith and jth random variables. Specifically, each entry Aij assumes
any value in the interval [−1, 1]. Values close to 1 (−1) indicate a strong (in-
verse) correlation and an entry is equal to zero if the corresponding variables are
independent. In this case, the elements on the main diagonal are always equal to
one (i.e., the largest possible value), as they represent the correlation of a random
variable with itself.

An example of dissimilarity matrix is the distance matrix of a finite metric,
i.e., a symmetric matrix D = (Dij) ∈ Rn×n satisfying the following properties for
each 1 ≤ i, j, k ≤ n: (i) Dij ≥ 0 and Dij = 0 if and only if i = j (nonnegativity);
(ii) Dik ≤ Dij + Djk (triangle inequality). A Euclidean distance matrix is a
classic example of distance matrix, defined as follows. We are given n (distinct)
points x1, . . . , xn ∈ Rm and the entries of D are defined by Dij = ‖xi − xj‖2

2, for
all i, j = 1, . . . , n. For m = 1, the n elements are points on a line and we obtain
a special distance matrix which is a Robinson dissimilarity matrix.

Given a proximity matrix, we are interested in reordering its rows and columns
to retrieve some special hidden structure of the data. An example of such struc-
ture is represented, e.g., by 0/1 matrices with the so-called consecutive ones
property, defined as follows.

2.1.1 Definition. (C1P) A 0/1 matrix has the consecutive ones property (C1P)
if its columns can be reordered in such a way that the ones are consecutive in
each row. Moreover, a 0/1 matrix has the symmetric consecutive ones property
if its rows and columns can be symmetrically reordered in such a way that the
ones are consecutive in each row and column.

As we will see in Subsection 3.2.1, matrices with C1P are related to Robin-
sonian matrices, which play an important role in the seriation problem and a
central role in this thesis. For more details about matrices with the consecutive
ones property we refer the interested reader to [47].

In Parts II and III of the thesis we will introduce many different algorithms to
retrieve a special hidden structures of the data, namely the Robinson structure
introduced in Section 1.1.

In the rest of the thesis, we denote by Sn the set of symmetric n × n matri-
ces. Then, we consider the finite set [n] = {1, . . . , n} as index set for the rows
(columns) of a given matrix A ∈ Sn. We will often denote the set [n] by V ,
and V will sometimes represent the set of vertices of a graph. For this reason,
elements of V are often also called vertices. Furthermore, we denote by e ∈ 1n×1

the all-ones vector and by Jn = eeT the all-ones matrix. For A,B ∈ Rn×n,
〈A,B〉 = Tr(ATB) =

∑n
i,j=1 AijBij denotes the trace inner product on Rn×n. For

U ⊆ [n], A[U ] = (Aij)i,j∈U is the principal submatrix of A indexed by U .
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2.2 Orderings and partition refinement

In this section we introduce the concepts of permutations (Subsection 2.2.1),
linear orders and weak linear orders (Subsection 2.2.2), which we will repeatedly
use in the next chapters. Furthermore, we discuss the basic operation of partition
refinement (Subsection 2.2.3), which will play an important role in this thesis.
Finally, we introduce the concept of PQ-tree (Subsection 2.2.4).

2.2.1 Permutations

Given a finite set [n] = {1, . . . , n} of elements, called ground set, a permutation π
of [n] is a one-to-one mapping from [n] to itself. There exist many equivalent ways
to write a permutation. In this thesis, we will represent a permutation of [n] by
a vector π ∈ Nn listing the objects in the order they appear in π. Hence the
permutation π is represented by the sequence (x1, . . . , xn), where π(xi) = i for
i ∈ [n]. For example, consider the permutation π = (2, 4, 1, 3, 5). Then π(2) = 1,
π(4) = 2 and so on. Hence, (1, . . . , n) represents the identity permutation.

Every permutation π of the set [n] corresponds in a unique way to an n × n
permutation matrix Π ∈ {0, 1}n×n, where the generic element Πij is equal to:

Πij =

{
1 if π(i) = j,

0 else.

For this reason, in the following we will use the notation π and Π indiscriminately.
We let Pn denote the set of all possible permutations of [n] as well as the set of
all n× n permutations matrices.

Then, for a matrix A ∈ Rn×n, the matrix ΠA results in a row-permutation
of A, with elements (ΠA)ij = Aπ(i)j, while AΠT results in a column-permutation
of A, with elements (AΠT)ij = Aiπ(j). Hence, ΠAΠT = (Aπ(i),π(j))

n
i,j=1, sometimes

also denoted by Aπ, is the matrix obtained by symmetrically permuting the rows
and columns of A. We say that A is ordered according to π, when its rows and
columns are ordered according to π.

Using the above notation, we can formalize the definition of C1P matrix (see
Definition 2.1.1). Specifically, a matrix A ∈ {0, 1}m×n has C1P if there exists a
permutation matrix Π ∈ {0, 1}n×n such that AΠT has consecutive ones in each
row. Analogously, a symmetric matrix A ∈ {0, 1}n×n has symmetric C1P if there
exists a permutation matrix Π ∈ {0, 1}n×n such that ΠAΠT has consecutive ones
in each row and column.

A useful property of permutations we will use in Chapter 7 is that, for any
A,B ∈ Sn and π, τ ∈ Pn, we have:

(Aπ)τ = Aπτ and 〈A,Bτ 〉 = 〈Aτ−1 , B〉. (2.1)
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The n × n permutation matrices are all the possible binary solutions to the
following linear system:

n∑

i=1

xij = 1 i, j ∈ [n],

n∑

j=1

xij = 1 i, j ∈ [n],

xij ≥ 0 i, j ∈ [n].

(2.2)

The linear system (2.2) defines the set of doubly stochastic matrices, denoted
by Dn. The set Dn is a bounded polyhedron 1, therefore a polytope, and it is
also known as the Birkhoff polytope. In fact, as the following classical result
shows, Dn is equal to the convex hull of the set of permutation matrices Pn.

2.2.1 Theorem. (Birkhoff–von Neumann)[13] Every doubly stochastic ma-
trix A ∈ Dn is a convex combination of permutation matrices Π1, . . . ,Πk ∈ Pn,
i.e., A = λ1Π1 + · · ·+ λkΠk with λ1, . . . , λk ∈ [0, 1] and

∑k
i=1 λi = 1.

Moreover, each permutation matrix is a vertex of Dn (see, e.g., [105]). This
result is used, e.g., to define simple convex relaxations for the seriation problem
(see [56]).

2.2.2 (Weak) linear orders

A linear order (or total order) on V = [n] is a relation ≤ on [n] satisfying the
following properties for any three elements x, y, z ∈ [n]: (i) x ≤ x (reflexivity);
(ii) if x ≤ y and y ≤ x then x = y (antisymmetry); (iii) if x ≤ y and y ≤ z
then x ≤ z (transitivity); (iv) either x ≤ y or y ≤ x (comparability).

A permutation induces a linear order, denoted by π or <π, where we write
i <π j meaning that i comes before j after reordering the elements according to π,
i.e., π(i) < π(j). As for permutations, it will be convenient to represent a linear
order π as a sequence (x1, . . . , xn) with x1 <π . . . <π xn and [n] = {x1, . . . , xn}.
Hence, the permutation π = (x1, . . . , xn) corresponds to the linear order x1 <π

x2 <π · · · <π xn−1 <π xn. Moreover, the reversal of π, denoted by π, is the linear
order (xn, xn−1, . . . , x1).

For U ⊆ [n], π[U ] denotes the restriction of the linear order π to the subset U .
Given disjoint subsets U,W ⊆ [n], we say U <π W if x <π y for all x ∈ U, y ∈ W .
Furthermore, if π1 and π2 are two linear orders on disjoint subsets V1 and V2,
then π = (π1, π2) denotes their concatenation, which is a linear order on V1 ∪ V2.

Since a linear order uniquely represents a permutation, we will use the two
terms indiscriminately in this thesis. Sometimes, we will also use the term order-
ing to denote a linear order.

1A polyhedron is the set of solutions of a system of linear inequalities.
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We introduce a particular linear order which will be used in Chapter 4. Given
a finite set [n], called alphabet, and whose elements are called letters, a word is
a sequence of letters. Then the lexicographic order (also known as lexical order,
dictionary order or alphabetical order) is a particular linear order π on the set of
words defined as follows. Given two words x = (x1, . . . , xp) and y = (y1, . . . , yr),
then x ≤π y if there exists an index j ≥ 1 such that xj > yj and xi = yi for all
i < j. If p 6= r, then the shortest word is completed to a word of length max{p, r}
by adding the letter ∅, which is considered the smallest letter of the alphabet.
For example, we have that (5, 3, 4) ≤π (5, 3) ≤π (5, 2, 1).

A weak linear order (or partial order) on V is a relaxation of a linear order,
i.e., a relation on V satisfying only the reflexivity, antisymmetry and transitivity
properties (from which the adjective weak comes from).

An ordered partition of the ground set V is an ordered sequence of pairwise
disjoint subsets of V (each called class or block) whose union is equal to V .

Then, an ordered partition induces a weak liner order on V , which is denoted
by ψ = (B1, . . . , Bk) or B1 <ψ . . . <ψ Bk, and is obtained by setting x =ψ y if
x, y belong to the same class Bi, and x <ψ y if x ∈ Bi and y ∈ Bj with i < j.
Hence, we write x ≤ψ y if x ∈ Bi, y ∈ Bj with i ≤ j.

The reversal of ψ, denoted ψ, is the weak linear order of the reversed ordered
partition (Bk, . . . , B1). For U ⊆ V , ψ[U ] = (B1 ∩ U, . . . , Bk ∩ U) denotes the
restriction of the weak linear order ψ to U (keeping only nonempty intersections).
Given disjoint subsets U,W ⊆ V , we say U ≤ψ W if x ≤ψ y for all x ∈ U, y ∈ W .
If ψ1 and ψ2 are weak linear orders on disjoint sets V1 and V2, then ψ = (ψ1, ψ2)
denotes their concatenation which is a weak linear order on V1 ∪ V2.

When all classes Bi are singletons then ψ reduces to a linear order (i.e., total
order) of V . As for linear orders, since a weak liner order uniquely represents an
ordered partition, we will use the two terms indiscriminately in this thesis.

The following notions of compatibility and refinement will play an important
role in our discussion. A linear order π of [n] is compatible with a weak linear
order ψ = (B1, . . . , Bk) if x <π y implies that x ∈ Bi, y ∈ Bj with i ≤ j.

Two weak linear orders ψ1 and ψ2 on the same set [n] are then said to be
compatible if there exists a linear order π of [n] which is compatible with both ψ1

and ψ2, i.e., there do not exist elements x, y ∈ V such that x <ψ1 y and y <ψ2 x.
Then, their common refinement is the weak linear order Ψ = ψ1∧ψ2 on V defined
by x =Ψ y if x =ψ`

y for all ` ∈ {1, 2}, and x <Ψ y if x ≤ψ`
y for all ` ∈ {1, 2}

with at least one strict inequality. Consider, for example, the weak linear orders
ψ1 = ({1, 2, 3}, {4, 5}, {6}) and ψ2 = ({1, 3}, {2, 5}, {4, 6}). Then ψ1 and ψ2 are
compatible, and their common refinement is Φ = ({1, 3}, {2}, {5}, {4}, {6}). If
we modify the second weak linear order to ψ2 = ({1, 5}, {2, 3}, {4, 6}), then ψ1

and ψ2 are not compatible anymore, as 2 <ψ1 5 and 5 <ψ2 2.
In Chapter 5 we will use the following fact, whose easy proof is omitted.
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2.2.2 Lemma. Let ψ1, . . . , ψL be weak linear orders on V . Then ψ1, . . . , ψL are
pairwise compatible if and only if there exists a linear order π on V which is com-
patible with each of ψ1, . . . , ψL, in which case π is compatible with their common
refinement ψ1 ∧ · · · ∧ ψL.

2.2.3 Partition refinement

Partition refinement is a basic algorithm introduced in [92] about sets, which we
will use repeatedly as a basic ingredient in the algorithms presented in Chap-
ters 4, 5 and 6.

Algorithm 2.1: Partition refinement (ψ, S)

input: an ordered partition ψ = (B1, . . . , Bk) of set V and a subset S ⊆ V
output: a (refined) ordered partition ψ′ = (B′1, . . . , B

′
h)

1 foreach Bi ∈ ψ do
2 Let X = Bi ∩ S
3 if |X| 6= ∅ and X 6= Bi then
4 remove X from Bi and insert it immediately before Bi in ψ

5 Let ψ′ the refined ordered partition
6 return ψ′

Algorithm 2.1 is based on the work presented by Habib et al. [61] and goes
as follows. We are given an ordered partition ψ = (B1, . . . , Bk) of V and a
subset S ⊆ V . Then, refining ψ with respect to S produces a new ordered
partition ψ′ = (B′1, . . . , B

′
h) of V obtained by splitting each class Bi of ψ into the

intersection Bi ∩ S and the difference Bi \ S. Equivalently, each class Bi of ψ
is replaced by the sequence (Bi ∩ S,Bi \ S), keeping only nonempty classes (see
Figure 2.1). Hence, by construction, for each block B′i ∈ ψ′ either B′i ⊆ S or
B′i ∩ S = ∅ holds.

As we will see in Chapter 4, the weak linear order ψ will represent the pri-
ority queue of a graph traversal algorithm. Most of the algorithms developed in
Chapters 5 and 6 will be inspired by the refinement framework of Algorithm 2.1
mainly due to its simplicity and its efficient implementation as stated below.

2.2.3 Theorem. [61] Given an ordered partition ψ of V and a subset S ⊆ V ,
Algorithm 2.1 can be implemented in O(|S|) time.

Proof. We assume that the ordered partition ψ is stored in a doubly linked list,
whose elements are the classes B1, . . . , Bk. Moreover each element of V has
a pointer to the class Bi containing it as well as a pointer to its position in
the class Bi, which are updated throughout the algorithm. This data structure
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ψ : x1 x2 x3 x4 x5 x6

B1 B2 B3

x1 x3 x2 � x4 x6 x5

B1 ∩ S B1 \ S B2 ∩ S B2 \ S B3 ∩ S B3 \ S

ψ′ : x1 x3 x2 x4 x6 x5

Figure 2.1: Example of the partition refinement of ψ = (B1, . . . , Bk) with respect
to the subset S = {x1, x3, x6} (in bold).

permits constant time insertion and deletion of an element in a class of ψ. The
main task of the refinement process is to split each class Bi in the intersection
Bi∩S and the difference Bi \S. This is equivalent to remove Bi∩S from Bi and
place it in a new block immediately before Bi in ψ. To do so, we use an additional
counter ni for each block Bi which will denote the size of the intersection of Bi∩S
and it is initialized equal to zero. Then, for each x ∈ S with (say) x ∈ Bi, we
remove it from its current position in Bi and we place it in position ni + 1 in Bi

(which can be done in O(1) time as each vertex has a pointer to the position in
the class containing it) and we increase ni by one. After all the elements of S have
been visited, in order to remove the subset Bi ∩ S from Bi we simply remove the
first ni = |Bi ∩N(p)| elements of Bi, and we push them in a new block B′i which
we insert immediately before Bi in ψ. Once a vertex is relocated in ψ, its pointers
to the corresponding block and position in ψ are updated accordingly. Therefore,
removing the elements of Bi∩S from Bi can be done in O(|Bi∩S|) ≤ O(|S|). Since
we need to pass through the elements of S at least once, which requires O(|S|),
we get an overall complexity of O(|S|) time. Note that if both S and ψ are
ordered according to the same linear order τ , then such order in the new block B′i
is preserved. �

2.2.4 PQ-trees

A compact way to represent a set of permutations is using a special data structure,
named PQ-tree. A PQ-tree T is a special rooted ordered tree. The leaves are
in one-to-one correspondence with the elements of the groundset [n] and their
order gives a linear order of [n]. The nodes of T can be of two types, depending
on how their children can be ordered. Namely, for a P-node (represented by
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a circle), its children may be arbitrary reordered; for a Q-node (represented by
a rectangle), only the order of its children may be reversed. Moreover, every
node has at least two children. Consider the example illustrated in Figure 2.2.
Then, the set of permutations represented by T is (1, 2, 3, 4, 5), (1, 2, 3, 5, 4) and
(1, 2, 4, 3, 5), (1, 2, 4, 5, 3), (1, 2, 5, 3, 4), (1, 2, 5, 4, 3) and their reversals.

α

1 2

β

3 4 5

Figure 2.2: PQ-tree T : α is a Q-node, while β is a P -node.

PQ-trees were used by Booth and Leuker [14] for the recognition of 0/1 ma-
trices with C1P introduced earlier in Section 2.1. As we will see in Chapter 3,
the recognition of C1P matrices using PQ-trees plays an important role in the
recognition of Robinsonian matrices.

2.3 Graphs

In what follows V = [n] is the vertex set of a graph G = (V,E), whose edges
are pairs {x, y} of distinct vertices x, y ∈ V , and |E| = m. For x ∈ V , the
neighborhood N(x) of x is the set of adjacent vertices to x, i.e., N(x) = {y ∈
V : {x, y} ∈ E}. A graph is complete if any two vertices are adjacent. Given a
subset V ′ ⊆ V , the induced subgraph G′ = (V ′, E ′) of G is the graph whose set of
vertices is V ′ and whose edges are the pairs {x, y} ∈ E with x, y ∈ V ′. A clique
of G induces a complete subgraph of G. For x ∈ V , the closed neighborhood
is the set N [x] = {x} ∪ N(x). Two vertices x, y ∈ V are undistinguishable if
N [x] = N [y] (see [35]). This undistinguishability defines an equivalence relation
on V , whose classes are called the blocks of G. Clearly, each block is a clique of G.
Two distinct blocks B and B′ are said to be adjacent if there exist two vertices
x ∈ B, y ∈ B′ that are adjacent in G or, equivalently, if B ∪B′ is a clique of G.

There exist two equivalent representations of a graph: through its adjacency
matrix or its adjacency list. The adjacency matrix A = (Axy) is the n×n matrix
whose rows and columns are indexed by the vertices of the graph and with entry
Axy = 1 if there exists an edge between vertices x and y, and Axy = 0 other-
wise. Sometimes we will also consider the extended adjacency matrix, which is
obtained by setting the diagonal entries to one in the adjacency matrix. Inde-
pendently of the number of edges, the adjacency matrix requires O(n2) memory,
and permits O(1) time access to a specific edge {x, y} of the graph. Therefore,
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it is suitable when the given graph is dense, i.e., m is comparable with n2, and
when several accesses to edges are required.

The adjacency list consists instead of an array of n lists. Each element x of
the array represents a vertex of the graph, and the corresponding list represents
its neighborhood N(x). The adjacency list requires O(n + m) memory, as only
the existing edges in the graph are stored. However, it requires O(|N(x)|) time
to access a specific edge {x, y}, as in the worst case one has to pass through
the whole list of neighbors of x. Therefore, it is suitable when the given graph
is sparse, i.e., m is much smaller than n2, and when several explorations of the
neighborhoods are required.

Both of the above representations can be used for directed and undirected
graphs, and they can be easily extended for weighted graphs. In this thesis we
will use adjacency lists to represent the graphs, as the main routines involve the
exploration of the neighborhoods of the vertices. Nevertheless, we will use the
adjacency matrix to illustrate a graph in the figures.

We now discuss some graph classes, namely chordal, interval, unit interval
graphs and interval hypergraphs, whose concepts will be used especially in Chap-
ters 3, 4 and 5 in relation with Robinsonian matrices. For each graph class, we
briefly give its definition, characterizations and recognition algorithms.

Chordal graphs A graph G = (V,E) is a chordal graph if it does not contain an
induced cycle of length four or more. Equivalently, every cycle of more than three
vertices has a chord, i.e., an edge not in the cycle but connecting two vertices of the
cycle. Chordal graphs can be characterized using perfect elimination orderings.
Specifically, a vertex is simplicial if its neighborhood is a clique. Then, an ordering
π = (x1, . . . , xn) of V is a perfect elimination ordering (PEO) if xi is simplicial in
the subgraph induced on x1, . . . , xi for each i ∈ [n]. The following result holds.

2.3.1 Theorem. [101] G is a chordal graph if and only if it admits a PEO.

As we will see in Subsection 4.3.1, chordal graphs can be recognized in linear
time using lexicographic breadth-first search (Lex-BFS), which in fact produces
a perfect elimination ordering of the graph (if it is chordal) [101].

Interval graphs Interval graphs are a subclass of chordal graphs. Specifically,
a graph G = (V = [n], E) is called an interval graph if its vertices can be mapped
to intervals I1, . . . , In of the real line in such a way that two distinct vertices
x, y ∈ V are adjacent in G if and only if Ix ∩ Iy 6= ∅. This map is also called a
realization of G.

Recall that a matrix has C1P if its columns can be reordered in such a way
that ones are consecutive in its rows. Furthermore, let the vertex-clique incidence
matrix be the 0/1 matrix whose rows are indexed by the vertices and the columns
by the maximal cliques of G, with entry (i, j) equal to one if and only if vertex i
is contained in the clique corresponding to column j. Then the following holds.
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2.3.2 Theorem. [57] G is an interval graph if and only if its vertex-clique inci-
dence matrix has C1P.

As for chordal graphs, also interval graphs can be recognized in linear time
[14, 107, 37, 61, 38]. A famous algorithm is the one in [14], which uses PQ-trees
to check whether the vertex-clique incidence matrix of the given graph has C1P.

Unit interval graphs Unit interval graphs are a subclass of interval graphs
admitting a realization by intervals of the same (unit) length. There exist several
equivalent characterizations for unit interval graphs. Most of the recognition
algorithms are based on the equivalence between unit interval graphs and proper
interval graphs or indifference graphs [97]. Specifically, a proper interval graph
is an interval graph admitting a realization by pairwise incomparable intervals.
An indifference graph is instead an interval graph admitting a realization with
the property that there exists an edge between two vertices if the corresponding
intervals are within one unit of each other. The next theorem summarizes several
known characterizations for unit interval graphs, combining results from [35, 91,
82, 97, 98, 59]. Recall that K1,3 is the graph with one degree-3 vertex connected
to three degree-1 vertices (also known as claw).

2.3.3 Theorem. The following are equivalent for a graph G = (V,E).

(i) G is a unit interval graph.

(ii) G is an interval graph with no induced subgraph K1,3.

(iii) (3-vertex condition) There is a linear order π of V such that,

x <π y <π z, {x, z} ∈ E =⇒ {x, y}, {y, z} ∈ E ∀x, y, z ∈ V. (2.3)

(iv) (Neighborhood condition) There is a linear order π of V such that, for
any x ∈ V , the vertices in N [x] are consecutive with respect to π.

(v) (Clique condition) There is a linear order π of V such that the vertices
contained in the same maximal clique of G are consecutive with respect to π.

(vi) Its extended adjacency matrix has symmetric C1P.

We will see in Section 3.2 that matrices with C1P are a special class of Robin-
sonian matrices; this motivates our interest in unit interval graphs and represents
also the inspiration for the recognition algorithms in Chapters 5 and 6. Another
important characterization of unit interval graphs we will use in Chapter 5 is
the one in terms of straight enumerations. Recall that the blocks of a graph
G = (V,E) are the classes of the undistinguishability equivalence relation on V .
Then, a straight enumeration of G is a special orderings of the blocks of G, which
is defined as follows.
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2.3.4 Definition. (Straight enumeration) [67] A straight enumeration of G
is a linear order φ = (B1, . . . , Bp) of the blocks of G such that, for any block Bi,
the block Bi and the blocks Bj adjacent to it are consecutive in the linear order.
The blocks B1 and Bp are called the end blocks of φ and Bi (with 1 < i < p) are
its inner blocks.

In Subsection 5.3.2 we will show how to compute straight enumerations of
unit interval graphs with the Lex-BFS algorithm discussed in Chapter 4. In fact,
the following theorem will play a central role in Chapter 5.

2.3.5 Theorem. [43] A graph G is a unit interval graph if and only if it has a
straight enumeration. Moreover, if G is connected, then it has a unique (up to
reversal) straight enumeration.

On the other hand, if G is not connected, then any possible ordering of the
connected components combined with any possible orientation of the straight
enumeration of each connected component induces a straight enumeration of G.
Theorem 2.3.5 will be the main motivation for our Lex-BFS based recognition
algorithm for Robinsonian matrices described in Chapter 5.

Interval hypergraphs A hypergraph H = (V, E) is a generalization of the
notion of graph where elements of E , called hyperedges, are subsets of V . The
incidence matrix of H is the 0/1 matrix whose rows and columns are labeled,
respectively, by the hyperedges and the vertices and with an entry 1 when the
hyperedge contains the corresponding vertex. Then H is an interval hypergraph
if its vertices can be ordered in such a way that hyperedges are intervals, i.e., if its
incidence matrix has C1P. As for interval graphs, C1P can be checked using the
PQ-tree algorithm of Booth and Leuker [14]. We will use interval hypergraphs in
Subsection 3.2.2 to characterize Robinsonian matrices.





3
Robinsonian matrices

In this chapter we present Robinsonian matrices, a special structured class of
matrices which will play a fundamental role in this thesis. In Section 3.1 we give
a formal definition, outlining their applications in some important combinatorial
and classification problems. Then, in Section 3.2 we describe the existing recogni-
tion algorithms, which we group in two classes: combinatorial algorithms, derived
from graph characterizations of Robinsonian matrices, and spectral algorithms.
Finally, in Section 3.3 we conclude the chapter anticipating the work which will be
discussed in the second and third part of the thesis with respect to Robinsonian
matrices.

3.1 Introduction

Robinsonian matrices were introduced by Robinson [100] to model the seriation
problem discussed in Chapter 1. They also play an important role in many classi-
fication problems, where the goal is to find an order of a collection of objects such
that similar objects are ordered close to each other. In Subsection 3.1.1 we for-
mally define Robinson(ian) matrices. Then, in Subsection 3.1.2 we motivate our
interest in Robinsonian matrices by discussing their applications to the seriation
problem and to pyramidal clustering among others.

As already mentioned in Section 2.1, we will use the letter A or D to denote,
respectively, a similarity or dissimilarity matrix. Hence, we consider a symmetric

29
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proximity matrix A ∈ Sn, where rows (and columns) represent the objects that
need to be reordered. Each entry Axy represents the pairwise measure between
objects x and y, for x, y ∈ [n]. Since we deal mainly with symmetric matrices,
we will depict in figures only their upper triangular part. The support graph
of A is the undirected graph indexed by [n] whose edges are the pairs {x, y} with
Axy > 0, for x, y ∈ [n]. Recall from Subsection 2.2.1 that, given a permutation π
of [n], Aπ := (Aπ(x)π(y))

n
x,y=1 is the matrix obtained from A by permuting both its

rows and columns simultaneously according to π. Hence, when we say that A is
ordered according to π we mean in fact both its rows and columns.

3.1.1 Basic definitions

Robinsonian similarities A symmetric matrix A ∈ Sn is called a Robinson
similarity (also known as R-matrix) if its entries are monotone nondecreasing in
the rows and columns when moving towards the main diagonal, i.e., if

Axz ≤ min{Axy, Ayz} for each 1 ≤ x < y < z ≤ n. (3.1)

If there exists a permutation π of [n] such that the matrix Aπ is a Robinson
similarity, then A is said to be a Robinsonian similarity and π is called a Robinson
ordering of A. One can easily verify that A is a Robinson similarity if and only
if it satisfies the following four-points condition (see [29]):

Axy ≥ Auv for each 1 ≤ u ≤ x < y ≤ v ≤ n. (3.2)

Moreover, we say that A is a strongly-Robinsonian similarity if there exists a
Robinson ordering π of A such that the following holds (see [89]):

Auv < min{Auy, Axv} ⇒ Axy > max{Auy, Axv}, ∀u <π x <π y <π v. (3.3)

Note that in (3.1) the diagonal entries do not play a role. Hence we can ignore
them, denoting by ∗ the entries on the main diagonal, as in the similarity matrix A
in (3.4) shown in the example below.

A =




1 2 3 4 5 6 7

1 ∗ 0 0 0 7 0 6
2 ∗ 7 3 2 5 2
3 ∗ 3 1 6 2
4 ∗ 6 3 7
5 ∗ 1 7
6 ∗ 1
7 ∗




, Aπ =




1 5 7 4 2 3 6

1 ∗ 7 6 0 0 0 0
5 ∗ 7 6 2 1 1
7 ∗ 7 2 2 1
4 ∗ 3 3 3
2 ∗ 7 5
3 ∗ 6
6 ∗




(3.4)

Then A is a Robinsonian similarity, since, π = (1, 5, 7, 4, 2, 3, 6) is a Robinson
ordering of A. Indeed, the matrix Aπ given in (3.4) is a Robinson similarity.
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Robinsonian dissimilarities In the literature, a distinction is made between
Robinson(ian) similarities and Robinson(ian) dissimilarities. A symmetric ma-
trix D is called a Robinson dissimilarity matrix (also known as anti-R or anti-
Robinson matrix) if its entries are monotone nondecreasing in the rows and
columns when moving away from the main diagonal, i.e., if:

Dxz ≥ max{Dxy, Dyz} for each 1 ≤ x < y < z ≤ n. (3.5)

As for Robinson similarity matrices, if there exists a permutation π of [n] such
that the matrix Dπ is a Robinson dissimilarity matrix, then D is said to be a
Robinsonian dissimilarity and π is called a Robinson ordering of D. One can
easily verify that D is a Robinson dissimilarity if and only if it satisfies the
following four-points condition (see [29]):

Axy ≤ Auv for each 1 ≤ u ≤ x < y ≤ v ≤ n. (3.6)

Then, we say that A is a strongly-Robinsonian dissimilarity if there exists a
Robinson ordering π of D such that the following holds (see [89]):

Auv > max{Auy, Axv} ⇒ Axy < min{Auy, Axv}, ∀u <π x <π y <π v (3.7)

Again, main diagonal entries do not play a role in expression (3.5). However, it
is commonly assumed in the literature that they are equal to 0. Consider, for
example, the dissimilarity matrix A given below in (3.8).

D =




1 2 3 4 5 6 7

1 ∗ 8 8 8 1 8 2
2 ∗ 1 5 6 3 6
3 ∗ 5 7 2 6
4 ∗ 2 5 1
5 ∗ 7 1
6 ∗ 7
7 ∗




, Dπ =




1 5 7 4 2 3 6

1 ∗ 1 2 8 8 8 8
5 ∗ 1 2 6 7 7
7 ∗ 1 6 6 7
4 ∗ 5 5 5
2 ∗ 1 3
3 ∗ 2
6 ∗




(3.8)

Then D is a Robinsonian dissimilarity, as the permutation π = (1, 5, 7, 4, 2, 3, 6)
is a Robinson ordering of D. Indeed, the matrix Dπ, given in (3.8), is a Robinson
dissimilarity matrix.

Robinson(ian) similarities and dissimilarities are different sides of the same
coin: A ∈ Sn is a Robinson(ian) similarity if and only if −A is a Robinson(ian)
dissimilarity. Furthermore, if π is a Robinson ordering for the similarity A, then
it is also a Robinson ordering for the dissimilarity −A. In this thesis, we stick to
the original definition in [100], and thus we shall focus only on Robinson(ian) sim-
ilarity matrices, as the properties extend directly from one class to the other one.
Hence, unless specified otherwise, when talking about Robinson(ian) matrices we
always mean Robinson(ian) similarities.
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Note that the all-ones matrix Jn is both a similarity and a dissimilarity Robin-
son matrix and thus adding any multiple of Jn preserves the Robinson property.
In other words, if A is a Robinson(ian) matrix then A+λJn is also a Robinson(ian)
matrix for any scalar λ ∈ R. Hence, we may consider, without loss of generality,
nonnegative similarities A. Furthermore, if we denote by 0 = α0 < · · · < αL the
distinct values taken by the entries of A, then we can build the corresponding
nonnegative Robinson(ian) dissimilarity D = αJn − A with α > αL (to create a
distance matrix with null values only on the diagonal).

Indeed, the dissimilarity matrix D in (3.8) is obtained from the similarity
matrix A in (3.8) by setting D = 8J7 − A. Note that the same permutation
π = (1, 5, 7, 4, 2, 3, 6) is a Robinson ordering for both A and D.

Monotonic rectangular matrices As we now observe, Robinsonian matrices
can also be used to capture a class of monotonic matrices. Call a rectangular
matrix B ∈ Rn×k left-down monotonic if its entries are nonincreasing in the rows
and nondecreasing in the columns, i.e., if:

Bi+1,j ≥ Bij ≥ Bi,j+1 for all i ∈ [n], j ∈ [k].

Then, the problem of checking whether the rows of B can be reordered by a
permutation Π1 and its columns by a permutation Π2 in such a way that Π1BΠT

2

is left-down monotonic, can be reformulated as an instance of deciding whether
an associated matrix A is Robinsonian.
For this select a scalar µ > max

i,j
Bij and consider the following (block) matrix:

A =


 µJn B

BT µJk


 .

Then, for permutations Π1 of [n] and Π2 of [k], consider their concatenation:

Π =


 Π1 0

0 Π2


 ,

which is a permutation of [n+ k]. Since:

ΠAΠT =


 µJn Π1BΠT

2

Π2B
TΠT

1 µJk


 ,

it follows that Π1BΠT
2 is left-down monotonic if and only if ΠAΠT is Robinson.

On the other hand, if Π is a permutation of [n + k] reordering A as a Robinson
matrix, then it is easy to see that Π must induce a permutation Π1 of [n] and a
permutation Π2 of [n+ 1, . . . , n+ k].
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Therefore, testing whether the rows and columns of B can be reordered (by,
respectively, Π1 and Π2) to get a left-down monotonic matrix is equivalent to
test whether A is Robinsonian. The same reasoning can be extended to recognize
right-up monotonic matrices (defined in the same fashion as left-down monotone
matrices) via Robinsonian dissimilarities. .

3.1.2 Motivation

As already discussed in Chapter 1, Robinsonian matrices play an important role
in the seriation problem, as they best achieve its goal of ordering similar objects
close to each other.

The Robinsonian structure is a strong property and, even though the data is
not Robinsonian, Robinsonian recognition algorithms can be used as core sub-
routines to design efficient heuristics or approximation algorithms for solving the
seriation problem (see, e.g., [30, 56]). As already discussed in Chapter 1, Robinso-
nian matrices can be also used to build a consistent ranking of items given pairwise
comparisons [55]. We will see in Corollary 7.2.6 that Robinsonian matrices also
play an important role in the quadratic assignment problem (QAP). Indeed, they
represent a class of instances of QAP which can be solved in polynomial time,
while general QAP is NP-hard.

Furthermore, Robinsonian similarities matrices are a generalization of 0/1 ma-
trices with C1P, which are used especially in bionformatics, e.g., sequencing DNA
applications (see, e.g.,[3]).

We present below applications of Robinsonian matrices to cluster and data
analysis. As already discussed in Chapter 1, data analysis is an enormous field,
and a detailed discussion is out of scope for this thesis. We present below some
basic concepts related to hierarchical and pyramidal clustering without going into
details, to underline the importance of seriation and Robinsonian matrices. We
refer the reader interested in clustering to the book [53], the reader interested in
hierarchical clustering to [90] and the reader interested in pyramidal clustering
to the recent work [10].

Hierarchies A hierarchy of a ground set E is a collection H of nonempty
subsets of E (called classes or clusters) with the following properties:

(C1) E ∈ H.
(C2) for each x ∈ E then {x} ∈ H.
(C3) for each H,H ′ ∈ H, either H ∩H ′ = ∅, or H ⊆ H ′, or H ⊇ H ′.

In other words, a hierarchy is a collection of nested subsets of E containing the
singletons clusters and the universal cluster (i.e., the ground set E). Given a
hierarchy H of E, an index on H is a function i : H → IR+ for which the
following properties hold:

(D1) i(H) = 0 if and only if H is a singleton class
(D2) if H,H ′ ∈ H and H ⊂ H ′ then i(H) < i(H ′)
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In other words, an index i(H) may be seen as the maximum dissimilarity between
any two elements of the cluster H. We refer to the pair (H, i) as an indexed hier-
archy. We introduce the concept of ultrametric, which is a subclass of metric (see
Subsection 2.1), where the triangle inequality (ii) is replaced by the condition
Dik ≤ max{Dij, Djk}, also known as strong triangle inequality or ultrametric
inequality. Ultrametrics have many applications in taxonomy and phylogenetic
tree construction (see e.g., [87] and references therein). A well known result in
the literature is that ultrametrics are in one-to-one correspondence with indexed
hierarchies [72, 73]. Indexed hierarchies are produced by hierarchical clustering
algorithms, which are widely used tools in the field of clustering and data analy-
sis [90]. They can be visualized through a special binary tree diagram, called a
dendrogram, where each node corresponds to a cluster of the hierarchy and it is
positioned at the height corresponding to its index (see Figure 3.1). The order of
the leaves of the dendrogram represents a permutation of the ground set E.

1 5 7 4 2 3 6i = 0

i = 1

i = 2

i = 3

i = 4

i = 5

i = 6

i = 7

i = 8

Figure 3.1: A possible dendrogram visualization of the indexed hierarchy (H, i),
where H = {{1}, {5}, {7}, {4}, {2}, {3}, {6}, {5, 7}, {2, 3}, {4, 5, 7}, {2, 3, 6},
{2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}} is a hierarchy corresponding to the dissimilarity
matrix Dπ in (3.8).

In general, a linear order π of the set of objects E is said to be compatible with
the hierarchy H if every cluster of H is an interval when E is sorted according
to π. Then, for each hierarchy H of E, there exist 2|E|−1 possible rearrangements
of the leaves of the dendrogram compatibly with H, because each node of the
(binary) dendrogram tree can be arbitrarily reordered [10]. Furthermore, given
a hierarchy H of E and a linear π order of E, the dendrogram can uniquely



3.2. Recognition algorithms 35

be drawn. In this stream of work, the seriation problem can be thus used in
a second stage to obtain a better visualization of the hierarchy returned by a
hierarchical clustering algorithm. Indeed, since Robinsonian matrices best achieve
the seriation goal to order similar objects close to each other, a Robinson ordering
can be used to order the leaves of the dendrogram in such a way that similar
elements in the clusters are close to each other [52].

Pyramids A pyramid P (also known as a pseudo-hierarchy) is a relaxation of
the concept of hierarchy, and it is obtained by keeping conditions (C1) and (C2)
and by replacing condition (C3) with the following two conditions:

(C4) for each P, P ′ ∈ P , either P ∩ P ′ = ∅ or P ∩ P ′ ∈ P .
(C5) there exists a linear order π of E such that every cluster of P is an

interval when E is sorted according to π, i.e., π is compatible with P .
Note that condition (C4) allows overlapping among the classes of P . Pyramids
were in fact introduced to cope with the limitation of hierarchies, which cannot
be used to represent elements that belong to more than one cluster (e.g., multi-
functional proteins [9]). Let i be an index satisfying (D1) and (D2). Then the
pair (P , i) is called an indexed pyramid. As pyramids are a generalization of hier-
archies, one can also generalize the concept of index. Specifically, a weak-index of
a pyramid P is obtained by keeping the condition (D1) and relaxing the condition
(D2) with the two following conditions:

(D3) if P, P ′ ∈ P and P ⊂ P ′ then i(P ) ≤ i(P ′).
(D4) if P, P ′ ∈ P , P ( P ′ and i(P ) = i(P ′) then P =

⋂{P ′′ ∈ P : P ( P ′′}.
We refer to the pair (P , i) as an indexed weak-pyramid. Then, analogously to the
bijection between ultrametrics and indexed hierarchies, there exists a bijection
between pyramids and Robinsonian dissimilarities. Precisely, Robinsonian dis-
similarities are in one-to-one correspondence with weakly indexed pyramids [49],
while strongly Robinsonian dissimilarities are in one-to-one correspondence with
indexed pyramids [50]. Pyramids are used in pyramidal clustering and they can
be visualized through a special tree diagram, which is the analog of the for hierar-
chical clustering, with the difference that each node now has at most two parents
(see Figure 3.2).

This aspect reflects the property of overlapping of clusters in pyramids. For
applications of pyramidal clustering in classification and data analysis we refer
the interested reader to [50, 40, 6, 83, 108]. For more details on Robinsonian
matrices and pyramids we refer instead to [45, 89, 11, 10].

3.2 Recognition algorithms

As we have seen in Subsection 3.1.2, in many applications it is important to
recognize Robinsonian matrices, i.e., given a proximity matrix, determine whether
it is Robinsonian and, if so, find a Robinson ordering of the matrix. In this section
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1 5 7 4 2 3 6i = 0

i = 1

i = 2

i = 3

i = 4
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Figure 3.2: A possible visualization of the indexed pyramid (P , i), where P =
{{1}, {5}, {7}, {4}, {2}, {3}, {6}, {1, 5}, {5, 7}, {4, 7}, {2, 3}, {3, 6}, {1, 5, 7}, {2, 3, 6},
{5, 4, 7}, {2, 3, 4, 5, 6, 7}, {1, 2, 3, 4, 5, 6, 7}} is a pyramid corresponding to the
dissimilarity matrix Dπ in (3.8).

we give a short overview of the main recognition algorithms for Robinsonian
matrices existing in the literature.

It is straightforward to verify whether a given matrix A ∈ Sn is a Robinson
similarity, by checking if Axy ≥ max{Ax,(y+1), A(x−1),y} holds for each 1 ≤ x <
y ≤ n, which is equivalent to relation (3.1). Moreover, as we will see soon, one
can decide in polynomial time whether A is Robinsonian.

In this section we first characterize a special class of Robinsonian matrices,
namely 0/1 Robinsonian matrices. Then we briefly review the main existing
recognition algorithms, dividing them in two classes: combinatorial algorithms
and spectral algorithms. Since to the best of our knowledge the combinatorial
algorithms are in fact not implemented or not available, we will focus more on
the description of the spectral algorithm, which will be used as benchmark in
Chapter 9 with respect to the recognition algorithms presented in Chapters 5
and 6.

3.2.1 Binary Robinsonian matrices

Any symmetric binary matrix A ∈ {0, 1}n×n can be seen as the (extended) adja-
cency matrix of a graph G = (V = [n], E) whose edges are the positions of the
nonzero off-diagonal entries of A. Then the following holds.
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3.2.1 Theorem. [97] Let A ∈ Sn∩{0, 1}n×n be the (extended) adjacency matrix
of a graph G = (V = [n], E). Then A is a Robinsonian similarity matrix if and
only if G is a unit interval graph.

Indeed, if A is the extended adjacency matrix of G then A is Robinsonian if
and only if it has symmetric C1P (see Definition 2.1.1), which in turn is equivalent
to the condition (vi) of Theorem 2.3.3 and thus for G being a unit interval graph.
Hence, 0/1 Robinsonian matrices have the block structure given below.

A =




0
1

0




Figure 3.3: The block structure of a 0/1 Robinsonian matrix.

Furthermore, it is easy to see that the 3-vertex condition (iii) in Theorem 2.3.3
coincides with relation (3.1) for 0/1 matrices. This equivalence and the fact that
unit interval graphs can be recognized with a Lex-BFS multisweep algorithm [33]
will motivate our algorithm discussed in Chapter 5.

0/1 Robinsonian matrices can thus be recognized in linear time in terms of the
size of the matrix, using recognition algorithms either for C1P (like the algorithm
of Booth and Leuker [14], which is based on PQ-trees), or for unit interval graphs
(see Section 2.3).

The link between Robinsonian matrices and C1P can be extended also to non
symmetric 0/1 matrices as follows.

3.2.2 Theorem. [75] Let C ∈ {0, 1}m×n be a matrix and define A = CTC. Let
Π ∈ {0, 1}n×n be a permutation matrix. Then CΠ has consecutive ones in its
rows if and only if ΠTAΠ is a Robinson similarity matrix.

Hence, checking if C has C1P reduces to a special instance of Robinsonian
matrix recognition. We refer the interested reader to [47] and references therein
for details about algorithms for C1P. In Chapter 5 we will present an algorithm
to recognize 0/1 Robinsonian matrices based on computing straight enumerations
of unit interval graphs with the Lex-BFS algorithm discussed in Chapter 4. This
algorithm relies on Theorem 2.3.5 combined with Theorem 3.2.1.
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3.2.2 Graph characterizations

In the last decades, different graph characterizations of Robinsonian matrices
have appeared in the literature, leading to different polynomial time recogni-
tion algorithms. The first bunch of recognition algorithms relies on the char-
acterization of Robinsonian dissimilarities matrices in terms of interval hyper-
graphs. Given a dissimilarity matrix D ∈ Sn and a scalar α, the threshold graph
Gα = (V,Eα) has edge set Eα = {{x, y} : Dxy ≤ α} and, for x ∈ V , the ball
B(x, α) := {y ∈ V : Dxy ≤ α} consists of x and its neighbors in Gα. Let B denote
the collection of all the balls of D (see Table 3.1) and let HB denote the corre-
sponding ball hypergraph, with vertex set V = [n] and with B as set of hyperedges
(see Table 3.2).

α = 0 α = 1 α = 2 α = 3, 4 α = 5 α = 6 α = 7 α = 8
1 {1} {1, 5} {1, 5, 7} {1, 5, 7} {1, 5, 7} {1, 5, 7} {1, 5, 7} V
2 {2} {2, 3} {2, 3} {2, 3, 6} {2, 3, 4, 6} V \ {1} V \ {1} V
3 {3} {2, 3} {2, 3, 6} {2, 3, 6} {2, 3, 4, 6} V \ {1, 5} V \ {1} V
4 {4} {4, 7} {4, 5, 7} {4, 5, 7} V \ {1} V \ {1} V \ {1} V
5 {5} {1, 5, 7} {1, 4, 5, 7} {1, 4, 5, 7} {1, 4, 5, 7} V \ {3, 6} V V
6 {6} {6} {3, 6} {2, 3, 6} {2, 3, 4, 6} {2, 3, 4, 6} V \ {1} V
7 {7} {4, 5, 7} {1, 4, 5, 7} {1, 4, 5, 7} {1, 4, 5, 7} V \ {6} V V

Table 3.1: Collection B of the balls of the dissimilarity matrix in (3.8).

e1 = {1} e8 = {1, 5} e15 = {1, 4, 5, 7}
e2 = {2} e9 = {2, 3} e16 = {2, 3, 4, 6}
e3 = {3} e10 = {3, 6} e17 = {1, 2, 4, 5, 7}
e4 = {4} e11 = {4, 7} e18 = {2, 3, 4, 6, 7}
e5 = {5} e12 = {1, 5, 7} e19 = {1, 2, 3, 4, 5, 7}
e6 = {6} e13 = {2, 3, 6} e20 = {2, 3, 4, 5, 6, 7}
e7 = {7} e14 = {4, 5, 7} e21 = {1, 2, 3, 4, 5, 6, 7}

Table 3.2: Hyperedges of the ball hypergraph HB corresponding to the dissimi-
larity matrix in (3.8).

Most of the existing algorithms are then based on the following result.

3.2.3 Theorem. [88] D ∈ Sn is a Robinsonian dissimilarity if and only if the
ball hypergraph HB is an interval hypergraph.

Recall from Section 2.3 that the incidence matrix of an hypergraph is the 0/1 ma-
trix whose rows and columns are labeled, respectively, by the hyperedges and the
vertices, with an entry equal to 1 when the hyperedge contains the corresponding
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1 2 3 4 5 6 7
e1 1 0 0 0 0 0 0
e2 0 1 0 0 0 0 0
e3 0 0 1 0 0 0 0
e4 0 0 0 1 0 0 0
e5 0 0 0 0 1 0 0
e6 0 0 0 0 0 1 0
e7 0 0 0 0 0 0 1
e8 1 0 0 0 1 0 0
e9 0 1 1 0 0 0 0
e10 0 0 1 0 0 1 0
e11 0 0 0 1 0 0 1
e12 1 0 0 0 1 0 1
e13 0 1 1 0 0 1 0
e14 0 0 0 1 1 0 1
e15 1 0 0 1 1 0 1
e16 0 1 1 1 0 0 1
e17 1 1 0 1 1 0 1
e18 0 1 1 1 0 1 1
e19 1 1 1 1 1 0 1
e20 0 1 1 1 1 1 1
e21 1 1 1 1 1 1 1

(a) Ball hypergraph unordered.

1 5 7 4 2 3 6
e1 1 0 0 0 0 0 0
e2 0 0 0 0 1 0 0
e3 0 0 0 0 0 1 0
e4 0 0 0 1 0 0 0
e5 0 1 0 0 0 0 0
e6 0 0 0 0 0 0 1
e7 0 0 1 0 0 0 0
e8 1 1 0 0 0 0 0
e9 0 0 0 0 1 1 0
e10 0 0 0 0 0 1 1
e11 0 0 1 1 0 0 0
e12 1 1 1 0 0 0 0
e13 0 0 0 0 1 1 1
e14 0 1 1 1 0 0 0
e15 1 1 1 1 0 0 0
e16 0 0 0 1 1 1 1
e17 1 1 1 1 1 0 0
e18 0 0 1 1 1 1 1
e19 1 1 1 1 1 1 0
e20 0 1 1 1 1 1 1
e21 1 1 1 1 1 1 1

(b) Ball hypergraph with C1P.

Table 3.3: Incidence matrix of the ball hypergraph HB of the dissimilarity matrix
in (3.8).

vertex. Then, a hypergraph is an interval hypergraph if and only if its incidence
matrix has C1P, i.e., there exists a order π of V = [n] such that all the balls of D
are intervals with respect to π.

Mirkin and Rodin [88] gave the first polynomial algorithm to recognize Robin-
sonian matrices, with O(n4) running time, based on checking whether the ball
hypergraph is an interval hypergraph and using the PQ-tree algorithm of [14] to
check whether the incidence matrix has C1P (see Table 3.3). Later, Chepoi and
Fichet [28] introduced a simpler algorithm that, using a divide-an-conquer strat-
egy and sorting the entries of D, improved the running time to O(n3). The same
sorting preprocessing was used by Seston [106], who improved the algorithm to
O(n2 log n) by constructing paths in the threshold graphs of D.

Equivalently, one can also build the intersection graph GB of B, where the balls
are the vertices and connecting two vertices if the corresponding balls intersect.
Then, Theorem 3.2.3 can be shown to be equivalent to the next statement.
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3.2.4 Theorem. [94] D ∈ Sn is a Robinsonian dissimilarity if and only if the
intersection graph GB is an interval graph.

Recall that the vertex-clique incidence matrix of a graph G is the matrix whose
rows are indexed by the vertices and the columns by the maximal cliques of G
(see Table 3.4). Then, since a graph is an interval graph if and only if its vertex-
clique matrix has C1P (see Theorem 2.3.2), one can check if the vertex-clique
matrix of GB has C1P in order to decide if D is Robinsonian.

C1 = {e1, e8, e12, e15, e17, e19, e21}
C2 = {e2, e9, e13, e16, e17, e18, e19, e20, e21}
C3 = {e3, e9, e10, e13, e16, e18, e19, e20, e21}
C4 = {e4, e11, e14, e15, e16, e17, e18, e19, e20, e21}
C5 = {e5, e8, e12, e14, e15, e17, e19, e20, e21}
C6 = {e6, e10, e13, e16, e18, e20, e21}
C7 = {e7, e11, e12, e14, e15, e17, e18, e19, e20, e21}

Table 3.4: Maximal cliques of the intersection graph GB corresponding to the
dissimilarity D in (3.8). Since D is Robinsonian, then each clique Ci is in corre-
spondence with vertex i, for i ∈ [7] (see [94]).

In this stream of works, very recently, Préa and Fortin [94] presented a more
sophisticated O(n2) algorithm, based on the fact that the maximal cliques of the
graph GB are in one-to-one correspondence with the row/column indices of D.
Roughly speaking, they use the algorithm from Booth and Leuker [14] to compute
a first PQ-tree which they update throughout the algorithm. Furthermore, they
return all the possible Robinson orderings, which can be useful in some practical
applications.

All the above characterizations and algorithms referred to Robinsonian dissim-
ilarities, and the corresponding recognition algorithms are based on the character-
ization of Robinsonian dissimilarities matrices in terms of interval (hyper)graphs.
Furthermore, these algorithms use the sophisticated PQ-tree algorithm of [14]
and, to the best of our knowledge, are not implemented.

This motivated us to investigate new simpler recognition algorithms which
could be conceptually easy and also implementable. In this context, we will use
the characterization of Robinsonian similarities matrices in terms of unit interval
graphs (see Theorem 5.2.2).

Specifically, let α0 < α1 < · · · < αL denote the distinct values taken by the
entries of A with α0 = 0 (recall that we can assume without loss of generality A
to be nonnegative). The graph G(`) = (V,E`), whose edges are the pairs {x, y}
with Axy ≥ α`, is called the `-th level graph of A. Then, G(1) is the support graph
of A whose edges are the pairs {x, y} with Axy > 0. The level graphs represent
the analog for similarity matrices of the threshold graphs for dissimilarities, and
they can be used to decompose A as a conic combination of 0/1 matrices.
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This is summarized in the next lemma, whose easy proof is omitted.

3.2.5 Lemma. Let A ∈ Sn with distinct values α0 < α1 < · · · < αL and with
level graphs G(1), . . . , G(L). Then, A = α0J +

∑L
`=1 (α` − α`−1)AG(`) . Moreover,

A is Robinson if and only if AG(`) is Robinson for each ` ∈ [L].

Clearly, if A is a Robinsonian matrix then the adjacency matrices of its level
graphs G(`) are Robinsonian too, for each ` ∈ [L]. However, the converse is not
true. It is easy to build a small example where A is not Robinsonian although
the extended adjacency matrix of each level graph is Robinsonian. Consider, for
example, the following matrices:

A =




2 2 1 1
2 2 2 0
1 2 2 1
1 0 1 2


 , AG(1) =




1 1 1 1
1 1 1 0
1 1 1 1
1 0 1 1


 , AG(2) =




1 1 0 0
1 1 1 0
0 1 1 0
0 0 0 1


 ,

where AG(1) and AG(2) are the extended adjacency matrices of the level graphs
of A. Both matrices AG(1) and AG(2) are Robinsonian. Indeed, the matrix AG(2)

is Robinson, and thus the identity permutation represents a Robinson ordering
for AG(2) . Furthermore, π = (2, 1, 3, 4) or π = (2, 3, 1, 4) (and their reversals) are
the only Robinson orderings of AG(1) . However, none of these permutations π is
a Robinson ordering also of AG(2) . Hence A is not Robinsonian.

The difficulty lies in the fact that one needs to find a permutation that reorders
simultaneously the extended adjacency matrices of all the level graphs as Robinson
matrices. Roberts [99] first introduced a characterization of Robinsonian matrices
in terms of indifference graphs (i.e., unit interval graphs). Rephrasing his result
using the notion of level graphs, he showed that A is Robinsonian if and only if its
level graphs have vertex linear orders that are compatible (see [99, Theorem 4.4]).
However, he does not give any algorithmic insight on how to find such orders. We
will see in Subsection 5.2 how to rephrase the above concept of compatibility of
unit interval graphs in terms of their straight enumerations (see Theorem 5.2.2).
This will lead to the new recognition algorithm presented in Chapter 5.

3.2.3 Spectral characterization

A completely different approach to recognize Robinsonian similarities was used
by Atkins et al. [5], who introduced an interesting spectral sequencing algorithm.
Given a matrix A ∈ Sn, its Laplacian matrix is the matrix defined by the relation:

LA = Diag(Ae)− A ∈ Sn,
where e is the all-ones vector and Diag(Ae) is the diagonal matrix whose diagonal
is given by the vector Ae. If A ≥ 0 then LA is positive semidefinite and moreover
its smallest eigenvalue is λ1(LA) = 0 (since LAe = 0).
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A Fiedler vector yF ∈ Rn of A is an eigenvector corresponding to the second
smallest eigenvalue λ2(LA) of LA, which is also known as the Fiedler value. If
λ2(A) has multiplicity one, then the Fiedler value is called simple, and the Fiedler
vector is uniquely determined up to a scalar multiple. The spectral algorithm
of Atkins et al. [5] relies on the following properties of the Fiedler vector of a
Robinson similarity matrix.

3.2.6 Theorem. [5] If A ∈ Sn is a Robinson similarity then it has a monotone
Fiedler vector yF , i.e., satisfying: yF (1) ≤ . . . ≤ yF (n) or yF (n) ≤ . . . ≤ yF (1).

3.2.7 Theorem. [5] Assume that A ∈ Sn is a Robinsonian similarity, that its
Fiedler value is simple and that the Fiedler vector yF has no repeated entries.
Let π be the permutation induced by sorting monotonically the values of yF (in
increasing or decreasing order). Then the matrix Aπ is a Robinson similarity
matrix.

In other words, the above results show that sorting monotonically the Fiedler
vector yF of a similarity matrix A reorders A as a Robinson similarity. Hence, a
simple algorithm to recognize Robinsonian similarity matrices consists in building
the corresponding Laplacian matrix LA and then sort the entries of its second
eigenvector for increasing or decreasing values, which leads to a linear order π
of [n]. Then, in view of Theorem 3.2.7, if Aπ is a Robinson similarity then A is
Robinsonian and π a Robinson ordering, whereas if Aπ is not Robinson then A is
not Robinsonian.

The authors in [5] discuss how to deal with the general case when the Fiedler
vector does not satisfy the hypotheses in Theorem 3.2.7. Specifically, they prove
that if a Robinsonian matrix A is irreducible and if its smallest off-diagonal entry
is zero, then the Fiedler value is simple [5, Theorem 4.6].

Since a symmetric matrix A is irreducible if and only if its support graph is
connected, one can identify in a preprocessing step the connected components of
the support graph of A and deal with each of them independently [5, Lemma 4.2].
After this preprocessing step one can assume without loss of generality, that the
Fiedler value of A is simple.

Finally, to cope with repeated values of the Fiedler vector, one applies recur-
sively the spectral algorithm to each submatrix of A induced by the positions
corresponding to all entries that are equal to a common value [5, Theorem 4.7].

Below, in Table 3.5, we show the original Fiedler vector of the Laplacian of
the similarity matrix A in (3.4) (on the left) and after reordering it for increasing
values (on the right). Note that the permutation π = (1, 5, 7, 4, 2, 3, 6) obtained
by sorting the Fiedler vector yF is exactly the same Robinson ordering found
in (3.4) and (3.8).

The complexity of the spectral algorithm in [5] is given by O(n(T (n)+log n)),
where T (n) is the complexity of computing (approximately) eigenvalues of an n×n
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yF =




1 −0.6490
2 0.3414
3 0.3807
4 0.0105
5 −0.2838
6 0.4292
7 −0.2290




yπF =




1 −0.6490
5 −0.2838
7 −0.2290
4 0.0105
2 0.3414
3 0.3807
6 0.4292




Table 3.5: The Fiedler vector of the matrix A in (3.4).

symmetric matrix. As for the algorithm in [94], the above spectral algorithm can
also be extended to compute all the Robinson orderings of a given Robinsonian
matrix using recursively PQ-trees. Given its simplicity, this algorithm is used
in some classification applications (see, e.g., [55]) as well as in spectral clustering
(see, e.g., [7]).

3.3 Conclusions

In this chapter we have introduced Robinson(ian) similarity and dissimilarity
matrices, and we have outlined their importance in the seriation problem pre-
sented in Chapter 1 and more generally in classification and data analysis prob-
lems, discussing their relation with hierarchical and pyramidal clustering. We
then presented the main existing recognition algorithms, which are based on the
characterization of Robinsonian matrices in terms of interval graphs and interval
hypergraphs. Furthermore, we discussed an interesting spectral algorithm which
is used in practice to solve the seriation problem, and consists simply in sorting
the second smallest eigenvector of the Laplacian of a similarity matrix.

Based on the concepts introduced in this chapter, in the second part of the
thesis (Chapters 5 and 6) we will present two new characterizations of Robinso-
nian similarities matrices. Specifically, the first characterization (Chapter 5) is an
equivalent formulation based on Lemma 3.2.5 in terms of straight enumerations
of unit interval graphs (see Definition 2.3.4 and Theorem 5.2.2).

The second characterization (Chapter 6) is instead based on new combinato-
rial properties of Robinsonian matrices in terms of the notion of ‘path avoiding
a vertex’ and of ‘end points’ of Robinson orderings. Both characterizations dif-
fer from most of the existing approaches discussed in Section 3.2 in the sense
that they are not directly related to interval (hyper)graphs, but they are inspired
by the Lex-BFS algorithm presented in the next chapter (Algorithm 4.3). Each
characterization will lead to a new combinatorial recognition algorithm for Robin-
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Table 3.6: Summary of existing recognition algorithms for Robinsonian matrices.
Given A ∈ Sn, then: m denotes its number of nonzero entries; L denotes its
number of distinct values; T (n) is the time to compute eigenvalues of A.

Year Complexity Subroutine Characterization

Mirkin
& Rodin[88]

1984 O(n4) PQ-tree
interval

hypergraphs

Chepoi
& Fichet[28]

1997 O(n3) none
interval

hypergraphs

Atkins
et al.[5]

1998 O(n(T (n) + n log n))
eigenvalues

computation
Fiedler
vector

Seston[106] 2008 O(n2 log n)
paths in

threshold graphs
interval

hypergraphs

Préa
& Fortin[94]

2014 O(n2) PQ-tree
interval

hypergraphs

Laurent
& Seminaroti[77] 2015 O(L(m+ n)) Lex-BFS

unit interval
graphs 1

Laurent
& Seminaroti[79] 2016 O(n2 +mn log n) SFS

path avoiding a
vertex 2

sonian matrices, which will be compared in Chapter 9 with the spectral algorithm
from Atkins et al. [5].

In Table 3.6 we summarize the theoretical complexity of each algorithm pre-
sented in this chapter and of the new recognition algorithms which will be pre-
sented in Chapters 5 and 6.
For each algorithm, we outline the characterization of Robinsonian matrices which
is exploited and the main (external) subroutine or task required.

1see Chapter 5.
2see Chapter 6.
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Lexicographic Breadth-First Search

In this chapter we discuss Lexicographic Breadth-First search (Lex-BFS), which
is a special graph traversal algorithm. In Section 4.1 we introduce graph traversal
algorithms and we underline the importance of Lex-BFS for the recognition of
several classes of graphs and of Robinsonian matrices. Then, in Section 4.2 we
present in detail how Lex-BFS and its variant Lex-BFS+ work. Furthermore,
we discuss a linear time implementation of Lex-BFS (and Lex-BFS+) using the
partition refinement paradigm introduced in Subsection 2.2.3, and we show its
application in multisweep algorithms. Finally, in Section 4.3 we discuss some
structural properties of Lex-BFS when applied to special graph classes, and we
conclude the chapter in Section 4.4 with directions for possible future work.

4.1 Motivation

Lexicographic Breadth-First Search, abbreviated Lex-BFS 1, is a graph traversal
algorithm developed by Rose et al. [102] for the recognition of chordal graphs.
A graph traversal algorithm (also called graph search algorithm) is a fundamental
search paradigm, aiming to traverse all the vertices and the edges of a given graph.

1In some works Lexicographic Breadth-First Search is abbreviated by LBFS. However, since
LBFS is also used to denote an industrial level switch, in our manuscript we will use the
unambiguous abbreviation Lex-BFS.

45
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We say that a vertex is visited if it is traversed during the algorithm; a vertex
is explored if it is encountered during the algorithm, i.e., if it is adjacent to some
already visited vertex; a vertex is unvisited if it is not visited. Roughly speaking,
a generic graph search algorithm works as follows. At the beginning, every vertex
is initialized as unvisited. Every time a vertex is traversed, it is marked as visited
and its neighbors are marked as explored. The algorithm then iteratively visits
the unvisited vertices of the graph, until no unvisited vertex exists anymore. At
the end, it returns a linear order of the vertices representing the order in which the
vertices have been traversed. Throughout the algorithm, unvisited vertices are
maintained in a priority queue, i.e., a data structure which defines the priorities
in visiting the vertices. If two vertices have the same priority, we say that we
have ties and we break them according to their order in the queue. Different
maintenance of the queue of unvisited vertices leads to different graph traversal
algorithms.

The most famous graph traversal algorithms are Breadth-First Search (BFS)
and Depth-First Search (DFS). Specifically, BFS explores first the neighbors of
formerly visited vertices, by storing explored vertices in a priority queue with a
first-in, first-out (FIFO) strategy. In other words, ‘oldest’ explored vertices are
visited first. By contrast, DFS explores first the neighbors of recently visited ver-
tices, by storing the unvisited vertices in a priority queue with a last-in, first-out
strategy (LIFO). In other words, ‘newest’ explored vertices are visited first. Both
algorithms can be implemented in linear time in the size of the graph, and they
have many applications in graph theory: BFS is used, e.g., to solve the shortest
path problem and to compute the maximum flow in a flow network; DFS is used,
e.g., to test planarity of graphs and to compute strongly connected components
and topological orderings of directed graphs. For an exhaustive overview of BFS
and DFS we refer the reader, e.g., to [32].

Lex-BFS is a variant of BFS, where vertices are explored by giving preference
to those vertices whose neighbors have been visited earliest [102]. As BFS and
DFS, also Lex-BFS can be implemented in linear time (see Subsection 4.2.3) and
it plays an important role in the design of efficient recognition algorithms for
special graph classes (e.g., chordal, interval and unit interval graphs) [33].

Lex-BFS will play a fundamental role in this thesis for two reasons. First,
it can be directly applied to the recognition of Robinsonian matrices. In fact,
Lex-BFS can be used to recognize 0/1 matrices with C1P [61], and thus also
Robinsonian matrices (see Section 3.2). Furthermore, we will discuss in Chapter 5
a new recognition algorithm for Robinsonian matrices entirely based on Lex-BFS.
Second, Lex-BFS represents the main inspiration for the Similarity-First Search
algorithm discussed in Chapter 6, which can be seen as a generalization of Lex-
BFS applied to weighted graphs, and which will be used as well to recognize
Robinsonian matrices. Hence, a good understanding of Lex-BFS will facilitate
the discussion of the new recognition algorithms in Chapters 5 and 6.



4.2. The algorithm 47

4.2 The algorithm

In this section we discuss in detail the Lex-BFS algorithm. First, we present
a pseudocode of the algorithm (see Subsection 4.2.1) and its variant, denoted
by Lex-BFS+ (see Subsection 4.2.2), illustrating how the algorithms concretely
work on a small example. Then, we show how to implement Lex-BFS (and
Lex-BFS+) in linear time using the partition refinement paradigm presented in
Subsection 2.2.3 (see Subsection 4.2.3). Finally, we show how Lex-BFS can be
used in a multisweep framework, where repeated Lex-BFS orderings are computed
(see Subsection 4.2.4). The description of Lex-BFS is mainly based on the papers
[61, 33, 38], where the Lex-BFS ordering represents the order in which the vertices
in the graph have been visited (although in some related works (e.g., [15]), the
vertices are actually returned in the reversed order).

4.2.1 Lex-BFS

Lex-BFS is a variant of the classic BFS algorithm applied to an undirected graph
G = (V,E) where, at each iteration, the vertex whose neighborhood has been
visited earliest is traversed. The output is a linear order σ of the vertices V of G,
called Lex-BFS-ordering, where x <σ y means that x has been visited before y.
The algorithm works as follows. Each vertex has a label, which is a word of
the alphabet {0, . . . , |V − 1|} and it is initialized empty (denoted here by ∅).
Starting from an arbitrary vertex, at each iteration i the algorithm chooses a
vertex p to visit (called pivot) which is marked as visited and placed at position i
in σ. Then, it appends to the label of each unvisited neighbor x ∈ N(p) of p the
letter |V | − i. The idea is then that the new vertex to visit is chosen among the
vertices with the lexicographic largest label (see Subsection 2.2.2), from which
the name Lexicographic Breadth-First Search.

Algorithm 4.1: Lex-BFS(G)

input: a graph G = (V,E)
output: a Lex-BFS ordering σ of V

1 foreach x ∈ V do
2 label(x) = ∅
3 for i = 1, . . . , |V | do
4 pick any unvisited vertex p with lexicographical largest label
5 σ(p) = i and mark p as visited
6 foreach unvisited vertex x in N(p) do
7 append |V | − i to label(v)

8 return σ
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Hence, the priority queue of Lex-BFS is defined by ordering the unvisited
vertices for decreasing lexicographic labels. The subset of unvisited vertices with
the lexicographical largest label at each iteration, denoted here by S, represents
the set of tied vertices in the graph search algorithm, and it is referred in the
literature as slice. Then, we have ties if |S| > 1, in which case in Lex-BFS
(Algorithm 4.1) we break them arbitrarily (line 4). We will see in the next
section a variant of Lex-BFS where ties are broken using an additional linear
order given in input. Note that, by construction, the vertices in the slice appear
consecutively in σ. Furthermore, if the graph is disconnected then the vertices
in each connected component are visited consecutively. In fact, it is easy to see
that, if at some point during the algorithm each unvisited vertex has empty label,
then the set of visited vertices is disconnected from the set of unvisited vertices.

We show below an example to show how Algorithm 4.1 works (Table 4.1)
when applied to the (unit interval) graph in Figure 4.1. We have ties at the
first iteration, where all the vertices have empty labels and are contained in the
so-called universal slice, at the second iteration between vertices 2, 3, 5, 6, and at
the third iteration between vertices 3 and 5.

7

6

5

4

3

2

1

Figure 4.1: A unit interval graph.

Table 4.1: Values of the labels of each step of Lex-BFS (Algorithm 4.1) when
applied to the graph in Figure 4.1.

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

4 ∅
2 ∅ 6

3 ∅ 6 65

5 ∅ 6 65 654

6 ∅ 6 6 64 643

1 ∅ ∅ 5 54 54 54

7 ∅ ∅ ∅ ∅ 3 32 32
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Recall that the Lex-BFS ordering denotes how the vertices in the graphs have
been traversed. The following result characterizes Lex-BFS orderings by a 4-
points condition, and it is valid for any arbitrary graph.

4.2.1 Theorem. [102] A linear order σ of the vertices of a graph G = (V,E) is a
Lex-BFS ordering if and only if, for all vertices a, b, c ∈ V such that c <σ b <σ a,
{a, c} ∈ E and {b, c} /∈ E, then there exists a vertex d ∈ V such that d <σ c,
{d, b} ∈ E and {d, a} /∈ E.

σ :
d c b a

Figure 4.2: Lex-BFS ordering 4-points characterization of Theorem 4.2.1.

4.2.2 Lex-BFS+

We present here a variant of Lex-BFS where ties are broken using an additional
linear order σ given in input. First, we introduce the concept of ‘good Lex-BFS’.
A vertex z is good (or an end-vertex ) if there exists some Lex-BFS ending at z.
A Lex-BFS is good if every slice starts with a vertex that is good for the slice,
i.e., there is a Lex-BFS ordering of the subgraph induced by the slice ending at
that vertex.

Then, a well famous variant of Lex-BFS producing a good Lex-BFS is the
one investigated by [107] and denoted by Lex-BFS+, where the ties in the slice
at line 4 in Algorithm 4.1 are broken choosing the vertex in the slice appearing
last in σ. We denote by σ+ the linear order returned by Lex-BFS+. Hence, at
the first iteration, the first vertex in σ+ is actually the last vertex in σ.

There exist other variants of Lex-BFS in the literature. We refer the inter-
ested reader to [34] for more details. As we will see soon, Lex-BFS+ plays an
important role when defining multisweep Lex-BFS algorithms to recognize spe-
cial graph classes, where the linear order σ given as input is actually the linear
order produced by a previous Lex-BFS on the same set of vertices.

4.2.3 Partition refinement implementation

It is well known that, given a graph G = (V,E), Lex-BFS can be implemented in
linear time in the size of the graph, i.e., in O(|V | + |E|) time (see, e.g., [37] and
references therein). In this thesis we will follow the linear time implementation of
Habib et al. [61], which uses the data structure based on the partition refinement
paradigm presented in Subsection 2.2.3.

The motivation for this choice is that partition refinement will be the main
routine used in the new recognition algorithms presented in Chapters 5 and 6.
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Algorithm 4.2: Lex-BFS+(G, σ)

input: a graph G = (V,E) and a linear ordering σ of V
output: a Lex-BFS ordering σ+ of V

1 foreach x ∈ V do
2 label(x) = ∅
3 for i = 1, . . . , |V | do
4 let S be the set of unvisited vertices with lexicographical largest label
5 let p be the vertex in S appearing last in σ
6 σ(p) = i and mark p as visited
7 foreach unvisited vertex x in N(p) do
8 append |V | − i to label(x)

9 return σ+

Table 4.2: Values of the labels of each step of Lex-BFS+ (Algorithm 4.2) when
applied to the graph in Figure 4.1 with σ = (4, 2, 3, 5, 6, 1, 7).

i = 1 i = 2 i = 3 i = 4 i = 5 i = 6 i = 7

7 ∅
6 ∅ 6

5 ∅ 6 65

3 ∅ ∅ 5 54

4 ∅ ∅ 5 54 543

2 ∅ ∅ ∅ 4 43 432

1 ∅ ∅ ∅ ∅ 3 3 31

Therefore, visualizing Lex-BFS as a partition refinement problem will be useful
for their better understanding.

We thus introduce the equivalent Lex-BFS algorithm based on partition re-
finement (Algorithm 4.3) presented in [61], and we will show that it has linear
time complexity. The partition refinement paradigm works as follows. Recall
from Section 4.1 that any generic graph search algorithm maintains a priority
queue of the unvisited vertices throughout the algorithm, which defines the pri-
ority to visit them. Then, at each iteration of Lex-BFS we maintain a priority
queue, which is an ordered partition φ = (B1, . . . , Bk) of the unvisited vertices
ordered for decreasing labels. Each class of φ is called a block or a cell, and it
defines a priority among the vertices, in the sense that if x ∈ Bi, y ∈ Bj with
i < j, then label(x) > label(y) and thus x <σ y, i.e., x will be visited before y. In
the beginning of the algorithm, φ is initialized as a unique block corresponding
to the whole ground set V (i.e., the universal slice).
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The idea is then to choose as next vertex to visit (i.e., the pivot) the first
vertex in the first block B1 of φ, which represents the slice of the current iteration.
Then, every time the pivot p is chosen, it is removed by its block and the ordered
partition φ = (B1 \ {p}, . . . , Bk) is refined according to the neighborhood N(p)
of p, i.e., each block Bj of φ is split in two blocks: the intersection Bj ∩ N(p)
and the difference Bj \ N(p), keeping only nonempty blocks. Equivalently, the
(unvisited) vertices adjacent to p are placed in a new block in φ positioned before
the original block containing them. This partition refinement procedure leads to
a new ordered partition φ, whose first vertex will be chosen as pivot in the next
iteration. The procedure is repeated until the priority queue φ is empty, i.e., all
vertices have been visited.

Algorithm 4.3: Lex-BFS(G)

input: a graph G = (V,E)
output: a Lex-BFS ordering σ of V

1 φ = (V )
2 i = 0
3 while φ = (B1, . . . , Bk) 6= ∅ do
4 let p be the first vertex in B1

5 remove p from B1

6 σ(p) = i
7 i = i+ 1
8 let N(p) be the neighborhood of p
9 foreach class Bj in φ do

10 if Bj ∩N(p) 6= ∅ and |Bj ∩N(p)| 6= |Bj| then
11 replace Bj by (Bj ∩N(p), Bj \N(p)) in φ

12 return σ

As we will see soon, for the implementation of Lex-BFS multisweep algorithms
in Subsection 4.2.4, it will be convenient to assume that the vertices have always
an initial ordering. Since in the classic Lex-BFS (Algorithm 4.1) the ties are
broken arbitrarily, this choice can be done without loss of generality. To show
concretely how Algorithm 4.3 works, we compute in Figures 4.3a and 4.3b the
partition refinement procedures corresponding to the Lex-BFS orderings given in
Tables 4.1 and 4.2 respectively.

We prove that Algorithm 4.3 can indeed be implemented in linear time in the
size of the input graph. For the sake of clarity, we give below the complete proof
following the argument in [61].
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4.2.2 Theorem. The Lex-BFS algorithm (Algorithm 4.3) applied to an (undi-
rected) graph G = (V,E) runs in O(|V |+ |E|) time.

Proof. We assume that the graph is stored in an adjacency list and that we are
given an initial order τ of V (e.g., the natural numbering of [n]). Furthermore,
the vertices and their neighborhoods are ordered according to τ (in increasing
order). This assumption will be useful for the discussion of the implementation
of Lex-BFS+ with the partition refinement paradigm.

To maintain the priority among the unvisited vertices, the queue φ is stored
in a doubly linked list, whose elements are the classes B1, . . . , Bk. Moreover each
vertex has a pointer to the class Bj containing it as well as a pointer to its position
in the class, which are updated throughout the algorithm. This data structure
permits constant time insertion and deletion of a vertex in φ.

Initially, the queue φ has only one class, namely the full set V (i.e., the
universal slice). At a generic iteration i of Algorithm 4.3, we need to perform
two operations: choose the next pivot p = pi to visit and update the queue φ of
unvisited vertices.

1) The new pivot p is the first vertex (with respect of the ordering τ) in the
first block B1 of φ, and with the above described data structure it is easy to
see that selecting the pivot p and removing it from φ can be implemented
in O(1) time.

2) The update of the queue φ is obtained by refining φ by N(p). Specifically,
we use an additional counter nj for each block Bj which will denote the size
of the intersection of Bj ∩ N(p) and it is initialized equal to zero. Then,
for each unvisited vertex x ∈ N(p), we remove it from its current position
in Bj and we place it in position nj + 1 in Bj, which can be done in O(1)
time as each vertex has a pointer to the position in the class containing it.
Furthermore, we increase nj by one and we keep track of the blocks whose
intersection Bj ∩ N(p) is nonempty, i.e., the ones with nj > 0. Hence, we
can split each block Bj in Bj ∩N(p) and Bj \N(p) by simply removing the
first nj = |Bj ∩N(p)| elements of Bj and pushing them in a new block B′j
which we insert immediately before Bj in φ. Note that since V is ordered
according to τ , the initial order τ in the new block B′j is preserved. Hence,
throughout the algorithm, the vertices in a common block of φ remain
ordered according to τ . Once a vertex is relocated in φ, its pointers to the
corresponding block and position in φ are updated accordingly. Given the
above data structure, in order to perform all these operations we just need
to pass through the neighborhood of the pivot p, which can be performed
in O(N(p)) as the graph is represented with an adjacency list.

To conclude, the first task is repeated |V | times (as each vertex is visited
in the traversal algorithm exactly once), while the second task is repeated for
O(
∑p

i=1N(pi)) = O(|E|), leading to an overall complexity of O(|V |+ |E|). �
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Using the same data structure as in the proof of Theorem 4.2.2, we can show
easily that Lex-BFS+ (Algorithm 4.2) can be implemented as well in linear time
using (the obvious variant of) Algorithm 4.3. In fact, the only difference between
Lex-BFS and Lex-BFS+ is the tie-breaking rule. Specifically, in Lex-BFS+ in
case of ties we choose as next pivot the vertex in the slice appearing last in the
given order σ. We now show that this choice can be done in constant time, not
affecting the complexity of Algorithm 4.3.

Recall that we assumed V to be initially ordered according to a linear order τ .
We now select τ = σ, i.e., the reversal of σ. Then, since we showed that the initial
order τ is always preserved in the classes of φ throughout the algorithm, we ensure
that the first vertex in each slice S is exactly the vertex of S appearing first in τ ,
i.e., last in σ. Hence, the only thing we need to discuss is the complexity of
reordering the adjacency list A according to τ . This can be done in O(|V |+ |E|)
time as follows. We build a new adjacency list A′ where the vertices are ordered
according to τ : starting from the vertex appearing first in τ , for each vertex x
in τ and for each y ∈ N(x), we push τ(x) back in the list of A′ corresponding to
the neighbors of y. At the end of the process, each neighborhood in A′ is then
sorted according to τ . Since we explore each vertex and edge of A exactly once,
the complexity is still O(|V |+ |E|).

4.2.4 Multisweep algorithms

Lex-BFS is widely applied in multisweep frameworks for recognizing many graph
classes (see [38] and references therein). Roughly speaking, a multisweep algo-
rithm is obtained by repeating several Lex-BFS’s (or its variants) in a row. Each
round is called a sweep, and it returns a linear order of the vertices which is then
used in the next sweep to break ties in the slices encountered during the Lex-BFS
algorithm.

Algorithm 4.4: multisweep(G, C)
input: a graph G = (V,E) and a boolean condition C
output: a linear order π of the vertices V of G satisfying C

1 σ0 =Lex-BFS(G)
2 i = 0
3 while C is FALSE do
4 i = i+ 1
5 σi =Lex-BFS+(G, σi−1)

6 return: σi

The multisweep algorithm terminates if some pre-established condition C is
achieved (e.g., a maximum number of sweeps). In view of the complexity results
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in Section 4.2.3, it follows that any multisweep algorithm with k sweeps applied
to a graph G = (V,E) can be implemented in O(k(|V |+ |E|)) time.

In our thesis, we are interested in the multisweep algorithm (Algorithm 4.4)
where a first Lex-BFS sweep (Algorithm 4.1) is computed and then repeated
Lex-BFS+ sweeps (Algorithm 4.2) are performed. We will see in Section 4.3
some important combinatorial applications of Algorithm 4.4. Furthermore, this
algorithm will be the inspiration for the new SFS multisweep algorithm to recog-
nize Robinsonian matrices introduced in Chapter 6. We give below in Figure 4.3
an example of the first three sweeps of the multisweep algorithm applied to the
graph in Figure 4.1.

4 2 3 5 6 1 7

4 2 3 5 6 1 7

4 2 3 5 6 1 7

4 2 3 5 6 1 7

4 2 3 5 6 1 7

4 2 3 5 6 1 7

4 2 3 5 6 1 7

(a) first sweep σ0.

7 1 6 5 3 2 4

7 6 5 1 3 2 4

7 6 5 3 4 1 2

7 6 5 3 4 2 1

7 6 5 3 4 2 1

7 6 5 3 4 2 1

7 6 5 3 4 2 1

(b) second sweep σ1.

1 2 4 3 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

1 2 3 4 5 6 7

(c) third sweep σ2.

Figure 4.3: Iterations of Lex-BFS multisweep algorithm with partition refinement
paradigm (Algorithm 4.4) applied to the graph in Figure 4.1. We indicate in bold
the pivot which is chosen at the current iteration.

4.3 Structural properties

In this section we present some important properties for the Lex-BFS structure
of chordal, interval and unit interval graphs. Most of these results can be found
in [34] and [38], and they will be rephrased in the discussion of the SFS algorithm
in Chapter 6. We introduce some notation.

Recall from Section 2.2 that a vertex z is simplicial if its neighbors are pairwise
adjacent. Furthermore, a vertex z intercepts a path P if z is adjacent to at least
one vertex in P ; otherwise, z is said to miss P . Two vertices x, y are unrelated
with respect to z if there exists a path P from x to z and a path Q from y to z
such that y misses P and x misses Q. A vertex z is then said to be admissible if



4.3. Structural properties 55

there do not exist two distinct vertices in G that are unrelated with respect to z.
If a vertex is both simplicial and admissible, then it is called valid.

4.3.1 Chordal and interval graphs

We give some useful results when Lex-BFS (Algorithm 4.1) and Lex-BFS+ (Al-
gorithm 4.2) are applied to chordal and interval graphs.

Chordal graphs [102] Recall that a graph is a chordal graph if and only if it
has a perfect elimination ordering (see Section 2.3). A famous result is that if G
is chordal, then any Lex-BFS ordering is a perfect elimination ordering (this was
in fact the motivation for Rose and Tarjan [102] to introduce the Lex-BFS algo-
rithm). Therefore, one can test whether a graph is chordal by simply running one
Lex-BFS sweep in Algorithm 4.4 and checking if it is a perfect elimination order,
which can be done in linear time. The main results leading to this conclusion are
the following.

4.3.1 Theorem. (The P3 Rule)[102] Let σ be a Lex-BFS ordering of a chordal
graph G = (V,E). Let x, y, z ∈ V with {x, z}, {y, z} ∈ E and such that x <σ z
and y <σ z. Then {x, y} ∈ E.

4.3.2 Theorem. (The Chordal Lex-BFS Theorem)[38] Let G = (V,E) be
a chordal graph and let S be a slice of an arbitrary Lex-BFS ordering τ of V .
Furthermore, let σ be an arbitrary Lex-BFS ordering of V . Then σ[S] is a Lex-
BFS ordering of G[S].

Interval graphs [34],[38] Interval graphs can be recognized using six sweeps
of Lex-BFS in Algorithm 4.4. Specifically, in addition to a first Lex-BFS sweep
(Algorithm 4.1), four additional Lex-BFS+ sweeps (Algorithm 4.2) and a final
Lex-BFS∗

2 sweep are needed.
We give below some useful results which will be extended in Chapter 6 when

defining the SFS algorithm to recognize Robinsonian matrices. Recall from Sec-
tion 4.2.2 that a vertex is good if it is the last vertex of some Lex-BFS ordering
of G.

4.3.3 Lemma. [38] Let G = (V,E) be an interval graph. Then a vertex is good
if and only if it is valid (i.e., simplicial and admissible).

The the following result shows a ‘flipping’ property of the end points of two
consecutive Lex-BFS sweeps.

2Lex-BFS∗ is another variant of Lex-BFS, breaking ties according to the Lex-BFS orderings
of two previous sweeps. We do not discuss this variant in the thesis, but we refer the interested
reader to [38] for more details.
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4.3.4 Theorem. [38] Let G = (V,E) be an interval graph and let a and b be
good vertices of G. If σ is an arbitrary Lex-BFS of G starting at a and ending
at b, then Lex-BFS+(G,σ) is a good Lex-BFS starting at b and ending at a.

4.3.2 Unit interval graphs

We finally discuss some properties of Lex-BFS when applied to unit interval
graphs, which are a subclass of chordal graphs and interval graphs. Unit in-
terval graphs can be recognized in three sweeps of Lex-BFS in Algorithm 4.4.
Specifically, we run a first Lex-BFS sweep (Algorithm 4.1), denoted by σ, and
two additional Lex-BFS+ sweeps (Algorithm 4.2), denoted respectively by σ+

and σ++. Then G is a unit interval graph if and only if σ++ satisfies the ‘neigh-
borhood condition’ (iv) in Theorem 2.3.3 (see [33]). To show the correctness of
the above algorithm, Corneil [33] outlined some important structural results of
two consecutive good Lex-BFS orderings on unit interval graphs.

Since Lex-BFS is a special BFS, one can define the BFS-layered structure
L0, . . . , Lk for a given graph G as follows. If BFS starts at vertex a, then L0 = {a},
which is called the root, and a vertex x belongs to the layer Li if it has a distance
of i from the root L0, i.e., if there exists a path of length i from x to L0 but no
shorter path exists. In our case, the root is the first vertex of a Lex-BFS ordering.
Hence, we denote by L+

i and L++
i the layer structures rooted, respectively, at the

first vertex of σ+ and the first vertex of σ++ (see Figure 4.4). In short, we say
that L+

i is the layer structure of σ+, meaning that it is in fact the layer structure
rooted at the first vertex of σ+.

Suppose now that σ+ starts with a and end with b. Then σ++ starts with b
and ends with a (Theorem 4.3.4). Hence, L+

0 = {a} and L++
0 = {b}. Let k be

the distance between a and b; we denote by P the set of vertices that are on a
shortest path from a to b (for example, in Figure 4.4 we have P = V \{4}). Then,
for unit interval graphs the following facts hold:

4.3.5 Lemma. [35] For each 0 ≤ i ≤ k, L+
i , L++

i is a clique of G, and

x ∈ L++
i ⇒ x ∈

{
L+
k−i if x ∈ P,

L+
k−i+1 if x /∈ P.

In other words, the above result ‘extends’ the flipping result of Theorem 4.3.4
also to the other vertices of the graph (not only the end points). Note that in
the example in Figure 4.3 the third sweep σ++ = σ2 satisfies the ‘neighborhood
condition’. Another way to see that G is a unit interval graph is to consider its
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extended adjacency matrix A ordered according to σ++ = σ2 as shown below:

A =




1 2 3 4 5 6 7

1 1 1 1 0 0 0 0
2 1 1 1 1 1 0 0
3 1 1 1 1 1 1 0
4 0 1 1 1 1 1 0
5 0 1 1 1 1 1 1
6 0 0 1 1 1 1 1
7 0 0 0 0 1 1 1




(4.1)

Since A has consecutive ones in rows and columns, this implies that G is indeed
a unit interval graph (see Section 2.2 and Subsection 3.2.1).

L+
0

L+
1

L+
2

L+
3

7

6 5

3 4 2

1

(a) BFS layers of σ+.

L++
0

L++
1

L++
2

L++
3

1

2 3

4 5 6

7

(b) BFS layers of σ++.

Figure 4.4: BFS layers of the second and third sweeps σ+ = σ1 and σ++ = σ2 of
the multisweep algorithm (Algorithm 4.4) applied to the graph in Figure 4.1.

4.4 Conclusions

In this chapter we discussed Lexicographic Breadth-First search (Lex-BFS), a
variant of Breadth-First Search (BFS) which is used in multisweep algorithms for
the recognition of several classes of graphs. Specifically, we have seen that chordal
graphs can be recognized in one Lex-BFS sweep, interval graphs can be recognized
in six sweeps and unit interval graphs in three sweeps. Furthermore, other graph
classes not discussed in this thesis can be recognized in a finite number of Lex-
BFS sweeps. Specifically, cographs can be recognized in three sweeps [16] and
co-comparability graphs can be recognized in n sweeps [51].

Lex-BFS will play a predominant role in this thesis, as the concepts and re-
sults discussed here will be fundamental for the understanding of the Robinsonian
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recognition algorithms presented in Chapters 5 and 6. Specifically, in Chapter 5
we will answer an open question posed by M. Habib et al. at the PRIMA Confer-
ence in Shanghai in June 2013. Namely, the authors asked whether it is possible
to use Lex-BFS+ to recognize Robinsonian matrices (see [39]). In this context,
Lex-BFS will be used to compute straight enumerations of unit interval graphs
(see Theorem 5.2.2).

Then, in Chapter 6 we will introduce a generalization of Lex-BFS to weighted
graphs, named Similarity-First Search (SFS), and we will introduce a multi-
sweep SFS algorithm to recognize Robinsonian matrices. In order to prove the
correctness of the algorithm, we will also introduce an analogous concept of BFS
layers, which were exploited for unit interval graphs in Subsections 4.3.2, namely
‘similarity layers’. Since SFS reduces to Lex-BFS when applied to unweighted
graphs and since Robinsonian matrices coincide with the class of (adjacency ma-
trices of) unit interval graphs (Theorem 3.2.1), we will provide an alternative
proof of correctness for the 3-sweep recognition algorithm for unit interval graphs
of Corneil in [33], exploiting the structure of such ‘similarity layers’ (see Theo-
rem 6.5.2).
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5
Lex-BFS based algorithm

In this chapter we introduce a new combinatorial algorithm to recognize Robin-
sonian matrices based on straight enumerations of unit interval graphs. In Sec-
tion 5.1 we give a short overview of the recognition algorithm and the motivation
for our work. In Section 5.2 we recall the characterization of Robinsonian matrices
in terms of straight enumerations of unit interval graphs, which will be the base
for the recursive algorithm discussed in this chapter. In Section 5.3 we present
the main subroutines constituting our recursive algorithm, which we discuss in
Section 5.4. In Section 5.5 we show how to return all Robinson orderings of a
given Robinsonian similarity matrix. In Section 5.6 we illustrate the algorithm
on an example. The final Section 5.7 contains some questions for possible future
work. This chapter is based on our work [77].

5.1 Introduction

In Subsection 3.2.2 we have seen that a similarity matrix A is Robinsonian if
and only if it can be decomposed as a conic combination of (adjacency matri-
ces of) compatible unit interval graphs (Lemma 3.2.5). Recall that for a graph
G = (V,E), straight enumerations are special orderings of the classes of the
‘undistinguishability’ equivalence relation on V (see Definition 2.3.4), and that G
is a unit interval graph precisely when it admits a straight enumeration (Theo-
rem 2.3.5). In this chapter we will exploit this characterization to define a new

61
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(recursive) recognition algorithm for Robinsonian similarities matrices.
Our approach differs from the existing ones in the sense that it is not directly

related to interval (hyper)graphs, but it relies only on unit interval graphs (which
are a simpler graph class than interval graphs) and on their straight enumera-
tions. Furthermore, our algorithm does not rely on any sophisticated external
algorithm such as the Booth and Leuker algorithm for C1P. In fact, the most dif-
ficult task carried out by our algorithm is the Lex-BFS algorithm and the variant
Lex-BFS+ introduced in [107] to compute straight enumerations (both described
in Chapter 4). Our algorithm uses a divide-and-conquer strategy with a merg-
ing step, tailored to efficiently exploit the possible sparsity structure of the given
similarity matrix A. Assuming that the matrix A is given as an adjacency list of
an undirected weighted graph, our algorithm runs in O(d(m+ n)) time, where n
is the size of A, m is the number of nonzero entries of A and d is the depth of
the recursion tree computed by the algorithm, which is upper bounded by the
number L of distinct nonzero entries of A (see Theorem 5.4.4). Furthermore, we
can return all Robinson orderings of A using the PQ-tree data structure intro-
duced in Subsection 2.2.4, on which we perform only a few simple operations (see
Section 5.5).

Our algorithm uncovers an interesting link between straight enumerations of
unit interval graphs and Robinsonian matrices which, to the best of our knowl-
edge, has not been made before. Moreover it provides an answer to an open
question posed by M. Habib at the PRIMA Conference in Shanghai in June 2013,
who asked whether it is possible to use Lex-BFS+ to recognize Robinsonian ma-
trices [39]. Alternatively one could check whether the incidence matrix M of the
ball hypergraph of A has C1P (Theorem 3.2.3), using the Lex-BFS based algo-
rithm of [61] in O(r+ c+f) time if M is r× c with f ones. As r ≤ nL, c = n and
f ≤ Lm, the overall time complexity is O(L(n+m)). Interestingly, this approach
is not mentioned by Habib. In comparison, an advantage of our approach is that
it exploits the sparsity structure of the matrix A, as d can be smaller than L.

5.2 Preliminaries

In this section we will reintroduce some notations and concepts already presented
in Chapter 2. Given a linear order π = (x1, . . . , xn) of [n], then π = (xn, . . . , x1)
denotes its reversal. For U ⊆ [n], π[U ] denotes the restriction of π to U . If π1

and π2 are two linear orders on disjoint subsets V1 and V2, then π = (π1, π2)
denotes their concatenation, which is a linear order on V1 ∪ V2.

Recall that the blocks of a graph are the (disjoint) subsets of vertices with
the same closed neighborhood (see Section 2.3). Then, a straight enumeration of
a unit interval graph G = (V = [n], E) is an ordered partition φ = (B1, . . . , Bp)
of the blocks of G such that, for any block Bi, the block Bi and the blocks Bj

adjacent to it are consecutive in the linear order. The blocks B1 and Bp are
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called the end blocks of φ and Bi (with 1 < i < p) are its inner blocks (see
Definition 2.3.4). The reversal of φ is the ordered partition φ = (Bp, . . . , B1).
For U ⊆ V , φ[U ] = (B1∩U, . . . , Bp∩U) denotes the restriction of the weak linear
order φ to U . Note that in this chapter we may use the term block also to denote
the class of an ordered partition which does not necessarily represents a straight
enumeration.

We say that two weak linear orders ψ and φ of V = [n] are compatible if
they admit a compatible linear order π, i.e., there do not exist elements x, y ∈ V
such that x <ψ y and y <φ x. Then their common refinement is the weak linear
order Φ = ψ ∧ φ on V defined by x =Φ y if x =ψ y, x =φ y, and by x <Φ y if
x ≤ψ y, x ≤φ y with at least one strict inequality. In what follows, the weak linear
orders ψ and φ will correspond (roughly speaking) to the straight enumerations
of the level graphs of A.

Given a matrix A ∈ Sn, for U ⊆ V , A[U ] = (Aij)i,j∈U is the principal subma-
trix of A indexed by U . For a permutation π of V , Aπ = (Aπ(i),π(j))

n
i,j=1 is the

matrix obtained by symmetrically permuting the rows and columns of A accord-
ing to π. As already underlined in Chapter 3, also in this chapter we will deal
exclusively with Robinson(ian) similarities. Hence, when speaking of a Robin-
son(ian) matrix, we mean a Robinson(ian) similarity matrix. We may assume
without loss of generality that the given similarity matrix is nonnegative.

Recall that 0/1 Robinsonian matrices coincide with the class of (adjacency
matrices of) unit interval graphs (Theorem 3.2.1). Furthermore, in view of The-
orem 2.3.5, a graph G is a unit interval graph if and only if it has a straight
enumeration. Therefore, a first natural step is to characterize 0/1 Robinsonian
matrices in terms of straight enumerations of unit interval graphs. The next result
is simple but will play a central role in our algorithm for recognizing Robinsonian
similarities.

5.2.1 Theorem. Let G = (V = [n], E) be a graph and let AG be the correspond-
ing (extended) adjacency matrix. Then, a linear order π of V is a Robinson
ordering of AG if and only if there exists a straight enumeration of G whose
corresponding weak linear order ψ is compatible with π, i.e., satisfies:

∀x, y ∈ V with x 6=ψ y x <π y ⇐⇒ x <ψ y. (5.1)

Proof. Assume that π is a linear order of V that reorders AG as a Robinson
matrix. Then it is easy to see that the 3-vertex condition (iii) in Theorem 2.3.3
holds for π and that each block of G is an interval w.r.t. π. Therefore the order π
induces an order ψ of the blocks: B1 <ψ . . . <ψ Bp, with Bi <ψ Bj if and only
if x <π y for all x ∈ Bi and y ∈ Bj. In other words, ψ is compatible with π
by construction. Moreover, ψ defines a straight enumeration of G. Indeed, if
Bi <ψ Bj <ψ Bk and Bi, Bk are adjacent then Bj is adjacent to Bi and Bk, since
this property follows directly from the 3-vertex condition for π.
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Conversely, assume that B1 <ψ . . . <ψ Bp is a straight enumeration of G
and let π be a linear order of V which is compatible with ψ, i.e., satisfies (5.1).
We show that π reorders AG as a Robinson matrix. That is, we show that if
x <π y <π z, then (AG)xz ≤ min{(AG)xy, (AG)yz} or, equivalently, that {x, z} ∈
E implies {x, y}, {y, z} ∈ E. If x, z belong to the same block Bi then y ∈ Bi

(using (5.1)) and thus {x, y}, {y, z} ∈ E since Bi is a clique. Assume now that
x ∈ Bi, z ∈ Bk and {x, z} ∈ E. Then, Bi <ψ Bk and Bi, Bk are adjacent blocks
and thus Bi∪Bk is a clique. If y ∈ Bi then y is adjacent to x and z (since Bi∪Bk

is a clique). Analogously if y ∈ Bk. Suppose now that y ∈ Bj. Using (5.1), we
have that Bi <ψ Bj <ψ Bk. As ψ is a straight enumeration with Bi,Bk adjacent
then Bj is adjacent to Bi and to Bk and thus y is adjacent to x and z. �

Hence, in order to find the permutations reordering a given 0/1 matrix A as
a Robinson matrix, it suffices to find all the possible straight enumerations of the
corresponding graph G. As is shown e.g., in [35, 43], this is a simple task and can
be done in linear time. This is coherent with the fact that C1P can be checked
in linear time (see Subsection 3.2.1).

We now consider a general (non necessarily 0/1) matrix A. Let 0 = α0 <
α1 < · · · < αL denote the distinct values taken by the entries of A. Recall that
we denoted by G(`) = (V,E`) the `-th level graph of A, i.e., the graph whose
edges are the pairs {x, y} with Axy ≥ α`. As stated in Theorem 3.2.5, the level
graphs can be used to decompose A as a conic combination of 0/1 matrices and,
as already observed by Roberts [99], A is Robinson precisely when these 0/1
matrices are Robinson.

Combining the links between reordering 0/1 Robinsonian matrices and straight
enumerations of unit interval graphs (Theorem 5.2.1) together with the decom-
position result of Lemma 3.2.5, we obtain the following new characterization of
Robinsonian matrices.

5.2.2 Theorem. Let A ∈ Sn with level graphs G(1), . . . , G(L). Then:

(i) A is a Robinsonian matrix if and only if there exist straight enumerations
of its level graphs G(1), . . . , G(L) whose corresponding weak linear orders
ψ1, . . . , ψL are pairwise compatible.

(ii) A linear order π of V reorders A as a Robinson matrix if and only if there
exist pairwise compatible straight enumerations of G(1), . . . , G(L) whose cor-
responding common refinement is compatible with π.

Proof. Observe first that if assertion (ii) holds then (i) follows directly using the
result of Lemma 2.2.2. We now prove (ii). Assume that A is Robinsonian and let π
a Robinson ordering of A. Then Aπ is Robinson and thus, by lemma 3.2.5, each
permuted matrix (AG(`))π is a Robinson matrix. Then, applying Theorem 5.2.1,
for each ` ∈ [L], there exists a straight enumeration of G(`) whose corresponding
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weak linear ordering ψ` is compatible with π. We can thus conclude that the
common refinement of ψ1, . . . , ψL is compatible with π in view of Lemma 2.2.2.
Conversely, assume that there exist straight enumerations of G(1), . . . , G(L) whose
corresponding weak linear orders ψ1, . . . , ψL are pairwise compatible and their
common refinement is compatible with π. Then, by Theorem 5.2.1, π reorders
simultaneously each AG(`) as a Robinson matrix and thus Aπ is Robinson, which
shows that A is Robinsonian. �

5.3 Subroutines

We describe here the main subroutines which will be used in the recursive algo-
rithm for recognizing whether a given symmetric nonnegative matrix A is Robin-
sonian. The algorithm is based on Theorem 5.2.2. Recall that a straight enu-
meration is nothing but a special ordered partition of the vertices of a graph (see
Definition 2.3.4), and two straight enumerations are compatible if there exists a
linear order compatible with the ordered partitions induced by both straight enu-
merations. Hence, the main idea for the recognition algorithm is to find straight
enumerations of the level graphs of A that are pairwise compatible and to com-
pute their common refinement. The matrix A is not Robinsonian precisely when
these objects cannot be found.

One of the main tasks in the algorithm is to find (if it exists) a straight enu-
meration of a graph G which is compatible with a given weak linear order ψ of V .
Roughly speaking, G will correspond to a level graph G(`) of A (in fact, to a con-
nected component of it), while ψ will correspond to the common refinement of the
previous level graphs G(1), . . . , G(`−1). Hence, looking for a straight enumeration
of G compatible with ψ will correspond to looking for a straight enumeration
of G(`) compatible with previously selected straight enumerations of the previous
level graphs G(1), . . . , G(`−1).

There are three main subroutines in our algorithm, each discussed in an in-
dependent subsection. In Subsection 5.3.1 we describe CO-Lex-BFS (see Algo-
rithm 5.1), a variation of Lex-BFS, which finds and orders the connected compo-
nents of the level graphs. In Subsection 5.3.2 we describe Straight enumeration
(see Algorithm 5.2), which computes the straight enumeration of a connected
graph as in [33]. Finally, in Subsection 5.3.3 we present Refine (see Algorithm 5.3),
a variation of partition refinement (Algorithm 2.1), which finds the common re-
finement of two weak linear orders.

5.3.1 Component ordering

Our first subroutine is CO-Lex-BFS (where CO stands for ‘Component Order-
ing’), presented in Algorithm 5.1. The algorithm is an extension of Lex-BFS
(Algorithm 4.1) to detect connected components of a graph. Namely, given a
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graph G = (V,E) and a weak linear order ψ on V , it detects the connected
components of G and orders them in a compatible way with respect to ψ. Ac-
cording to Lemma 5.3.1 below, this is possible if G admits a straight enumeration
compatible with ψ.

5.3.1 Lemma. Consider a graph G = (V,E) and a weak linear order ψ of V .
If G has a straight enumeration φ compatible with ψ then there exists an ordering
V1, . . . , Vc of the connected components of G which is compatible with ψ, i.e., such
that V1 ≤ψ . . . ≤ψ Vc.
Proof. If V1, . . . , Vc is the ordering of the components of G which is induced by
the straight enumeration φ, i.e., V1 <φ . . . <φ Vc, then V1 ≤ψ . . . ≤ψ Vc as φ is
compatible with ψ. �

Roughly speaking, the algorithm uses Lex-BFS to detect the connected com-
ponents of a graph G and build throughout an ordering of the components which
is compatible with a given weak linear order ψ. To do so, every time a new
connected component Vω is found, the algorithm computes the intersection of Vω
with the blocks of ψ (in fact, only with the first block Bmin

ω and last block Bmax
ω

of ψ meeting Vω), and check if Vω can be ordered along the already detected
components compatibly with ψ.

In order to detect connected components using Lex-BFS, we proceed as fol-
lows. As in the classic Lex-BFS (Algorithm 4.1), at each iteration we are given
an ordered partition representing the queue of unvisited vertices. The first block
of the queue is called slice, denoted by S, and represents the subset of unvis-
ited vertices with largest lexicographic label. Then, we choose as new pivot p
(i.e., the next vertex to visit) a vertex in the slice S arbitrarily. In the normal
Lex-BFS we would now update the queue of unvisited vertices according to the
neighborhood N(p) of the pivot p. In CO-Lex-BFS we have an additional step,
which is based on the following observations. When the vertex p in the set S at
line 7 of Algorithm 5.1 has label ∅, it means that p is not contained in the cur-
rent component Vω. In view of the Lex-BFS property (see Theorem 4.2.1), this in
turns implies that the unvisited vertices and the visited vertices are disconnected.
Hence, a new connected component is found and initialized with p. Every time
a connected component Vω is detected we, check if it can be ordered along the
already detected components in a compatible way with ψ. Let Bmin

ω and Bmax
ω

denote respectively the first and the last block of ψ intersecting the connected
component Vω. We distinguish two cases:

1. if Vω meets more than one block of ψ (i.e., if Bmin
ω <ψ B

max
ω ), we check if

all the inner blocks between Bmin
ω and Bmax

ω are contained in Vω. If this is
not the case, then the algorithm stops. Moreover the algorithm also stops
if both Vω and Vω−1 meet exactly the same two blocks, i.e., Bmin

ω = Bmin
ω−1

and Bmax
ω = Bmax

ω−1. In both cases it is indeed not possible to order the
components in a compatible way with ψ.
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2. if Vω meets only one block Bk of ψ (i.e., Vω ⊆ Bk) and if moreover this
block Bk is the first block of the previous connected component Vω−1 (i.e.,
Bk = Bmin

ω−1), then we swap Vω−1 and Vω in order to make the ordering of
the components compatible with ψ. The ordering σ is updated by setting,
for each v ∈ Vω−1 its new ordering as σ(v) + |Vω| and for each v ∈ Vω as
σ(v)−|Vω−1|. Observe however that if we are in the case when both Vω and
Vω−1 are contained in Bk, then we do not need to do this swap, i.e., the two
components Vω and Vω−1 can be ordered arbitrarily.

Algorithm 5.1: CO-Lex-BFS (G,ψ)

input: a graph G = (V,E), a weak linear order ψ = (B1, . . . , Bp) of V
output: a linear order σ of V and a linear order (V1, . . . , Vc) of the

connected components of G compatible with ψ and σ, or STOP
(no such linear order of the components exists)

1 mark all the vertices as unvisited
2 ω = 1
3 Vω, B

min
ω , Bmax

ω = ∅
4 foreach v ∈ V do
5 label(v) = ∅
6 for i = 1, . . . , |V | do
7 let S be the set of unvisited vertices with lexicographically largest label
8 pick arbitrarily a vertex p in S and mark it as visited
9 σ(p) = |V |+ 1− i

10 if label(p) = ∅ then
11 if Vω ⊆ Bmin

ω−1 then
12 swap Vω and Vω−1 and modify σ accordingly

13 else
14 if Bmin

ω <ψ B
max
ω−1 or if there exists a block B of ψ such that

B * Vω and Bmin
ω <ψ B <ψ B

max
ω then

15 stop (no ordering of components compatible with ψ exists)

16 ω = ω + 1
17 Vω = ∅
18 Vω = Vω ∪ {p}
19 Bmin

ω is the first block in ψ which meets Vω
20 Bmax

ω is the last block in ψ which meets Vω
21 foreach unvisited vertex w in N(p) do
22 append |V | − i to label(w)

23 return (V1, . . . , Vc) and σ
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The next lemma shows the correctness of Algorithm 5.1.

5.3.2 Lemma. Let G = (V,E) be a graph and let ψ be a weak linear order of V .

(i) If Algorithm 5.1 successfully terminates then the returned order V1, . . . , Vc
of the components satisfies V1 ≤ψ . . . ≤ψ Vc.

(ii) If Algorithm 5.1 stops then no ordering of the components exists that is
compatible with ψ.

Proof. (i) Assume first that Algorithm 5.1 successfully terminates and returns
the linear ordering V1, . . . , Vc of the components. Suppose for contradiction that
Vω−1 6≤ψ Vω for some ω ∈ [c]. Then there exist x ∈ Vω−1 and y ∈ Vω such that
y <ψ x. Let z be the first vertex selected in the component Vω−1. Then, z ≤ψ y
(for if not the algorithm would have selected y before z when opening the compo-
nent Vω−1). Let ψ = (B1, . . . , Bp) and let denote by Bmin

ω and Bmax
ω respectively

the first and last block of ψ meeting Vω (Bmin
ω−1 and Bmax

ω−1 are analogously defined).
Say x ∈ Bj, y ∈ Bi so that i < j, and z ∈ Br. As z ≤ψ y, we have Br ≤ψ Bi.
Suppose first that Br <ψ Bi. Then, Bi is an inner block between Bmin

ω−1 and Bmax
ω−1

which is not contained in Vω−1 (since y ∈ Bi), yielding a contradiction since the
algorithm would have stopped when dealing with the component Vω−1. Suppose
now that Br = Bi. If ψ[Vω] has only one block B, then B ⊆ Bi = Bmin

ω−1 and then
the algorithm would have swapped Vω and Vω−1. Hence ψ[Vω] has at least two
blocks and Bmin

ω ≤ψ Bi <ψ Bj ≤ψ Bmax
ω−1, which is again a contradiction since the

algorithm would have stopped.
(ii) Assume now that the algorithm stops when dealing with the component Vω.
Then ψ[Vω] has at least two blocks. Suppose first that the algorithm stops be-
cause Bmin

ω <ψ Bmax
ω−1. Then clearly one cannot have Vω−1 <ψ Vω. We show

that we also cannot have Vω <ψ Vω−1. For this assume for contradiction that
Vω <ψ Vω−1. Let y be the first selected vertex in Vω and let x be the first ver-
tex selected in Vω−1. Then, y ∈ Bmin

ω , x ≤ψ y (for if not the algorithm would
have considered the component Vω before Vω−1), and thus Bmin

ω−1 ≤ψ Bmin
ω . If

Bmin
ω−1 <ψ Bmin

ω then the algorithm would have stopped earlier when examin-
ing Vω−1, since Bmin

ω−1 <ψ Bmin
ω <ψ Bmax

ω−1 and Bmin
ω 6⊆ Vω−1. Hence, we have

Bmin
ω−1 = Bmin

ω and, as ψ[Vω] has at least two blocks, there exists a vertex z ∈ Bmax
ω

such that x <ψ z, which contradicts Vω <ψ Vω−1. Suppose now that the algorithm
stops because Bmin

ω <ψ B <ψ Bmax
ω and B 6⊆ Vω. Let x ∈ Bmin

ω , y ∈ Bmax
ω and

z ∈ B \ Vω, and say z ∈ Vω′ . Then we cannot have Vω′ <ψ Vω since x <ψ z,
and we also cannot have Vω <ψ Vω′ since z <ψ y. Hence the two components Vω
and Vω′ cannot be ordered compatibly with ψ and this concludes the proof. �

5.3.2 Straight enumeration

Once the connected components of G are ordered, we need to compute a straight
enumeration of each connected component G[Vω]. We do this with the routine
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Straight enumeration applied to (G[Vω], σω), where σω is a suitable given order
of Vω (namely, σω = σ[Vω], where σ is the vertex order returned by CO-Lex-
BFS (G,ψ)). This routine is essentially the 3-sweep unit interval graph recog-
nition algorithm of Corneil [33] (see Subsection 4.3.2). The only difference of
Straight enumeration(G[Vω], σω) with respect to Corneil’s algorithm is that we
save the first sweep, because we use the order σω returned by CO-Lex-BFS. We
now describe the routine Straight enumeration which is based on the algorithms
of [35, §3] and [33, §2]. Below, degG(v) denotes the degree of the vertex v in G.

Algorithm 5.2: Straight enumeration(G, σ)

input: a connected graph G = (V,E) and a linear order σ of V
output: a straight enumeration φ of G, or STOP (G is not a unit interval

graph)

1 σ+ = Lex-BFS+(G, σ)
2 σ++ = Lex-BFS+(G, σ+)
3 i = 0 (index of the blocks of ψ)
4 L = R = 0 (dummy variables to record the current block Bi)
5 for v = 1, . . . , |V | do
6 lmn(v) = min{u : u ∈ N [v]} (leftmost vertex adjacent to v in σ++)
7 rmn(v) = max{u : u ∈ N [v]} (rightmost vertex adjacent to v in σ++)
8 if rmn(v)− lmn(v) 6= degG(v) then
9 stop (G is not a unit interval graph)

10 else
11 if lmn(v) = L and rmn(v) = R then
12 Ci = Ci ∪ {v}.
13 else
14 L = lmn(v)
15 R = rmn(v)
16 i = i+ 1
17 Ci = {v}

18 return φ = (C1, . . . , Cq)

Basically, after the last sweep of Lex-BFS, for each vertex v we define the
leftmost vertex lmn(v) and the rightmost vertex rmn(v), according to σ++, that
are adjacent to v. Checking whether rmn(v) − lmn(v) = degG(v) corresponds
exactly to checking whether the neighborhood condition holds for node v. The
vertices with the same leftmost and rightmost vertex are then undistinguishable
vertices, and they form a block of G. The order of the blocks follows the vertex
order σ++. For the correctness of the algorithm we refer the interested reader
to [33].
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Since the straight enumerations of the level graphs might not be unique, it is
important to choose, among all the possible straight enumerations, the ones that
lead to a common refinement (if it exists).

In fact, if G is a connected unit interval graph, its straight enumeration φ is
unique up to reversal (see Theorem 2.3.5). On the other hand, if G is not con-
nected then any possible ordering of the connected components induces a straight
enumeration, obtained by concatenating straight enumerations of its connected
components. This freedom in choosing the straight enumerations of the compo-
nents is crucial in order to return all the Robinson orderings of A, and it is taken
care of in Section 5.5 using PQ-trees. However, for now we are interested in
finding one common refinement, and once one of the two above cases occurs, the
arbitrary choice made does not affect the correctness of the algorithm.

As we will see in Section 5.4, the choice of a straight enumeration of each
subgraph Gω compatible with ψ reduces to correctly orient the ordered partition
returned by the subroutine Straight enumeration(Gω, σ[Vω]).

5.3.3 Refinements of weak linear orders

Given two weak linear orders ψ and φ on V , our second subroutine Refine in
Algorithm 5.3 computes their common refinement Φ = ψ ∧ φ (if it exists). We
show below its correctness.

Algorithm 5.3: Refine(ψ, φ)

input: two weak linear orders ψ = (B1, . . . , Bp) and φ = (C1, . . . , Cq) of V
output: their common refinement Φ = ψ ∧ φ, or Φ = ∅ (ψ and φ are not

compatible)
1 Bmax is the last block of ψ meeting C1

2 Φ = ∅
3 if there exists a block B of ψ such that B <ψ B

max and B 6⊆ C1 then
4 return ∅ (ψ and φ are not compatible)
5 else
6 W = V \ C1

7 Φ = (ψ[C1],Refine(ψ[W ], φ[W ]))

8 if Φ is a weak linear order of V then
9 return Φ

10 else
11 return ∅ (ψ and φ are not compatible)

5.3.3 Lemma. If Algorithm 5.3 returns a weak linear order Φ of V , then Φ is
the common refinement of ψ and φ. If Algorithm 5.3 returns Φ = ∅, then ψ and φ
are not compatible.
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Proof. The proof is by induction on the number q of blocks of φ. If q = 1 then
φ = (V ) is clearly compatible with ψ and the algorithm returns Φ = ψ as desired.
Assume now q ≥ 2. Let W = V \C1. Then we can apply the induction assumption
to φ[W ] which has q− 1 blocks. Assume first that the algorithm returns Φ which
is a weak linear order of V . We show that Φ = ψ ∧ φ, i.e., that the following
holds for all x, y ∈ V :

x =Φ y ⇐⇒ x =ψ y and x =φ y,

x <Φ y ⇐⇒ x ≤ψ y and x ≤φ y with at least one strict inequality.
(5.2)

If x, y ∈ C1 then x =φ y and (5.2) holds since Φ[C1] = ψ[C1]. If x, y ∈ V \ C1,
then (5.2) holds by the induction assumption. Suppose now x ∈ C1 and y ∈ V \C1.
Then x <φ y and x <Φ y. We show that x ≤ψ y holds. For this let Bi (resp., Bj)
be the block of ψ containing x (resp., y). Then Bi ≤ψ Bmax since B1 meets C1

as x ∈ C1. Moreover, Bmax ≤ψ Bj, which implies x ≤ψ y. Indeed, if one would
have Bj <ψ Bmax, then we would have Φ = ∅ (line 4 in Algorithm 5.3), since
Bj 6⊆ C1 as y ∈ Bj \ C1, and thus Φ would not be a weak linear order of V .
Assume now that the returned Φ is not a weak linear order of V . If Φ = ∅ (line 4
in Algorithm 5.3), then there is a block B <ψ B

max such that B 6⊆ C1, and we
can pick elements x ∈ B \ C1 and y ∈ C1 ∩ Bmax so that y <φ x and x <ψ y,
which shows that ψ and φ are not compatible. If Φ is a weak linear order of a
subset U ⊂ V (line 11 in Algorithm 5.3), then it means that the weak linear order
returned by the recursive routine Refine(ψ[W ], φ[W ]) is not a weak linear order
of W (but of a subset) and thus, by the induction assumption, ψ[W ] and φ[W ]
are not compatible and thus ψ and φ neither. This concludes the proof. �

5.4 The algorithm

We can now describe our main algorithm Robinson(A,ψ). Given a nonnegative
matrix A ∈ Sn and a weak linear order ψ of V = [n], it either returns a weak linear
order Φ of V compatible with ψ and with straight enumerations of the level graphs
of A, or it indicates that such Φ does not exist. The idea behind the algorithm is
the following. We use the subroutines CO-Lex-BFS and Straight enumeration to
order the components and compute the straight enumerations of the level graphs
of A, and we refine them using the subroutine Refine. However, instead of refining
the level graphs one by one on the full set V , we use a recursive algorithm based
on a divide-and-conquer strategy, which refines smaller and smaller subgraphs of
the level graphs obtained by restricting to the connected components and thus
working independently with the corresponding principal submatrices of A. In this
way we work with smaller subproblems and one may also skip some level graphs
(as some principal submatrices of A may have fewer distinct nonzero entries).
This recursive algorithm is Algorithm 5.4 below.
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Algorithm 5.4: Robinson(A,ψ)

input: a nonnegative matrix A ∈ Sn and a weak linear order ψ of V = [n]
output: a weak linear order Φ compatible with ψ and with straight

enumerations of all the level graphs of A, or STOP (such an order
Φ does not exist)

1 G is the support of A
2 CO-Lex-BFS (G,ψ) returns a linear order (V1, . . . , Vc) of the connected

components of G compatible with ψ (if it exists) and a vertex order σ
3 Φ = ∅
4 for ω = 1, . . . , c do
5 φω = Straight enumeration(G[Vω], σ[Vω]) (if G[Vω] is a unit int. graph)
6 if Φω = Refine(ψ[Vω], φω) = ∅ then

7 if Φω = Refine(ψ[Vω], φω) = ∅ then
8 stop (no straight enumeration compatible with ψ[Vω] exists)

9 a′min is the smallest nonzero entry of A[Vω]
10 A′[Vω] is obtained from A[Vω] by setting entries with value a′min to zero
11 if A′[Vω] is diagonal then
12 Φ = (Φ,Φω)
13 else
14 Φ = (Φ, Robinson(A′[Vω],Φω))

15 return: Φ

The algorithm Robinson(A,ψ) works as follows. We are given as input a
symmetric nonnegative matrix A ∈ Sn and a weak linear order ψ of V = [n].
Let G be the support of A. First, we find the connected components of G and
we order them in a compatible way with ψ. If this is not possible, then we stop
as there do not exist straight enumerations of the level graphs of A compatible
with ψ (Theorem 5.3.2). Otherwise, we initialize the weak linear order Φ, which
at the end of the algorithm will represent a common refinement of the straight
enumerations of the level graphs of A. In order to find Φ, we divide the problem
over the connected components of G. The idea is then to work independently on
each connected component Vω and to find its (unique) straight enumeration φω
and the common refinement Φω of ψ[Vω] and φω.

For each component Vω, we compute the straight enumeration φω of G[Vω]
if it exists, else we stop (Theorem 2.3.5). Since φω is unique up to reversal, we
check if either φω or φω is compatible with ψ[Vω]. Specifically, we first compute
the common refinement Φω of ψ[Vω] and φω. If it is nonempty we continue (Theo-
rem 5.3.3), while if it is is empty we compute the common refinement Φω of ψ[Vω]
and φω. If such a common refinement is nonempty we continue (Theorem 5.3.3),
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while if it is again empty this time we stop, as no straight enumeration of Gω

compatible with ψ[Vω] exists. Finally, we set to zero the smallest nonzero entries
of A[Vω], obtaining the new matrix A′[Vω] (whose nonzero entries take fewer dis-
tinct values than the matrix A[Vω]). Now, if the matrix A′[Vω] is diagonal, then
we concatenate Φω after Φω−1 in Φ. Otherwise, we make a recursive call, where
the the input of the recursive routine is the matrix A′[Vω] and Φω. If the algo-
rithm successfully terminates, then the concatenation (φ1, . . . , φc) will represent
a straight enumeration of G, and Φ = (Φ1, . . . ,Φc) will represent the common
refinement of this straight enumeration with the given weak linear order ψ and
with the level graphs of A.

The final algorithm is Algorithm 5.5 below. Roughly speaking, every time we
make a recursive call, we are basically passing to the next level graph of A. Hence,
each recursive call can be visualized as the node of a recursion tree, whose root is
defined by the first recursion in Algorithm 5.5, and whose leaves (i.e. the pruned
nodes) are the subproblems whose corresponding submatrices are diagonal.

Algorithm 5.5: Robinsonian(A)

input: a nonnegative matrix A ∈ Sn
output: a permutation π such that Aπ is Robinson or stating that A is

not Robinsonian

1 ψ = (V )
2 if Robinson(A,ψ) stops then
3 “A is NOT Robinsonian”
4 else
5 Φ=Robinson(A,ψ)
6 return: a linear order π of V compatible with Φ;

5.4.1 Correctness

The correctness of Algorithm 5.5 follows directly from the correctness of Algo-
rithm 5.4, which is shown by the next theorem. Indeed, assume that Algorithm 5.4
is correct. Then, if Algorithm 5.5 terminates then it computes a weak linear or-
der Φ compatible with straight enumerations of the level graphs of A and thus
the returned order π orders A as a Robinson matrix in view of Theorem 5.2.2 (ii).
On the other hand, if Algorithm 5.5 stops then Algorithm 5.4 stops with the
input (A,ψ = (V )). Then no weak linear order Φ exists which is compatible
with straight enumerations of the level graphs of A and thus, in view of Theo-
rem 5.2.2 (i), A is not Robinsonian.
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5.4.1 Theorem. Consider a weak linear order ψ of V = [n] and a nonnegative
matrix A ∈ Sn ordered compatibly with ψ.

(i) If Algorithm 5.4 terminates, then there exist straight enumerations φ(1), . . . , φ(L)

of the level graphs G(1), . . . , G(L) of A such that the returned weak linear or-
der Φ is compatible with each of them and with ψ.

(ii) If Algorithm 5.4 stops then there do not exist straight enumerations of the
level graphs of A that are pairwise compatible and compatible with ψ.

Proof. The proof is by induction on the number L of distinct nonzero entries of
the matrix A. We first consider the base case L = 1, i.e., when A is (up to
scaling) 0/1 valued. We first show (i) and assume that the algorithm terminates
succesfully and returns Φ. Then G is the support of A, CO-Lex-BFS (G,ψ) or-
ders the components of G as V1 ≤ψ . . . ≤ψ Vc, and Φ = (Φ1, . . . ,Φc) where each
Φω = Φ[Vω] is build as the common refinement of ψ[Vω] and a straight enumera-
tion of G[Vω] (either φω or φω). Hence G has a straight enumeration φ and the
returned Φ is compatible with φ and ψ.

We now show (ii) and assume that Algorithm 5.4 stops. If it stops when
applying CO-Lex-BFS (G,ψ), then no order of the components of G exists that is
compatible with ψ and thus no straight enumeration of G exists that is compatible
with ψ (Lemma 5.3.1). If the algorithm stops when applying Straight enumeration
to G[Vω] then no straight enumeration of G[Vω] exists. Else, if the algorithm stops
at line 8 in Algorithm 5.4, then ψ[Vω] is not compatible with neither φω or φω.
Because G[Vω] is connected, φω and φω are its unique straight enumerations (see
Theorem 2.3.5) and therefore no straight enumeration of G[Vω] is compatible
with ψ[Vω]. In both cases, no straight enumeration of G exists that is compatible
with ψ.

We now assume that Theorem 5.4.1 holds for any matrix whose entries take
at most L − 1 distinct nonzero values. We show that the theorem holds when
considering A whose nonzero entries take L distinct values. We follow the same
lines as the above proof for the case L = 1, except that we use recursion for
some components. First, assume that the algorithm terminates and returns Φ.
Then, Φ = (Φ̃1, . . . , Φ̃c) after ordering the components compatibly with ψ as
V1 ≤ψ . . . ≤ψ Vc, constructing the common refinement Φω of ψ[Vω] and a straight
enumeration (say) φω of G[Vω], and having Φ̃ω = Robinson(A′[Vω],Φω), where
A′[Vω] is obtained from A[Vω] by setting to 0 its entries with smallest nonzero
value. By the induction assumption, Φ̃ω is compatible with straight enumerations
of the level graphs of the matrix A′[Vω] and with Φω. As Φ̃ω is compatible with Φω,
which refines both ψ[Vω] and φω, it follows that Φ̃ω is compatible with ψ[Vω]
and φω. Therefore, Φ̃ω is compatible with straight enumerations of all the level
graphs of A[Vω] and thus Φ = (Φ̃1, . . . , Φ̃c) is compatible with ψ and all level
graphs of A, as desired.
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Assume now that the algorithm stops. If the algorithm stops at CO-Lex-
BFS (G,ψ), then no linear order of the connected components of G exists that is
compatible with ψ and then no straight enumeration of G exists that is compatible
with ψ (Lemma 5.3.1), giving the desired conclusion. If the algorithm stops at
line 8, then a connected component Vω is found for which ψ[Vω] is not compatible
with any straight enumeration of G[Vω], giving again the desired conclusion.

Assume now that the algorithm stops at line 14, i.e., there is a component Vω
for which the algorithm terminates when applying Robinson(A′[Vω],Φω). Then,
by the induction assumption, we know that:

no straight enumerations of the level graphs of A′[Vω] exist

that are pariwise compatible and compatible with Φω,
(*)

where Φω is the common refinement of ψ[Vω] and a straight enumeration (say) φω
of G[Vω]. Assume, for the sake of contradiction, that there exist straight enumer-
ations ϕ(1), . . . , ϕ(L) of the level graphs G(1) = G, . . . , G(L) of A, that are pairwise
compatible and compatible with ψ. In particular, ϕ(1)[Vω] is a straight enumera-
tion of G[Vω] compatible with ψ[Vω]. If ϕ(1)[Vω] = φω, then the restrictions ϕ(`)

(` ≥ 2) yield straight enumerations of the level graphs of A′[Vω] that are pair-
wise compatible and compatible with φω and ψ[Vω], and thus with their refinement
Φω = ψ[Vω]∧φω, contradicting (*). Hence, ϕ(1)[Vω] = φω, so that ψ[Vω] is compati-
ble with both φω and its reversal φω. This implies that ψ[Vω] = (Vω). But then the
reversals ϕ(2)[Vω], . . . , ϕ(L)[Vω] provide straight enumerations of the level graphs
of A′[Vω] that are pairwise compatible and compatible with ϕ(1)[Vω] = φω = Φω.
This contradicts again (*) and concludes the proof. �

5.4.2 Complexity analysis

We now study the complexity of our main algorithm. First we discuss the com-
plexity of the two subroutines CO-Lex-BFS and Refine in Algorithms 5.1 and 5.3
and then we derive the complexity of the final Algorithm 5.5. In the rest of
the section, we let m denote the number of nonzero (upper diagonal) entries
of A, so that m is the number of edges of the support graph G = G(1) and
m = |E1| ≥ |E2| ≥ . . . ≥ |EL| for the level graphs of A. We assume that A is a
nonnegative symetric matrix, which is given as an adjacency list of an undirected
weighted graph, where each vertex x ∈ V is linked to the list of vertex/weight
pairs corresponding to the neighbors y of x in G with nonzero entry Axy.

A simple but important observation that we will repeatedly use is that, if we
consider a linear order τ compatible with ψ, then the blocks of ψ are intervals
of the order τ and thus one can check whether a given set C ⊆ V is contained
in a block B of ψ in O(|C|) operations (simply by comparing each element of C
to the end points of the interval B). Furthermore, the size of any block of ψ is
simply given by the difference between its extremities (plus one).
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5.4.2 Lemma. Algorithm 5.1 runs in O(|V |+ |E|) time.

Proof. As shown in Subsection 4.2.3, Lex-BFS can be implemented in linear time
O(|V |+ |E|) (see Theorem 4.2.2). Hence, in our implementation of Algorithm 5.1
we will follow the same linear time implementation (see Algorithm 4.3). Recall
that the blocks of ψ are intervals in τ , which is a linear order compatible with ψ.
We maintain a doubly linked list, where each node of the list represents a con-
nected component Vω of G and it has a pointer to the connected component Vω−1

ordered immediately before Vω and to the connected component Vω+1 ordered
immediately after Vω. Then, swapping two connected components can be done
simply by swapping the left and right pointers of the corresponding connected
components in the doubly linked list. Furthermore, each node in this list con-
tains the set of vertices in Vω, the first block Bmin

ω and the last block Bmax
ω in ψ

meeting Vω. These two blocks Bmin
ω and Bmax

ω can be found in O(|Vω|) as follows.
First one finds the smallest element vmin (resp. the largest element vmax) of Vω in
the order τ , which can be done in O(|Vω|). Then, Bmin

ω is the block of ψ contain-
ing vmin, which can be found in O(|Vω|). Analogously for Bmax

ω , which is the block
of ψ containing vmax. Checking whether Vω is contained in the block Bmin

ω−1 can be
done in O(|Vω|) (since Bmin

ω−1 is an interval). In order to check whether all the inner
blocks between Bmin

ω and Bmax
ω are contained in Vω we proceed as follows. Let Bω

be the union of these inner blocks, which is an interval of τ . First we compute
the sets Vω∩Bmin

ω and Vω∩Bmax
ω , which can be done in O(|Vω|). Then we need to

check whether Bω ⊆ Vω or, equivalently, whether the two sets Vω \ (Bmin
ω ∪Bmax

ω )
and Bω are equal. For this we check first whether Vω \ (Bmin

ω ∪ Bmax
ω ) is con-

tained in Bω (in time O(|Vω|)) and then whether these two sets have the same
cardinality, which can be done in O(|Vω|). Hence, the complexity of this task is
O(
∑

ω |Vω|) = O(|V |). Therefore we can conclude that the overall complexity of
Algorithm 5.1 is O(|V |+ |E|). �

5.4.3 Lemma. Algorithm 5.3 runs in O(|V |) time.

Proof. We show the lemma using induction on the number q of blocks of φ. Recall
that the blocks of ψ are intervals in τ , which is a linear order compatible with ψ.
If q = 1 the result is clear since the algorithm returns Φ = φ without any work.
Assume q ≥ 2. The first task is to compute the last block Bmax of ψ meeting
C1. For this, as in the proof of the previous lemma, one finds the largest element
vmax of C1 in the order τ and one returns the block of ψ containing vmax, which
can be done in O(|C1|). Then let B be the union of the blocks preceding Bmax.
In order to check whether B ⊆ C1 or, equivalently, whether C1 \ Bmax = B, we
proceed as in the previous lemma: we first check whether C1\Bmax ⊆ B and then
whether |C1 \ Bmax| = |B|, which can be done in O(|C1|). Hence, the running
time is O(|C1|) for this task which, together with the running time O(|V \ C1|)
for the recursive application of Refine to the restrictions of ψ, φ to the set V \C1,
gives an overall running time O(|V |). �
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We can now complete the complexity analysis of our algorithm.

5.4.4 Theorem. Algorithm 5.5 applied to a nonnegative n × n symmetric ma-
trix A with m nonzero entries recognizes whether A is a Robinsonian matrix in
O(d(|V | + |E|)) time, where d is the depth of the recursion tree created by Algo-
rithm 5.5. Moreover, d ≤ L, where L is the number of distinct nonzero entries
of A.

Proof. We show the result using induction on the depth d of the recursion tree.
In Algorithm 5.5 we are given a matrix A and its support graph G, and we set
ψ = (V ). First we run the routine CO-Lex-BFS (G,ψ) in O(|V | + |E|) time,
in order to find and order the components of G. For each component Vω, the
following tasks are performed. We compute a straight enumeration φω of G[Vω],
in time O(|Vω|+mω) where mω is the number of edges of G[Vω]. The reversal φω
can be computed in O(|Vω|) by simply reversing the ordered partition φω, which
is stored in a double linked list. Hence, we apply the routine Refine to ψ[Vω]
and φω (or φω), which can be done in O(|Vω|) time. Then we build the new
matrix A′[Vω] and checks whether it is diagonal, in time O(mω). Finally, by the
induction assumption, the recursion step Robinson(A′[Vω],Φω) is carried out in
time O(dω(|Vω|+mω)), where dω denotes the depth of the corresponding recursion
tree. As dω ≤ d − 1 for each ω, after summing up, we find that the overall
complexity is O(d(|V |+ |E|)).

The last claim: d ≤ L is clear since the number of distinct nonzero entries of
the current matrix decreases by at least 1 at each recursion node. �

As we will see in the example in the Section 5.6, the depth d of the recursion
tree can be smaller than the number L of distinct nonzero entries. Indeed in this
example we have d = 7 while L = 10. Nevertheless, the experiments in Chapter 9
show that in many instances the depth of the recursion is exactly equal to L.

5.5 Finding all Robinson orderings

In general, there might exist several permutations reordering a given matrix A
as a Robinson matrix. We show here how to return all Robinson orderings of a
given matrix A, using the PQ-tree data structure of [14] (see Subsection 2.2.4).

The main observation is that a straight enumeration ψ = (B1, . . . , Bp) of a
graph G = (V,E) corresponds in a unique way to a PQ-tree T as follows. If
G is connected, then the root of T is a Q-node, denoted γ, and it has children
β1, . . . , βp (in that order). For i ∈ [p], the node βi is a P-node corresponding to
the block Bi and its children are the elements of the set Bi, which are the leaves
of the subtree Tβj . If a block Bi is a singleton then no node βi appears and the
element of Bi is directly a child of the root γ (see the example in Figure 5.1).
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AG =




1 2 3 4 5 6

1 1 1 1 1 0 0
2 1 1 1 1 1 1
3 1 1 1 1 1 1
4 1 1 1 1 1 1
5 0 1 1 1 1 1
6 0 1 1 1 1 1




γ

1

β2

2 3 4

β3

5 6

Figure 5.1: A connected graph G and the PQ-tree corresponding to its straight
enumeration

If G is not connected, let V1, . . . , Vc be its connected components. For each
connected component G[Vω], Tω is its PQ-tree (with root γω) as indicated above.
Then, the full PQ-tree T is obtained by inserting a new P-node α as ancestor,
whose children are the subtrees T1, . . . , Tc (see Figure 5.2).

α

γω1
γω2

. . . γωc

Figure 5.2: The PQ-tree corresponding to the straight enumeration of a discon-
nected graph

We now indicate how to modify Algorithms 5.4 and 5.5 in order to return a
PQ-tree T encoding all the permutations ordering A as a Robinson matrix.

We modify Algorithm 5.4 by taking as input, beside the matrix A and the
weak linear order ψ, also a node α (see Algorithm 5.6). Then, the output is a PQ-
tree Tα rooted in α, representing all the possible weak linear orders compatible
with ψ and with straight enumerations of all the level graphs of A. It works as
follows.

Let G be the support of A. The idea is to recursively build a tree Tω for each
connected component Vω of G and then to merge these trees according to the
order of the components found by the routine CO-Lex-BFS (G,ψ). To carry out
this merging step we classify the components into the following three groups:

1. Θ, which consists of all ω ∈ [c] for which the connected component Vω meets
at least two blocks of ψ.

2. Λ, which consists of all ω ∈ [c] for which the component Vω is contained in
some block Bi, which contains no other component.

3. Ω = ∪pi=1Ωi, where Ωi consists of all ω ∈ [c] for which the component Vω is
contained in the block Bi, which contains at least two components.
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Every time we analyze a new connected component ω ∈ [c] in Algorithm 5.4,
we create a Q-node γω. After the common refinement Φω (of ψ[Vω] and the
straight enumeration φω of G[Vω] or its reversal) has been computed, we have
two possibilities. If A′[Vω] is diagonal, then we build the tree Tω rooted in γω
and whose children are P-nodes corresponding to the blocks of Φω (and prune
the recursion tree at this node). Otherwise, we build the tree Tω recursively as
output of Robinson(A′[Vω],Φω, γω).
After all the connected components have been analyzed, we insert the trees Tω
in the final tree Tα in the order they appear according to the routine CO-Lex-
BFS (G,ψ). The root node is α and is given as input. For each component Vω,
we do the following operation to insert Tω in Tα, depending on the type of the
component Vω:

1. If ω ∈ Θ, then φω (or φω) is the only straight enumeration compatible
with ψ[Vω]. Then we delete the node γω and the children of γω become
children of α (in the same order).

2. If ω ∈ Λ, then both φω and its reversal φω are compatible with ψ[Vω].
Then γω becomes a child of α.

3. If ω ∈ Ωi for some i ∈ [p], then both φω and φω are compatible with ψ[Vω]
and the same holds for any ω′ ∈ Ωi. Moreover, arbitrary permuting any
two connected components Vω, Vω′ with ω, ω′ ∈ Ωi will lead to a compatible
straight enumeration. Then we insert a new node βi which is a P-node and
becomes a child of α and, for each ω′ ∈ Ωi, γω′ becomes a child of βi.

Finally, we modify Algorithm 5.5 by just giving a new node α = ∅ (i.e. un-
defined) as input to the first recursive call (see Algorithm 5.7). The overall
complexity of the algorithm after the above mentioned modifications is the same
as for Algorithm 5.5. Indeed, determining the type of the connected components
can be done in linear time, by just using the information about the initial and
final blocks Bmin

ω and Bmax
ω already provided in Algorithm 5.1. Furthermore, the

operations on the PQ-tree are basic operations that do not increase the overall
complexity of the algorithm.
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Algorithm 5.6: Robinson(A,ψ, α)

input: a nonnegative matrix A ∈ Sn, a weak linear order ψ of V = [n] and
a node α

output: A PQ-tree Tα representing all the possible weak linear order Φ
compatible with ψ and with straight enumerations of all the level
graphs of A, or STOP (such a tree does not exist)

1 G is the support of A
2 CO-Lex-BFS (G,ψ) returns a linear order (V1, . . . , Vc) of the connected

components of G compatible with ψ (if it exists) and a vertex order σ
3 group the connected components (c.c.) Vω (ω ∈ [c]) of G as follows:
4 Θ : all ω for which Vω meets at least two blocks of ψ
5 Λ : all ω for which Vω is contained in a block Bi containing no other c.c.
6 for i ∈ [p], Ωi: all ω for which Vω ⊆ Bi and Bi contains at least two c.c.
7 Φ = ∅
8 for ω = 1, . . . , c do
9 create a Q-node γω

10 φω = Straight enumeration(G[Vω], σ[Vω]) (if G[Vω] is a unit int. graph)
11 if Φω = Refine(ψ[Vω], φω) = ∅ then

12 if Φω = Refine(ψ[Vω], φω) = ∅ then
13 stop (no straight enumeration compatible with ψ[Vω] exists)

14 a′min is the smallest nonzero entry of A[Vω]
15 A′[Vω] is obtained from A[Vω] by setting entries with value a′min to zero
16 if A′[Vω] is diagonal then
17 create a PQ-tree Tω rooted in γω and whose children are P-nodes

corresponding to the blocks of Φω

18 else
19 Tω = Robinson(A′[Vω],Φω, γω)

20 Tα is the PQ-tree rooted in α, build as follows:
21 ω = 1
22 while ω ≤ c do
23 if ω ∈ Θ then
24 the children of γω become children of α and remove γω; ω = ω + 1
25 else
26 if ω ∈ Λ then
27 set Tω as child of α (if α = ∅, then set α = γω); ω = ω + 1
28 else
29 let Ωi s.t. ω ∈ Ωi; create a P-node βi and set it as child of α (if

α = ∅, then set α = βi)
30 foreach ω′ ∈ Ωi do
31 set γω′ as children of βi

32 ω = ω + |Ωj|

33 return: Tα or STOP
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Algorithm 5.7: Robinsonian(A)

input: a nonnegative matrix A ∈ Sn
output: a PQ-tree T that encodes all the permutations π such that Aπ is

a Robinson matrix or stating that A is not Robinsonian

1 ψ = (V )
2 α = ∅
3 G is the support of A
4 T =Robinson(A,ψ, α)
5 if the leaves of T are n then
6 return: T
7 else
8 “A is NOT Robinsonian”

5.6 Example

We show on a concrete example how the algorithm works. We consider the same
matrix A as the one used in the example in Section 5 of [94]. However, since [94]
handles Robinsonian dissimilarities, we first transform it into a similarity matrix
and thus we use instead the matrix aLJ − A, where aL = 11 denotes the largest
entry in the matrix A. If we rename such a new matrix as A, it looks as follows:

A =



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

1 11 2 9 0 5 0 5 5 2 0 5 0 5 6 0 0 2 0 5
2 11 2 0 9 0 8 5 10 0 5 0 5 2 0 0 10 0 8
3 11 0 5 0 5 5 2 0 5 0 5 10 0 0 2 0 5
4 11 0 3 0 0 0 3 0 3 0 0 10 3 0 9 0
5 11 0 8 7 9 0 7 0 7 5 0 0 9 0 10
6 11 0 0 0 10 0 6 0 0 5 8 0 5 0
7 11 7 8 0 7 0 7 5 0 0 8 0 9
8 11 6 0 10 0 8 7 0 0 6 0 7
9 11 0 6 0 5 2 0 0 10 0 8
10 11 0 6 0 0 4 9 0 5 0
11 11 0 9 7 0 0 6 0 7
12 11 0 0 9 6 0 10 0
13 11 7 0 0 5 0 7
14 11 0 0 2 0 5
15 11 4 0 10 0
16 11 0 4 0
17 11 0 8
18 11 0
19 11



(5.3)

Here the bold labels denote the original numbering of the elements. The recursion
tree computed by Algorithm 5.5 is shown in Figure 5.3 at page 87. The weak
linear order at each node represents the weak linear order ψ given as input to
the recursion node, while the number on the edge between two nodes denotes the
minimum value in the current matrix A, which is set to zero before making a new
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recursion call (in this way, the reader may reconstruct the input given at each
recursion node).

Root node
We set ψ = (V ) and invoke Algorithm 5.4. Then, Algorithm 5.1 would find two
connected components:

V1 = {1, 2, 3, 5, 7, 8, 9, 11, 13, 14, 17, 19},
V2 = {4, 6, 10, 12, 15, 16, 18}.

Hence, we can split the problem into two subproblems, where we deal with each
connected component independently.

1.0 Connected component V1, level 0
The submatrix A[V1] is a clique, and thus we have ψ[V1] = φ = (V1). The
smallest nonzero value of the submatrix is a′min = 2. Hence, we compute A′[V1]
by setting to zero the entries of the submatrix with value equal to a′min, and we
make a recursive call, setting ψ = Φ. To simplify notation, we shall rename A′[V1]
as A[V1] after every iteration.

1.1 Connected component V1, level 1
The matrix in input at the current recursion node is shown below.

A[V1] =




1 2 3 5 7 8 9 11 13 14 17 19

1 11 0 9 5 5 5 0 5 5 6 0 5
2 11 0 9 8 5 10 5 5 0 10 8
3 11 5 5 5 0 5 5 10 0 5
5 11 8 7 9 7 7 5 9 10
7 11 7 8 7 7 5 8 9
8 11 6 10 8 7 6 7
9 11 6 5 0 10 9
11 11 9 7 6 7
13 11 7 5 7
14 11 0 5
17 11 8
19 11




(5.4)

If we invoke Algorithm 5.2 we get the following straight enumeration:

φ = ({1, 3, 14}, {5, 7, 8, 11, 13, 19}, {2, 9, 17}).

Note that since ψ[V1] has only one block, we do not need to compute the partition
refinement in Algorithm 5.3, and the common refinement is simply Φ = φ. The
smallest nonzero value of the matrix in (5.4) is a′min = 5. Hence, we computeA′[V1]
by setting to zero the entries of the matrix in (5.4) with value equal to a′min. Then,
we make a recursion call, and we set ψ = Φ.
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1.2 Connected component V1, level 2
The input matrix A[V1] is obtained by setting to zero the entries of the matrix
in (5.4) with value at most 5. The support of this matrix is still connected, and
its straight enumeration is:

φ = ({1, 3}, {14}, {13}, {8, 11}, {5, 7, 19}, {9, 17}, {2}).

If we invoke Algorithm 5.3, it is easy to see that the common refinement Φ of ψ
and φ is exactly φ. The smallest nonzero value of A[V1] is now a′min = 6. Hence, we
compute A′[V1] and we make a recursion call, setting ψ = Φ and renaming A′[V1]
as A[V1].

1.3 Connected component V1, level 3
The input matrix A[V1] is obtained by setting to zero the entries of the matrix
in (5.4) with value at most 6. The support of this matrix is still connected, and
its straight enumeration is:

φ = ({1}, {3}, {14}, {13, 8, 11}, {5, 7, 19}, {9, 17, 2}).

The common refinement with ψ is then given by:

Φ = ({1}, {3}, {14}, {13}, {8, 11}, {5, 7, 19}, {9, 17}, {2}).

The smallest nonzero value of A[V1] is now a′min = 7. Hence, we compute A′[V1]
and we make a recursion call, setting ψ = Φ.

1.4 Connected component V1, level 4
The input matrix A[V1] is obtained by setting to zero the entries of the matrix
in (5.4) with value at most 7. The support of this matrix is not connected, and
thus Algorithm 5.1 will detect the following connected components:

V11 = {1, 3, 14},
V12 = {13, 8, 11},
V13 = {5, 7, 19, 9, 17, 2}.

1.4.1 Connected component V11, level 4
We have that ψ[V11] = ({1}, {3}, {14}). Because all its block are singletons, it is
a linear order and thus it cannot be refined more. Since Φ is a Robinson ordering
for A[V11], we do not apply recursion and pass to the next connected component.

1.4.2 Connected component V12, level 4
We have that ψ[V12] = ({13}, {8, 11}). The submatrix A[V12] is a clique, and thus
φ = (V12). Hence, the common refinement is Φ = ({13}, {8, 11}). The smallest
nonzero value of A[V12] is now a′min = 8. Hence, we compute A′[V12] and we make
a recursion call, setting ψ = Φ.
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1.5.2 Connected component V12, level 5
The input matrix A[V12] is obtained by setting to zero the entries of the matrix
in (5.4) restricted to V12 with value at most 8. The straight enumeration is
φ = ({13}, {11}, {8}), and thus the common refinement is Φ = ({13}, {11}, {8}).
Because all its block are singletons, Φ is a linear order and thus it cannot be
refined more. Furthermore, Φ is Robinson for A[V12], and thus we can prune the
recursion node.

1.4.3 Connected component V13, level 4
We have that ψ[V13] = ({5, 7, 19}, {9, 17}, {2}). The submatrix A[V13] is a clique,
and thus φ = (V13). Hence, the common refinement is Φ = ({5, 7, 19}, {9, 17}, {2}).
The smallest nonzero value of A[V13] is a′min = 8. Hence, we compute A′[V13] and
we make a recursion call, setting ψ = Φ.

1.5.3 Connected component V13, level 5
The input matrix A[V13] is obtained by setting to zero the entries of the matrix
in (5.4) restricted to V13 with value at most 8. If we invoke Algorithm 5.2,
we get the straight enumeration φ = ({2}, {17, 9}, {5}, {19}, {7}), which is not
compatible with ψ. Hence we compute φ = ({7}, {19}, {5}, {9, 17}, {2}), which
is compatible with ψ, and thus we have that Φ = φ. The smallest nonzero value
of A[V13] is a′min = 9. We update A′[V1], and we make a recursive call.

1.6.3 Connected component V13, level 6
The new input matrix is then given by the submatrix in (5.4) restricted to V13

by setting to zero the entries with value at most 9. The support of this matrix
is not connected, and thus Algorithm 5.1 will detect the following connected
components:

V131 = {7},
V132 = {19, 5},
V133 = {9, 17, 2}.

We then split the problem over the connected components. The first one has
only one vertex, and therefore we can update Φ and pass to the next connected
components. The second and the third ones are matrices with all off-diagonal
entries equal, and thus we can stop. This was the last recursion node open of the
first subtree.

Therefore, we get that the final common refinement of the level graphs of the
matrix in (5.4) is:

Φ1 = ({1}, {3}, {14}, {13}, {11}, {8}, {7}, {19}, {5}, {9, 17}, {2})
and the PQ-tree T1 computed by the algorithm is shown in Figure 5.4 at page 88.

2.0 Connected component V2, level 0
The submatrix A[V2] is a clique, and thus we have ψ[V2] = φ = (V2). The smallest
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nonzero value of the submatrix is a′min = 3. Hence, we compute A′[V2] by setting
to zero the entries of the submatrix with value equal to a′min, and we make a
recursive call, setting ψ = Φ. Again, to simplify notation, we shall rename A′[V2]
as A[V2] after every iteration.

2.1 Connected component V2, level 1
The matrix in input at the current recursion node is shown below.

A[V2] =




4 6 10 12 15 16 18

4 11 0 0 0 10 0 9
6 11 10 6 5 8 5
10 11 6 4 9 5
12 11 9 6 10
15 11 4 10
16 11 4
18 11




(5.5)

If we invoke Algorithm 5.2, we get the following straight enumeration:

φ = ({4}, {15, 18}, {6, 10, 12, 16}).

Note that since ψ[V2] has only one block, we do not have to compute the partition
refinement in Algorithm 5.3, and then the common refinement is simply Φ = φ.
The smallest nonzero value of the matrix in (5.5) is a′min = 4. Hence, we compute
A′[V2] by setting to zero the entries of the matrix in (5.5) with value equal to a′min,
we set ψ = Φ and we make a recursion call.

2.2 Connected component V2, level 2
The input matrix A[V2] is obtained by setting to zero the entries of the matrix
in (5.5) with value at most 4. The support of this matrix is still connected, and
its straight enumeration is:

φ = ({4}, {15}, {18}, {6, 12}, {10}, {16}).

If we invoke Algorithm 5.3, it is easy to see that the common refinement is Φ = φ
The smallest nonzero value of A[V2] is now a′min = 5. Hence, we compute A′[V2],
we set ψ = Φ and we make a recursion call.

2.3 Connected component V2, level 3
The input matrix A[V2] is obtained by setting to zero the entries of the matrix
in (5.5) with value at most 5. The support of this matrix is still connected, and
its straight enumeration is:

φ = ({4, 15}, {18}, {12}, {6, 10, 16}).

The common refinement is then simply:

Φ = ({4}, {15}, {18}, {12}, {6}, {10}, {16}).
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Because the common refinement consists of all singletons, it cannot be refined
anymore. Furthermore, Φ is a Robinson ordering of A[V2]. Hence, we can stop
and prune the recursion tree.

The final common refinement of level graphs of A[V2] is:

Φ2 = ({4}, {15}, {18}, {12}, {6}, {10}, {16})

and the PQ-tree T2 computed by the algorithm is shown in Figure 5.5 at page 88.

Finally, we can build the PQ-tree representing the permutation reordering A
as a Robinson matrix. Since both V1 and V2 are contained in the same block of ψ
(which at the beginning is ψ = ([n])), then we create a P-node (named α since it
is the ancestor) whose children are the subtrees T1 and T2. The final PQ-tree is
shown in Figure 5.6 at page 88, and is equivalent to the one returned by [94].

5.7 Conclusions and future work

In this chapter we introduced a new combinatorial algorithm to recognize Robin-
sonian matrices, based on a new characterization of Robinsonian matrices in terms
of straight enumerations of unit interval graphs. The algorithm is simple, rather
intuitive and relies only on basic routines like Lex-BFS and partition refinement,
and it is well suited for sparse matrices.

The complexity depends on the depth d of the recursion tree. As we will com-
ment in Chapter 9, in the computational experiments we found matrices for which
the depth is tight and strictly bigger than n, i.e., d = L > n. Nevertheless, for
practical purpose, a possible way to bound the depth is to find criteria to prune
recursion nodes. One possibility would be, when a submatrix is found for which
the current weak linear order consists only of singletons, to check whether the cor-
responding permuted matrix is Robinson. Analyzing the complexity implications
will be the subject of future work.

Another possible way to improve the complexity might be to compute the
straight enumeration of the first level graph and then update it dynamically (in
constant time, using an appropriate data structure) without having to compute
every time the whole straight enumeration of the next level graphs; this would
need to extend the dynamic approach of [67], which considers the case of single
edge deletions, to the deletion of sets of edges.

Other possible future work includes investigating how the algorithm could be
used to design heuristics or approximation algorithm when A is not Robinsonian,
for example by using (linear) certifying algorithms as in [66] to detect the edges
and the nodes of the level graphs which create obstructions to being a unit interval
graph.
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γ1

1 3 14 13 11 8 7 19 5

β

9 17 2

Figure 5.4: The PQ-tree corresponding to the common refinement of level graphs
of A[V1].

γ2

4 15 18 12 6 10 16

Figure 5.5: The PQ-tree corresponding to the common refinement of level graphs
of A[V2].

α

γ1

1 3 14 13 11 8 7 19 5

β

9 17 2

γ2

4 15 18 12 6 10 16

Figure 5.6: The PQ-tree corresponding to the permutations reordering A as a
Robinson matrix.



6
Similarity-First Search

In this chapter we present a new combinatorial recognition algorithm for Robin-
sonian matrices. As main ingredient, we introduce a new algorithm, called
Similarity-First Search (SFS), which is an extension of the Lex-BFS algorithm
discussed in Chapter 4 to weighted graphs. In Section 6.1 we give a short overview
of the recognition algorithm and we briefly discuss its relevance in the literature.
In Section 6.2 we introduce some preliminaries and we give basic facts about
Robinsonian matrices and Robinson orderings. Section 6.3 is devoted to the SFS
algorithm. In Section 6.4 we discuss the variant SFS+. In Section 6.5 we present
the multisweep algorithm to recognize Robinsonian matrices and we prove its
correctness. Finally, in Section 6.6 we conclude the chapter with some possible
direction for future work. The content of the chapter is based on our work [79].

6.1 Introduction

In Chapter 5 we have discussed a Robinsonian recognition algorithm entirely
based on the Lex-BFS algorithm presented in Chapter 4. In this chapter we intro-
duce instead a new recognition algorithm based on the novel algorithm Similarity-
First Search (SFS), which represents a generalization of the classical Lex-BFS
algorithm to weighted graphs. Intuitively, the SFS algorithm traverses vertices of
a weighted graph in such a way that most similar vertices (i.e., corresponding to
largest edge weights) are visited first, while still respecting the priorities imposed

89
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by previously visited vertices. When applied to an unweighted graph (or equiva-
lently to a 0/1 matrix), the SFS algorithm reduces to Lex-BFS. As for Lex-BFS,
the SFS algorithm is entirely based on a unique simple task, namely partition
refinement (see Subsection 2.2.3).

We will use the SFS algorithm to define our new Robinsonian recognition
algorithm. Specifically, we introduce a multisweep algorithm in the same fashion
as for Lex-BFS (see Algorithm 4.4). Each sweep uses the order returned by the
previous sweep to break ties in the (weighted) graph search. Our main result is
that our multisweep algorithm can recognize after at most n− 1 sweeps whether
a given n× n matrix A is Robinsonian. Namely we will show that the last sweep
is a Robinson ordering of A if and only if the matrix A is Robinsonian. Assuming
that the matrix A is nonnegative and given as an adjacency list of an undirected
weighted graph with m nonzero entries, our algorithm runs in O(n2 + mn log n)
time.

As we have already seen in Chapter 4, multisweep algorithms are well studied
approaches to recognize classes of (unweighted) graphs and there exist many
results on multisweep algorithms which are based on Lex-BFS. Nevertheless, to
the best of our knowledge, this is the first work introducing and studying explicitly
the properties of a multisweep search algorithm for weighted graphs. The only
related idea that we could find is about replacing BFS with Dijkstra’s algorithm,
which is only briefly mentioned in [39].

The relevance of this work is twofold. First, we reduce the Robinsonian
recognition problem to a single extremely simple and basic operation, namely
to partition refinement. Hence, even though from a theoretical point of view the
algorithm is computationally slower than the optimal one presented in [94], its
simplicity makes it easy to implement and thus hopefully will encourage the use
and the study of Robinsonian matrices in more practical problems.

Second, we introduce a new (weighted) graph search, which we believe is of
independent interest. As we will discuss more in detail at the end of the chapter,
this could potentially be used for the recognition of other structured matrices
or just as basic operation in the broad field of ‘Similarity Search’. In addition,
we introduce some new concepts extending analogous notions in graphs, and we
develop some combinatorial tools for the study of Robinsonian matrices that we
use to analyze our new multisweep algorithm. These concepts could be used to
further characterize the Robinsonian structure, e.g., defining a certificate for non-
Robinsonian matrices. As an example, we give combinatorial characterizations
for the end points (aka anchors) of Robinson orderings.

6.2 Preliminaries

In this section we refresh some notation already introduced in Chapter 2 and we
give basic facts about Robinsonian matrices and Robinson orderings. In Sub-
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section 6.2.1 we introduce the concepts of ‘path avoiding a vertex’ and ‘valid
vertex’. In Subsection 6.2.2 we give a combinatorial characterization for end
points of Robinson orderings (also named ‘anchors’) and for ‘opposite anchors’,
which will play a crucial role in the rest of the chapter.

As before, we represent a permutation π as a sequence (x1, . . . , xn) with x1 <π

. . . <π xn. Hence, π = (xn, xn−1, . . . , x1) denotes the reversed linear order of π.
For U ⊆ V , π[U ] denotes the linear order of U obtained by restricting π to U .
If π1 and π2 are two linear orders on disjoint subsets V1 and V2, then π = (π1, π2)
denotes their concatenation, which is a linear order on V1 ∪ V2. Recall also that
an ordered partition ψ = (B1, . . . , Bk) of V induces a weak linear order on V .

Given a matrix A ∈ Sn, for U ⊆ V , A[U ] = (Aij)i,j∈U is the principal sub-
matrix of A indexed by U , and for a permutation π of V , Aπ = (Aπ(i),π(j))

n
i,j=1

is the matrix obtained by symmetrically permuting the rows and columns of A
according to π. As already mentioned in Chapter 3, also in this chapter we
will deal exclusively with Robinson(ian) similarities. Hence, when speaking of a
Robinson(ian) matrix, we mean a Robinson(ian) similarity matrix. Furthermore,
as in Chapter 5, it will be convenient to view symmetric matrices as weighted
graphs. Namely, any nonnegative symmetric matrix A ∈ Sn corresponds to the
weighted graph G = (V = [n], E) whose edges are the pairs {x, y} with Axy > 0,
with edge weights Axy. Again, the assumption of nonnegativity can be made
without loss of generality and is for convenience only. Accordingly we will often
refer to the elements of V = [n] indexing A as vertices (or nodes). For x ∈ V ,
N(x) = {y ∈ V \ {x} : Axy > 0} denotes the neighborhood of x in G.

6.2.1 Basics facts

In order to fully understand the motivation for our work, we recall some results
about 0/1 Robinsonian matrices already discussed in Chapter 3. Recall, from
Theorem 3.2.1, that a symmetric matrix A ∈ {0, 1}n×n is a Robinsonian similarity
if and only if it is the (extended) adjacency matrix of a unit interval graph G =
(V = [n], E) whose edges are the positions of the nonzero entries of A.

Among the several equivalent characterizations for unit interval graphs, the
3-vertex condition (iii) in Theorem 2.3.3 coincides with relation (3.1) for 0/1 ma-
trices. This equivalence and the fact that unit interval graphs can be recognized
with a Lex-BFS multisweep algorithm (see Subsection 4.3.2) motivated us to find
an extension of Lex-BFS to weighted graphs and to use it to obtain a (simple)
multisweep recognition algorithm for Robinsonian matrices.

In what follows we will extend some graph concepts to the general setting of
weighted graphs (Robinsonian matrices). Throughout the chapter, we will point
out links between our results and some corresponding known results for Lex-BFS
applied to graphs. We will refer to the results presented in Chapter 4, which are
mostly based on the work in [38].
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We now introduce some notions and simple facts about Robinsonian ma-
trices and orderings. Consider a matrix A ∈ Sn. Given distinct elements
x, y, z ∈ V , the triple (x, y, z) is said to be Robinson if it satisfies (3.1), i.e.,
if Axz ≤ min{Axy, Ayz}. Given a set S ⊆ V and x ∈ V \ S, we say that x is
homogeneous with respect to S if Axy = Axz for all y, z ∈ S (which is an extension
of the corresponding notion for graphs, see, e.g., [38]). The following is an easy
necessary condition for the Robinson property.

6.2.1 Lemma. Let A ∈ Sn be a Robinsonian similarity. Assume that there exists
a Robinson ordering π such that x <π z <π y. Then Auz ≥ min{Aux, Auy} for all
u 6= x, y, z ∈ [n].

Proof. Indeed, u <π z implies u <π z <π y and thus Auz ≥ Auy, and z <π u
implies x <π z <π u and thus Auz ≥ Aux. �

We now make a simple observation on how three elements x, y, z ∈ V may
appear in a Robinson ordering π of A depending on their similarities. Namely,
if we have that Axz > min{Axy, Ayz} then, either y comes before both x and z
in π, or y comes after both x and z in π. In other words, if x and z are more
similar to each other than to y, then y cannot be ordered between x and z in any
Robinson ordering π. Moreover, if Axz < min{Axy, Ayz} then, either x <π y <π z,
or z <π y <π x. In other words, if x and z are more similar to y than to each
other, then y must be ordered between x and z in any Robinson ordering π.

This observation motivates the following notion of ‘path avoiding a vertex’,
which will play a central role in our discussion. Note that this notion is closely re-
lated to the notion of ‘path missing a vertex’ for Lex-BFS in [38] (see Section 4.3),
although it is not equivalent to it when applied to a 0/1 matrix.

6.2.2 Definition. (Path avoiding a vertex) Given distinct elements x, y, z ∈ V ,
a path from x to z avoiding y is a sequence (x = v0, v1, . . . , vk−1, vk = z) of ele-
ments of V where each triple (vi, y, vi+1) is not Robinson, i.e.,

Avivi+1
> min{Ayvi , Ayvi+1

}, ∀ i = 0, 1, . . . , k − 1.

The following simple but useful property holds.

6.2.3 Lemma. Let A ∈ Sn be a Robinsonian similarity matrix. If there exists a
path from x to z avoiding y, then y cannot lie between x and z in any Robinson
ordering π of A.

Proof. Let (x = v0, v1, . . . , vk−1, vk = z) be a path from x to z avoiding y. Then,
by definition, we have Avivi+1

> min{Ayvi , Ayvi+1
} for all i = 0, 1, . . . , k − 1, and

thus y cannot appear between vi and vi+1 in any Robinson ordering π. Hence y
cannot lie between x and z in any Robinson ordering π. �
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x v1 v2 vk−1 z

y

. . .

Figure 6.1: A path from x to z avoiding y: each continuous line indicates a value
which is strictly larger than the minimum of the two adjacent dotted lines.

We now introduce the notion of ‘valid vertex’ which we will use in the next
section to characterize end points of Robinson orderings.

6.2.4 Definition. (Valid vertex) Given a matrix A ∈ Sn, an element z ∈ V
is said to be valid if, for any distinct elements u, v ∈ V \ {z}, there do not exist
both a path from u to z avoiding v and a path from v to z avoiding u.

Observe that, if z ∈ V is a valid vertex of a matrix A and S ⊆ V is a subset
containing z, then z is also a valid vertex of A[S]. It is easy to see that, for
a 0/1 matrix, the above definition of valid vertex coincides with the notion of
valid vertex for Lex-BFS [38] (see Section 4.3).

Consider, for example, the following matrix (already ordered in a Robinson
form):

A =




a b c d e f g

a ∗ 7 6 0 0 0 0
b ∗ 7 3 2 1 1
c ∗ 7 2 2 1
d ∗ 3 3 3
e ∗ 7 5
f ∗ 6
g ∗




Then the vertex d is not valid. Indeed, for the two vertices a and g, there exist a
path from a to d avoiding g and a path from g to d avoiding a; namely the path
(d, b, a) avoids g and the path (d, b, g) avoids a (see Figure 6.2).

6.2.2 Characterization of anchors

In this subsection we introduce the notion of ‘(opposite) anchors’ of a Robinsonian
matrix and then we give characterizations in terms of valid vertices. The notion
of anchor was used for unit interval graphs in [35] and it is the analog of the
notion of end-vertex for interval graphs [38] (see Secton 4.3).



94 Chapter 6. Similarity-First Search

a b d

g

7 3

0

1

3

g b d

a

1 3

0

7

0

Figure 6.2: Element d is not valid.

6.2.5 Definition. (Anchor) Given a Robinsonian similarity A ∈ Sn, a vertex
a ∈ [n] is called an anchor of A if there exists a Robinson ordering π of A whose
last vertex is a. Moreover, two distinct vertices a, b are called opposite anchors
of A if there exists a Robinson ordering π of A with a as first vertex and b as last
vertex.

Hence, an anchor is an end point of a Robinson ordering. Clearly, every
Robinsonian matrix has at least one pair of opposite anchors. It is not difficult
to see that every anchor must be valid. We now show that conversely every valid
vertex is an anchor. This is the analog of [34, Lemma 2] for Lex-BFS over interval
graphs (see Theorem 4.3.3).

6.2.6 Theorem. Let A ∈ Sn be a Robinsonian similarity matrix. Then a vertex
z ∈ V is an anchor of A if and only if it is valid.

Proof. (⇒) Assume z is an anchor of A and let π be a Robinson ordering of A
with z as last element. Suppose for contradiction that, for some elements u, v ∈ V ,
there exist both a path P from u to z avoiding v and a path Q from v to z
avoiding u. Using Lemma 6.2.3 and the path P , we obtain that that v lies
before u or after z in π, and using the path Q we obtain that u lies before v or
after z in π. As z is the last element of π, we must have v <π u in the first case
and u <π v in the second case, which is impossible.

(⇐) Conversely, assume that z is valid; we show that z is an anchor of A. The
proof is by induction on the size n of the matrix A. The result holds clearly when
n = 2. So we now assume n ≥ 3 and that the result holds for any Robinsonian
matrix of order at most n− 1. We need to construct a Robinson ordering π′ of A
with z as last vertex. For this we consider a Robinson ordering π of A. We let x
denote its first element and y denote its last element. If z = x or z = y, then we
would be done. Hence we may assume x <π z <π y. For any v <π z, we denote
by Pπ(v, z) the path from v to z consisting of the sequence of vertices appearing
consecutively between v and z in π.

We now define the following two sets:

B = {v <π z : Pπ(v, z) avoids y}, C = {v <π z : v /∈ B}. (6.1)
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Next we show their following properties, which will be useful to conclude the
proof.

6.2.7 Claim. The following holds:

(i) For any v ∈ B, Avy = Ayz.

(ii) If v ∈ B and v <π u <π z, then u ∈ B.

(iii) Any element v ∈ C is homogeneous with respect to V \ C, i.e., Avw = Avw′
for all w,w′ ∈ V \ C.

Proof. (i) As v <π z <π y, then Avy ≤ Ayz. We show that equality holds.
Suppose not, i.e., Avy < Ayz. Then Q = (y, z) is a path from y to z avoiding v.
Since v ∈ B, P = Pπ(v, z) is a path from v to z avoiding y, and thus the existence
of the paths P,Q contradicts the assumption that z is valid. Hence we must have
Avy = Ayz.

(ii) If v ∈ B then Pπ(v, z) avoids y and thus the subpath Pπ(u, z) also avoids y,
which implies u ∈ B.

(iii) Let u ∈ B denote the element of B appearing first in the Robinson or-
dering π. Then, for any v ∈ C, v <π u <π y and thus Avy ≤ Avu by definition of
Robinson ordering. Hence, in order to show that v is homogeneous with respect
to V \C, it suffices to show that Avu = Avy (as, using the Robinson ordering prop-
erty, this would in turn imply that Avw = Avw′ for all w,w′ ∈ V \ C). Suppose
for contradiction that there exists v ∈ C such that Avu 6= Avy, and let v denote
the element of C appearing last in π with Avu 6= Avy.

Then Avu > Avy and the path (v, u) avoids y. Since Pπ(u, z) is a path from u
to z avoiding y (because u ∈ B), then the path P = {v} ∪ Pπ(u, z) (obtained
by concatenating (v, u) and Pπ(u, z)) is a path from v to z avoiding y. This
implies that v and u cannot be consecutive in π, as otherwise we would have
v ∈ B, contradicting the fact that v ∈ C. Hence, there exists v′ ∈ C such that
v <π v

′ <π u. By the maximality assumption on v, it follows that Av′u = Av′y.
As z is valid and P = {v}∪Pπ(u, z) is a path from v to z avoiding y, it follows

that no path from y to z can avoid v. In particular, the path (y, z) does not avoid v
and thus it must be Ayz ≤ min{Avy, Avz}. Recall that we assumed Avu > Avy. As
v <π v

′ <π u <π z <π y, combining the above inequalities with the inequalities
coming from the Robinson ordering π, we obtain Av′y ≤ Ayz ≤ Avy < Avu ≤ Av′u,
which contradicts the equality Av′u = Av′y. �

We now turn to the set of vertices coming after z in π. Symmetrically with
respect to z, we can define the analogues of the sets C,B defined in (6.1), which
we denote by C ′,B′. For this replace π by its reverse ordering π and y by x (the
first element of π and thus the last element of π), i.e., set

B′ = {v >π z : Pπ(z, v) avoids x}, C ′ = {v >π z : v /∈ B′}.
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To recap, we have that π = (C,B, z,B′, C ′). Recall that x and y are respectively
the first and the last vertex in π. Note that it cannot be that C = C ′ = ∅, as this
would imply that x ∈ B and y ∈ B′, and thus this would contradict the fact that z
is valid (using the definition of the two sets B and B′). Therefore, we may assume
(without loss of generality) that C 6= ∅. Let v be the vertex of C appearing last
in the Robinson ordering π. By Claim 6.2.7 (iii), v is homogeneous with respect
to the set S = V \ C, i.e., all entries Avw take the same value for any w ∈ S.

Consider the matrix A[S], the principal submatrix of A with rows and columns
in S. As |S| ≤ n− 1 and z is valid (also with respect to A[S]), we can conclude
using the induction assumption that z is an anchor of A[S]. Hence, there exists
a Robinson ordering σ of A[S] admitting z as last element.

Now, consider the linear order π′ = (π[C], σ) of V obtained by concatenating
first the order π restricted to C = V \ S and second the linear order σ of S.
Using the fact that every vertex in C is homogeneous to all elements of S, we can
conclude that the new linear order π′ is a Robinson ordering of the matrix A. As z
is the last element of π′, this shows that z is an anchor of A and thus concludes
the proof. �

The above proof can be extended to characterize pairs of opposite anchors.

6.2.8 Theorem. Let A ∈ Sn be a Robinsonian similarity matrix. Two distinct
vertices z1, z2 ∈ [n] are opposite anchors of A if and only if they are both valid
and there does not exist a path from z1 to z2 avoiding any other vertex.

Proof. (⇒) Assume that z1 and z2 are opposite anchors. Then they are both an-
chors and thus, in view of Theorem 6.2.6, they are both valid. Let π a Robinson
ordering starting with z1 and ending with z2. Suppose, for the sake of contradic-
tion, that there exists a vertex x and a path from z1 to z2 avoiding x. Then, by
Lemma 6.2.3, x cannot lie in π between z1 and z2, yielding a contradiction.

(⇐) Assume that z1 and z2 are valid and that there does not exist a path
from z1 to z2 avoiding any other vertex. We show that they are opposite anchors.
Consider a Robinson ordering π of A whose first element is z1 and call y its last
element. If y = z2 then we are done. Hence, we may assume that z1 <π z2 <π y.
As in the proof of Theorem 6.2.6, for any v <π z2, we denote by Pπ(v, z2) the
path from v to z2 consisting of the sequence of vertices appearing consecutively
between v and z2 in π. Then, we can define the sets as in (6.1) in the proof of
Theorem 6.2.6, where z is replaced by z2, i.e.,:

B = {v <π z2 : Pπ(v, z2) avoids y}, C = {v <π z2 : v /∈ B}.

By assumption, z1 6∈ B, else Pπ(z1, z2) would avoid y, contradicting the nonexis-
tence of a path from z1 to z2 avoiding any other vertex. Therefore z1 ∈ C and thus
C 6= ∅. Let S = V \C. Using the same reasoning as in the proof of Theorem 6.2.6,
we can now conclude that one can find a Robinson ordering σ of A[S], where S
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contains all the elements coming after the last element of C in π. The new linear
order π′ = (π[C], σ) of V obtained by concatenating first the order π restricted to
C = V \ S and second the linear order σ of S is then a Robinson ordering of A
whose first element is z1 and whose last element is z2, concluding the proof. �

6.3 The SFS algorithm

In this section we introduce our new Similarity-First Search (SFS) algorithm. We
first describe the algorithm in detail in Subsection 6.3.1 and provide a 3-point
characterization of SFS orderings in Subsection 6.3.2. Then in Subsection 6.3.3
we discuss some properties of SFS orderings of Robinsonian matrices. Specifically,
we introduce the fundamental ‘Path Avoiding Lemma’ (Lemma 6.3.6) which will
be used repeatedly throughout the chapter. Finally, in Subsection 6.3.4 we intro-
duce the notion of ‘good SFS ordering’ and we show fundamental properties of
end points of (good) SFS orderings, namely that they are (opposite) anchors of
Robinsonian matrices.

6.3.1 Description

The SFS algorithm is a generalization of Lex-BFS for weighted graphs. As we
will remark later, when applied to a 0/1 matrix, the SFS algorithm coincides with
Lex-BFS. Roughly speaking, the basic idea is to traverse a weighted graph by
visiting first vertices which are similar to each other (i.e., corresponding to an edge
with largest weight) but respecting the priorities imposed by previously visited
vertices. As for the algorithm presented in Chapter 5, also the SFS algorithm is
heavily based on the partition refinement procedure describe in Subsection 2.2.3.

In fact, in our new SFS algorithm, we basically operate a sequence of partition
refinements steps as in Algorithm 4.3. However, instead of splitting each class
into two subsets, we will split into several subsets. Specifically, given two ordered
partitions φ and ψ, the output will be a new ordered partition which, roughly
speaking, is obtained by splitting each class of φ into its intersections with the
classes of ψ. The formal definition is as follows.

6.3.1 Definition. (Refine) Let φ = (B1, . . . , Br) and ψ = (C1, . . . , Cs) be two
ordered partitions of a set V and a subset W ⊆ V , respectively. Refining φ by ψ
creates the new ordered partition of V , denoted by Refine(φ, ψ), obtained by
replacing in φ each class Bi by the ordered sequence of classes (Bi ∩C1, . . . , Bi ∩
Cs, Bi \ (C1 ∪ · · · ∪ Cs) = Bi \W ) and keeping only nonempty classes.

We will use this partition refinement operation in the case when the par-
tition ψ is obtained by partitioning for decreasing values the elements of the
neighborhood N(p) of a given element p, according to the following definition.
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6.3.2 Definition. (Similarity partition) Consider A ∈ Sn nonnegative and
an element p ∈ [n]. Let a1 > . . . > as > 0 be the distinct values taken by
the entries Apx of A for x ∈ N(p) = {y ∈ [n] : Apy > 0} and, for i ∈ [s], set
Ci = {x ∈ N(p) : Apx = ai}. Then we define ψp = (C1, . . . , Cs), which we call
the similarity partition of N(p) with respect to p.

Note that the above concept of Similarity partition depends on how we de-
fine N(p). We will discuss in Chapter 8 an alternative algorithm, called ε-SFS,
where a different N(p) is considered.

We can now describe the SFS algorithm. The input is a nonnegative matrix
A ∈ Sn and the output is an ordering σ of the set V = [n], that we call a SFS
ordering of A. As in any general graph search algorithm (see Section 4.1), the
central idea of the SFS algorithm is that, at each iteration, a special vertex (called
the pivot) is chosen among the subset of unvisited vertices (i.e., the subset of
vertices that have not been a pivot in prior iterations). Such vertices are ordered
in a queue which defines the priorities for visiting them. Intuitively, the pivot
is chosen as the most similar to the visited vertices, but respecting the visiting
priorities imposed by previously visited vertices.

Algorithm 6.1: SFS (A)

input: a nonnegative matrix A ∈ Sn
output: a linear order σ of [n]

1 φ = (V )
2 for i = 1, . . . , n do
3 let S be the first class of φ
4 choose p arbitrarily in S
5 σ(p) = i
6 remove p from φ
7 let N(p) be the set of vertices y ∈ φ with Apy > 0
8 let ψp be the similarity partition of N(p) with respect to p
9 φ =Refine (φ, ψp)

10 return: σ

We now discuss in detail how the algorithm works. In the beginning, all
vertices in V are unvisited, i.e., the queue φ of unvisited vertices is initialized
with the unique class V .

At the iteration i, we are given an element pi−1 (which is the pivot chosen at
iteration i− 1) and a queue φ(pi−1) = (B1, . . . , Br), which is an ordered partition
of the set of unvisited vertices. There are two main tasks to perform: the first
task is to select the new pivot pi, and the second task is to update the queue
φ(pi−1) in order to obtain the new queue φ(pi).

The first task is carried out as follows. As in the standard Lex-BFS, we denote
by S the slice induced by pi−1 (i.e., the last visited vertex), which consists of the
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vertices among which to choose the next pivot pi. The slice S coincides exactly
with the first class B1 of φ(pi−1). We distinguish two cases depending on the
size of the slice S. If |S| = 1, then the new pivot pi is the unique element of
the slice S. If |S| > 1, we say that we have ties and, in the general version of
the SFS algorithm, we break them arbitrarily. We will see in Section 6.4 a variant
of SFS (denoted by SFS+) where such ties are broken using a linear order given
as additional input to the algorithm. Once the new pivot pi is chosen, we mark
it as visited (i.e., we remove it from the queue φ(pi−1)) and we set σ(pi) = i (i.e.,
we let pi appear at position i in σ).

The second task is the update of the queue φ(pi−1), which can be done as fol-
lows. Intuitively, we update φ(pi−1) according to the similarities of pi with respect
to the unvisited vertices and compatibly with the queue order. Specifically, first
we compute the similarity partition ψpi = (C1, . . . , Cs) of the neighborhood N(pi)
of pi among the unvisited vertices (see Definition 6.3.2). Second, we refine the
ordered partition φ(pi−1) \ pi = (B1 \ {pi}, B2, . . . , Br) by the ordered parti-
tion ψpi (see Definition 6.3.1). The resulting ordered partition is the ordered
partition φ(pi).

Note that if the matrix has only 0/1 entries then the similarity partition ψpi
has only one class, equal to the neighborhood of pi intersection the unvisited ver-
tices. Hence, the refinement procedure defined in Definition 6.3.1 simply reduces
to the partition refinement operation defined in [61] for Lex-BFS (see Subsec-
tion 2.2.3). This is why Lex-BFS is actually a special case of SFS applied to 0/1
matrices.

Note also that, by construction, each class of the queue φ(pi) is an interval
of σ (i.e., the elements of the class are consecutive in σ). Furthermore, each of
the visited vertices p1, . . . , pi is homogeneous to every class of the queue φ(pi).
For a concrete example of how the SFS algorithm works, we refer the reader to
the example in Subsection 6.5.5.

6.3.2 Characterization of SFS orderings

In this section we characterize the linear orders returned by the SFS algorithm in
terms of a 3-point condition. This characterization applies to any (not necessarily
Robinsonian) matrix and it is the analog of Theorem 4.2.1.

6.3.3 Theorem. Given a matrix A ∈ Sn, an ordering σ of [n] is a SFS ordering
of A if and only if the following condition holds:

For all x, y, z ∈ [n] such that Axz > Axy and x <σ y <σ z,

there exists u ∈ [n] such that u <σ x and Auy > Auz.
(6.2)

Proof. (⇒) Suppose σ is a SFS ordering of A. Assume x <σ y <σ z and Axz >
Axy, but Auz ≥ Auy for each u <σ x. Assume first that Auz > Auy for some



100 Chapter 6. Similarity-First Search

u <σ x and let u be the first such vertex in σ. Then Awz = Awy for each w <σ u,
and thus y, z are in the same class of the queue of unvisited vertices when u is
chosen as pivot. Therefore, z would be ordered before y in σ when computing the
similarity partition of N(u), i.e., we would have z <σ y, a contradiction. Hence,
one has Auz = Auy for each u <σ x. This implies that y, z are in the same class
of the queue of unvisited vertices before x is chosen as pivot. Hence, when x is
chosen as pivot, as Axz > Axy, when computing the similarity partition of N(x)
we would get z <σ y, which is again a contradiction.

(⇐) Assume that the condition (6.2) of the theorem holds, but σ is not a
SFS ordering. Let a denote the first vertex of σ. Let τ be a SFS ordering of A
starting at a with the largest possible initial overlap with σ. Say, σ and τ share
the same initial order (a, a1, . . . , ar) and they differ at the next position. Then
we have that σ = (a, a1, . . . , ar, y, . . . , z, . . . , ) and τ = (a, a1, . . . , ar, z, . . . , y, . . .)
with y 6= z.

In the SFS ordering τ , the two elements y, z do not lie in the slice of the
pivot ar. Indeed, if y, z would lie in the slice of ar then one could select y as the
next pivot instead of z, which would result in another SFS ordering τ ′ starting
at a and with a larger overlap with σ than τ . Hence, there exists i ≤ r such that
Aaiz > Aaiy. Since ai <σ y <σ z then applying the condition (6.2) to σ, we deduce
that there exists j < i such that Aajy > Aajz. Now, we have aj <τ z <τ y with
Aajy > Aajz. As τ is a SFS ordering, as we have just shown it must satisfy the
condition (6.2) and thus there must exist an index k < j such that Aakz > Aaky.
Hence, starting from an index i ≤ r for which Aaiz > Aaiy, we have shown the
existence of another index k < i ≤ r for which Aakz > Aaky. Iterating this
process, we reach a contradiction. �

One can easily show that if σ is a SFS ordering of V and S ⊆ V is a subset
such that any element x /∈ S is homogeneous to S, then the restriction σ[S]
of σ to S is a SFS ordering of A[S]. Since, by construction, each vertex before
a slice S in σ is homogeneous to S, a direct consequence of Theorem 6.3.3 is
that the restriction of σ to any slice encountered throughout a SFS ordering σ,
is a SFS ordering too.

6.3.3 The Path Avoiding Lemma

In this section we discuss a fundamental lemma which we call the ‘Path Avoiding
Lemma’. It will play a crucial role throughout the chapter and, in particular,
for the characterization of anchors. Differently from the analysis in the previous
section, where we did not make any assumption on the structure of the matrix A,
the Path Avoiding Lemma states some important properties of SFS orderings
when the input matrix is Robinsonian.

Before stating this lemma, we need to investigate in more detail the refinement
step in the SFS algorithm. An important operation in the Refine task in Algo-
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σ : ak aj ai y z

τ : ak aj ai z y

Figure 6.3: Illustration of the proof of Theorem 6.3.3 (the dotted lines indicate
similarities that are strictly smaller than the continuous ones of the same color).

σ : u w x y z

Figure 6.4: Illustrating the proof of Theorem 6.3.4: (w, x, y, z) and (u,w, x, z)
are bad quadruples (the dotted lines indicate similarities that are strictly smaller
than the continuous ones of the same color).

rithm 6.1 is the splitting procedure of each class of the queue φ. The following
notion of ‘vertex splitting a pair of vertices’ is useful to understand it. Consider
an order σ = SFS(A) and vertices x <σ y <σ z, where x = pi is the pivot chosen
at the ith iteration in Algorithm 6.1. We say that x splits y and z if x is the
first pivot for which y and z do not belong to the same class in the queue ordered
partition φ(pi). Recall that φ(pi) denotes the queue of unvisited nodes induced by
pivot pi, i.e., at the end of iteration i (after the refinement step). Hence, saying
that y, z are split by x means that y, z belong to a common class Bj of φ(pi−1)
and that they belong to distinct classes Bh, Bk of φ(pi), where y ∈ Bh, z ∈ Bk

and Bh comes before Bk in φ(pi). Equivalently, x = pi splits y and z if Axy > Axz
and Auy = Auz for all u <σ pi.

Then, we say that two vertices y <σ z are split in σ if they are split by some
vertex x <σ y. When y and z are not split in σ, we say that they are tied. In this
case, ties must be broken between y and z. In the SFS algorithm ties are broken
arbitrarily. In Section 6.4 we will see the variation SFS+ of SFS where ties are
broken using a linear order τ given as input together with the matrix A. The
following lemma will be used as base case for proving the Path Avoiding Lemma.

6.3.4 Lemma. Assume that A ∈ Sn is a Robinsonian similarity matrix and
let σ = SFS(A). Assume that x <σ y <σ z and that there exists a Robinson
ordering π of A such that x <π z <π y. Then y and z are not split in σ by any
vertex u ≤σ x. That is, Auy = Auz for all u ≤σ x.

Proof. We first show that y, z are not split by any vertex w occurring before x
in σ. Suppose, for contradiction, that y, z are split by a vertex w <σ x. Hence,



102 Chapter 6. Similarity-First Search

Awy > Awz. This implies z <π w for, otherwise, w <π z <π y would imply
Awy ≤ Awz, a contradiction. Hence we have w <σ x <σ z and x <π z <π w.
Because π is a Robinson ordering, we get Awz ≥ Awx and thus Awy > Awz ≥ Awx.
Therefore, the quadruple (w, x, y, z) satisfies the following properties (a)-(d): (a)
w <σ x <σ y <σ z, (b) x <π z <π w for some Robinson ordering π, (c) w is the
pivot splitting y, z, and (d) Awy > Awx, Awz Call any quadruple satisfying (a)-(d)
a bad quadruple.

We now show that if (w, x, y, z) is a bad quadruple, then there exists u <σ

w for which (u,w, x, z) is also a bad quadruple. Hence, iterating we will get
a contradiction. We now proceed to show the existence of u <σ w for which
(u,w, x, z) is also a bad quadruple. Since Awx < Awy, the vertices x, y are already
split before w becomes a pivot; otherwise, if they would belong to the same class
when w is chosen as new pivot, then we would get y <σ x. Let u = pi the
pivot splitting x, y, i.e., u <σ w and Aux > Auy. Thus x, y belong to the same
class (say) B ∈ φ(pi−1) when u is chosen as new pivot at iteration i, but in
different classes of φ(pi). Since w is the pivot splitting y, z and u <σ w, it follows
that y, z belong to the same class when u is chosen as pivot, and thus x, y, z ∈ B.
Therefore u is also the pivot splitting x and z and thus Aux > Auy = Auz. In turn
this implies that u <π z for, otherwise, x <π z <π u would imply Aux ≤ Auz, a
contradiction. Therefore, u <π z <π w and by definition of Robinson ordering we
have Auw ≤ Auz and, as Aux > Auz, this implies that Auw < Aux. Summarizing,
we have shown that the quadruple (u,w, x, z) is bad since it satisfies the conditions
(a)-(d): (a) u <σ w <σ x <σ z, (b) w <π z <π u for the Robinson ordering π,
(c) u splits x and z, and (d) Aux > Auw, Auz. Thus we have shown that there
cannot exist a bad quadruple and therefore that y, z are not split by any vertex w
appearing before x in σ.

We now conclude the proof of the lemma by showing that y, z are also not
split by x. For this, we need to show that Axz = Axy. Suppose for contradiction
that Axz 6= Axy. As x <π z <π y, it can only be that Axz > Axy. Let x = pi,
i.e., x is the pivot chosen at iteration i of Algorithm 6.1. Since we have just shown
that y, z are not split before x, then at the iteration i when x is chosen as pivot,
we would order z <σ y as Axz > Axy, which is a contradiction because y <σ z by
assumption. �

A first direct consequence of Lemma 6.3.4 is the following.

6.3.5 Corollary. Let A ∈ Sn be a Robinsonian similarity matrix, let σ = SFS(A),
and consider distinct elements x, y, z ∈ V such that x <σ y <σ z. The following
holds:

(i) Axy ≥ min{Axz, Ayz}.

(ii) If x <π z <π y for some Robinson ordering π, then the path P = (x, z) does
not avoid y.
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Proof. (i) Assume, for contradiction, that Axy < min{Axz, Ayz}. Pick a Robinson
ordering π of A such that x <π y. Then we must have x <π z <π y. Indeed, if
x <π y <π z then we would have Axy ≥ Axz, and if z <π x <π y we would have
Axy ≥ Ayz, leading in both cases to a contradiction. Applying Lemma 6.3.4, we
conclude that Axy = Axz, contradicting our assumption that Axy < Axz.

(ii) If (x, z) avoids y then Axz > min{Axy, Ayz), where min{Axy, Ayz) = Axy
since x <π z <π y. Hence this contradicts Lemma 6.3.4. �

Note that the above result is the analog of the ‘P3-rule’ for chordal graphs
in [38, Thm 3.12] (see Theorem 4.3.1). The next lemma strengthens the result
of Corollary 6.3.5 (ii), by showing that there cannot exist any path from x to z
avoiding y and appearing fully before z in σ. We will refer to Lemma 6.3.6 below
as the ‘Path Avoiding Lemma’, also abbreviated as (PAL) for ease of reference in
the rest of the chapter.

6.3.6 Lemma. (Path Avoiding Lemma (PAL)) Let A ∈ Sn be a Robinso-
nian similarity matrix and let σ = SFS(A). Consider distinct elements x, y, z ∈ V
such that x <σ y <σ z. If x <π z <π y for some Robinson ordering π, then there
does not exist a path P = (x, u1, . . . , uk, z) from x to z avoiding y and such that
u1, . . . , uk <σ z.

Proof. The proof is by induction on the length |P | = k + 2 of the path P . The
base case is |P | = 2, i.e., P = (x, z), which is settled by Corollary 6.3.5. Assume
then, for contradiction, that there exists a path P = (x, u1, . . . , uk, z) from x to z
avoiding y with u1, . . . , uk <σ z and |P | ≥ 3, i.e., k ≥ 1. Let us call a path Q
short if it is shorter than P , i.e., if |Q| < |P |. By the induction assumption, we
know that the following holds:

If u <σ v <σ w and u <τ w <τ v for some Robinson ordering τ,

then no short path Q = (u, v1, . . . , vr, w) from u to w avoiding v

and with v1, . . . , vr <σ w exists.

(6.3)

Set u0 = x and uk+1 = z. As P avoids y, the following relations hold:

Aui−1ui > min{Ayui−1
, Ayui} for all i ∈ [k + 1]. (6.4)

Since x <σ y <σ z and x <π z <π y, then in view of Lemma 6.3.4 we have
Axy = Axz. Furthermore, we know that u1, . . . , uk <σ z by assumption. Recall
that π denotes the reversal linear order of π. In order to conclude the proof, we
use the following claim.

6.3.7 Claim. ui <π x and y <σ ui for each i ∈ [k].
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Proof. The proof is by induction on i ≥ 1. For i = 1 we have to show that

u1 <π x and y <σ u1. (6.5)

We first show that u1 <π x. Suppose this is not the case and x <π u1. Recall
that in view of (6.4) for i = 1 we have Axu1 > min{Ayx, Ayu1} and thus the path
(x, u1) avoids y. Hence, since x <π y and Axu1 > min{Ayx, Ayu1}, in view of
Lemma 6.2.3, y cannot appear between x and u1 in any Robinson ordering and
thus it must also be that u1 <π y. We then have two possibilities, depending on
whether u1 comes before or after z in π.

(i) Assume first that u1 appears before z in π. Then we have x <π u1 <π

z <π y. We discuss where can u1 appear in σ. If u1 <σ y then we have
u1 <σ y <σ z, u1 <π z <π y, and (u1, . . . , uk, z) is a short path from u1 to
z avoiding y with u2, . . . , uk <σ z, which contradicts (6.3). Hence, y <σ u1

in which case we have x <σ y <σ u1, x <π u1 <π y, and (x, u1) is a short
path from x to u1 avoiding y, which contradicts again (6.3).

(ii) Assume now that u1 appears after z in π. Then we have x <π z <π u1 <π y.
By (6.4) applied to i = 1 and using the Robinson ordering π, we then
have that Au1x > min{Ayx, Ayu1} = Ayx. Recall that Axy = Axz. Then
Au1x > Axz. On the other hand, by the Robinson property of π, Axu1 ≤ Axz,
yielding a contradiction.

Therefore we have shown that u1 <π x. Next, we show that y <σ u1. Suppose
not, i.e., u1 <σ y. Then we would have u1 <σ y <σ z and, as just shown,
u1 <π z <π y, while (u1, . . . , uk, z) is a short path from u1 to z avoiding y with
u2, . . . , uk <σ z. This contradicts (6.3) and thus shows y <σ u1, which concludes
the proof for the base case i = 1.

Assume now that i ≥ 2 and that uj <π x and y <σ uj for all 1 ≤ j ≤ i− 1 by
induction. We show that ui <π x and y <σ ui. First we show ui <π x. Suppose,
for the sake of contradiction, that x <π ui. By (6.4), the path (ui, . . . , uk, z) is a
path from ui to z avoiding y with ui+1, . . . , uk <σ z. Hence, since z <π y in view of
Lemma 6.2.3 it must be also ui <π y, because y cannot appear between z and u1

in any Robinson ordering. We then have two possibilities to discuss, depending
whether ui comes before or after z in π.

(i) Assume that ui appears before z in π. Then u1, . . . , ui−1 <π x <π ui <π

z <π y. First we claim that y <σ ui. Indeed, if by contradiction ui <σ y,
then we would have: ui <σ y <σ z and ui <π z <π y, while (ui, . . . , uk, z)
is a short path from ui to z avoiding y with ui+1, . . . , uk <σ z, contradict-
ing (6.3).
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Hence, y <σ ui holds. Recall that y <σ uj for j ∈ [i − 1] by induction.
Hence, for j = i − 1 we have y <σ ui−1. To recap, we are in the case
ui−1 <π x <π ui <π z <π y and we have shown that x <σ y <σ ui, ui−1 <σ z.

We thus have y <σ ui−1 <σ z and y <π z <π ui−1. Then, in view of Lemma
6.3.4, one must have Ayui−1

= Ayz. From the Robinson ordering we obtain
that it holds Ayz ≥ Axy ≥ Ayui−1

= Ayz and therefore we get the equality
Ayz = Axy. Analogously, because x <σ y <σ ui and x <π ui <π y, by
Lemma 6.3.4 we obtain Axy = Axui . Hence, we have

Ayui−1
= Ayz = Axy = Axui (6.6)

Finally, using relation (6.4) we get:

Aui−1ui > min{Ayui−1
, Ayui} = Ayui−1

. (6.7)

In view of (6.6), the right hand side in (6.7) is Ayui−1
= Axui . On the other

hand, as ui−1 <π x <π ui in the Robinson ordering π, then Ayui−1
= Axui ≥

Aui−1ui , which contradicts (6.7). Hence ui cannot appear before z in π.

(ii) Assume ui appears after z in π. Then u1, . . . , ui−1 <π x <π z <π ui <π

y. Observe that the path (x, u1, . . . , ui−1, z) is a short path from x to z
with u1, . . . , ui−1 <σ z and thus it cannot avoid y, otherwise we would
contradict (6.3). Since the path (x, u1, . . . ui−1) avoids y (as it is a sub-
path of P ), it follows that the path (ui−1, z) does not avoid y. Hence
Aui−1z ≤ min{Ayui−1

, Ayz} which, using the Robinson ordering π, in turn
implies Aui−1z = Ayui−1

. Then, using relation (6.4), we get: Aui−1ui >
min{Ayui−1

, Ayui} = Ayui−1
. Now combining with Ayui−1

= Aui−1z, we get
Aui−1ui > Aui−1z which is a contradiction, since from the Robinson ordering
π one must have Aui−1ui ≤ Aui−1z. Therefore we have shown also that ui
cannot appear after z in π.

In summary we have shown that ui <π x as desired. Finally we show that y <σ ui.
Indeed, if ui <σ y then we would have: ui <σ y <σ z and ui <π z <π y, while
(ui, . . . , uk, z) is a short path from ui to z avoiding y with ui+1, . . . , uk <σ z, which
contradicts (6.3). This concludes the proof of the claim. �

We can now conclude the proof of Lemma 6.3.6. By Claim 6.3.7 we have the
following relations for any i ∈ [k]: x <σ y <σ ui <σ z and y <π z <π x <π ui. By
Lemma 6.3.4, this implies Ayui = Ayz for all i ∈ [k] which, using the Robinson
ordering π, in turn implies Ayui = Ayz = Ayx. Now, use relation (6.4) for i = k+1
to get the inequality Aukz > min{Ayuk , Ayz} = Ayuk . Recall that in view of
Lemma 6.3.4, we have that Axy = Axz. Then as Ayui = Ayx for all i, the right
hand side is equal to Ayuk = Axz while, using the Robinson ordering π, the left
hand side satisfies Aukz ≤ Axz, which yields a contradiction. This concludes the
proof of the lemma. �
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6.3.4 End points of SFS orderings

In this section we show some fundamental properties of SFS orderings, using the
results in Section 6.3.3. First we show that if A is Robinsonian then the last vertex
of a SFS ordering of A is an anchor of A. We will see later in Corollary 6.4.3 that
conversely any anchor can be obtained as the end point of a SFS ordering.

6.3.8 Theorem. Let A be a Robinsonian similarity matrix and let σ = SFS(A).
Then the last vertex of σ is an anchor of A.

Proof. Let z be the last vertex of σ; we show that z is an anchor of A. In view of
Theorem 6.2.6 it suffices to show that z is valid. Suppose for contradiction that,
for some x 6= y ∈ V \ {z}, there exist a path P from x to z avoiding y and a
path Q from y to z avoiding x. We may assume without loss of generality that
x <σ y <σ z. Moreover, let π be a Robinson ordering of A such that x <π z.
Then, in view of Lemma 6.2.3, we must have x <π z <π y, since y must come
either before or after both x and z (because of the path P ) and x must come
before or after both y and z (because of the path Q). As z is the last vertex, then
P <σ z and thus we get a contradiction with Lemma 6.3.6 (PAL). �

The above result is the analog of [36, Cor 3.4] for Lex-BFS applied to interval
graphs. We now introduce the concept of ‘good SFS’.

6.3.9 Definition. (Good SFS ordering) We say that a SFS ordering σ of A
is good if σ starts with a vertex which is the end-vertex of some SFS ordering.

Note that the analogous definition in [38] for Lex-BFS (see Subsection 4.2.2)
is stronger, as it requires the first vertex of each slice to be an end-vertex of the
slice itself. However, in our discussion we do not need such a strong definition
and the above notion of good SFS will suffice to show the overall correctness
of the multisweep algorithm. In the case when A is Robinsonian, in view of
Theorem 6.3.8 (and Corollary 6.4.3 below), σ is a good SFS ordering precisely
when it starts with an anchor of A. For good SFS orderings we have the following
stronger result for their end points.

6.3.10 Theorem. Let A ∈ Sn be a Robinsonian similarity matrix and let σ be
a good SFS ordering whose first vertex is a and whose last vertex is b. Then a, b
are opposite anchors of A.

Proof. By assumption, σ is a good SFS ordering and thus its first vertex a is an
anchor of A. In view of Theorem 6.3.8, its last vertex b is also an anchor of A.
Suppose, for the sake of contradiction, that a and b are not opposite anchors
of A. Then, in view of Theorem 6.2.8, there exists a vertex x ∈ V and a path P
from a to b such that P avoids x. Let π be a Robinson ordering of A starting
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with a (which exists since a is an anchor of A). Using Lemma 6.2.3 applied to the
path P , we can conclude that x cannot appear between a and b in any Robinson
ordering, and thus we must have a <π b <π x. But then, using Lemma 6.3.6
(PAL), there cannot exist a path from a to b avoiding x and appearing before b
in σ, which contradicts the existence of P . �

6.4 The SFS+ algorithm

In this section we introduce the SFS+ algorithm. This is a variant of the standard
SFS algorithm, and it is the analog of the variant Lex-BFS+ of Lex-BFS intro-
duced by Simon [107] in the study of multisweep algorithms for interval graphs
(see Subsection 4.2.2). The SFS+ algorithm takes a given ordering as input, which
is then used to break ties. SFS+ will be the main ingredient in our multisweep
algorithm for the recognition of Robinsonian matrices. In Subsection 6.4.1 we
describe the SFS+ algorithm in detail and we show a basic property, namely that
it ‘flips anchors’ when applied to a Robinsonian matrix A and a good SFS or-
der σ . Then in Subsection 6.4.2 we introduce the ‘similarity layers’ of a matrix,
a strengthened version of BFS layers for unweighted graphs, which are useful for
the correctness proof of the multisweep algorithm. We show in particular that the
similarity layers enjoy some compatibility with Robinson and SFS+ orderings.

6.4.1 Description

Consider again the SFS algorithm as described in Algorithm 6.1 in Subsec-
tion 6.3.1. The first main task is selecting the new pivot. In case of ties, as
done at Line 4 of Algorithm 6.1, the ties are broken arbitrarily (choosing any
vertex in the slice S). We now introduce a variant of SFS(A), which we denote
by SFS+(A, σ) (see Algorithm 6.2). It takes as input a matrix A ∈ Sn and a
linear order σ of V , and it returns a new linear order σ+ of V . In the SFS+ algo-
rithm, the input linear order σ is used to break ties at Line 4 in Algorithm 6.1.
Specifically, among the vertices in the slice S of the current iteration, we choose
the vertex appearing last in σ. Notice that a SFS+ ordering is still a SFS ordering
and thus it satisfies all the properties discussed in Subsection 6.3.1.

If A is a Robinsonian matrix and the input linear order σ is a SFS ordering,
then the SFS+ ordering σ+ has some important properties. In fact, since in the
beginning of the SFS algorithm all the vertices are contained in the ‘universal’
slice (i.e., the full ground set V ), the order σ+ starts with the last vertex of σ,
which in view of Lemma 6.3.8 is an anchor of A. Therefore, in this case, σ+ is
a good SFS ordering by construction. Furthermore, in view of Theorem 6.3.10,
when A is Robinsonian then the first and last vertices of σ+ are opposite anchors
of A.
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Algorithm 6.2: SFS+(A, σ)

input: a matrix A ∈ Sn and a linear order σ of [n]
output: a linear order σ+ of [n]

1 φ = (V )
2 for i = 1, . . . , n do
3 S is the first class of φ
4 choose p as the vertex in S appearing last in σ
5 σ+(p) = i
6 remove p from φ
7 N(p) is the set of vertices y ∈ φ with Apy > 0
8 ψp is the similarity partition of N(p) with respect to p
9 φ =Refine (φ, ψp)

10 return: σ+

If the input linear order σ is a good SFS ordering, then we have an even
stronger property: the end points of σ+ are the end points of σ but in reversed
order. We call this the ‘anchors flipping property’, which is shown in the next
theorem. This property will be crucial in Section 6.5 when studying the properties
of the multisweep algorithm.

6.4.1 Theorem. (Anchors flipping property) Let A ∈ Sn be a Robinsonian
similarity, let σ be a good SFS ordering of A and σ+ = SFS+(A, σ). Suppose
that σ starts with a and ends with b. Then σ+ starts with b and ends with a.

Proof. By definition of the SFS+ algorithm, the returned order σ+ starts with
the last vertex b of σ. Hence, we only have to show that a appears last in σ+.
Suppose, for the sake of contradiction, that a is not last in σ+ and let instead y be
the vertex appearing last in σ+. Then we have a <σ y <σ b and b <σ+ a <σ+ y.
This implies that y and a must be split in σ+. Indeed, if y and a would be tied
in σ+ then, as we use σ to break ties and as a <σ y, the vertex y would be placed
before a in σ+, a contradiction. Let thus x <σ+ a be the pivot splitting a and y
in σ+, so that Axa > Axy. Then we have:

Axa > min{Axy, Aya}. (6.8)

Hence the path P = (x, a) avoids y. As b is the first vertex of σ+, we have:

b <σ+ x <σ+ a <σ+ y.

In view of Theorem 6.3.10 applied to σ, we know that a and b are opposite anchors
of A. Therefore, there exists a Robinson ordering π starting with a and ending
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with b. In view of (6.8) and using Lemma 6.2.3, y cannot appear between a and x
in any Robinson ordering and therefore we can conclude:

a <π x <π y <π b. (6.9)

Consider now σ. We have that a <σ y <σ b. Where can x appear in σ? Suppose
y <σ x. Then we would have a <σ y <σ x and a <π x <π y, and in view
of Lemma 6.3.6 (PAL) there cannot exist a path from a to x avoiding y and
appearing before x in σ, which is a contradiction as the path P = (x, a) avoids y
in view of (6.8). Hence, we must have:

a <σ x <σ y <σ b. (6.10)

Therefore, starting from the pair (a, y) satisfying a <σ y and a <σ+ y, we have
constructed a new pair (x, y) satisfying x <σ y and x <σ+ y, with x <σ+ a.
Iterating this construction we are going to get an infinite sequence of such pairs,
yielding a contradiction. �

The flipping property of anchors is the analog of [38, Thm 4.6] for Lex-BFS
(see Theorem 4.3.4). An important consequence of this property is that, if the
linear order σ given as input is a Robinson ordering of A, then σ+ = SFS+(A, σ)
is equal to σ, the reversed order of σ.

6.4.2 Lemma. Assume A ∈ Sn is a Robinsonian similarity matrix and let σ, τ
be two SFS orderings of A. The following holds:

(i) If x <τ y <τ z and z <σ y <σ x then the triple (x, y, z) is Robinson.

(ii) If τ is a Robinson ordering of A and σ = SFS+(A, τ), then σ = τ .

Proof. (i) Suppose for contradiction that the triple (x, y, z) is not Robinson. Then
we have Axz > min{Axy, Ayz}, and thus the path (x, z) avoids y. Let π be a
Robinson ordering of A with (say) x <π y. In view of Lemma 6.2.3, y cannot
appear between x and z in any Robinson ordering and therefore we have x <π

z <π y or z <π x <π y. In both cases we get a contradiction with Lemma 6.3.6
(PAL) since x <τ y <τ z and z <σ y <σ x.

(ii) Say τ starts at b and ends at a. Then σ starts at a. Assume that
σ 6= π. Let (a = x0, x1, . . . , xk) be the longest initial segment of σ whose reverse
(xk, . . . , x1, a) is the final segment of τ , with k ≥ 0. Let y be the successor of xk
in σ. Then y is not the predecessor of xk in τ (by maximality of k). Let z
be the predecessor of xk in τ . Then a <σ x1 <σ . . . <σ xk <σ y <σ z and
y <τ z <τ xk <τ . . . <τ x1 <τ a. Hence, y, z cannot be tied in σ (otherwise we
would choose z before y in σ as y <τ z). Therefore, there must exist a vertex
x <σ y such that Axy > Axz. Hence, x = xi for some 0 ≤ i ≤ k and thus
y <τ z <τ x. As τ is a Robinson ordering, then Axy ≤ Axz, a contradiction. �
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In other words, if the multisweep algorithm is applied to a Robinsonian ma-
trix, every triple of vertices appearing in reversed order in two distinct sweeps is
Robinson and, once a given sweep is a Robinson ordering, the next sweep will
remain a Robinson ordering (precisely the reversed order). As an important ap-
plication, if A is Robinsonian one can check if a given order σ is Robinson simply
by computing the order σ+ = SFS+(A, σ), and checking if it is the reversed of σ,
hence without checking the Robinson property for all the entries of the matrix.
This is analogous to a similar feature shown in [51] for their multisweep algorithm
to recognize cocomparability graphs.

As a direct application of Lemma 6.4.2 combined with Theorem 6.3.8, we
obtain the following characterization for anchors.

6.4.3 Corollary. Let A ∈ Sn be a Robinsonian similarity matrix. A vertex is an
anchor of A if and only if it is the end point of a SFS ordering of A.

6.4.2 Similarity layers

In this section we introduce the notion of ‘similarity layer structure’ for a matrix
A ∈ Sn and an element a ∈ V (then called the root), which we will use later to
analyze properties of the multisweep algorithm.

Specifically, we define the following collection L = (L0, L1, . . . , Lr) of subsets
of V , whose members are called the (similarity) layers of A rooted at a, where
L0 = {a} and the next layers Li are the subsets of V defined recursively as follows:

Li = {y /∈ L0 ∪ · · · ∪Li−1 : Axy ≥ Axz ∀x ∈ L0 ∪ · · · ∪Li−1, ∀z /∈ L0 ∪ · · · ∪Li−1}.
(6.11)

Note that this notion of similarity layers can be seen as a refinement of the
notion of BFS layers for graphs, which are obtained by layering the nodes accord-
ing to their distance to the root (see Subsection 4.3.2). Hence, the two concepts
are similar but different. For a concrete example on how the similarity layers look
like, we refer the reader to the example in Subsection 6.5.5. We first show that
this layer structure defines a partition of V when A is a Robinsonian matrix and
the root a is an anchor of A.

6.4.4 Lemma. Assume that A ∈ Sn is a Robinsonian matrix and that a ∈ V is
an anchor of A. Consider the similarity layer structure L = (L0 = {a}, L1, . . . , Lr)
of A rooted at a, as defined in (6.11), where r is the smallest index such that
Lr+1 = ∅. The following holds:

(i) If y ∈ Li, z 6∈ L0∪ . . .∪Li with i ≥ 1, then there exists a path P from a to y
avoiding z. Moreover, any path of the form P = (a, a1, . . . , ai = y), where
al ∈ Ll for 1 ≤ l ≤ i, avoids z.

(ii) V = L0 ∪ L1 ∪ . . . ∪ Lr.
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Proof. (i) Using the definition of the layers in (6.11) we obtain that Aaa1 > Aaz
and Aa1a2 > Aa1z, . . . , Aai−1y > Aai−1z, which shows that the following path
(a, a1, . . . , ai−1, ai = y) avoids z.

(ii) Suppose L0, L1, . . . , Lr 6= ∅, Lr+1 = ∅, but V 6= U := L0 ∪ . . . ∪ Lr.
Consider an element z1 ∈ V \ U . As z1 6∈ Lr (since this set is empty) there exist
elements x1 ∈ U and z2 6∈ U such that Ax1z1 < Ax1z2 . Analogously, as z2 6∈ Lr
there exist elements x2 ∈ U, z3 6∈ U such that Ax2z2 < Ax2z3 . Iterating we find
elements xi ∈ U , zi 6∈ U for all i ≥ 1 such that Axizi < Axizi+1

for all i. At some
step one must find one of the previously selected elements zi, i.e., zj = zi for some
i < j.

As a is an anchor of A, there exists a Robinson ordering π of A starting at a.
We first claim that xi <π zj for all i, j. This is clear if xi = a. Otherwise, as
xi ∈ U and zj 6∈ U , it follows from (i) that there is a path from a to xi avoiding zj,
which in view of Lemma 6.2.3 implies that a ≤π xi <π zj. Next we claim that
zi+1 <π zi. Since xi <π zi and Axizi < Axizi+1

, then (xi, zi+i) avoids zi and in view
of Lemma 6.2.3 it must be indeed zi+1 <π zi. Summarizing we have shown that
zi+1 <π zi <π . . . <π z1 for all i, which contradicts the fact that two of the zi’s
should coincide. �

Intuitively, each layer Li will correspond to some slice of a SFS algorithm
starting at a. As we see below, there is some compatibility between the layer
structure L rooted at a with any Robinson ordering π and any good SFS order-
ing σ starting at a.

6.4.5 Lemma. Assume A ∈ Sn is a Robinsonian similarity matrix and a is
an anchor of A. Let σ be a good SFS ordering of A starting at a and let π
be a Robinson ordering of A starting at a. Then the similarity layer structure
L = (L0 = {a}, . . . , Lr) of A rooted at a is compatible with both π and σ, i.e.,

L0 <π L1 <π . . . <π Lr,

L0 <σ L1 <σ . . . <σ Lr.

Proof. Let x ∈ Li and y ∈ Lj with i < j; we show that x <π y and x <σ y.
This is clear if i = 0, i.e., if x = a. Suppose now i ≥ 1. Then, by Lemma 6.4.4,
there exists a path from a to x avoiding y. This implies that a <π x <π y, as y
cannot appear between a and x in any Robinson ordering in view of Lemma 6.2.3
and since π starts with a. Furthermore, if a <σ y <σ x then we would get a
contradiction with Lemma 6.3.6 (PAL). Hence a <σ x <σ y holds, as desired. �

Furthermore, the following inequalities hold among the entries of A indexed
by elements in different layers.
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6.4.6 Lemma. Assume A ∈ Sn is a Robinsonian similarity matrix and a is an
anchor of A. Let L = (L0 = {a}, L1, . . . , Lr) be the similarity layer structure of A
rooted at a. For each u ∈ Li, x, y ∈ Lj and z 6∈ L0 ∪ L1 ∪ . . . ∪ Lj with 0 ≤ i < j
the following inequalities hold:

Axy ≥ Aux = Auy ≥ Auz.

Furthermore, if x ∈ Lj, z /∈ L0 ∪ L1 ∪ · · · ∪ Lj, then there exists u ∈ L0 ∪ L1 ∪
· · · ∪ Lj−1 such that Aux > Auz.

Proof. The inequalities Aux = Auy > Auz follow from the definition of the layers
in (6.11). Suppose now that Axy < Aux = Auy. Then u must appear between
x and y in any Robinson ordering π, since x <π y <π u implies Axy ≥ Aux and
y <π x <π u implies Axy ≥ Auy. But in view of Lemma 6.4.5, if π is a Robinson
ordering starting at a then u <π x and u <π y, so we get a contradiction. �

As an application of Lemma 6.4.6, it is easy to verify that if A is the adjacency
matrix of a connected graph G, then each layer is a clique of G.

We now show a ‘flipping property’ of the similarity layers with respect to a
good SFS ordering σ starting at the root and the next sweep σ+ = SFS+(A, σ).
Namely we show that the orders of the layers are reversed beween σ and σ+, i.e.,
Li <σ Lj and Lj <σ+ Li for all i < j.

6.4.7 Theorem. (Layers flipping property) Let A ∈ Sn be a Robinsonian
similarity matrix and a ∈ V be an anchor of A. Let L = (L0 = {a}, . . . , Lr) be
the similarity layer structure of A rooted at a, let σ be a good SFS ordering of A
starting at a and let σ+ = SFS+(A, σ). If x ∈ Li, y ∈ Lj with 0 ≤ i < j ≤ r then
y <σ+ x.

Proof. Let x ∈ Li, y ∈ Lj with i < j. Assume for contradiction that x <σ+ y. By
Lemma 6.4.5, we know that L is compatible with σ and thus x <σ y. As x <σ+ y
and x <σ y, we deduce that x, y are not tied in σ+. Hence there exists x1 <σ+ x
such that Ax1x > Ax1y. Let L` denote the layer of L containing x1. We claim
that ` < j. Indeed, if ` = j then x1, y are in the same layer and, by Lemma 6.4.6,
it must be Ax1y ≥ Ax1x = Axy which is impossible, because Ax1x > Ax1y. Assume
now that ` > j. By Lemma 6.4.5, if π is a Robinson ordering starting at a, then
we would get x <π y <π x1, which implies Ax1y ≥ Ax1x, again a contradiction.
Therefore, we have x1 ∈ L` with ` < j. Recall that x1 <σ+ y. Hence, starting
with the pair (x, y) which satisfies x ∈ Li, y ∈ Lj with i < j and x <σ+ y, we
have constructed another pair (x1, y) satisfying x1 ∈ Ll, y ∈ Lj with l < j and
x1 <σ+ y. As x1 <+ x, iterating this construction we reach a contradiction. �
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6.5 The multisweep algorithm

We now introduce our new SFS-based multisweep algorithm to recognize Robin-
sonian matrices and we prove its correctness. In Subsection 6.5.1 we describe
the multisweep algorithm and show that it terminates in 3 sweeps when applied
to a 0/1 matrix, thus giving a new proof of the result of Corneil [33] for unit
interval graphs (see Subsection 4.3.2). In Subsection 6.5.2 we study properties of
‘3-good SFS orderings’, which are orderings obtained after three SFS+ sweeps. In
particular we show that they contain classes of Robinson triples and that, after
deleting their end points, they induce good SFS orderings, which will enable us
to apply induction in the correctness proof. After that we have all the ingredi-
ents needed to conclude the correctness proof for the multisweep algorithm in
Subsection 6.5.3. Then, in Subsection 6.5.4 we discuss the complexity of the SFS
algorithm. Finally, in Subsection 6.5.5 we give an example to show how the
algorithm works concretely.

6.5.1 Description

As the multisweep algorithm framework presented in Chapter 4 (Algorithm 4.4),
our multisweep algorithm consists of computing successive SFS orderings of a
given nonnegative matrix A ∈ Sn. The first sweep is SFS(A), whose aim is
to find an anchor of A. Each subsequent sweep is computed with the SFS+

algorithm using the linear order returned by the preceding sweep to break ties
(as in Algorithm 6.2). As it starts with the end point of the preceding sweep which
is an anchor of A, each subsequent sweep is therefore a good SFS ordering of A (in
the case when A is Robinsonian). The algorithm terminates either if a Robinson
ordering has been found (in which case it certifies that A is Robinsonian), or
if the (n − 1)th sweep is not Robinson (in which case it certifies that A is not
Robinsonian). The complete algorithm is given below.

Algorithm 6.3: Robinson(A)

input: a matrix A ∈ Sn
output: a Robinson ordering π of A, or stating that A is not Robinsonian

1 σ0 = SFS(A)
2 for i = 1, . . . n− 2 do
3 σi = SFS+(A, σi−1)
4 if σi is Robinson then
5 return: π = σi

6 return: ‘A is NOT Robinsonian’

It is an open question whether there exists a family of instances for which
exactly n − 1 sweeps are needed to find a Robinson ordering. Nevertheless, we
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give below some examples for n = 4, 5, 6 where this happens. Note that for n = 3
it is clear that two sweeps may be needed and always suffice.

6.5.1 Example. Consider the following (Robinson) matrices:

A4 =




a b c d

a ∗ 1 1 0
b ∗ 2 1
c ∗ 2
d ∗


, A5 =




a b c d e

a ∗ 2 2 0 0
b ∗ 2 1 1
c ∗ 2 1
d ∗ 1
e ∗



, A6 =




a b c d e f

a ∗ 1 1 1 1 0
b ∗ 2 2 1 1
c ∗ 2 2 2
d ∗ 3 2
e ∗ 2
f ∗



.

Consider first the matrix A4. Then σ0 = (b, c, d, a) is a valid SFS ordering of A4

and σ1 = (a, c, b, d), which is not a Robinson ordering. However, σ2 = (d, c, b, a)
is a Robinson ordering of A4.

Consider now the matrix A5. Then σ0 = (c, d, b, a, e) is a valid SFS ordering
of A5, with σ1 = (e, b, c, d, a) and σ2 = (a, c, b, d, e), which are not Robinson
orderings. However, σ3 = (e, d, c, b, a) is a Robinson ordering of A5.

Consider finally the matrix A6. Then σ0 = (b, d, c, e, f, a) is a valid SFS order-
ing of A6, with σ1 = (a, e, d, c, b, f), σ2 = (f, c, d, e, b, a) and σ3 = (a, b, d, c, e, f)
which are not Robinson orderings. However, σ4 = (f, e, d, c, b, a) is a Robinson
ordering of A6.

As already mentioned earlier, the SFS algorithm applied to 0/1 matrices re-
duces to Lex-BFS. As a warm-up we now show that our SFS multisweep algorithm
terminates in three sweeps to recognize whether a 0/1 matrix A is Robinsonian.
Since a 0/1 matrix A is Robinsonian if and only if the corresponding graph is a
unit interval graph [97] (see Theorem 3.2.1), this is coherent with the fact that
one can recognize unit interval graphs in three sweeps of Lex-BFS [33, Thm 9]
(see Subsection 4.3.2). Hence we have a new proof for this result, which has
similarities but yet differs from the original proof in [33].

6.5.2 Theorem. Let G be a connected graph and let A be its (extended) ad-
jacency matrix. Consider the orders σ0 = SFS(A), σ1 = SFS+(A, σ0) and
σ2 = SFS+(A, σ1). Then G is a unit interval graph (i.e., A is a Robinsonian
similarity) if and only if σ2 is a Robinson ordering of A.

Proof. Clearly, if σ2 is Robinson then A is Robinsonian. Assume now that A is
Robinsonian; we show that σ2 is Robinson. Suppose, for contradiction, that there
exists a triple x <σ2 y <σ2 z which is not Robinson, i.e., Axz > min{Axy, Ayz}.
Then the path (x, z) avoids y and thus, in view of Lemma 6.3.6 (PAL), in any
Robinson ordering π one cannot have x <π z <π y. We may assume without
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loss of generality that z <π x <π y in some Robinson ordering π. Because A
is a 0/1 matrix, then Axz = 1, Ayz = 0 and thus {x, z} ∈ E, {y, z} /∈ E. By
construction, σ1 is a good SFS ordering of A starting (say) at the anchor a.
Let L = {L0, L1 . . . , Lr} be the similarity layer structure of A rooted at a. By
Lemma 6.4.5, we know that L is compatible with σ1, i.e., a <σ1 L1 <σ1 . . . <σ1 Lr.
Using Theorem 6.4.7 we obtain that Lr <σ2 Lr−1 <σ2 . . . <σ2 L1 <σ2 a. Moreover,
using Lemma 6.4.6 and the fact that G is connected, it is easy to see that each
layer Li is a clique of G. Hence, y, z cannot be in the same layer of L, as
{y, z} /∈ E. Since y <σ2 z, it follows that z ∈ Li, y ∈ Lj with i < j and thus
z <σ1 y. Say x ∈ Lh. One cannot have h < j since this would contradict
x <σ2 y. If h = j then x, y ∈ Lj and thus Azx = Azy by definition of the layers,
contradicting the fact that Axz = 1, Ayz = 0. Hence one must have j < h. Then
z ∈ Li, y ∈ Lj, x ∈ Lh with i < j < h and thus z <σ1 y <σ1 x. Now we get
a contradiction with Lemma 6.3.6 (PAL), as z <π x <π y and the path (x, z)
avoids y. �

The proof of Theorem 6.5.2 outlines a fundamental difference between unit
interval graphs and Robinsonian matrices. In fact, in view of Lemma 6.4.6, it
is easy to see that, for 0/1 Robinsonian matrices, each layer Li of the similarity
layer structure L rooted at an anchor a is a clique of G. This property in fact
permits to bound by a constant factor the number of sweeps to recognize 0/1
Robinsonian matrices. However, if A is a Robinsonian matrix with at least three
distinct values, then we loose such a strong property of the layers, which explains
why we might need n− 1 sweeps in the worst case.

We now formulate our main result, namely that the SFS multisweep algorithm
recognizes in at most n− 1 steps whether an n× n matrix is Robinsonian.

6.5.3 Theorem. Let A ∈ Sn and let σ0 = SFS(A), σi = SFS+(A, σi−1) for i ≥ 1
be the successive sweeps returned by Algorithm 6.3. Then A is a Robinsonian
similarity matrix if and only if σn−2 is a Robinson ordering of A.

We will give the full proof of Theorem 6.5.3 in Subsection 6.5.3 below. What
we need to show is that if A is Robinsonian then the order σn−2 in Algorithm 6.3
is a Robinson ordering of A. We now give a rough sketch of the strategy which
we will use to prove this result. The proof will use induction on the size n of the
matrix A.

As was shown earlier, the sweep σ1 is a good SFS ordering of A with end points
(say) a and b, and all subsequent sweeps have the same end points (flipping their
order at each sweep) in view of Theorem 6.4.1. A first key ingredient will be to
show that if we delete both end points a and b and set S = V \ {a, b}, then the
induced order σ3[S] is a good SFS ordering of the principal submatrix A[S]. A
second crucial ingredient will be to show that the induced order σn−2[S] can be
obtained with the multisweep algorithm applied to A[S] starting from σ3[S]. This
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will enable us to apply the induction assumption and to conclude that σn−2[S] is
a Robinson ordering of A[S]. Hence all triples (x, y, z) in σn−2 that are contained
in S = V \ {a, b} are Robinson. The last step is to show that all triples (x, y, z)
in σn−2 that contain a or b are also Robinson.

As we see in the above sketch, the sweep σ3 plays a special role. It is obtained
by applying three sweeps of SFS+ starting from the good SFS ordering σ1. For
this reason we call it a 3-good SFS ordering. We introduce and investigate in
detail this notion of ‘3-good SFS ordering’ in Subsection 6.5.2 below.

6.5.2 3-good SFS orderings

Consider a Robinsonian matrix A ∈ Sn. Recall that a SFS ordering τ of A
is said to be good if its first vertex is an anchor of A (see Section 6.3.4). We
now introduce the notion of 3-good SFS ordering. A linear order τ is called a
3-good SFS ordering of A if there exists a good SFS ordering τ ′ of A such that,
if we set τ ′′ = SFS+(A, τ ′), then τ = SFS+(A, τ ′′) holds. In other words, a 3-
good SFS ordering is obtained by performing three consecutive good sweeps. Of
course any 3-good SFS ordering is also a good SFS ordering. Furthermore, if we
consider Algorithm 6.3, then any sweep σi with i ≥ 3 is a 3-good SFS ordering
by construction. First we present the following flipping property of layers which
follows as a direct application of Theorem 6.4.7.

6.5.4 Corollary. Assume A ∈ Sn is a Robinsonian similarity matrix. Let τ ′

be a good SFS ordering of A, τ ′′ = SFS+(A, τ ′) and τ = SFS+(A, τ ′′). Let
L = {L0, . . . , Lr} be the similarity layer structure of A rooted at the first vertex
of τ . If x ∈ Li, y ∈ Lj with i < j then y <τ ′′ x.

We now show some important properties of 3-good SFS orderings, that we
will use in the proof of correctness of the multisweep algorithm. First we show
that some triples in a 3-good SFS ordering can be shown to be Robinson.

6.5.5 Lemma. Assume A ∈ Sn is a Robinsonian similarity matrix. Let τ be a 3-
good SFS ordering starting at a and ending at b. Let L = {L0 = {a}, L1, . . . , Lr}
be the similarity layer structure of A rooted at a. Then the following holds:

(i) If x <τ y <τ z and (x, y, z) is not Robinson, then x, y, z ∈ Li with 1 ≤ i ≤ r.

(ii) Every triple (a, x, y) with x <τ y is Robinson.

(iii) Every triple (x, y, b) with x <τ y is Robinson.

Proof. Let τ ′ be a good SFS order such that τ ′′ = SFS+(A, τ ′), τ = SFS+(A, τ ′′).
Let L′′ = {L′′0 = {b}, L′′1, . . . } denote the similarity layer structure of A rooted
at b, which is compatible with τ ′′.
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(i) Let x <τ y <τ z such that x, y, z do not all belong to the same layer of L
and assume that (x, y, z) is not Robinson. Then Axz > min{Axy, Ayz} and the
path (x, z) avoids y. Let π be a Robinson ordering and let π its reversal. Assume,
without loss of generality, that x <π z. Then, since (x, z) avoids y, in view of
Lemma 6.2.3 y cannot appear between x and z in any Robinson ordering. If y
appears after z in π then we have x <π z <π y and x <τ y <τ z, and we get a
contradiction with Lemma 6.3.6 (PAL) as there cannot exists a path from x to z
avoiding y. Therefore y <π x <π z and thus Axz > min{Axy, Ayz} = Ayz. In view
of Lemma 6.4.5, x, y, z do not belong to three distinct layers of L (since otherwise
(x, y, z) would be Robinson). Moreover, one cannot have x ∈ Li and y, z ∈ Lj
with i < j (since this would imply Axy = Axz ≤ Ayz, a contradiction). Hence we
must have x, y ∈ Li and z ∈ Lj with i < j.

Consider now τ ′′; applying Corollary 6.5.4, we derive that z <τ ′′ x, y. More-
over, we cannot have that z <τ ′′ y <τ ′′ x, since we would get a contradiction with
Lemma 6.3.6 (PAL) as z <π x <π y and the path (x, z) avoids y. Hence we have
z <τ ′′ x <τ ′′ y. Summarizing, the triple (x, y, z) satisfies the properties:

x, y ∈ Li, z ∈ Lj, x <τ y <τ z, x <τ ′′ y, y <π x <π z. (6.12)

We will now show that the properties in (6.12) (together with the inequality
Axz > Ayz) permit to find an element x1 <τ x for which the triple (x1, y, z)
again satisfies the properties of (6.12), replacing x by x1. Then, iterating this
construction leads to a contradiction.

We now proceed to show the existence of such an element x1. As x <τ ′′ y and
x <τ y, x, y are not tied in τ and thus there exists x1 <τ x such that

Ax1x > Ax1y.

This implies x1 ∈ Li (recall Lemma 6.4.6). Moreover, the path (x1, x, z) avoids y,
since Ax1x > Ax1y and Axz > Ayz. By construction we have: x1 <τ x <τ y <τ z.
We claim that

y <π x1 <π z.

Indeed, if x1 <π y, then x1 <π y <π x and thus Ax1x ≤ Ax1y, a contradiction.
Moreover, if z <π x1 then y <π x <π z <π x1, which implies Ax1z ≥ Ax1x > Ax1y

and thus the triple (x1, y, z) is not Robinson. Then Ax1z > min{Ax1y, Ayz} and
the path (x1, z) avoids y. Now, as x1 <τ y <τ z and x1 <π z <π y, we get a
contradiction with Lemma 6.3.6 (PAL). So we have shown that y <π x1 <π z.

Next we claim that x1 <τ ′′ y. Indeed, if y <τ ′′ x1 then z <τ ′′ y <τ ′′ x1,
which together with z <π x1 <π y and the fact that the path (x1, x, z) avoids y,
contradicts Lemma 6.3.6 (PAL). Hence we have shown that the triple (x1, y, z)
satisfies (6.12), which concludes the proof of (i).

(ii) follows directly from (i), since any triple containing a is not contained in
a unique layer, and thus it must be Robinson.
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(iii) Assume for contradiction that (x, y, b) is not Robinson for some x <τ y,
i.e., Abx > min{Aby, Axy}. Then the path (b, x) avoids y. If π is a Robinson
ordering ending at b (which exists since b is an anchor) then we must have y <π

x <π b because, in view of Lemma 6.2.3, y cannot appear between x and b in any
Robinson ordering. Hence, Abx > Aby. Since τ ′′ is compatible with L′′ which is
rooted at b, we must have b <τ ′′ x <τ ′′ y and moreover x, y belong to distinct
layers of L′′. Thus x ∈ L′′i , y ∈ L′′j with i < j which, in view of Theorem 6.4.7,
implies y <τ x, a contradiction. �

As a first direct application of Lemma 6.5.5(i), we can conclude that the
multisweep algorithm terminates in at most four steps when applied to a matrix A
whose similarity layers rooted at the end-vertex of the first sweep σ0 all have
cardinality at most 2.

Consider a 3-good SFS ordering τ of a Robinsonian matrix A with end points a
and b and consider the induced order τ [S] of the submatrix A[S] indexed by the
subset S = V \{a, b}. In the next lemmas we show some properties of τ [S]. First,
we show that τ [S] is a good SFS ordering of A[S] (Lemma 6.5.7). Second, we show
that applying the SFS+ algorithm to τ and then deleting a and b yields the same
order as applying the SFS+ algorithm to the induced order τ [S] (Lemma 6.5.8).
These properties will be used in the induction step for the proof of correctness of
the multisweep algorithm in the next section. We start with showing a ‘flipping
property’ of the second smallest element of τ .

6.5.6 Lemma. Assume A ∈ Sn is a Robinsonian similarity matrix. Let τ ′ be a
good SFS ordering of A, τ ′′ = SFS+(A, τ ′) and τ = SFS+(A, τ ′′). Let a be the
first vertex of τ . Then the successor a1 of a in τ is the predecessor of a in τ ′′.

Proof. As before, L = {L0 = {a}, L1, . . . , Lr} is the layer structure of A rooted
at a, which is compatible with τ . The slice of a in τ is precisely the first layer L1

in L. By definition, a1 is the element of L1 coming last in τ ′′. By the flipping
property in Corollary 6.5.4, we know that the layer L1 comes last but one in τ ′′,
just before the layer L0 = {a}. Then a1 is the element of L1 appearing last in τ ′′,
and thus it coincides with the predecessor of a in τ ′′. �

6.5.7 Lemma. Let A ∈ Sn be a Robinsonian similarity matrix. Let τ be a 3-good
SFS ordering of A with end points a and b and set S = V \ {a, b}. Then τ [S] is
a good SFS ordering of A[S].

Proof. Say that a is the first element of τ and that b is its last element. Consider
the similarity layer structure rooted at a, i.e., L = (L0, L1, . . . , Lr), which is
compatible with τ . First we show that τ [S] is a SFS ordering of A[S]. For this
consider elements x, y, z ∈ S such that Axz > Axy. Then (x, y, z) is not Robinson
and thus x, y, z ∈ Li with i ≥ 1 in view of Lemma 6.5.5. As τ is a SFS ordering,
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then in view of Theorem 6.3.3 there exists u <τ x such that Auy > Auz. We have
u 6= a (since u = a would imply Auy = Auz) and thus u ∈ S. This shows that τ [S]
is a SFS ordering of A[S]. Finally τ [S] is good since, in view of Lemma 6.5.6, it
starts at a1, the successor of a in τ , which is an anchor of A[V \ {a}] (and thus
also of A[S]) in view of Theorem 6.3.8. �

6.5.8 Lemma. Assume A ∈ Sn is a Robinsonian similarity matrix. Let τ be
a 3-good SFS ordering with end points a and b and τ+ = SFS+(A, τ). Then
τ+[S] = SFS+(A[S], τ [S]) with S = V \ {a, b}.
Proof. Say b is the first element of τ and a be its last element. Then a is the
first element of τ+ and b is its last element (Theorem 6.4.1). Let consider the
similarity layer structure L = (L0 = {a}, L1, . . . , Lr) of A rooted at a, which is
compatible with τ+ (and thus we denote here by L+).

Set σ = SFS+(A[S], τ [S]). Let a1 the predecessor of a in τ . As τ+ is clearly
also a 3-good SFS ordering then, in view of Lemma 6.5.6, a1 is the successor of a
in τ+ and thus both τ+[S] and σ start at a1. Assume that σ and τ+[S] agree on
their first p elements a1, . . . , ap, but not at the next (p + 1)th element. That is,
τ+[S] = (a1, . . . , ap, x, . . . , y, . . .), while σ = (a1, . . . , ap, y, . . . , x, . . .), where x, y
are distinct elements. We distinguish three cases.

Assume first that x, y are tied in τ+ (and thus in σ too). Then one must have
y <τ x (to place x before y in τ+[S]) and x <τ y (to place y before x in σ), a
contradiction.

Assume now that x, y are not tied in τ+, but they are tied in σ. Then we have
Aax > Aay. Hence, since the similarity layer structure L of A is rooted at a, then
we have x ∈ Lj, y ∈ Lk for some j < k. This implies y <τ x (by Corollary 6.5.4)
and thus, since x, y are tied in σ, one would place x before y in σ, a contradiction.

Assume finally that x, y are not tied in τ+ and also not in σ. Let aj be the
pivot splitting x and y in σ so that Aajy > Aajx, with 1 ≤ j ≤ p. We claim that
a is the pivot splitting x and y in τ+[S]. For this, suppose that ai is the pivot
splitting x and y in τ+[S] for some 1 ≤ i ≤ p, so that Aaix > Aaiy and i 6= j. It is
now easy to see that i > j would imply y <τ+ x, while i < j would imply x <σ y,
a contradiction in both cases. Hence, a is the pivot splitting x, y in τ+[S] and thus
Aax > Aay. Then, as L+ is the similarity layer structure of A rooted at a, x and y
belong to distinct layers of L+. Moreover, aj <τ+ x <τ+ y and the triple (aj, x, y)
is not Robinson. As τ+ is a 3-good SFS ordering, we can apply Lemma 6.5.5 and
conclude that aj, x, y must belong to a common layer of L, which contradicts the
fact that x, y belong to distinct layers of L+. �

6.5.3 Proof of correctness

We can finally put all ingredients together and show the correctness of our mul-
tisweep algorithm. We show the following result, which implies directly Theo-
rem 6.5.3.
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6.5.9 Theorem. Let A ∈ Sn be a Robinsonian similarity matrix, let τ1 be a good
SFS ordering of A and let τi = SFS+(A, τi−1) for i ≥ 2. Then τn−2 is a Robinson
ordering of A.

Proof. The proof is by induction on the size n of A. For n < 3 there is nothing
to prove and for n = 3 the result holds trivially. Hence, suppose n ≥ 4. Then, by
the induction assumption, we know that the following holds:

If σ1 is a good SFS ordering of a Robinsonian matrix A′ ∈ Sk with k ≤ n− 1

and σi = SFS+(A′, σi−1) for i ≥ 2, then σk−2 is a Robinson ordering of A′.

Suppose τ1 starts with a and ends with b. By Lemma 6.4.1, the end points of
any τi with i ≥ 2 are a and b (flipped at every consecutive sweep). For any
i ≥ 3,then τi is a 3-good SFS ordering of A. Hence, setting S = V \ {a, b}, in
view of Lemma 6.5.8, we obtain that τi+1[S] = SFS+(A[S], τi[S]) for each i ≥ 3.

Consider the order σ1 := τ3[S] and the successive sweeps σi = SFS+(A[S], σi−1)
(i ≥ 2) returned by the multisweep algorithm applied to A[S] starting from σ1.
As τ3 is a 3-good SFS ordering of A, in view of Lemma 6.5.7 we know that σ1

is a good SFS ordering of A[S]. Hence, using the induction assumption applied
to A[S] and σ1, we can conclude that the sweep σ|S|−2 = σn−4 (returned by
the multisweep algorithm applied to A[S] with σ1 as first sweep) is a Robinson
ordering of A[S].

We now observe that equality τi+2[S] = σi holds for all i ≥ 1, using induction
on i ≥ 1. This is true for i = 1 by the definition of σ1. Inductively, if τi+2[S] = σi
then τi+3[S] = SFS+(A[S], τi+2[S]) = SFS+(A[S], σi) = σi+1. Hence, we can
conclude that τn−2[S] = σn−4 is a Robinson ordering of A[S]. Finally, using with
Lemma 6.5.5, we can conclude that all triples (x, y, z) in τn−2 that contain a or b
are Robinson. Therefore we have shown that τn−2 is a Robinson ordering of A,
which concludes the proof. �

In other words, starting with a good SFS ordering of a Robinsonian matrix
A ∈ Sn, after at most n − 2 sweeps we find a Robinson ordering of A. Finally,
we can now prove Theorem 6.5.3, since the last vertex of the first sweep σ0 in
Algorithm 6.3 is an anchor of A (Theorem 6.3.8) and thus the second sweep σ1

is a good SFS ordering.
Hence, if A ∈ Sn is a Robinsonian similarity matrix, in view of Theorem 6.5.9,

the multisweep algorithm returns a Robinson ordering in at most n − 2 sweeps
starting from σ1, and thus in at most n−1 sweeps counting also the initialization
sweep σ0.

6.5.4 Complexity

In this section we discuss the complexity of the SFS algorithm. As for the
Lex-BFS based algorithm presented in Chapter 5, throughout we assume that
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A ∈ Sn is a nonnegative symmetric matrix, given as adjacency list of an undi-
rected weighted graph G = (V = [n], E). So G is the support graph of A,
whose edges are the pairs {x, y} such that Axy > 0 with edge weight Axy, and
N(x) = {y ∈ V : Axy > 0} is the neighborhood of x ∈ V . We assume that each
vertex x ∈ V = [n] is linked to the list of vertex/weight pairs (y, Axy) for its
neighbors y ∈ N(x) and we let m denote the number of nonzero entries of A.

6.5.10 Theorem. The SFS algorithm (Algorithm 6.1) applied to an n× n sym-
metric nonnegative matrix with m nonzero entries runs in O(n+m log n) time.

Proof. As in [33] for Lex-BFS, we may assume that we are given an initial order τ
of V and that the vertices and their neighborhoods are ordered according to τ
(in increasing order). This assumption is useful also for the discussion of the
implementation of SFS+.

In order to run Algorithm 6.1, we need to update the queue φ consisting of
the unvisited vertices at each iteration. The update consists in computing the
similarity partition ψp with respect to the current pivot p and then refining φ
by ψp.

As for Lex-BFS (Algorithm 4.3), our implementation is based on the partition
refinement paradigm presented in Subsection 2.2.3. Specifically, to maintain the
priority among the unvisited vertices, the queue φ = (B1, . . . , Bp) is stored in
a doubly linked list, whose elements are the classes B1, . . . , Bp. Moreover each
vertex has a pointer to the class Bi containing it and a pointer to its position
in the class, which are updated throughout the algorithm. This data structure
permits constant time insertion and deletion of a vertex in φ.

Initially, the queue φ has only one class, namely the full set V . At an iteration
of Algorithm 6.1, there are three main tasks to be performed: choose the next
pivot, compute the similarity partition ψp and refine the queue φ by ψp.

(1) Choose the new pivot p = pi. Since in Algorithm 6.1 the choice of the
new pivot is arbitrary in case of ties, we will choose the first vertex of the
first block in φ. This operation can be done in constant time. We then
remove p from the queue φ of unvisited vertices and we update the queue
φ by deleting p from the class B1.

(2) Compute the similarity partition ψp = (C1, . . . , Cs) of the set Nφ(p) with
respect to p = pi (as defined in Definition 6.3.2). Here Nφ(p) = N(p) ∩ φ
denotes the set of unvisited vertices in the neighborhood N(p) of p. First we
order the vertices y in Nφ(p) for nonincreasing values of their similarities Apy
with respect to p, which can be done in inO(|Nφ(p)| log |Nφ(p)|) time using a
sorting algorithm. Then we create the similarity partition ψp = (C1, . . . , Cs)
simply by passing through the elements in Nφ(p) in the order of nonin-
creasing similarities to p which has just been found. This task can be done
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in O(|Nφ(p)|) time. Finally we order the elements in each class Cj (in-
creasingly) according to τ , which can be done in O(|Nφ(p)| log |Nφ(p)|). So
we have constructed the ordered partition ψp = (C1, . . . , Cs) of Nφ(p) as a
doubly linked list, where all classes of ψp are ordered according to τ . To con-
clude, the overall complexity of this task is bounded byO(|Nφ(p)| log |Nφ(p)|).

(3) The last task is to refine φ = (B1, . . . , Bp) by ψp = (C1, . . . , Cs) (as defined
in Definition 6.3.1). In order to obtain the new queue of unvisited vertices,
we proceed as follows: starting from j = 1, for each class Cj of ψ, we simply
remove each vertex of Cj from its corresponding class (say) Bi in φ and we
place it in a new class B′i which we position immediately before Bi in φ.
Since both Cj and Bi are ordered according to τ , the initial order τ in
the new block B′i is preserved. Using the above described data structure,
such tasks can be performed in O(|Cj|). Once a vertex is relocated in
φ, its pointers to the corresponding block and position in φ are updated
accordingly. Hence this last task can be performed in time O(

∑s
j=1 |Cj|) =

O(|Nφ(p)|).

Recall that at iteration i we set p = pi. Then the complexity at the ith
iteration is O(1 + |Nφ(pi)| log |Nφ(pi)|). Since we repeat the above three tasks
for each vertex, the overall complexity is O(

∑n
i=1 (1 +Nφ(pi)| log |Nφ(pi)|)) =

O(n+m log n). �

Using the same data structure as above, we can show that the SFS+ algorithm
can be implemented in the same running time as the SFS algorithm.

6.5.11 Theorem. The SFS+ algorithm (Algorithm 6.2) applied to an n×n sym-
metric nonnegative matrix with m nonzero entries runs in O(n+m log n) time.

Proof. The only difference between the SFS algorithm and the SFS+ algorithm
lies in the tie-breaking rule. In the SFS+ algorithm, in case of ties we choose
as next pivot the vertex in the slice appearing last in the given order σ. We
now show that, using the same data structure and assumption as in the proof
of Theorem 6.5.10, this choice can be done in constant time, and thus does not
affect the complexity of the SFS+ algorithm.

Recall that we assumed V to be initially ordered according to a linear order τ .
Let σ be the reversal of σ. We now select τ = σ. Then, since we showed that the
initial order τ is always preserved in the classes of φ throughout the algorithm,
we ensure that the first vertex in each slice S is exactly the vertex of S appearing
first in τ , i.e., last in σ.

Hence, the only thing we need to discuss is the complexity of reordering A
according to τ . This can be done in O(m + n) time as follows. We build a new
adjacency list A′ where the vertices are ordered according to τ : starting from
the vertex appearing first in τ , for each vertex x in τ and for each y ∈ N(x), we
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push τ(x) back in the list of A′ corresponding to the neighbors of y. At the end
of the process, each neighborhood in A′ is then sorted according to τ .

Therefore, the overall complexity of the SFS+ algorithm is O(n+m log n). �

It follows directly from Theorem 6.5.11 that any SFS multisweep algorithm
with k sweeps can be implemented in O(k(n + m log n)). Indeed the only addi-
tional tasks we need to do are two following. First, when we start a new SFS+

sweep we need to reorder the vertices and their neighborhoods according to the
reversal of the previous sweep, which can be done in O(m+n) time (see proof of
Theorem 6.5.11). Second, we need to check if the current sweep σi is a Robinson
ordering or not, which can be done in O(m+n) time as follows: we first check if,
for each x ∈ [n], the closed neighborhood N [x] is an interval in τ . If this is the
case, we then check if conditions Ax,y ≤ Ax,y−1 and Ax,y ≤ Ax+1,y hold for each
x <τ y such that y ∈ N(x), otherwise the matrix is not Robinsonian. Since A
is stored as an adjacency list and the (closed) neighborhood N [x] of each vertex
is ordered for increasing τ , it is easy to see that the above operations can be
performed in O(m+ n) time.

Therefore, as the multisweep algorithm (Algorithm 6.3) needs k ≤ n − 1
sweeps, it runs in time O(n2 + nm log n).

As already mentioned in Section 6.4.1, if the matrix has only 0/1 entries,
then there is no need to order the neighborhood N(p) of a given pivot p, because
the similarity partition ψp has only one class, equal to N(p). For this reason,
in this case the SFS algorithm can be implemented in linear time O(m + n).
Furthermore, as shown in Theorem 6.5.2, three sweeps suffice in the multisweep
algorithm to find a Robinson ordering. Therefore, if A is a 0/1 matrix, the
multisweep algorithm in Algorithm 6.3 has an overall running time of O(m+ n).
This is coherent with the fact that in the 0/1 case SFS reduces to Lex-BFS.

When the graph G associated to the matrix A is connected the complexity
of SFS and SFS+ is O(m log n). Of course we may assume without loss of gen-
erality that we are in the connected case since we may deal with the connected
components independently. Indeed a matrix A is Robinsonian if and only if the
submatrices A[C] are Robinsonian for all connected components C of G, and
Robinson orderings of the connected components A[C] can be concatenated to
give a Robinson ordering of the full matrix A.

Finally we observe that we may also exploit the potential sparsity induced by
the largest entries of A. While G is the graph whose edges are the pairs {x, y}
with entry Axy > 0 (where 0 is the smallest possible entry as A is assumed to
be nonnegative), we can also consider the graph G′ whose edges are the pairs
{x, y} with entry Axy < αL, where αL is the largest possible entry of A. Let
N ′(p) denote the neighborhood of a vertex p in G′ and let m′ denote the number
of entries with Axy < αL. We claim that the SFS (SFS+) algorithm can also be
implemented in time O(n+m′ log n).
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For this we modify the definition of the similarity partition of a vertex p,
which is now a partition of N ′(p) (so that the vertices y 6∈ N ′(p) have entry
Apy = αL) and the refinement of the queue φ by it: while we previously build the
queue φ of unvisited vertices using a ‘push-first’ strategy (put the vertices with
highest similarity first) we now build the queue with a ‘push-last’ strategy (put
the vertices with lowest similarity last).

We will see in Chapter 8 another modification of the similarity partition,
namely ε-similarity partition, which leads to the ε-SFS algorithm.

6.5.5 Example

We show a simple example to illustrate how Algorithm 6.3 works concretely.
Consider the following matrix:

A =




1 2 3 5 7 8 9 11 13 14 17 19

1 ∗ 0 7 3 3 3 0 3 3 4 0 3
2 ∗ 0 7 6 3 8 3 3 0 8 6
3 ∗ 3 3 3 0 3 3 8 0 3
5 ∗ 6 5 7 5 5 3 7 8
7 ∗ 5 6 5 5 3 6 7
8 ∗ 4 8 6 5 4 5
9 ∗ 4 3 0 8 6
11 ∗ 7 5 4 5
13 ∗ 5 3 5
14 ∗ 0 3
17 ∗ 6
19 ∗




(6.13)

which is a (connected) submatrix of the matrix considered in the example in
Section 5.6. Below are illustrated all the iterations of the SFS algorithm using as
initial order of the vertices the reversal of the original labeling of the matrix. At
each iteration, the vertices in the blocks are the univisited vertices in the queue.
In bold the pivot which is chosen at the current iteration. The numbers above
the blocks represent the similarity between the new pivot and the vertices in the
blocks of the queue. The first line on the top-left shows the initialization step of
the algorithm.

Note that in this case we have σ2 = σ1. This is coherent with Lemma 6.4.2(ii),
since σ2 is a Robinson ordering of A. Hence, in this example our SFS multisweep
algorithm finds a Robinson ordering in 2 sweeps only.

We give in Figure 6.8 the similarity layers structures L+ and L++ correspond-
ing to the similarity layer rooted at the first vertex of σ+ = σ1 and at the first
vertex of σ++ = σ2, respectively. Both similarity layers are well defined as they
start with an anchor of A (since A is indeed Robinsonian). For the sake of visu-
alization, weights on the edges are omitted.
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Figure 6.5: First iteration σ0 of Algorithm 6.3 applied to the matrix in (6.13).
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Figure 6.6: Second iteration σ1 of Algorithm 6.3 applied to the matrix in (6.13).
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Figure 6.7: Third iteration σ2 of Algorithm 6.3 applied to the matrix in (6.13).

Furthermore, we draw only the edges among consecutive layers and intra-
layers. Note that, differently from the layers in Figure 4.4 at 57, in this case the
number of layers is not the same for consecutive sweeps.
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Each layer corresponds to a slice at some iteration of the SFS algorithm (see
Figures 6.6 and 6.7).
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3

L+
4

L+
5

L+
6

1

3

14

13 8 11

7
5

19

9 17

2

(a) Similarity layers of σ+.

L++
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L++
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L++
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L++
3

L++
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L++
6
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7
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8
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9

2

17 9

5
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7

8 11

13

14

3

1

(b) Similarity layers of σ++.

Figure 6.8: Similarity layers of the second and third sweeps σ+ = σ1 and σ++ = σ2

of the SFS multisweep algorithm (Algorithm 6.3) applied to the matrix in (6.13)
(weights are omitted for a better visualization).
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6.6 Conclusions and future work

In this chapter we have introduced the new search algorithm Similarity-First
Search (SFS) and its variant SFS+, which are generalizations to weighted graphs
of the classical Lex-BFS algorithm and its variant Lex-BFS+.

The algorithm is entirely based on the main task of partition refinement, it is
conceptually simple and easy to implement. We have shown that a multisweep
algorithm can be designed using SFS and SFS+, which permits to recognize if a
symmetric n × n matrix is Robinsonian and if so to return a Robinson ordering
after at most n− 1 sweeps. We believe that this recognition algorithm is simpler
than the other existing algorithms. Moreover, to the best of our knowledge, this
is the first work extending multisweep graph search algorithms to the setting of
weighted graphs (i.e., matrices).

Algorithm 6.3 is substantially different from the algorithm presented in Chap-
ter 5 (Algorithm 5.5). Both algorithms are inspired by the Lex-BFS algorithm
with partition refinement implementation (Algorithm 4.3). Nevertheless, Algo-
rithm 5.5 aims to decompose the original matrix in many 0/1 submatrices, which
solves using Lex-BFS. On the other hand, Algorithm 6.3, intuitively, uses Lex-
BFS (in fact, SFS) without the need to decompose the original matrix, which
can lead to really efficient performance especially when there are many distinct
values (compared with Algorithm 5.5), since the less distinct values the more ties
we have in the SFS algorithm, which in the worst case could lead to compute all
the n − 1 sweeps theoretically needed to recognize a Robinsonian matrix. Fur-
thermore, another difference between the two algorithms is that Algorithm 5.5
can be extended to return all the Robinson orderings (Algorithm 5.7). Whether
also Algorithm 6.3 can be extended to return a PQ-tree of all Robinson orderings
is an open question. As we will see in Chapter 9, when A is Robinsonian then
the SFS multisweep outperforms the Lex-BFS based algorithm.

Our algorithm can also be used to recognize Robinsonian dissimilarities. Re-
call that D ∈ Sn is a Robinson dissimilarity matrix if Dxz ≥ max{Dxy, Dyz} for all
1 ≤ x < y < z ≤ n, and a Robinsonian dissimilarity if its rows and columns can
be simultaneously reordered to get a Robinson dissimilarity matrix. Clearly D is
a Robinsonian dissimilarity matrix if and only if the matrix A = −D is a Robin-
sonian similarity matrix. Therefore, one can check whether D is a Robinsonian
dissimilarity by applying the SFS-based multisweep algorithm to the matrix A.

Alternatively one may also modify the SFS algorithm so that it can deal
directly with dissimilarity matrices. Say D is a nonnegative dissimilarity matrix
and G is the corresponding weighted graph with edges the pairs {x, y} with
Dxy > 0. Then we can modify the SFS algorithm as follows. First, we now order
the vertices in the neighborhood N(p) of a vertex p for nondecreasing values of
the dissimilarities Dpy (instead of nonincreasing values of the similarities Apy as
was the case in SFS). Then we construct the (dis)similarity partition ψp of N(p)
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by grouping the vertices with the same dissimilarity to p, in increasing values
of the dissimilarities. Finally, when refining the queue φ by ψp, we apply a
‘push-first’ strategy and place the vertices with lowest dissimilarity first. The
resulting algorithm, which we name DiSFS, standing for Dissimilarity-Search
First, has the same running time in O(n+m log n). Moreover, as explained above
in Subsection 6.5.4, it can also be implemented in time O(n+m′ log n), where m′

denotes the number of entries of D satisfying Dxy < Dmax and Dmax denotes
the largest entry of D. Using DiSFS we can define the analogous multisweep
algorithm for recognizing Robinsonian dissimilarities in time O(n2 + nm log n)
(or O(n2 + nm′ log n)).

It is an open question whether the number of sweeps needed to recognize
Robinsonian (dis)similarities can be bounded by a constant number. If this would
be the case, then the multisweep algorithm would have running time O(n +
m log n) and thus become (theoretically) competitive with the optimal one in [94].
However, as we have seen in Example 6.5.1 in Subsection 6.5.1, there are examples
for n = 4, 5, 6 where n− 1 sweeps are needed. Hence, in order to show a constant
number of sweeps, one possibly needs to define another variant of SFS, where ties
are broken using the SFS orderings returned by two previous sweeps (and not
only one as in the SFS+ variant). This approach has been successfully applied to
Lex-BFS for the recognition of interval graphs in five Lex-BFS sweeps [38], where
the last sweep used is the variant Lex-BFS∗, which breaks ties using the linear
order returned by two previous sweeps. Dusart and Habib [51] conjecture that
a similar approach applies to recognize cocomparability graphs with a constant
number of sweeps. Investigating whether such an approach applies to Robinsonian
matrices will be the subject of future work. We will see in Subsection 9.2 that,
in our computational experiments, the maximum number of sweeps for verifying
Robinsonian matrices was at most 4 (even for 1000 × 1000 matrices). On the
other hand, some matrices required n − 1 sweeps in order to be recognized as
non-Robinsonian.

Finally, it will be interesting to investigate whether the new SFS algorithm
can be used to study other classes of structured matrices. For example, as Robin-
sonian matrices represent a generalization of unit interval graphs to weighted
graphs, one could also define a generalization of other graph classes (e.g., chordal,
interval) to weighted graphs and study the properties of the SFS algorithm on
such classes. More generally, the SFS algorithm could be used as tool in the area
of similarity search and clustering analysis.
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7
Seriation and the quadratic assignment problem

In this chapter we focus on a specific model of seriation based on the Quadratic
Assignment Problem (QAP). In Section 7.1 we introduce QAP and we discuss
some polynomial solvable cases. In Section 7.2 we present our main result, by
showing that a Robinson ordering gives an optimal solution for a special class
of QAP involving Robinsonian and Toeplitz matrices. Finally, in Section 7.3 we
conclude with some possible direction for future work. The content of the chapter
is based on our work [78].

7.1 The Quadratic Assignment Problem

The Quadratic Assignment Problem (QAP) is a well studied hard combinatorial
optimization problem, which was introduced by Koopmans and Beckman [76]
in 1957 as a mathematical model for the location of indivisible economic activities.
In QAP(A,B), we are given n facilities, n locations, a flow matrix A whose
entry Aij represents the flow of activity between two facilities i and j, and a
distance matrix B whose entry Bij represents the distance between the locations i
and j. Then the objective is to find an assignment of the facilities to the locations
minimizing the total cost of the assignment.

As in 2.2.1, we denote by π a permutation of [n] and by Π ∈ {0, 1}n×n the
permutation matrix with entry Πij = 1 if π(i) = j. Then, ΠAΠT = (Aπ(i),π(j))

n
i,j=1

is the matrix obtained by symmetrically permuting rows and columns of A.
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QAP corresponds to solving the following optimization problem over the
set Pn of all possible permutations π of [n].

QAP(A,B) Given a flow matrix A ∈ Sn and a distance matrix B ∈ Sn, find a
permutation π of [n] minimizing:

min
π∈Pn

n∑

i,j=1

Aπ(i)π(j)Bij, (7.1)

where Aπ(i)π(j)Bij is the cost inferred by assigning facility i to location π(i) and
facility j to location π(j).

In other words, QAP attempts to find a permutation of the rows and columns
of A minimizing (7.1), which corresponds to finding a linear order of the objects
represented by the rows/columns of A.

QAP has been extensively studied in the past decades, in particular due to
its many real world applications. We refer to [21, 23] and references therein
for an exhaustive survey. QAP is an NP-hard problem and it cannot even be
approximated within a constant factor [103]. However, there exist many special
cases which are solvable in polynomial time by exploiting the structure of the
matrices A,B. In this section we discuss some of these special cases known in the
literature. Furthermore, we present the 2-SUM problem, which is a special QAP
instance that can be optimally solved by a Robinson ordering when the flow
matrix is Robinsonian.

7.1.1 Polynomial solvable cases of QAP

We are interested in the ‘easy cases’ of QAP where an optimal solution is known
in explicit form and is represented by a fixed permutation. These cases have
a practical importance in designing heuristics, approximation and enumeration
algorithms and they occur when the matrices A and B have a specific ordered
structure, like being Monge, Toeplitz or monotone matrices (see [20, 22, 42, 41],
[23, §8.4] for a survey and the recent works [26, 56]).

For instance, if A is monotonically nondecreasing, i.e., if its rows (columns)
are nondecreasing from left to right (from top to bottom) and B is monotoni-
cally nonincreasing (symmetrically defined), then it is known that the identity
permutation is an optimal solution to QAP(A,B) [23, Proposition 8.23].

Another instance of QAP(A,B) for which the identity permutation is optimal
arises when A is a Kalmanson matrix, i.e., A is symmetric and satisfies:

max{Aij + Akl, Ail + Ajk} ≤ Aik + Ajl for all 1 ≤ i < j < k < l ≤ n,

and B is a symmetric circulant matrix (i.e., Bij depends only on |i−j| modulo n)
satisfying B12 ≤ B13 ≤ . . . ≤ B1,bn/2c+1 [41, Theorem 2.3]. This extends an earlier
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result of Kalmanson [74] when B is the adjacency matrix of the cycle (1, 2, . . . , n),
in which case QAP(A,B) models the shortest Hamiltonian cycle problem on the
flow matrix A. Finally, Çela et al. considered very recently a new tractable case
of QAP(A,B) with A being a special Robinson dissimilarity [25].

7.1.2 2-SUM and seriation

We describe the 2-SUM problem, which is a special instance of QAP (7.1) where
the distance matrix is B = ((i− j)2)ni,j=1.

2-SUM problem Given a matrix A ∈ Sn, find a permutation π of [n] which
minimizes:

min
π∈Pn

n∑

i,j=1

Aπ(i)π(j)(i− j)2. (7.2)

As already discussed in Section 1.1, the 2-SUM problem is used to model
the general seriation problem (see, e.g., [5, 58]). In this subsection we will show
an interesting result presented in [56] when the matrix A in (7.2) is a Robin-
sonian similarity. The authors of [58] show that the 2-SUM problem (7.2) is
an NP-complete problem and they use the spectral method of reordering the
Fiedler vector of A described in Subsection 3.2.3 to produce a heuristic so-
lution. This in turn permits to bound important matrix structural parame-
ters, like envelope-size and bandwidth [7]. However, no assumption is made
on the structure of the matrix A. As observed in [58, 56], the following fact
can be used to motivate the spectral approach for 2-SUM (7.2). If we define
the vectors x = (1, . . . , n)T and xπ = (π(1), . . . , π(n))T ∈ Rn for π ∈ Pn, then∑n

i,j=1Aij(π(i)− π(j))2 = (xπ)TLAxπ, where LA denotes the Laplacian of A (see
Subsection 3.2.3). Therefore, computing the Fiedler value arises as a natural
continuous relaxation for the 2-SUM problem (7.2).

Fogel et al. [56] pointed out an interesting connection between Robinsonian
matrices and the 2-SUM problem (7.2), which was in fact our main motivation for
our work in [78]. Specifically, they consider a special class of Robinson similarity
matrices for which they can show that the identity permutation is optimal for 2-
SUM (7.2), namely interval-cut matrices, defined as follows. Given two integers
1 ≤ u ≤ v ≤ n, the interval-cut matrix I(u, v) is the symmetric n×n matrix with
(i, j)-th entry 1 if u ≤ i, j ≤ v and 0 otherwise. Clearly each interval-cut matrix
is a Robinson similarity and thus conic combinations of interval-cut matrices are
Robinson matrices as well. The following result is shown in [56], for which we
give a short proof.

7.1.1 Theorem. [56] If A ∈ Sn can be written as a conic combination of interval-
cut matrices, then the identity permutation is optimal for 2-SUM (7.2). More
generally if, for some π ∈ Pn, Aπ can be written as a conic combination of
interval-cut matrices, then π is optimal for 2-SUM (7.2).
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Proof. First we show the result when A is an interval-cut matrix. Say, A = I(u, v)
and set t = v − u+ 1. Then, we need to show that:

v∑

i,j=u

(π(i)− π(j))2 ≥
v∑

i,j=u

(i− j)2

for any permutation π ∈ Pn. Suppose that π maps the elements of the interval
[u, v] to the elements of the set {i1, . . . , it}, ordered as 1 ≤ i1 < . . . < it ≤ n.
Because the left-hand side of the above inequality involves all pairs of indices in
the interval [u, v], equivalently, we need to show that

∑

1≤r<s≤t

(ir − is)2 ≥
∑

1≤r<s≤t

(r − s)2.

Now the latter easily follows from the fact that |ir − is| ≥ |r − s| for all r, s.
Hence we have shown that the identity permutation is an optimal solution of
2-SUM (7.2) when A is an interval-cut matrix and this easily implies that this
also holds when A is a conic combination of interval-cut matrices. The second
statement follows as a direct consequence. �

In other words, the above result shows that for Robinsonian similarity matrices
as in Theorem 7.1.1, any permutation reordering A as a Robinson similarity
matrix also solves (7.2). As not every Robinson similarity is a conic combination
of interval-cut matrices, this raises the question whether the above result extends
to the case when A is an arbitrary Robinson similarity matrix.

There is a second possible way in which one may want to generalize the result
of Theorem 7.1.1. We introduce the concept of Toeplitz matrix, which is a matrix
B ∈ Rn×n with constant entries along its diagonals, i.e., Bij = Bi+1,j+1 for all
1 ≤ i, j ≤ n − 1. The 2-SUM problem (7.2) is the instance of QAP(A,B) (7.1),
where the distance matrix is B = ((i− j)2)ni,j=1, which turns out to be a Toeplitz
dissimilarity Robinson matrix. In fact there are many other interesting classes
of QAP whose distance matrix B is a Toeplitz Robinson dissimilarity matrix.
For instance, QAP(A,B) models the minimum linear arrangement (aka 1-SUM)
problem when B = (|i − j|)ni,j=1 and, more generally, the p-SUM problem when
we have B = (|i−j|p)ni,j=1, for p ≥ 1. Moreover, QAP(A,B) models the minimum
bandwidth problem when A is the adjacency matrix of a graph and B is of the
form B∆

n , as defined in relation (7.3) in Section 7.2 below. For more details on
these and other graph (matrix) layout problems with practical impact we refer
to the survey [44] and references therein.

This thus raises the further question whether the result of Theorem 7.1.1
extends to instances of QAP(A,B), where B is an arbitrary Toeplitz Robinson
dissimilarity matrix. This is precisely what we do in this chapter. We remove
both assumptions on A and B and show that the identity permutation is opti-
mal for QAP(A,B) when A is any Robinson similarity and B is any Robinson
dissimilarity, assuming that B (or A) has a Toeplitz structure.
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7.2 QAP is easy for Robinsonian matrices

The main contribution of this section is to provide a new class of QAP instances
that admit a closed form optimal solution. Specifically, the result can be for-
mulated as follows. Assume that A is a Robinson similarity, B is a Robinson
dissimilarity and that one of the two matrices A or B is a Toeplitz matrix. Then
the identity permutation is an optimal solution for QAP(A,B) (Theorem 7.2.5).
From this we derive a more general result when both matrices are Robinsonian
(Corollary 7.2.6). Hence our result uncovers an interesting connection between
QAP and Robinsonian matrices and introduces a new class of QAP instances
which is solvable in polynomial time.

In order to introduce the new class of polynomial solvable QAP, we first
present some key (easy) observations. Namely, if B is a Toeplitz Robinson dissim-
ilarity matrix, then we can decompose B as a conic combination of 0/1 Toeplitz
Robinson dissimilarities. For this, given an integer ∆ ∈ [n], we define the sym-
metric matrix B∆

n ∈ Sn with entries

(
B∆
n

)
ij

=

{
1 if |i− j| ≥ n−∆

0 else
for i, j = 1, . . . , n. (7.3)

Note that for ∆ = n, we have that B∆
n = J , i.e., the all-ones matrix. Clearly,

each matrix B∆
n is a Toeplitz matrix and a Robinson dissimilarity. In fact all

Toeplitz Robinson dissimilarities can be decomposed in terms of these matrices
B∆
n .

7.2.1 Lemma. Let B ∈ Sn be a Toeplitz matrix and let β0, . . . , βn−1 ∈ R such
that B(i, j) = βk for all i, j ∈ [n] with |i− j| = k for 0 ≤ k ≤ n. Then,

B = β0J +
n−1∑

k=1

(βk − βk+1)Bn−k
n . (7.4)

If moreover B is a Robinson dissimilarity, i.e., if β0 = 0 ≤ β1 ≤ . . . ≤ βn−1, then
B is a conic combination of the matrices B∆

n (for ∆ = 1, . . . , n− 1).

Proof. Direct verification. �

Our main result, which we show in this section, is that the identity permuta-
tion is optimal for QAP(A,B∆

n ) for any integer 1 ≤ ∆ ≤ n− 1.

7.2.2 Theorem. Let A ∈ Sn be a Robinson similarity matrix and let ∆ ∈ [n−1].
Then, for any permutation π of [n], we have:

〈Aπ, B∆
n 〉 ≥ 〈A,B∆

n 〉. (7.5)
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As we will see at the end of the section, using Theorem 7.2.2 we can eas-
ily derive that the identity permutation is an optimal solution for QAP(A,B)
when A is a Robinson similarity, B is a Robinson dissimilarity and one of the two
matrices A or B is a Toeplitz matrix (Theorem 7.2.5). Hence, in the rest of the
section we show how to prove the correctness of Theorem 7.2.2.

7.2.1 Sketch of proof

In order to show the correctness of Theorem 7.2.2 we need to prove relation (7.5).
Let E∆

n denote the support of the matrix B∆
n , i.e., the set of upper triangular

positions where B∆
n has a nonzero entry. That is:

E∆
n = {{i, n−∆ + j} : 1 ≤ i ≤ j ≤ ∆}.

Then we can reformulate the inner products in (7.5) as

〈Aπ, B∆
n 〉 =

n∑

i,j=1

Aπ(i),π(j)

(
B∆
n

)
i,j

= 2
∑

{i,j}∈E∆
n

Aπ(i),π(j),

〈A,B∆
n 〉 =

n∑

i,j=1

Ai,j
(
B∆
n

)
i,j

= 2
∑

{i,j}∈E∆
n

Ai,j,

and (7.5) is equivalent to the following inequality:

∑

{i,j}∈E∆
n

Aπ(i),π(j) ≥
∑

{i,j}∈E∆
n

Aij. (7.6)

We show the inequality (7.6) using induction on n ≥ 2. The base case n = 2 is
trivial, since then ∆ = 1 and both summations in (7.6) are identical. We now
assume that the result holds for n − 1 and we show that it also holds for n.
For the remaining of the proof, we fix a Robinson similarity matrix A ∈ Sn, an
integer ∆ ∈ [n − 1] and a permutation π of [n]. Moreover we let k ∈ [n] denote
the index such that n = π(k).

The key idea in the proof is to show that there exist a subset F ⊆ E∆
n and a

permutation τ of [n] satisfying the following properties:

(C1) |F | = ∆,

(C2) the indices min{π(i), π(j)} for the pairs {i, j} ∈ F are pairwise distinct,

(C3) τ(n) = k and the set R := E∆
n \ F satisfies

R = τ(E∆−1
n−1 ) := {{τ(i), τ(j)} : {i, j} ∈ E∆−1

n−1 }.
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Here the set E∆−1
n−1 is the support of the matrix B∆−1

n−1 , defined by

E∆−1
n−1 = {{i, n−∆ + j} : 1 ≤ i ≤ j ≤ ∆− 1},

so that E∆
n is partitioned into the two sets {{i, n} : 1 ≤ i ≤ ∆} and E∆−1

n−1 .
In a first step, we show (in Lemma 7.2.3 below) that if we can find a set F

and a permutation τ satisfying (C1)-(C3), then we can conclude the proof of the
inequality (7.6) using the induction assumption. The proof relies on the following
idea: we split the summation

Σπ(A) :=
∑

{i,j}∈E∆
n

Aπ(i),π(j) (7.7)

into two terms, obtained by summing over the set F and over its complement R,
and we show that the first term is at least

∑∆
i=1 Ain (using the conditions (C1)-

(C3)) and that the second term is at least
∑
{i,j}∈E∆−1

n−1
Aij (using the induction

assumption applied to the smaller Robinson similarity (Aij)
n−1
i,j=1).

In a second step, we formulate (in Lemma 7.2.4 below) two new conditions (C4)
and (C5) which together with (C1),(C2) imply (C3). These two conditions will
be simpler to check than (C3).

7.2.2 Intermediate results

In this subsection we show the correctness of Lemma 7.2.3 and Lemma 7.2.4.
These two lemmas are intermediate results which will be used to conclude the
proof of Theorem 7.2.2 in Section 7.3.

7.2.3 Lemma. Assume that there exist a set F ⊆ E∆
n and a permutation τ of [n]

satisfying (C1)-(C3), then the inequality (7.6) holds.

Proof. Let us decompose the summation Σπ(A) from (7.7) as the sum of the two
terms:

Σπ(A) = Σπ,F (A) + Σπ,R(A), (7.8)

where we set:

Σπ,F (A) :=
∑

{i,j}∈F

Aπ(i),π(j), Σπ,R(A) :=
∑

{i,j}∈R

Aπ(i),π(j).

We now bound each term separately. First we consider the term Σπ,F (A). As A
is a Robinson similarity matrix, it follows that for all indices i, j ∈ [n]:

Aij ≥ An,min{i,j}.
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Hence, we can deduce:

Σπ,F (A) =
∑

{i,j}∈F

Aπ(i),π(j) ≥
∑

{i,j}∈F

An,min{π(i),π(j)} ≥
∆∑

i=1

An,i, (7.9)

where for the right most inequality we have used the conditions (C1),(C2) com-
bined with the fact that A is a Robinson similarity.

We now consider the second term Σπ,R(A). Define the permutation σ = πτ .
Then, by (C3), we have that σ(n) = π(k) = n and thus σ(E∆−1

n−1 ) = π(τ(E∆−1
n−1 )) =

π(R). We can then write:

Σπ,R(A) =
∑

{i,j}∈E∆−1
n−1

Aσ(i),σ(j). (7.10)

As σ(n) = n, the permutation σ of [n] induces a permutation σ′ of [n − 1]. We
let A′, B′ ∈ Sn−1 denote the principal submatrices obtained by deleting the row
and column indexed by n in A and in B∆

n , respectively. Then A′ is again a
Robinson similarity matrix (now of size n − 1) and B′ = B∆−1

n−1 is supported by
the set E∆−1

n−1 . Then, using the induction assumption applied to A′, ∆− 1 and σ′,
we obtain:

Σσ′(A
′) :=

∑

{i,j}∈E∆−1
n−1

A′σ(i),σ(j) ≥ Σid(A
′
) :=

∑

{i,j}∈E∆−1
n−1

A′i,j. (7.11)

Using (7.10), we get:

Σπ,R(A) = Σσ′(A
′) ≥ Σid(A

′
) =

∑

{i,j}∈E∆−1
n−1

Ai,j. (7.12)

Finally, combining (7.8),(7.9) and (7.12), we get the desired inequality:

Σπ(A) ≥
∆∑

i=1

Ai,n +
∑

{i,j}∈E∆−1
n−1

Aij =
∑

{i,j}∈E∆
n

Aij,

which concludes the proof. �

7.2.4 Lemma. Assume that the sets F ⊆ E∆
n and R := E∆

n \ F satisfy the
conditions (C1),(C2) and the following two conditions:

(C4) no pair in the set R contains the element k,

(C5) no pair {i, n−∆ + i} with 1 ≤ i ≤ ∆ and k+ 1−n+ ∆ ≤ i ≤ k− 1 belongs
to the set R.
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Define the permutation τ = (k, k + 1, . . . , n). Then, we have R = τ(E∆−1
n−1 ).

Proof. By (C1), |F | = ∆, thus R has the same cardinality as the set τ(E∆−1
n−1 ) and

therefore it suffices to show the inclusion R ⊆ τ(E∆−1
n−1 ). For this consider a pair

{i, n−∆ + j} in R, where 1 ≤ i ≤ j ≤ ∆. We show that i = τ(r) and j = τ(s)
for some 1 ≤ r ≤ s ≤ ∆ − 1. In view of (C4), we shall define r, s depending on
whether i lies before or after k, getting the following cases:

1) i ≤ k − 1, then r = i and i = τ(i),

2) i ≥ k + 1, then r = i− 1 and i = τ(i− 1).

We do the same for index j, getting the following cases:

a) n−∆ + j ≤ k − 1, then s = j and n−∆ + j = τ(n−∆ + j),

b) n−∆ + j ≥ k + 1, then s = j − 1 and n−∆ + j = τ(n−∆ + j − 1).

It remains only to check that 1 ≤ r ≤ s ≤ ∆− 1 holds. For this, we now discuss
all possible combinations for indices i and j according to the above cases:

1a) Then, r = i and s = j. Since 1 ≤ i ≤ j ≤ ∆, we only have to check that
j ≤ ∆ − 1. Indeed, if j = ∆, then from a) we get n ≤ k − 1, which is
impossible.

1b) Then, r = i and s = j − 1. It suffices to check that r ≤ s, i.e., i 6= j.
Indeed, assume that i = j. Then, the pair {i, n−∆ + i} belongs to R with
i ≤ k− 1 (as we are in case 1) for index i) and i ≥ k+ 1−n+ ∆ (as we are
in case b) for index j), which contradicts the condition (C5).

2a) Then, r = i − 1 and s = j. It suffices to check that r ≥ 1 and s ≤ ∆ − 1.
The first one holds since i ≥ 2 as we are in case 2) for index i. The second
one is also true, since we are in case a) for index j and k ≤ n.

2b) Then, r = i− 1 and s = j − 1. It suffices to check that r ≥ 1, which holds
since we are in case 2) for index i and thus i ≥ 2.

Thus we have shown that R ⊆ τ(E∆−1
n−1 ), which concludes the proof. �

7.2.3 Conclusion of the proof

In view of Lemmas 7.2.3 and 7.2.4, in order to conclude the proof of Theo-
rem 7.2.2, i.e., show that the inequality (7.6) holds, it suffices to find a set F ⊆ E∆

n

and a permutation τ of [n] satisfying the conditions (C1), (C2), (C4) and (C5).
For the permutation τ , we choose τ = (k, k + 1, . . . , n) as in Lemma 7.2.4,

thus τ(n) = k. It remains to construct the set F . This is the last step in the
proof which is a bit technical.
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The following terminology will be useful, regarding the pairs {i, n − ∆ + j}
(for 1 ≤ i ≤ j ≤ ∆) in the set E∆

n . We refer to the pairs {i, n − ∆ + i} (with
1 ≤ i ≤ ∆) as the diagonal pairs. Furthermore, for each 1 ≤ i0 ≤ ∆, we refer
to the pairs {i0, n − ∆ + j} (with i0 + 1 ≤ j ≤ ∆) as the horizontal pairs on
row i0, meaning the pairs of E∆

n in the row indexed by i0. Finally, for each
k0 = n−∆ + j0 such that 1 ≤ j0 ≤ ∆, we refer to the pairs {i, n−∆ + j0} (with
1 ≤ i ≤ j0 − 1) as the vertical pairs on column k0, meaning the pairs of E∆

n in
the column indexed by k0. Note that, in both horizontal and vertical pairs, the
diagonal pair {i, n−∆ + i} is not included. As an illustration see Figure 7.1.

?

?
...

?

. . .

. . .

?

?

?







n− ∆ + 1 k0 n− ∆ + i0 n

1

j0

i0

∆

vertical pairs

diagonal pairs

horizontal pairs

Figure 7.1: Vertical, diagonal and horizontal pairs in the set E∆
n .

Moreover, we denote by:

U = UR ∪ UC , where UR = {1, . . . ,∆}, UC = {n−∆ + 1, . . . , n},

the set consisting of the row and column indices for the nonzero entries of the
matrix B∆

n .
In the rest of the proof we indicate how to construct the set F . In view

of (C4), the set F must contain all the pairs in E∆
n that contain the index k.

Moreover, in view of (C5), F must contain all the diagonal pairs, except those
coming before the position (k+ 1−n+ ∆, k) on column k (if it exists) and those
coming after the diagonal position (k, n−∆+k) on row k (if it exists). Hence we
must discuss depending whether the index k belongs to the sets UR and/or UC .
Namely we consider the following four cases: (1) k 6∈ UR ∪ UC , (2) k ∈ UR \ UC ,
(3) k ∈ UC \UR, and (4) k ∈ UR ∩UC . In each of these cases, we define the set F
which, by construction, will satisfy the conditions (C1), (C4) and (C5). Hence it
will remain only to verify that condition (C2) holds in each of the four cases and
this is what we do below.

Case (1): k 6∈ UR ∪ UC .
Then, ∆ + 1 ≤ k ≤ n−∆, which implies ∆ ≤ (n− 1)/2. In this case we define F
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(a) Definition of set F for case (1).
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(b) Definition of set F for case (2).
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(c) Definition of set F for case (3).
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n− ∆ + 1 n− ∆ + h n− ∆ + k n

1

h

k

∆

(d) Definition of set F for case (4).

Figure 7.2: Different definition of set F for all 4 cases

as the set of all diagonal pairs (see Figure 7.2a at page 141), namely:

F = {{i, n−∆ + i} : 1 ≤ i ≤ ∆}.

To see that (C2) holds, let r 6= s ∈ [∆]; then min{π(r), π(n − ∆ + r)} 6=
min{π(s), π(n−∆+s)} holds. This is clear since the four indices π(r), π(n−∆+r),
π(s), and π(n−∆+s) are pairwise distinct. Indeed, if equality π(r) = π(n−∆ + s)
would hold, this would imply the inequalities: n−∆ + 1 ≤ r = n−∆ + s ≤ ∆
and thus ∆ ≥ (n+ 1)/2, a contradiction.

Case (2): k ∈ UR \ UC .
Then, 1 ≤ k ≤ ∆ and k ≤ n −∆. In this case we let F consist of the diagonal
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pairs till position (k, n−∆ + k) and then of the horizontal pairs on the k-th row
(see Figure 7.2b at page 141), namely:

F = {{i, n−∆ + i} : 1 ≤ i ≤ k} ∪ {{k, n−∆ + i} : k + 1 ≤ i ≤ ∆}.

In order to check that (C2) holds, we consider the following three cases:

• For r 6= s ∈ [k], we get min{π(r), π(n−∆ + r)} 6= min{π(s), π(n−∆+s)},
since the four indices π(r), π(n−∆ + r), π(s), π(n − ∆ + s) are pairwise
distinct (using the fact that k ≤ n−∆).

• For r 6= s ∈ {k + 1, . . . ,∆}, using π(k) = n, min{π(k), π(n − ∆ + r)} =
π(n−∆ + r) 6= min{π(k), π(n−∆ + s)} = π(n−∆ + s).

• Finally, for r ∈ [k] and s ∈ {k+1, . . . ,∆}, we have min{π(r), π(n−∆+r)} 6=
min{π(k), π(n−∆+s)} = π(n−∆+s). Indeed, π(r) 6= π(n−∆+s) (since
otherwise this would imply that n−∆+k+1 ≤ r = n−∆+s ≤ k and thus
n+1 ≤ ∆, a contradiction) and it is clear that π(n−∆+r) 6= π(n−∆+s).
The case for s ∈ [k] and r ∈ {k + 1, . . . ,∆} is symmetric.

Case (3): k ∈ UC \ UR.
This case corresponds to k = n−∆ +h, where 1 ≤ h ≤ ∆. Then, since k belongs
to the column indices, we have that n − ∆ + h = k ≥ ∆ + 1, which implies
∆ ≤ (n+ h− 1)/2.

In this case we let F consists of the vertical pairs on the k-th column and of
the diagonal pairs from position (k, n−∆ + k) (see Figure 7.2c at page 141), i.e,

F = {{i, k} : 1 ≤ i ≤ h− 1} ∪ {{i, n−∆ + i} : h ≤ i ≤ ∆}.

To see that (C2) holds, we consider the following three cases.

• For r 6= s ∈ [h− 1], π(r) = min{π(r), π(k)} 6= min{π(s), π(k)} = π(s).

• For r 6= s ∈ {h, . . . ,∆}, min{π(r), π(n−∆ + r)} 6= min{π(s), π(n−∆+s)},
since the four indices π(r), π(n−∆ + r), π(s), π(n − ∆ + s) are pairwise
distinct. Indeed, π(r) = π(n − ∆ + s) would imply: n − ∆ + h ≤ r =
n−∆ + s ≤ ∆ and thus ∆ ≥ (n+ h)/2, a contradiction.

• For r ∈ [h − 1] and s ∈ {h, . . . ,∆}, we have that min{π(r), π(k)} =
π(r) 6= min{π(s), π(n −∆ + s)}, since the indices π(r), π(s), π(n −∆ + s)
are pairwise distinct. Indeed, if π(r) = π(n − ∆ + s), then we have that
n−∆ + h ≤ r = n−∆ + s ≤ h− 1 and thus ∆ ≥ n+ 1, a contradiction.

Case (4): k ∈ UR ∩ UC = {n−∆ + 1, . . . ,∆}.
This case corresponds to k = n −∆ + h, where 1 ≤ h ≤ 2∆ − n. Moreover, we
have ∆ ≥ (n+ 1)/2.
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Then we let F consist of the vertical pairs on the k-th column, of the diagonal
pairs from position (h, n−∆+h) to position (k, n−∆+k), and of the horizontal
pairs on the k-th row (see Figure 7.2d at page 141), namely:

F = {{i, k} : 1 ≤ i ≤ h} ∪ {{i, n−∆ + i} : h+ 1 ≤ i ≤ k}
∪ {{k, n−∆ + i} : k + 1 ≤ i ≤ ∆}.

In order to check condition (C2), as F consists of the union of three subsets
we need to consider the following six cases.

• For r 6= s ∈ [h], min{π(r), π(k)} = π(r) 6= min{π(s), π(k)} = π(s).

• For r 6= s ∈ {h + 1, . . . , k}, we have that min{π(r), π(n−∆ + r)} 6=
min{π(s), π(n−∆ + s)}, since π(r), π(n − ∆ + r), π(s) and π(n − ∆ + s)
are pairwise distinct. Indeed, equality π(r) = π(n − ∆ + s) would imply
r = n−∆ + s and thus k+ 1 = n−∆ +h+ 1 ≤ n−∆ + s = r ≤ k, yielding
a contradiction.

• For r 6= s ∈ {k+1, . . . ,∆}, it holds min{π(k), π(n−∆+r)} = π(n−∆+r) 6=
min{π(k), π(n−∆ + s)} = π(n−∆ + s).

• For r ∈ [h] and s ∈ {h+ 1, . . . , k}, we have that min{π(r), π(k)} = π(r) 6=
min{π(s), π(n−∆+s)}, since the indices π(r), π(s), π(n−∆+s) are pairwise
distinct. Indeed, π(r) = π(n −∆ + s) would imply that n −∆ + h + 1 ≤
n−∆ + s = r ≤ h and thus ∆ ≥ n+ 1, a contradiction.

• For r ∈ [h] and s ∈ {k + 1, . . . ,∆}, then we have that min{π(r), π(k)} =
π(r) 6= min{π(k), π(n − ∆ + s)} = π(n−∆ + s), since the two indices
π(r), π(n−∆ + s) are distinct. Indeed, equality π(r) = π(n−∆ + s) would
imply that r = n − ∆ + s and thus 2(n − ∆) + h + 1 = n − ∆ + k + 1 ≤
n−∆ + s = r ≤ h, which implies ∆ ≥ n+ 1, a contradiction.

• For r ∈ {h+1, . . . , k} and s ∈ {k+1, . . . ,∆}, then min{π(r), π(n−∆+r)} 6=
min{π(k), π(n − ∆ + s)} = π(n − ∆ + s). Indeed, r = n − ∆ + s would
imply that n−∆ + k+ 1 ≤ n−∆ + s = r ≤ k, which implies ∆ ≥ n+ 1, a
contradiction.

Thus (C2) holds, which concludes the proof in case (4) and thus the proof of
the theorem.

7.2.4 Applications of the main result

We now formulate several applications of our main result in Theorem 7.2.2. As a
first direct consequence, we can show that the identity matrix is an optimal solu-
tion for QAP(A,B) whenever A is a Robinson similarity matrix, B is a Robinson
dissimilarity matrix, and at least one of A or B is a Toeplitz matrix.
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7.2.5 Theorem. Let A,B ∈ Sn and assume that A is a Robinson similarity
matrix, B is a Robinson dissimilarity matrix and moreover A or B is a Toeplitz
matrix. Then the identity permutation is an optimal solution for QAP(A,B).

Proof. Assume first that B is a Toeplitz matrix. Then, by Lemma 7.2.1, B is a
conic combination of the matrices B∆

n , i.e., B =
∑n−1

∆=1 λ∆B
∆
n for some scalars

λ∆ ≥ 0. Applying the inequality (7.5) in Theorem 7.2.2, we obtain that

〈Aπ, B〉 =
n−1∑

∆=1

λ∆〈Aπ, B∆
n 〉 ≥

n−1∑

∆=1

λ∆〈A,B∆
n 〉 = 〈A,B〉,

which shows that the identity permutation is optimal for QAP(A,B).
Assume now that A is a Toeplitz Robinson similarity (and B is a Robinson

dissimilarity). Then we simply exchange the roles of A and B after a simple
modification. Namely, let α and β denote the maximum value of the entries
of A and B, respectively. Let us define the two matrices B′ = αJ − A and
A′ = βJ − B. Then A′ is a Robinson similarity matrix and B′ is a Toeplitz
Robinson dissimilarity matrix. For any permutation π, by the previous result
applied to QAP(A′, B′), 〈(A′)π, (B′)〉 ≥ 〈A′, B′〉. If we compute the inner product
of both sides, we obtain 〈(A′)π, B′〉 = αβ〈Jπ, J〉 − α〈Jπ, A〉 − β〈Bπ, J〉+ 〈Bπ, A〉
and 〈A′, B′〉 = αβ〈J, J〉 − α〈J,A〉 − β〈B, J〉 + 〈B,A〉, from which we can easily
conclude that 〈A,Bπ〉 ≥ 〈A,B〉. Hence, this shows that the identity permutation
is optimal for QAP(A,B) and it concludes the proof. �

As a direct application, Theorem 7.2.5 extends to the case when the matrices
A and B are Robinsonian.

7.2.6 Corollary. Let A,B ∈ Sn. Assume that A is a Robinsonian similarity
matrix, B is a Robinsonian dissimilarity matrix, and let π, τ be permutations that
reorder A and B as Robinson similarity and dissimilarity matrices, respectively.
Assume furthermore that one of the matrices Aπ or Bτ is a Toeplitz matrix. Then
the permutation τ−1π is optimal for QAP(A,B).

Proof. Directly from Theorem 7.2.5, using relation (2.1). �

Finally we observe that the assumption that either A or B has a Toeplitz
structure cannot be omitted in Theorem 7.2.2. Indeed, consider the following
matrices:

A =




1 1 1 0 0

1 1 1 1 0

1 1 1 1 0

0 1 1 1 0

0 0 0 0 1



, B =




0 1 1 1 1

1 0 1 1 1

1 1 0 0 0

1 1 0 0 0

1 1 0 0 0
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so that A (resp., B) is a Robinson similarity (resp., dissimilarity). In this case,
the identity permutation gives a solution of value 〈A,B〉 = 8. Consider now the
permutation π = (4, 5, 1, 2, 3) which reorders A as follows:

Aπ =




1 0 0 1 1

0 1 0 0 0

0 0 1 1 1

1 0 1 1 1

1 0 1 1 1



.

This gives a solution of value 〈Aπ, B〉 = 4. Hence, in this case the identity
permutation is not optimal, and thus the Toeplitz assumption cannot be removed
in Theorem 7.2.2.

Our result can be seen as the analog for symmetric matrices of the above
mentioned result about QAP for monotone matrices (see Subsection 7.2.1), where
we replace the monotonicity property by the Robinson property (which implies
unimodal rows and columns).

Moreover, our result extends two previously known cases. The first case is
when the Robinson similarity A is a conic combination of interval-cut matrices
and the Robinson dissimilarity B is the Toeplitz matrix B = ((i − j)2)ni,j=1,
discussed above in Theorem 7.1.1 and considered in [56].

The second case is when the similarity matrix A is the adjacency matrix
of the path (1, 2 . . . , n− 1, n), which is Toeplitz, and B is a special Robinsonian
dissimilarity matrix which is metric and strongly monotone (i.e., Bjk = Bjl implies
Bik = Bil and Bjk = Bik implies Bjl = Bil, for all 1 ≤ i < j < k < l ≤ n.)
Then, QAP(A,B) corresponds to solving the minimum weight Hamiltonian path 1

problem on the undirected complete weighted graph represented by B, and it is
optimally solved by a Robinson ordering of B [31, Lemma 10]. Interestingly the
above class of strongly monotone Robinson dissimilarity metrics plays a central
role in the recognition algorithm of [31] for matrices that can be permuted to
Kalmanson matrices.

7.3 Conclusions and future work

In this chapter we discussed how to model the seriation problem as a special
instance of QAP(A,B), where both A and B are Robinson(ian) matrices and at
least one of the two has a Toeplitz structure. We have then shown that Robinson
orderings of A and B lead to an optimal solution for QAP(A,B). This result
highlights the importance of the Robinsonian recognition algorithms discussed in
Chapters 5 and 6.

1A Hamiltonian path of a graph is a path visiting each vertex of the graph exactly once.
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Furthermore, it motivates our interest in approximating the Robinsonian
structure when dealing with seriation, which will be discussed in Chapter 8.

An important open question is what is the complexity of QAP(A,B) when
keeping the Robinsonian assumption on both A and B and removing the Toeplitz
assumption in Theorem 7.2.5. As we have seen in the example above, in fact, the
identity permutation is in general not optimal anymore.



8
Robinsonian matrix approximation

In this chapter we discuss how to solve the seriation problem by finding a ‘close’
Robinsonian approximation of the original (non-Robinsonian) similarity matrix.
In Section 8.1 we give a short overview of the two main approaches to find such an
approximation. In Section 8.2 we define the l∞-FITTING-BY-ROBINSONIAN
problem and the ε-ROBINSONIAN-RECOGNITION problem. Then, in Sec-
tion 8.3 we introduce the ε-Similarity-First Search algorithm (ε-SFS), an exten-
sion of the SFS algorithm presented in Section 6, and we discuss a multisweep
algorithm to recognize ε-Robinsonian matrices based on ε-SFS. Finally, in Sec-
tion 8.4 we conclude with some possible directions for future work.

8.1 Combinatorial aspects

In Chapter 7 we have discussed how to model the seriation problem as an instance
of the Quadratic Assignment Problem (QAP). In this chapter, we discuss a dif-
ferent approach. The main difference with respect to the approach discussed in
Chapter 7 is that we try here to approximate the Robinsonian property as follows:
given a similarity matrix A ∈ Sn, the idea is to find another matrix AR ∈ Sk
with k ≤ n which is a ‘Robinsonian approximation’ of A. There exist two main
complementary variants in the literature to define such an approximation matrix.
We briefly discuss them providing some references. In both cases, we are given
as input a similarity matrix A ∈ Sn.

147
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The Robinsonian submatrix problem The problem consists in finding the
minimum cardinality subset S ⊆ [n] whose deletion makes A a Robinsonian ma-
trix or, equivalently, in finding the maximum cardinality subset S ⊆ [n] such that
A[S] is a Robinsonian matrix. This approach is used when the Robinsonian prop-
erty is obstructed by few outlier elements (e.g., because of error measurement),
and it is a well known practice in computational biology to detect inconsistencies
in experimental data [95]. The approximation of the new matrix AR = A[S] with
respect to the original similarity information A is evaluated in terms of the num-
ber of removals. This problem has been studied for unit interval graphs and the
consecutive ones problem (see e.g. [48, 12] and references therein). Specifically,
the problem of finding the largest consecutive ones submatrix is NP-complete [64]
as well as the UNIT INTERVAL VERTEX DELETION problem [80]. Given the
equivalence between unit interval graphs and 0/1 Robinsonian matrices (see Sub-
section 3.2.1), also the Robinsonian submatrix problem is a hard problem.

The ‘Fitting by a Robinsonian matrix’ problem This problem asks to
find a Robinsonian matrix AR ∈ Sn which is ‘close’ to a given proximity ma-
trix A. There exist different ways to define such a degree of ‘closeness’. A classic
approach is, for example, to use the Euclidean distance between the two matri-
ces. The topic of fitting a given proximity matrix by some structured matrix
is a wide topic in the field of multivariate data analysis. We thus refer the in-
terested reader to the book [70] and references therein for an exhaustive review
on the topic. In this paragraph we simply remark that the problem of fitting
proximity matrices by Robinsonian matrices has been investigated in the past
years. One of the reasons why the ‘fitting by a Robinsonian matrix’ problem
has been more studied than the ‘Robinsonian submatrix problem’ is due to the
relation between Robinsonian (dissimilarities) matrices and ultrametrics, which
are used in taxonomy and phylogenetic tree construction (see Subsection 3.1.2).
Specifically, Hubert and Arabie [68] investigated how to approximate proximity
matrices by sums of Robinsonian matrices using least-squares minimization, and
Hubert et al. [70] focused on the approximation by sums of strongly Robinsonian
matrices. Other relevant related results can be found in [54, 8, 29, 2, 17, 63].

In this chapter we discuss in more detail the problem of fitting a similarity
matrix by a Robinsonian matrix. The motivation for this choice is twofold. First
of all, we have seen in Chapter 7 that if A is Robinsonian then any Robinson or-
dering is an optimal solution of the seriation problem when modeled as a special
subclass of QAP. Therefore, intuitively, if A is not Robinsonian, the permutation
reordering a ‘close’ Robinsonian approximation of the original similarity matrix
could lead to a ‘good’ solution for the original seriation problem. Second, differ-
ently from the Robinsonian submatrix problem, the size of the input matrix is
not modified. Hence, comparing the solution returned by the fitting problem and
the quadratic program in Section 7 can be easily done by evaluating, e.g., the
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objective function of the QAP at the permutation of the elements of A returned
by the two approaches.

The results in this section are inspired by the papers [29, 30], as our work
in Chapter 6 can be naturally extended to their fitting model. Again, we treat
Robinsonian similarity matrices. Hence, when talking about Robinson(ian) ma-
trices, we mean Robinson(ian) similarities unless explicitly specified.

8.2 Fitting Robinsonian matrices

The problem of fitting a given proximity matrix A ∈ Sn consists in finding another
equally sized matrix A′ ∈ Sn which is ‘close’ to A. Standard approaches to define
the distance between two matrices are, for example, to use the lp-norm as error
measure for some 0 < p <∞, i.e.,:

‖A− A′‖p =


 ∑

x,y∈[n]

|Axy − A′xy|p



1
p

. (8.1)

In this case, the distance measure takes into account the sum of the differences
among the entries of the two matrices A and A′. We are interested in the special
case when the distance error is defined using the l∞-norm, i.e.,:

‖A− A′‖∞ = max
x,y,∈[n]

{|Axy − A′xy|}. (8.2)

In other words, the distance between the two matrices corresponds to the largest
difference between their entries. For the sake of ease, we will use the following
notation: when we write A ≥ B for some A,B ∈ Sn, we mean that the inequality
holds for each pair of indices, i.e., Axy ≥ Bxy for each x, y ∈ [n]. Hence, when we
write A ∈ [A−ε, A+ε] or A−ε ≤ A ≤ A+ε for some ε ≥ 0, we mean, respectively,
Axy ∈ [Axy − ε, Axy + ε] and Axy − ε ≤ Axy ≤ Axy + ε for each x, y ∈ [n]. We will
use the indices only when the relation does not hold for all pairs of vertices.

8.2.1 l∞-fitting Robinsonian matrices

The problem of finding the closest Robinsonian similarity to a given matrix A
can be modeled as an optimization problem as follows.

l∞-FITTING-BY-ROBINSONIAN problem Given a matrix A ∈ Sn find
a Robinsonian similarity matrix AR ∈ Sn closest to A for the `∞-norm, i.e.,

εopt = min
AR∈Sn

Robinsonian

‖A− AR‖∞. (8.3)
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Given a matrix A, we will refer to Axy as the nominal value of A for x, y ∈ [n].
Let us denote by εopt the optimal of the program (8.3). Then we have that
AR ∈ [A − εopt, A + εopt], so AR is a matrix obtained by perturbing each entry
of A by at most εopt.

Chepoi et al. [29] showed that l∞-FITTING-BY-ROBINSONIAN (8.3) is an
NP-hard problem. This answers an open question of Barthélemy and Brucker [8],
who earlier established the NP-hardness of the problem of finding an optimal ap-
proximation for the lp-norm (8.1) of a similarity matrix by a strongly Robinsonian
matrix, for 0 < p <∞. The complete result in [29] is given below.

8.2.1 Theorem. [29] The l∞-FITTING-BY-ROBINSONIAN problem (8.3) is
NP-hard to approximate within 3

2
− δ for any δ > 0.

Chepoi and Seston [30] recently introduced a factor 16-approximation algo-
rithm 1 for l∞-FITTING-BY-ROBINSONIAN (8.3).

On the other hand, the variant of problem (8.3) where we ask to find a Robin-
son similarity matrix closest to A for the `∞-norm, is easy to solve and admits in
fact an explicit solution. Consider the following problem.

l∞-FITTING-BY-ROBINSON problem Given a similarity matrix A ∈ Sn,
find a Robinson similarity matrix A∗ ∈ Sn closest to A for the `∞-norm, i.e.,

ε∗ = min
A∗∈Sn

Robinson

‖A− A∗‖∞. (8.4)

Hence, one can see l∞-FITTING-BY-ROBINSON (8.4) as a special case of
the l∞-FITTING-BY-ROBINSONIAN problem (8.3) restricted to a fixed permu-
tation π of [n].

We now show that the solution of l∞-FITTING-BY-ROBINSON (8.2) can be
easily computed in a closed form. Let us fix a linear order π of the index set of A
(e.g., the natural ordering). We then introduce two special matrices A+ and A−,
earlier introduced in [29] for dissimilarities. Both matrices are ordered according
to the same linear order π as A, and their entries are defined as follows:

A−xy = min{Auv : u, v ∈ [n], x ≤ u < v ≤ y} ∀x, y ∈ [n], (8.5)

A+
xy = max{Auv : u, v ∈ [n], u ≤ x < y ≤ v} ∀x, y ∈ [n]. (8.6)

In addition to the original definition in [29] given above, it will be useful to
also consider the following equivalent recursive definition of A+ and A−.

1Recall that an algorithm for a minimization problem Π is called an α-approximation algo-
rithm if for any instance I of Π it returns a solution whose value is at most α times the optimal
value OPTΠ(I) of Π on I.



8.2. Fitting Robinsonian matrices 151

8.2.2 Lemma. Let A ∈ Sn. Then, the following holds for each x < y ∈ [n]:

A−xy = min





Axy,

A−x,(y−1),

A−(x+1),y,

(8.7)

A+
xy = max





Axy,

A+
x,(y+1),

A+
(x−1),y,

(8.8)

where undefined and diagonal entries are ignored.

Proof. Use induction on the distance between indices x and y. �

The reason to introduce the above equivalent formulation is that A+ and A−

are easier to compute using (8.7) and (8.8) than using the formulas in (8.5)
and (8.6). Namely, one can compute the entries of A+ by ‘propagation’: starting
at the upper right corner and passing through the first row, then passing through
the second row from right to left, and so on. Analogously for A−, starting at
the upper diagonal left corner and passing through the first upper diagonal, then
passing through the second upper diagonal from top to bottom and so on. Fur-
thermore, using (8.7) and (8.8), it is immediate to derive some other important
properties of A+ and A−, which are already discussed in [29] and whose alterna-
tive proof is stated below.

8.2.3 Lemma. Let A ∈ Sn and consider the matrices A− as in (8.5) and A+ as
in (8.6). Then the following holds:

(i) A+ and A− are Robinson similarities,

(ii) A− ≤ A ≤ A+.

Furthermore, let B be a Robinson similarity. Then:

(iii) if B ≤ A then B ≤ A−,

(iv) if A ≤ B then A+ ≤ B.

Proof. (i) and (ii) are immediately proved using the recursive definition of A−

and A+ in (8.7) and (8.8). (iii) By definition of A− in (8.5) we have that A−xy =
Auv for some x ≤π u <π v ≤π y. Using the fact that B is a Robinson similarity
and B ≤ A, we get the relations Bxy ≤ Buv ≤ Auv = A−xy, which shows indeed
that B ≤ A−. (iv) By definition of A+ in (8.6) we have that A+

xy = Auv for some
u ≤π x <π y ≤π v. Using the fact that A ≤ B and B is Robinson, we obtain
the relations A+

xy = Auv ≤ Buv ≤ Bxy, for some u ≤π x <π y ≤π v, which shows
indeed that A+ ≤ B. �
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As a concrete example, consider the matrix A given below.

A =




1 2 3 4 5 6

1 ∗ 8 6 7 5 0
2 ∗ 22 15 14 11
3 ∗ 20 16 9
4 ∗ 21 12
5 ∗ 13
6 ∗




(8.9)

which is not Robinson. Then the corresponding matrices A− and A+ are the
following:

A− =




1 2 3 4 5 6

1 ∗ 8 6 6 5 0
2 ∗ 22 15 14 9
3 ∗ 20 16 9
4 ∗ 21 12
5 ∗ 13
6 ∗



, A+ =




1 2 3 4 5 6

1 ∗ 8 7 7 5 0
2 ∗ 22 15 14 11
3 ∗ 20 16 11
4 ∗ 21 12
5 ∗ 13
6 ∗



.

Hence, A− and A+ represent intuitively the lower and upper Robinson ap-
proximations of A, respectively (this is why they are denoted by ‘−’ and ‘+’).
We now present the closed form formula for the solution of l∞-FITTING-BY-
ROBINSON (8.4). Consider the following matrix:

A∗ :=
A− + A+

2
, (8.10)

which is the ‘average’ of A− and A+. Since in view of Lemma 8.2.3 both A− and
A+ are Robinson similarities, also A∗ is Robinson. As we show below, A∗ is not
only Robinson, but it is in fact the closest Robinson approximation of A. This
result is the analog of [30, Lemma 2.4] for dissimilarities, although our proof here
is a bit simpler.

8.2.4 Theorem. Let A ∈ Sn, let A∗ be as in (8.10), and let ε∗ be the optimal
value of the l∞-FITTING-BY-ROBINSON problem (8.4). Then A∗ is optimal for
l∞-FITTING-BY-ROBINSON (8.4). Furthermore, ‖A−A−‖∞ = ‖A−A+‖∞ =
‖A+ − A−‖∞ = 2ε∗.

Proof. Let Â be an optimal solution of l∞-FITTING-BY-ROBINSON (8.4). Then
ε∗ = ‖A− Â‖∞ and thus the following inequalities hold.

−ε∗ ≤ A− Â ≤ ε∗,
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which we can rewrite equivalently as:

Â− ε∗ ≤ A ≤ Â+ ε∗. (8.11)

Since Â is Robinson, then Â± ε∗ is also Robinson. Hence, consider B = Â− ε∗,
which is Robinson. Then, using (8.11) we get B ≤ A, and in view of Lemma 8.2.3
we have B = Â− ε∗ ≤ A−. Analogously, consider now B = Â+ ε∗, which is also
Robinson. Then, using (8.11) we get A ≤ B, and in view of Lemma 8.2.3 we have
A+ ≤ Â+ ε∗ = B. We then get the following chain of inequalities:

Â− ε∗ ≤ A− ≤ A ≤ A+ ≤ Â+ ε∗. (8.12)

On the other hand, using the definition of A∗ in (8.10), we have:

A− A∗ = A− A+ + A−

2
=

1

2

(
A− A+

)
+

1

2

(
A− A−

)
.

Then, in view of Lemma 8.2.3 we have that on the right-hand side (A−A+) ≤ 0
while (A− A−) ≥ 0. Therefore the following inequalities hold:

1

2

(
A− A+

)
≤ A− A∗ ≤ 1

2

(
A− A−

)
.

Finally, using the above inequalities and (8.12) we get:

1

2

(
A− Â− ε∗

)
≤ 1

2

(
A− A+

)
≤ A− A∗ ≤ 1

2

(
A− A−

)
≤ 1

2

(
A− Â+ ε∗

)
.

Since ε∗ ≤ A− Â ≤ ε∗, we get that:

− ε∗ ≤ 1

2

(
A− A+

)
≤ A− A∗ ≤ 1

2

(
A− A−

)
≤ ε∗. (8.13)

This implies: ‖A−A∗‖∞ ≤ ε∗, ‖A−A−‖∞ ≤ 2ε∗, ‖A−A+‖∞ ≤ 2ε∗. Using (8.12),
we have A+−A− ≤ 2ε∗, which implies ‖A+−A−‖∞ ≤ 2ε∗. Since ε∗ is the optimal
value of l∞-FITTING-BY-ROBINSON (8.4) and A∗ is Robinson, then equality
‖A − A∗‖∞ = ε∗ must hold. Hence, there exist distinct x, y ∈ [n] such that
|Axy − A∗xy| = ε∗. Say Axy − A∗xy = ε∗ to fix ideas (the case Axy − A∗xy = −ε∗ is
analogous). Then equality holds in the two rightmost inequalities in (8.13), i.e.,:

Axy − A∗xy =
1

2
(Axy − A−xy) = ε∗,

which in turn implies A+
xy − A−xy = Axy − A−xy = 2ε∗. This already gives the

equalities ‖A − A−‖∞ = 2ε∗ and ‖A+ − A−‖∞ = 2ε∗. We finally show that also
‖A+ − A‖∞ = 2ε∗ holds. Using definition (8.5) for A−, there exist u, v such that
x ≤ u < v ≤ y and A−xy = Auv = Axy − 2ε∗. Using now the definition (8.6) for
A+
uv, we deduce that A+

uv ≥ Axy = A−xy+2ε∗ = Auv+2ε∗ and thus A+
uv−Auv ≥ 2ε∗,

which implies equality ‖A+ − A‖∞ = 2ε∗. This concludes the proof. �
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There are two substantial differences with respect to the result in [30] above
mentioned. First, our optimal solution A∗ for l∞-FITTING-BY-ROBINSON (8.4)
is easier to compute using the recursive formulas (8.7) and (8.8). Second, A∗ has
fewer modified entries than if we would use the corresponding dissimilarity in [30].

Just to give an idea, we give below our optimal solution for l∞-FITTING-BY-
ROBINSON (8.4), denoted by A∗, and the optimal solution for l∞-FITTING-
BY-ROBINSON (8.4) as described in [30], denoted by Ã.

A∗ =




1 2 3 4 5 6

1 ∗ 8 6.5 6.5 5 0
2 ∗ 22 15 14 10
3 ∗ 20 16 10
4 ∗ 21 12
5 ∗ 13
6 ∗



, Ã =




1 2 3 4 5 6

1 ∗ 7 6 6 4 0
2 ∗ 21 14 13 10
3 ∗ 19 15 10
4 ∗ 20 11
5 ∗ 12
6 ∗



.

Note that in both cases the largest difference with respect to the matrix in (8.9)
is equal to ε∗ = 1. However, looking for the smallest number of modifications to
build a Robinson matrix can indeed be relevant in understanding how far is a
matrix from being Robinson.

To recap, the l∞-FITTING-BY-ROBINSON problem (8.4) is easily solvable
by the matrix defined in (8.10). In other words, for any fixed permutation π of [n],
the l∞-FITTING-BY-ROBINSONIAN problem (8.3) becomes easy to solve. The
hardness arises from the fact that we need to choose also the permutation π.
Indeed, l∞-FITTING-BY-ROBINSONIAN (8.3) is equivalent to solve n! times the
l∞-FITTING-BY-ROBINSON problem (8.4) and then choose the permutation
leading to the best error.

8.2.2 ε-Robinsonian recognition

As mentioned in [30], one can rephrase the l∞-FITTING-BY-ROBINSONIAN
problem (8.3) as a combinatorial problem by relaxing the notions of Robinsonian
matrix and of Robinson ordering. Specifically, given a symmetric matrix A ∈ Sn
and a real number ε ≥ 0, we introduce the notions of ε-Robinsonian matrix and
of ε-Robinson ordering.

8.2.5 Definition. (ε-Robinsonian) Given A ∈ Sn and a real number ε ≥ 0, A
is ε-Robinsonian if there exists a permutation π of [n] such that:

Axz ≤ min{Axy, Ayz}+ ε ∀ x <π y <π z. (8.14)

We then call such a permutation π an ε-Robinson ordering of A.

Clearly, if A is Robinsonian then the inequality (8.14) is always satisfied. Fur-
thermore, if condition (8.14) holds, then the following four-points condition (8.15)
also holds.
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8.2.6 Lemma. Let A ∈ Sn be a similarity matrix, ε ≥ 0 be a real number. If a
linear order π of [n] is an ε-Robinson ordering of A then:

Auv ≤ Axy + 2ε ∀ u ≤π x <π y ≤π v. (8.15)

Proof. Applying condition (8.14) to the triples (u, y, v) and (u, x, y) we have that
Auv ≤ Auy + ε ≤ (Axy + ε) + ε = Axy + 2ε. �

We now establish a relationship between ε-Robinsonian matrices and the l∞-
FITTING-BY-ROBINSONIAN problem (8.3).

8.2.7 Lemma. Let A ∈ Sn, ε ≥ 0 and let π be an ordering of [n]. Consider
the matrix (Aπ)∗ defined by the condition (8.10) applied to Aπ and the following
statements:

(1) π is a ε-Robinson ordering of A.

(2) ‖Aπ − (Aπ)∗‖∞ ≤ ε,

(3) The matrix ((Aπ)∗)π−1 lies in [A− ε, A+ ε].

(4) there exists a Robinsonian matrix AR ∈ [A − ε, A + ε] admitting π as a
Robinson ordering.

(5) π is a 2ε-Robinson ordering of A.

Then (1)⇒ (2)⇒ (3)⇒ (4)⇒ (5).

Proof. (1) ⇒ (2): To simplify notation, assume that π is the natural order and
set ε∗ = ‖A − A∗‖∞. Assume for contradiction that ε∗ > ε. Consider x, y ∈ [n]
such that ε∗ = |Auv − A∗uv| and, to fix ideas, suppose ε∗ = Auv − A∗uv (the case
ε∗ = A∗uv−Auv is analogous). Using the fact that A ≤ A+ in view of Lemma 8.2.3
and the definition of A∗ in (8.10), we obtain:

ε∗ = Auv − A∗uv =
Auv − A+

uv

2
+
Auv − A−uv

2
≤ Auv − A−uv

2
,

and thus Auv − A−uv ≥ 2ε∗ > 2ε. Using the definition (8.5) for A−, there exists
x, y ∈ [n]such that u ≤ x < y ≤ v and A−uv = Axy. This gives Auv > Axy + 2ε,
which contradicts (8.15) and thus, in view of Lemma 8.2.6, the assumption that π
is a ε-Robinson ordering of A.

(2) ⇒ (3): By assumption, (Aπ)∗ lies in [Aπ − ε, Aπ + ε] and thus ((Aπ)∗)π−1

lies in [A− ε, A+ ε].
(3) ⇒ (4): We may choose AR = ((Aπ)∗)π−1 , since π is a Robinson ordering

of AR, as (Aπ)∗ is a Robinson matrix by definition.
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(4) ⇒ (5): Assume π is a Robinson ordering of AR ∈ [A − ε, A + ε]. Then
ARxz ≤ min{ARxy, ARyz} for all x <π y <π z. Since AR ∈ [A− ε, A+ ε] we get that:

Axz − ε ≤ ARxz ≤ min{ARxy, ARyz} ≤ min{Axy, Ayz}+ ε.

This implies Axz ≤ min{Axy, Ayz} + 2ε, thus stating that π is a 2ε-Robinson
ordering of A. �

The l∞-FITTING-BY-ROBINSONIAN problem (8.3) is then closely related
to the problem of finding the smallest ε such that A is ε-Robinsonian, as stated
by the next corollaries.

8.2.8 Corollary. Let A ∈ Sn and ε ≥ 0. Consider the following statements:

(1) A is ε-Robinsonian,

(2) there exists a Robinsonian matrix AR ∈ [A− ε, A+ ε],

(3) A is 2ε-Robinsonian.

Then (1)⇒ (2)⇒ (3).

Proof. Direct application of Lemma 8.2.7. �

8.2.9 Corollary. Let A ∈ Sn and let εopt be the optimal value of l∞-FITTING-
BY-ROBINSONIAN (8.3). Let ε ≥ 0 the smallest real number such that A is
ε-Robinsonian. Then εopt ≤ ε ≤ 2εopt.

Proof. Direct application of Corollary 8.2.8. �

Hence, roughly speaking, finding the smallest ε such that A is ε-Robinsonian
produces bounds on l∞-FITTING-BY-ROBINSONIAN (8.3). To find such ε, it
can be useful to recognize ε-Robinsonian matrices, i.e., answering the following
decision problem.

ε-ROBINSONIAN-RECOGNITION problem Given a similarity matrix
A ∈ Sn and a real number ε > 0, is A ε-Robinsonian?

Chepoi et al. [29] show that the ε-ROBINSONIAN-RECOGNITION problem
is NP-complete. We now show that the optimal value εopt of FITTING-BY-
ROBINSONIAN (8.3) is contained in a finite set which depends on the values of
the entries of the similarity matrix A. The result given below is an alternative
proof of [29, Lemma 4.5].

8.2.10 Lemma. Let A ∈ Sn and let εopt be the optimal value of l∞-FITTING-
BY-ROBINSONIAN (8.3). Then εopt ∈ ∆ := {|Axy − Auz|/2 : u, x, y, z ∈ [n]}.
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Proof. Let AR be an optimal solution of l∞-FITTING-BY-ROBINSONIAN (8.3)
and let π be a Robinson ordering of AR. We claim that (AR)π is a Robinson
matrix which is closest to Aπ. Indeed:

εopt = ‖A−AR‖∞ = ‖Aπ−(AR)π‖∞ ≥ ‖Aπ−(Aπ)∗‖∞ = ‖A−((Aπ)∗)π−1‖∞ ≥ εopt

where for the first inequality we used the fact that (Aπ)∗ is a Robinson matrix
closest to Aπ (Theorem 8.2.4) and for the last inequality we used the fact that
the matrix ((Aπ)∗)π−1 is Robinsonian. Hence, equality holds throughout and
thus (AR)π is also an optimal solution of l∞-FITTING-BY-ROBINSON (8.4) for
matrix Aπ. Applying Theorem 8.2.4 we can deduce that:

2εopt = ‖Aπ − (Aπ)+‖∞ = max
x,y,∈[n]

{|Aπ(x),π(y) − A+
π(x),π(y)|}

Using relation (8.6) we have that A+
π(x),π(y) = Aπ(u),π(v) for some u, x, y, v, and

therefore we get that:

ε∗ =
1

2
(|Auv − Axy|)

which concludes the proof. �

In other words, the optimal error of l∞-FITTING-BY-ROBINSONIAN (8.3)
belongs to the set ∆ obtained by computing all the differences among the values
of the entries of A, which is a discrete set and can be enumerated in polynomial
time by comparing all the possible entries of the matrix A. If the matrix is given
as adjacency matrix, the size of ∆ is thus O(n4), whereas if it is given as an
adjacency list, the size of ∆ is O(m2).

Hence, instead of solving FITTING-BY-ROBINSONIAN (8.3) by finding the
right permutation π among n! possible permutations, one can check whether A
is ε-Robinsonian (i.e., it admits an ε-Robinson ordering) for each ε ∈ ∆. Then,
in view of Corollary 8.2.7, the smallest ε for which A is ε-Robinsonian leads to
an upper bound for FITTING-BY-ROBINSONIAN (8.3). In this setting, Chepoi
and Seston [30] defined a sophisticated approximation algorithm which returns a
16εopt-Robinson ordering of A and which runs in O(n6 log n) time.

8.3 The ε-multisweep algorithm

We present a new heuristic for l∞-FITTING-BY-ROBINSONIAN (8.3). Roughly
speaking, we extend the SFS algorithm (Algorithm 6.1) to the case when an
additional parameter ε is given in input. We denote by ε-SFS this new variant
of SFS. As for SFS, we use ε-SFS in a multisweep algorithm. Since in view
of Lemma 8.2.10 the optimal value of l∞-FITTING-BY-ROBINSONIAN (8.3) is
contained in the set ∆ = {|Axy − Auz|/2 : u, x, y, z ∈ [n]}, which has polynomial
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size, we can then repeat the multisweep algorithm for each ε ∈ ∆ as in [30], and
return the smallest ε for which an ε-Robinson ordering is found.

As in Chapters 5 and 6, we may assume without loss of generality that the
matrix A is nonnegative and we denote by 0 = α0 < · · · < αL the distinct values
assumed by its entries.

8.3.1 ε-Similarity-First Search

In order to extend the SFS algorithm to solve seriation when the similarity matrix
is not Robinsonian, we relax the concept of similarity partition of a given element p
(Definition 6.3.2), in a similar fashion as in Definition 8.2.5.

8.3.1 Definition. (ε-similarity partition) Consider a nonnegative matrix A ∈
Sn and an element p ∈ [n]. Let a1 > . . . > as > 0 be the distinct values taken
by the entries Apx of A for x ∈ N(p) = {y ∈ [n] : Apy > 0} and, for i ∈ [s],
set Cε

i = {x ∈ N(p) : x /∈ Cε
1 ∪ · · · ∪ Cε

i−1, |Apx − ai| ≤ 2ε}. Then we define
ψεp = (Cε

1, . . . , C
ε
s) (keeping only nonempty classes), which we call the ε-similarity

partition of N(p) with respect to p.

In other words, we group in the same blocks of ψεp the elements of N(p) which
are similar up to a 2ε-error. Hence, ε represents the sensitivity of partitioning the
neighborhood N(p) of the pivot p at each iteration of the ε-SFS algorithm. It is
clear that ψεp reduces to the definition of ψp in Definition 6.3.2 if ε = 0. On the
other hand, say εmax = αL−α0

2
represents the largest entry in ∆; then ψεp = (N(p))

for ε = εmax.
Hence, we can directly extend the SFS algorithm to the case when a param-

eter ε is given as additional input (Algorithm 8.1). Basically, the only difference
with respect to the classic SFS algorithm is that instead of using the original
similarity partition ψp (see Definition 6.3.2) we now use the relaxed ε-similarity
partition ψεp (see Definition 8.3.1), while the other operations are left unchanged.

For ε = 0 Algorithm 8.1 reduces to Algorithm 6.1. As for the multisweep
algorithm in Chapter 6, we define the variant ε-SFS+ where the ties at line 4 in
Algorithm 8.1 are broken using a linear order given as additional input to the
algorithm. This variant will be used to define the multisweep algorithm based
on ε-SFS.

8.3.2 ε-Robinson orderings

The output of the ε-SFS algorithm (Algorithm 8.1) is a linear order of [n]. As
for the SFS multisweep algorithm (Algorithm 6.3), the idea is now to compute a
finite number of ε-SFS+ sweeps, each one of which takes as input the linear order
returned by the previous sweep. The only difference is that this time, instead
of checking if the current sweep σi is a Robinson ordering, we would need to
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Algorithm 8.1: ε-SFS (A, ε)

input: a nonnegative matrix A ∈ Sn and a real number ε ≥ 0
output: a linear order σ of [n]

1 φ = (V )
2 for i = 1, . . . , n do
3 S is the first class of φ
4 choose p arbitrarily in S
5 σ(p) = i
6 remove p from φ
7 N(p) is the set of vertices y ∈ φ with Apy > 0
8 ψεp is the ε-similarity partition of N(p) with respect to p

9 φ =Refine (φ, ψεp)

10 return: σ

check if it is a ε-Robinson ordering for A, i.e., if relation (8.14) holds. Since
this task requires O(n3) time, we adopt the following strategy, which is based
on Lemma 8.2.7 and which requires only O(n2) time. Specifically, we compute
the Robinson matrix (Aσi)

∗, obtained by applying definition (8.10) to Aσi . Let
εi = ‖Aσi − (Aσi)

∗‖∞. Then we have to distinguish two cases:

1) If εi ≤ ε then ((Aσi)
∗)σ−1

i
is a Robinsonian matrix lying in [A− εi, A+ εi] ⊆

[A−ε, A+ε] and thus, in view of Lemma 8.2.7, σi is a 2ε-Robinson ordering
of A (in fact a 2εi-Robinson ordering).

2) If εi > ε then, again in view of Lemma 8.2.7, σi is not an ε-Robinson order-
ing of A. Furthermore, since εi is the optimal value of the l∞-FITTING-
BY-ROBINSON problem (8.4) applied to (Aσi), then there cannot exist a
Robinsonian matrix AR ∈ [A− ε, A+ ε] whose Robinson ordering is σi.

In other words, if εi ≤ ε then, by Corollary 8.2.9, εi represents an upper bound
on the optimal value of the l∞-FITTING-BY-ROBINSONIAN problem (8.3).

We thus introduce the following multisweep procedure (Algorithm 8.2), which
is the natural extension of Algorithm 6.3 applied to solve seriation when the
similarity matrix A is not Robinsonian. Given a matrix A and a real number
ε ≥ 0, the algorithm returns a positive answer if a 2ε-Robinson ordering is found,
and a negative answer otherwise.

It is important to note that, while Algorithm 6.3 is a Robinsonian recogni-
tion algorithm (i.e., it returns a linear order π if and only if A is Robinsonian),
Algorithm 8.2 is only a heuristic. In fact, we return a positive answer only if one
of the computed linear orders σi is 2ε-Robinson. Therefore, it could be that the
given matrix is 2ε-Robinsonian but none of the linear orders σi is a 2ε-Robinson
ordering.
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Algorithm 8.2: ε-Robinson(A, ε)

input: a matrix A ∈ Sn and a real number ε ≥ 0
output: TRUE if a 2ε-Robinson ordering of A is found, FALSE if not

1 σ0 = ε-SFS(A, ε)
2 for i = 1, . . . n− 2 do
3 σi = ε-SFS+(A, ε, σi−1)
4 εi = ‖Aσi − (Aσi)

∗‖∞, using (8.10) applied to Aσi to compute (Aσi)
∗

5 if εi ≤ ε then
6 return: TRUE: σi is a 2ε-Robinson ordering

7 return: FALSE: No 2ε-Robinson ordering has been found.

8.3.3 ε-SFS-based heuristic

We can finally introduce the (heuristic) algorithm to solve seriation when the
similarity matrix A is not Robinsonian, using Algorithm 8.2,

We may assume that the elements in ∆ are all distinct and sorted by increasing
values, after an appropriate preprocessing step. Then, starting from ε = 0 (recall
that we assume the matrix to be nonnegative) we scan the set ∆ until we find the
first ε such that Algorithm 8.3 returns a positive answer, i.e., A is 2ε-Robinsonian.
Note that, for ε = 0, Algorithm 8.2 reduces to Algorithm 6.3. For the sake of ease,
here we use Algorithm 8.2 also for ε = 0 but in practice one might want to first
run Algorithm 6.3 for ε = 0 and then compute ∆ (which is time consuming) and
repeat Algorithm 8.2 for ε > 0. It is easy to see that Algorithm 8.3 will always
return a positive answer, as any ordering π is ε-Robinson for A when ε = εmax,
where εmax denotes the largest element in ∆.

We could not immediately prove that if Algorithm 8.2 returns a positive
answer for some ε ∈ ∆, then it must return a positive answer also for every
ε < ε′ ∈ ∆. For this reason, we could not implement binary search algorithms
over the set ∆, which is more efficient than scanning it from the lowest to the
highest value.

As already mentioned before, our algorithm is a heuristic. It is not able to
state that A is not ε-Robinsonian, but it only returns that A is 2ε-Robinsonian
if at some point in Algorithm 8.2 a 2ε-Robinson ordering σi is found. Hence, it
might return a negative answer even though A is 2ε-Robinsonian, just because
it cannot ‘see’ the correct 2ε-Robinson ordering. This is is coherent with the
fact that the ε-ROBINSONIAN-RECOGNITION problem is NP-complete, and
consequently it is not possible to recognize ε-Robinsonian matrices in polynomial
time. Analyzing the quality of the approximation ε returned by Algorithm 8.3
will be carried out in Chapter 9.
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Algorithm 8.3: ε-Robinsonian(A)

input: a nonnegative matrix A ∈ Sn
output: a real number ε ≥ 0 such that A is 2ε-Robinsonian

1 Construct the list ∆ = {|Axy − Auz|/2 : u, x, y, z ∈ [n]} and sort it
2 εmax is the largest element in ∆
3 ε = 0
4 while ε ≤ εmax do
5 if ε-Robinson(A, ε) is TRUE then
6 return: ε
7 else
8 ε is updated to the next value in ∆

We now analyze the complexity of Algorithm 8.3. As for the complexity
analysis in Chapter 5 and 6, we assume that A ∈ Sn is a nonnegative symmetric
matrix, given as adjacency list of an undirected weighted graph G = (V = [n], E).
So G is the support graph of A, whose edges are the pairs {x, y} such that Axy > 0
with edge weight Axy, and N(x) = {y ∈ V : Axy > 0} is the neighborhood
of x ∈ V . We assume that each vertex x ∈ V = [n] is linked to the list of
vertex/weight pairs (y, Axy) for its neighbors y ∈ N(x) and we let m denote the
number of nonzero entries of A.

We may also assume that the support graph G associated to A is connected,
as this implies that m ≥ n − 1 and lead to a more compact complexity bound.
Furthermore, this is a reasonable and smart preprocessing step to speed up the
algorithm in practice, by splitting the problem in smaller subproblems. Hence,
when we say that A is connected, we actually mean the support graph G of A.
Then the following holds.

8.3.2 Lemma. Algorithm 8.3 applied to an n × n symmetric nonnegative and
connected matrix A ∈ Sn with m nonzero entries runs in O(m3n log n) time.

Proof. The algorithm consists of two main tasks: compute the ordered set ∆ and
run Algorithm 8.2 for each ε ∈ ∆.

(1) To compute ∆ we need to compare the distinct values taken by the entries
of A, which can be done in O(n2) time. Moreover, as |∆| = O(m2), the
set ∆ can be sorted in O(m2 logm).

(2) The most expensive task in Algorithm 8.2 is to run the ε-SFS algorithm.
It is easy to see that the complexity of Algorithm 8.1 is the same as for
the classic SFS algorithm (Algorithm 6.1), as the only difference is the
definition of the similarity partition ψεp, which does not affect the overall
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complexity of the SFS routine. Furthermore, as already mentioned earlier
in Subsection 8.3.2, checking if π is a 2-ε-Robinson ordering can be done in
O(n2) by computing (Aπ)∗. Hence, using the result in Theorem 6.5.10, we
can claim that Algorithm 8.2 runs in O(n2 + mn log n) time. In the worst
case, we repeat Algorithm 8.2 at most O(|∆|) ≤ O(m2) times. Therefore,
the final complexity of Algorithm 8.2 is O((n2 +mn log n)m2).

The overall complexity complexity of Algorithm 8.3 is given by the sum of the
above two tasks, i.e., O(m2 logm + n2m2 + m3n log n). Since we assumed A to
be connected, then the above complexity is bounded by O(m3n log n). �

Note that to speed up the heuristic one could simply fix the number of sweeps
in the ε-multisweep algorithm to a constant factor, in which case the overall
complexity would be O(m3 log n).

8.3.4 Example

We discuss an example showing how Algorithm 8.3 works concretely on the ex-
ample in (8.9). The set ∆ (containing εopt) is:

∆ =

{
0,

1

2
, 1,

3

2
, . . . ,

21

2
, 11

}
.

We start exploring the set ∆ from the smallest value.

First iteration (ε = 0) The first three sweeps of Algorithm 8.2 are given in
Figure 8.1. After the third sweep Algorithm 8.2 will loop between permutations
returned in the first two sweeps. Hence, the final ordering is π = (1, 2, 4, 3, 5, 6).
We cannot claim that it is 2-ε-Robinson, because the matrix (Aπ)∗ has distance
to the original matrix A equal to ε∗ = 7

2
> ε.

(Aπ)∗ =




1 2 4 3 5 6

1 ∗ 8 7 6 5 0
2 ∗ 18.5 18.5 14 10
4 ∗ 20 16 10
3 ∗ 21 12
5 ∗ 13
6 ∗




Second iteration
(
ε = 1

2

)
The first three sweeps of Algorithm 8.2 are given

in Figure 8.2 at page 163. After the third sweep Algorithm 8.2 will loop again
between the first two permutations, returning the same order as the fourth iter-
ation.
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Third iteration (ε = 1) The first sweep of Algorithm 8.2 is given in Figure 8.3.
The ordering returned after the first sweep is π = (1, 2, 3, 4, 5, 6), and the matrix
(Aπ)∗ is the same as A∗ at page 154. Since ε∗ = ‖Aπ − (Aπ)∗‖ = 1 and ε∗ ≤ ε,
then π is 2ε-Robinson and we stop Algorithm 8.3. In this case ε∗ = εopt = 1 is the
optimal solution of the l∞-FITTING-BY-ROBINSONIAN problem (8.3). Note
that the queues of the ε-SFS algorithm change with respect of the given ε.

1 2 3 4 5 6

1 2 4 3 5 6

8 7 6 5 0

1 2 4 3 5 6

15 22 14 11

1 2 4 3 5 6

20 21 12

1 2 4 3 5 6

16 9

1 2 4 3 5 6

13

(a) first sweep

6 5 3 4 2 1

6 5 4 2 3 1

13 12 11 9 0

6 5 4 2 3 1

21 14 16 5

6 5 4 2 3 1

15 20 7

6 5 4 2 3 1

22 8

6 5 4 2 3 1

6

(b) second sweep

1 3 2 4 5 6

1 2 4 3 5 6

8 7 6 5 0

1 2 4 3 5 6

15 22 14 11

1 2 4 3 5 6

20 21 12

1 2 4 3 5 6

16 9

1 2 4 3 5 6

13

(c) third sweep

Figure 8.1: Iterations of ε-SFS for ε = 0: in bold the pivot which is chosen at the
current iteration; above the blocks, the similarity between the new pivot and the
vertices in the classes of the queue.

1 2 3 4 5 6

1 2 4 3 5 6

8 6 0

1 2 4 3 5 6

15 22 14 11

1 2 4 3 5 6

20 21 12

1 2 4 3 5 6

16 9

1 2 4 3 5 6

13

(a) first sweep

6 5 3 4 2 1

6 5 4 2 3 1

13 11 9 0

6 5 4 2 3 1

21 14 16 5

6 5 4 2 3 1

15 20 7

6 5 4 2 3 1

22 8

6 5 4 2 3 1

6

(b) second sweep

1 3 2 4 5 6

1 2 4 3 5 6

8 6 0

1 2 4 3 5 6

15 22 14 11

1 2 4 3 5 6

20 21 12

1 2 4 3 5 6

16 9

1 2 4 3 5 6

13

(c) third sweep

Figure 8.2: Iterations of ε-SFS for ε = 1
2
: in bold the pivot which is chosen at the

current iteration; above the blocks, the similarity between the new pivot and the
vertices in the classes of the queue.
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1 2 3 4 5 6

1 2 3 4 5 6

8 5 0

1 2 3 4 5 6

22 15 14 11

1 2 3 4 5 6

20 16 9

1 2 3 4 5 6

21 12

1 2 3 4 5 6

13

Figure 8.3: Iterations of ε-SFS for ε = 1: in bold the pivot which is chosen at the
current iteration; above the blocks, the similarity between the new pivot and the
vertices in the classes of the queue.

8.4 Conclusions and future work

In this chapter we discussed how to solve the seriation problem when the similar-
ity matrix A is not Robinsonian, by finding a ‘close’ Robinsonian approximation.
After a short overview of the l∞-FITTING-BY-ROBINSONIAN problem and ε-
ROBINSONIAN-RECOGNITION problem, we introduced the ε-Similarity-First
Search algorithm (ε-SFS), an extension of the SFS algorithm presented in Chap-
ter 6 to the case when the input matrix is not Robinsonian. We then discussed
a multisweep algorithm to recognize ε-Robinsonian matrices based on ε-SFS. We
could not prove any immediate result on the quality of the solution returned
by Algorithm 8.3. Nevertheless, we think that the ε-SFS multisweep algorithm
illustrates well the potential of the SFS algorithm. Indeed, the main difference be-
tween the classic SFS algorithm and the ε-SFS algorithm is given by the different
definitions of Similarity Partition (see Definition 6.3.2) and ε-similarity partition
(see Definition 8.3.1). Hence, in principle, one could define, e.g, a k-similarity
partition, where the neighborhood N(p) of the pivot p is partitioned in classes
consisting of k similar vertices. In any case, the structure of the SFS multisweep
algorithm would remain unchanged. Therefore, the SFS algorithm could be used
to develop several different heuristics for the seriation problem, not only the one
discussed in this chapter.

An open question is whether it can be proven that the error made by our
algorithm can actually be bounded by a constant approximation factor or not. A
possible approach could be, for example, to relax the concept of anchor introduced
in Chapter 6 to the notion of ε-anchor (analogously to the relaxation done for
Robinson ordering and of SFS), and then extend the results in Chapter 6.



9
Computational experiments

In this final chapter we give some computational experiments regarding the per-
formance of Algorithm 5.5, Algorithm 6.3 and Algorithm 8.3. In Section 9.1 we
discuss how to design the experiments, i.e., how to generate seriation instances
and which parameters to take into account to compare the performance of the
algorithms. In Section 9.2 we give the results of the experiments for Robinso-
nian matrices. In Section 9.3 we give the results of the experiments for non-
Robinsonian matrices. Finally, in Section 9.4 we conclude the chapter comment-
ing the performance of our new Robinsonian recognition algorithms.

9.1 Design of experiments

The main goal of this chapter is to give some insights on how the algorithms
introduced in this thesis perform in practice. In order to do so, we define five
parameters aimed to represent some structural important properties of a matrix
(e.g., density or number of distinct values). We then generate several scenarios by
choosing different combinations of the parameters, and we compare the algorithms
on such different scenarios in order to see if the performance of the algorithms is
affected by special structures of the data. As benchmark, we will use the spectral
algorithm of Atkins et al. [5] discussed in Subsection 3.2.3. Our motivation for
this choice is based on the fact that it is easy to implement and, to the best of
our knowledge, the other recognition algorithms presented in Subsection 3.2.2 are

165
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not implemented or not available.
A crucial point in the experiments is to decide how to generate a Robinsonian

matrix and how to generate a non-Robinsonian matrix. In what follows, we will
denote by A a Robinsonian matrix and by Aε a non-Robinsonian matrix, respec-
tively. As already discussed in previous chapters, when we refer to Robinsonian
matrices we mean in fact Robinsonian similarity matrices.

Our experiments rely on the main assumption that all the entries of the matrix
are integers, which is made for the sake of ease and without loss of generality. The
algorithms were implemented in C++ and the experiments were run on a 2,7 GHz
Intel Core i5 computer with 16 GB of RAM. For an efficient data structure, we re-
lied on the linear algebra library Armadillo, which allows eigenvalues/eigenvectors
computation for (sparse) matrices [104].

The rest of the section is organized as follows: in Subsection 9.1.1 we discuss
the choice of the parameters to generate instances; in Subsection 9.1.2 we show
how to generate Robinson(ian) matrices; in Subsection 9.1.3 we show how to
generate non-Robinsonian matrices, by adding an artificial error in the original
Robinsonian structure.

9.1.1 Parameters

We use the following five parameters (in bold) to tune the structure of the Robin-
sonian matrices and thus to create different instances of the seriation problem.

1. The size n of the matrix, i.e., the number of rows and columns.

2. The density d ∈ [0, 1] of the matrix, i.e., the percentage of nonzero entries
(with respect to n2).

3. The largest value αL of the matrix. For αL = 0 we generate 0/1 matrices.

4. The probability pe ∈ [0, 1] that an entry is affected by error.

5. The intensity e ∈ [0, 1] of the error. This parameter reflects the magnitude
of the error for the entries affected by error. For a given e, the error ε is
then defined by:

ε = be ·αLc. (9.1)

The parameters and the corresponding range of values are summarized in
Table 9.1. Note that these parameters are only used to control and diversify
the generation process. Hence, when analyzing the experimental results, we will
classify the matrices according to their real density, number of distinct values,
etc., and not according to the parameters.

In Subsection 9.1.2 we show how to generate a Robinsonian matrix A for
many combinations of (n, d, αL). Given such a matrix, in Subsection 9.1.3 we
show how to create a non-Robinsonian matrix Aε for all possible combinations
of (pe, e), by adding to A an error ε defined as in (9.1).



9.1. Design of experiments 167

Table 9.1: Range of values for each parameter considered in the experiments.

symbols description range

n number of rows/columns [100, 1000]

d density, i.e., percentage of nonzero entries [0.1, 1]

αL largest value [0, 800]

pe probability that an entry is affected by error {0.1, 0.3}
e intensity of the error (in percentage) {0.05, 0.1}

9.1.2 Robinsonian matrices generation

In this subsection we analyze how to generate a Robinson matrix given some fixed
parameters (n, d, αL). Once we create a Robinson matrix, the corresponding
Robinsonian matrix is obtained by randomly permuting its rows and columns.

In order to diversify the Robinson structure, we discuss four different proce-
dures to generate random Robinson matrices. Note that, since we are interested
in creating symmetric matrices, we actually consider only the upper triangular
entries when generating Robinson matrices. Furthermore, as the entries on the
main diagonal do not play a role, we always set them to the largest value αL.
In the beginning of the generation process, the matrix A has size n× n with all
(off-diagonal) zero entries.

Generation 1 We compute the number of (upper-diagonal) nonzero entries,
i.e.,

m = d · n
2 − n

2
.

We generate m random integer numbers in the interval [1,αL] and we sort them
for decreasing values. Then, we place the m values in the matrix diagonal by
diagonal, starting from the first upper diagonal (of length n−1) to the last upper
diagonal (of length 1). To further randomize the process, we place the values on
each diagonal randomly. Because the m values are originally sorted and because
we fill the matrix diagonal by diagonal moving away from the main diagonal,
it is easy to see that we obtain a Robinson matrix by construction. With this
generation we directly control the density and the number of distinct elements of
the matrix. An example of a Robinson matrix generated with this procedure is
shown in Figure 9.1a.

Generation 2 We generate n random integers x1, . . . , xn in the interval [0,αL]
and we sort them for decreasing order. Then, we compute the distance matrix D
where Dij = |xi − xj|. As already mentioned in Subsection 2.1, such a matrix
is a Robinson dissimilarity matrix by construction. Finally, we obtain the cor-
responding Robinson similarity A = αLJn − D. Note that, differently from the
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above generation, in this case we cannot directly control the sparsity of the ma-
trix. Nevertheless, it represents a simple and intuitive way to generate Robinson
matrices. An example of a Robinson matrix generated with this procedure is
shown in Figure 9.1b.

For the last two generations, we generate matrices with density d by oppor-
tunely defining the bandwidth b of the matrix. Specifically, we fix a threshold
Θ = d · n2, which is the ‘desired’ number of nonzero entries of the matrix. The
idea is, for some fixed b, to compute the number of nonzero entries mb that a
matrix with bandwidth b would have, which is simply given by:

mb = 2
n∑

i=1

min{b,n− i}. (9.2)

We start with b = d · n, and we distinguish two cases:

• If mb < Θ then we increase b = b+ 1;

• If mb > Θ then we decrease b = b− 1;

Once b is updated, the number of nonzero entries mb is computed again as in (9.2),
and the above process is repeated until mb converges to the desired number of
nonzero entries Θ.

Generation 3 Given the bandwidth b as in the procedure described above,
for the i-th row we generate a random integer number bi ∈ [2, b], which will
represent the number of off-diagonal entries in the i-th row (recall that we are
in the upper triangular part). We then generate min{bi,n − i} random integer
values in the range [1,αL], which we sort and we place on i-th row, starting from
entry Ai,i+1. The matrix obtained with this process might be non-Robinson (the
Robinson property might be violated in the columns). Hence, we modify the
entries in order to get the final Robinson matrix. Specifically, starting from the
upper-right corner, we set Aij = max{Ai−1,j, Ai,j+1} for each i = 1, . . . ,n and
j = n, . . . , i+ 1. We repeat the above procedure for each i = 1, . . . ,n. With this
generation we directly control the density and the number of distinct elements of
the matrix. An example of a Robinson matrix generated with this procedure is
shown in Figure 9.1c.

Generation 4 Given the bandwidth b as in the procedure described above, this
last generation is basically identical to Generation 3, with the only difference that
this time, we generate min{bi+i,n−i} random values in the range [1,αL] for each
row i = 1, . . . ,n. In this way, we try to generate non-banded matrices. With this
generation we directly control the number of distinct elements of the matrix but
more indirectly the sparsity of the matrix (as we increase the bandwidth row by
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(a) Generation 1. (b) Generation 2.

(c) Generation 3. (d) Generation 4.

Figure 9.1: Different Robinson matrices generated for n = 400,αL = 800 and
d = 0.6.

row). An example of a Robinson matrix generated with this procedure is shown
in Figure 9.1d.

To summarize, we generate four Robinsonian matrices (one for each generation
type) for every triple (n, d, αL), where we choose:

i) n = {100, 200, . . . , 900, 1000};

ii) d = {0.1, 0.2, . . . , 0.9,1};

iii) αL = {0, 5, 10, 20, 50, 100, 150, 200, 400, 600, 800}.

For αL = 0 we generate 0/1 matrices. Computing instances for all the possible
combinations of the above parameters, we get approximately 4000 instances which
we have to test with all the three algorithms.
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9.1.3 Error generation

Given a Robinsonian matrix A ∈ Sn generated as in Subsection 9.1.2, in this
subsection we show how to create a non-Robinsonian matrix for some fixed pa-
rameters (pe, e). When talking about ‘error’, we refer to the fact that the matrix
is not Robinsonian. Therefore, we way that the Robinsonian structure is affected
by error. Hence, let ε = be · αLc > 0 as in (9.1) denote the maximum error.
The idea is to generate a perturbation matrix Ξ = (ξij) ∈ Sn as follows. In the
beginning, Ξ contains only zero entries. Then, we scan the (off-diagonal) upper
entries and we decide with probability pe if the entry Aij will be affected by error,
for each i = 1, . . . , n, j = i + 1, . . . , n. If this is the case, we generate a random
perturbation ξij = ξji ∈ [1, ε]. Finally, we set Aε = A+ Ξ.

As already shown in Table 9.1, we choose the parameters as follows:

i) pe = {0.1, 0.3};

ii) e = {0.05, 1}.
Hence, for each Robinsonian matrix generated as described in Subsection 9.1.2,

we create four non-Robinsonian matrices, given by all the possible combinations
of parameters (pe, e). As we will see, the computational time of the algorithms
presented in Chapters 5 and 8 is significantly affected by the number of distinct
values. Hence, for the generation of non-Robinsonian matrices, we will perturb
only Robinsonian matrices with αL ≤ 200. This leads to roughly 9000 instances
in total. Note that if, for some parameters (n, d, αL), we obtain the perturbation
ε = 0 (e.g., for e = 0.05 and αL = 5), then the corresponding matrix Aε is in fact
Robinsonian and thus ignored and not included in further experiments.

9.2 Results with Robinsonian matrices

In this section we discuss the computational results of the recognition algorithms
when applied to a Robinsonian matrix generated as described in Subsection 9.1.2.
This corresponds to verifying the Robinsonian property of an input matrix, i.e.,
find a Robinson ordering. We will discuss in Section 9.3 the case when the recogni-
tion algorithms are applied to non-Robinsonian matrices. In order to understand
how the structure of the matrix affects the performance of the algorithms, we dis-
tinguish different scenarios depending on the number of distinct values and the
number of nonzero entries (i.e., the density of the matrix). As already mentioned
earlier, this distinction is made on the actual structure of the matrix, and not
based on the values of parameters (n, d, αL), which are defined only for the sake
of diversifying the generation of Robinsonian matrices. This is the reason why,
in this section, we denote them by (n, d, L), and not in bold as before.

Specifically, we grouped the matrices generated in three classes, according to
their number of distinct values as follows:
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1. matrices with low number of distinct values, i.e., ≤ 50;

2. matrices with medium number of distinct values, i.e., > 50 and ≤ 200;

3. matrices with with high number of distinct values, i.e., > 200.

On top of the above groups, we also distinguish the matrices according to
their density as follows:

1. sparse matrices, i.e., with a density at most 30%;

2. normal matrices, i.e., with a density between 30% (excluded) and 70%;

3. dense matrices, i.e., with a density strictly bigger than 70%.

For the sake of abbreviation, we use the following notation for the recognition
algorithms:

(i) we denote by spectral the algorithm of Atkins et al. [5] presented in Sub-
section 3.2.3;

(ii) we denote by LBFS the Lex-BFS-based algorithm presented in Chapter 5
(Algorithm 5.5);

(iii) we denote by SFS the SFS multisweep algorithm presented in Chapter 6
(Algorithm 6.3).

Hence, for each combination of n ≤ 1000, number of distinct values (i.e.,
low, medium, high) and density (i.e., sparse, normal, dense), we have a group of
matrices with the same structure. Then, we run each recognition algorithm on
all matrices in the same group and we take the average computational time for
each algorithm, as shown in Table 9.2.

For example, for dense matrices of size n = 1000 and low number of distinct
values, the average time of spectral it is 663,46 milliseconds, for SFS it is 642,58
milliseconds and for LBFS is 8,05 seconds (see bottom-left entries in Table 9.2).

As we will discuss later, for verifying Robinsonian matrices, LBFS is much
slower compared to spectral and SFS, and it gets worse for increasing number
of distinct values. Hence, since we have to repeat the experiments for several
thousands of matrices, LBFS would slow down the whole simulation process.
For this reason, although in absolute value the time required by LBFS is still
reasonable, we decided to use LBFS only to recognize matrices with at most 200
distinct values.

To help the reading of Table 9.2, we provide some additional charts in Fig-
ures 9.2, 9.3 and 9.4, which were constructed using some data in Table 9.2.

Each figure consists of two lines of charts. The first line (on top) is a graph-
ical representation of the values in Table 9.2 for some structured matrices. For
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example, in Figure 9.2a we have the (average) time performance of a sparse ma-
trix with low number of distinct values for each n = 100, . . . , 1000. In these first
charts, LBFS performance does not appear, because, as mentioned before, it is
significantly slower compared with spectral and SFS.

In the second line we give additional bar charts, where each chart represents
the number of instances (in percentage) for which each algorithm is faster than
the other two. Each chart on the bottom has one-to-one correspondence with the
chart immediately above. For example, in Figure 9.2d we can deduce that, for
sparse matrices with low number of distinct values and (say) n = 100, Atkins is
the fastest algorithm for 20% of instances, SFS for 70% of instances and LBFS
for the remaining instances. The idea of these last charts is to give some insights
on the single (non-averaged) performance of the algorithms.

We comment below on the computational results for each algorithm.

Spectral algorithm The algorithm performs extremely well when applied to
our Robinsonian instances. Most of the time it is faster than the other two al-
gorithms, and it is able to return a Robinson ordering in less than one second
also for dense 1000 × 1000 matrices (i.e., approximately one million of nonzero
entries). The most time consuming instance was a 1000×1000 matrix with 6 dis-
tinct values and 100% density, which required around 2,4 seconds. In comparison,
for the same instance SFS required 0,9 seconds, and LBFS 3,6 seconds, with the
depth of the recursion tree equal to 4. One of the reasons why the algorithm is
so fast is also because, in Armadillo, it is possible to generate the first k eigen-
values (and corresponding eigenvectors) of a matrix instead of computing all n
of them. Because in our case we only need k = 2 eigenvalues/eigenvectors, the
generation of the Fiedler vector can be even 10 times faster than computing all n
of eigenvalues/eigenvectors. However, we encountered a numerical problem for
some instances produced with the Generation methods 3 and 4. Specifically, as
mentioned in Subsection 3.2.3, if the Fiedler vector has repeated values, then we
recourse on the submatrix corresponding to the indices of the Fiedler vector with
the same value. The issue is that, due to numerical errors in computing eigen-
values of the matrix, two entries of the Fiedler vector might be considered equal
even though they are not (or vice versa). Consequently, we could apply recursion
on the ‘wrong’ submatrix, which might lead to a non-Robinson ordering. Indeed,
some permutations returned by spectral are not Robinson orderings. Note that
this mistake is not a consequence of the choice of computing only k eigenvalues
above mentioned.

SFS multisweep algorithm For Robinsonian matrices, the algorithm is com-
parable with spectral, and it even outperforms it, e.g., for sparse matrices with
size less than 300 (see Table 9.2 and Figure 9.2). The most time consuming in-
stance was a 1000× 1000 matrix with 600 distinct values and 99% density, which
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required around 1,5 seconds. In comparison, for the same instance spectral
required 1,2 seconds (while LBFS was not run for more than 200 distinct val-
ues). Therefore, the maximum time required by SFS is lower the the maximum
time required by spectral (1,2 seconds versus 3,6 seconds). If we take the single
computations in the bar charts, we see that most of the time spectral solves
the single instances faster than SFS. However, because the curve in the plots are
close to each other, this suggests that the time performance are not so different in
absolute value. Differently from spectral, this SFS algorithm is combinatorial,
which means that numerical errors cannot occur. Indeed, all the permutations
returned are Robinson orderings. It is interesting to notice that the maximum
number of sweeps (needed for terminating the SFS multisweep algorithm) that
we encountered throughout all the instances was 4 (while in theory we can only
show that the algorithm terminates, in the worst case, after n− 1 sweeps). This
is a really small number, especially considering matrices of size 1000. The reason
why it is so low is that, if the matrix has many distinct values, then the similarity
partition (see Definition 6.3.2) at each iteration will consist of many blocks, and
thus we will have less ties. Hence, once an anchor is found, the SFS algorithm al-
most reduces to sort an n dimensional vector for decreasing values. On the other
hand, if the matrix has few distinct values, we have more ties. However, because
more entries assume the same value, the matrix admits more Robinson orderings,
which means that after few sweeps one of these orderings could be more likely
encountered.

As we will see also for LBFS, reordering the matrix according to a given linear
order is one of the most time consuming tasks of the SFS algorithm. Hence, if
there exists a particular subclass of matrices for which the number of sweeps is
tight (i.e., n − 1 for a n × n matrix), then the performance of SFS could be
significantly worse than for spectral. Nevertheless, this is not the case for the
instances generated as in Subsection 9.1.2.

LBFS-based algorithm The algorithm is without doubts the worst perform-
ing among the three recognition algorithms applied to Robinsonian matrices. As
already mentioned before, we were not able to solve instances with more than 200
rows/columns in less than a minute. Furthermore, in general, the algorithm is 10
times slower than the other two. For example, to verify a 1000 × 1000 Robinso-
nian matrix with medium number of distinct values it needs, in average, almost
one minute, while the other algorithms take around half a second. The most
time consuming instance was a 1000× 1000 matrix with 200 distinct values and
100% density, which required around 1,72 minutes with the depth of the recur-
sion tree equal to 99. In comparison, for the same instance, both spectral and
SFS required only 0,5 seconds. Also for LBFS, as for SFS, the main bottle-
neck is to reorder the matrix according to a given linear order. As discussed in
Theorem 5.4.4, this permits a linear time implementation of Lex-BFS multisweep
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algorithms. Hence, for each level of the recursion tree, we reorder the matrix
three times according to the 3 sweeps algorithm of Corneil in [33]. However, if
the depth of the recursion tree is large (which is often the case), then we have
to reorder the matrix many times, which explains why the algorithm becomes
really time consuming. Furthermore, we found many instances where the depth
of the recursion tree is actually equal to the number of distinct values (and larger
than n), which explains why we could not deal with matrices with more than 200
distinct values within one minute. This is a crucial difference with respect to SFS,
where we do not decompose our original matrix in 0/1 matrices. To conclude, we
could not find any significant correlation between the number of distinct values
and the depth of the recursion tree (or the size of the common refinement).

Large instances For SFS and spectral we repeated the experiments for Robin-
sonian matrices with size n ≥ 1000. We generate four Robinsonian matrices (one
for each generation type) for every triple (n, d, αL), where we choose:

i) n = {1000, 2000, . . . , 9000, 10000};

ii) d = {0.1, 0.3, 0.5, 0.7, 0.9};

iii) αL = {0, 50, 100, 200, 400, 600, 800}.

Therefore, the total number of large instances generated is now around 1400, in-
stead of 4000 in the previous experiments. In fact, we repeated the experiments
only for a subclass of matrices in order not to slow down the whole experiment
process, as reading the data takes more than 5 minutes per matrix for large matri-
ces. Analogously as above, we show in Table 9.3 the average computational time
of spectral and SFS for matrices grouped according to their density, number of
distinct values and size. To help the reader in visualizing the data in Table 9.3, we
give some additional charts in Figures 9.5, 9.6 and 9.7. Analyzing the data, SFS
seems to outperform spectral for increasing size. For example, for dense matri-
ces of size 10000 with high number of distinct values, the average running time
for spectral is around 7 minutes, against an average running time of 1 minute
for SFS. The most time consuming instance for spectral was a 1000 × 1000
matrix with 50 distinct values and 95% density, which required 13 minutes. In
comparison, for the same instance SFS required 1,5 minutes. The most time
consuming instance for SFS was a 1000×1000 matrix with 2 distinct values (i.e.,
a 0/1 matrix) and 90% density, which required 14,5 minutes 1. In comparison, for
the same instance spectral required 3,5 minutes. To conclude, the results seems
to suggest a really good performance of SFS for large instances, which makes the
algorithm suitable to solve real world problems of large dimension.

1If the input matrix has only 2 distinct values, there is not need to sort the neighborhood
of the pivot N(p) to create the similarity partition. However, this additional check was missing
during the experiments, leading to high computational times for 0/1 matrices.
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9.3 Results with non-Robinsonian matrices

In this section we discuss the computational results for the seriation problem when
the data does not have the Robinsonian structure. We then say that the matrix is
affected by error. The results are divided in two parts: in the first part we give the
computational times of the algorithms for verifying non-Robinsonian matrices; in
the second part we give instead some results related to the quality of the solution
returned by the algorithms with respect to Robinsonian approximation.

As already discussed in Subsection 9.1.3, we run the experiments for non-
Robinsonian matrices with at most 200 distinct values, as we needed to test
around 8000 instances and SFS and LBFS needed more than a minute per
instance to terminate.

Non-Robinsonian verification In what follows, we will use the same nota-
tion as in Section 9.2 to refer to the algorithms. In Section 9.2 we studied the
performance of the algorithms to verify the Robinsonian structure, i.e., given
a Robinsonian matrix, return a Robinson ordering. Here, instead, we study
which algorithm is faster in detecting non-Robinsonian matrices, i.e., given a
non-Robinsonian matrix, find an obstruction to the Robinsonian structure which
permits to state that the matrix is not Robinsonian. Analogously as above, we
show in Table 9.4 the average computational time of spectral, SFS and LBFS
for matrices grouped according to their density, number of distinct values and
size. Analyzing the data, LBFS outperforms SFS almost in all the groups of
matrices. For example, to check if a 1000 × 1000 matrix with medium number
of distinct values is non-Robinsonian, LBFS needs in average 2 seconds, while
SFS takes 53 seconds. Although faster than SFS, LBFS is still not compara-
ble with spectral, which is often three times faster than LBFS and even ten
times faster than LBFS. The most time consuming instance for spectral was
a 1000 × 1000 matrix with 23 distinct values and 100% density, which required
around 1,7 seconds. In comparison, for the same instance, LBFS required 2
seconds, while SFS required 2,4 seconds. The most time consuming instance
for LBFS was a 1000× 1000 matrix with 221 distinct values and 100% density,
which required around 5 seconds, with a depth of the recursion tree equal to 2.
In comparison, for the same instance, spectral required only 0,5 seconds, while
SFS required 1,7 seconds. It is worth to notice that the largest depth of the
recursion tree for LBFS was 20. Nevertheless, for almost 99% of instances, the
depth was at most 5. Finally, the most time consuming instance for SFS was
a 1000 × 1000 matrix with 22 distinct values and 100% density, which required
around 7 minutes, with a total number of 999 sweeps. In comparison, for the same
instance, spectral required only 0,5 seconds, while LBFS required 2,3 seconds.

It is important to notice that, in order to improve the efficiency of SFS,
instead of checking if every sweep is a Robinson ordering, we actually implement
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an additional check in Algorithm 6.3, which has been used also in [51]. Specifically,
every time we compute an SFS ordering σi with i ≥ 1, we check if σi = σi−2.
If this is the case, then we stop. In fact, if σi−2 is Robinson, then in view of
Lemma 6.4.2 we have that σi−1 = σi−2 and σi = σi−1 = σi−2, and thus σi is also
a Robinson ordering. On the other hand, if σi−2 is not Robinson, then it is easy
to see that σi−1 = σi+1. Hence, the SFS multisweep algorithm will loop between
σi−2 and σi until n − 1 sweeps are reached. Therefore, we stop it immediately,
without performing other sweeps. This caution permits to bound the number of
sweeps, which in almost 93% of instances is less than 20. Nevertheless, there exist
instances where the SFS orderings do not loop, reaching the maximum number
of sweeps (i.e., n−1). Quite interestingly, the computational time for SFS seems
to decrease for increasing number of distinct values. For example, if we look at
1000 × 1000 normal matrices, SFS needed in average 6,5 seconds for matrices
with less than 50 distinct values, 2,5 seconds for matrices with at least 51 and at
most 200 distinct values, and 0,8 seconds for matrices with at least 201 distinct
values. The same behavior can be observed for dense matrices. To conclude, the
results seem to suggest that spectral or LBFS would me more suitable than SFS
to detect non-Robinsonian matrices. Nevertheless, given the numerical errors
encountered in spectral for the computation of eigenvalues (see Section 9.2), an
interesting approach to solve seriation would be to first run spectral, and then
to use the order returned by spectral to break ties in the first sweep of SFS.
Because the number of SFS sweeps highly depends on the initial order of the
vertices, the order returned by spectral could be thus used as preprocessing step
to obtain a smaller number of SFS sweeps.

Robinsonian approximation In what follows, we will use the same notation
as in Section 9.2 to refer to the algorithms. The algorithm LBFS is the same as
described in Chapter 5, with the only difference that we do not stop the algorithm
in case one of the routines does not successfully terminates. Furthermore, when
referring to SFS, this time we mean the ε-SFS multisweep algorithm presented in
Chapter 8 (Algorithm 8.3). As this last algorithm involves computing the set ∆
of all the differences of the values of the matrix (see Subsection 8.3.3) and repeats
the SFS multisweep algorithm several times. In this section we will focus more
on the quality of the solution returned by the algorithms rather than their time
performance (as spectral largely outperforms both SFS and LBFS).

Recall that we denote by pe the probability that an entry is affected by error
and by e is the intensity of such error. Then, given a Robinsonian matrix A
with largest value αL generated as described in Subsection 9.1.2, we obtain a
matrix Aε by perturbing the entries of the original Robinsonian matrix. Namely,
(Aε)ij = Aij + ξij, where ξij ∈ [1, ε] with ε = be ·αLc.

Hence, ε represents an upper bound on the optimal error εopt of l∞-FITTING-
BY-ROBINSONIAN (8.3). We distinguish the results by the magnitude of the
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error ε and by its frequency 2. Specifically, we say that an error ε is:

(i) small if ε ≤ 0.05 · αL;

(ii) large if ε > 0.05 · αL;

(iii) rare if it occurs with probability pe at most 10%;

(iv) frequent if it occurs with probability pe higher than 10%.

In order to assess the quality of the solutions returned (i.e., a permutation π)
by the algorithms, we use two criteria:

1) We evaluate the objective function of 2-SUM in (7.2), i.e.,

n∑

i,j=1

Aπ(i),π(j)|i− j|2. (9.3)

In view of Theorem 7.2.6, if A is Robinsonian then a Robinson ordering is
optimal for (9.3). Hence, the idea is to check which permutations lead to
the minimum value for the objective function in (9.3).

2) We compute the best Robinson approximation matrix ((Aε)π)∗ of (Aε)π as
in (8.10) and the optimal value ε∗π of the corresponding l∞-FITTING-BY-
ROBINSON problem (8.4), i.e.,:

ε∗π = ‖(Aε)π − ((Aε)π)∗ ‖∞. (9.4)

This gives an upper bound on the optimal value εopt of l∞-FITTING-BY-
ROBINSONIAN (8.3). Hence, the idea is to check which permutation π
leads to the closest Robinsonian approximation of the non-Robinsonian ma-
trix Aε, i.e., the smallest value in (9.4). To do so, we consider, for each per-

mutation π, the (approximation) ratio
ε∗π
ε

. The reason we use ε and not εopt

is that εopt is not known, while ε can be computed as ε = ‖A−Aε‖∞. Then,
the closer the ratio is to one, the better the quality of the permutation π,
because it means that the original perturbation was retrieved. Recall that
ε > 0 by construction, because instances with null error were discarded (see
Subsection 9.1.3). Note that the ratio can be zero, because there are cases
where ε∗π = 0 (see Figure 9.9), i.e., when Aε is still Robinsonian.

2In fact ε is recomputed afterwards with the value of the actual error, i.e., ε = ‖A−Aε‖∞.
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Analogously to Section 9.2, we group the matrices for each possible combina-
tion of error magnitude (small, large) and error frequency (rare, frequent), thus
four possible scenarios.

The results corresponding to the first criterion are illustrated in Figure 9.8.
For each algorithm, we denote the number of instances (in percentage) for which
a given algorithm achieves the best value in (7.2). For example, for matrices
with small and rare error (see Figure 9.8a) and n = 100, in roughly 70% of
instances, spectral achieves a strictly better solution in (9.3) with respect to the
other two algorithms and, in roughly 10% of instances, SFS achieves a strictly
better solution in (9.3) with respect to the other two algorithms. Furthermore,
in roughly 10% of instances, both spectral and SFS achieve solutions with the
same value in (9.3), which is strictly better than the solution of LBFS. Finally,
in the remaining 10% of instances, all three algorithms achieves solutions with
the same value in (9.3).

The results corresponding to the second criterion are illustrated in Figures 9.9
and 9.10. In this case, the bar chart represents the distribution of the (approx-
imation) ratio ε∗π/ε. For example, for matrices with small and rare error, the
distribution of the ratio for spectral is given in Figure 9.9a. Hence, we can see
that in 50% of the instances, the ratio is 1, in 18% of instances it is 2 and so on.
The same reasoning can be done for SFS and LBFS.

We comment below on the computational results for each algorithm.

Spectral algorithm Also when dealing with non-Robinsonian matrices, spec-
tral performs really good with respect to both criteria. If we look at Figure 9.8,
for any scenario, in more than 80% of cases it achieves the minimum value in 2-
SUM (9.3). Furthermore, it returns also a close Robinsonian approximation. In
fact, for 80% of instances, the approximation ratio with respect to ε is at most 5,
and for 70% of instances it is at most 2. However, in the worst case, the largest
approximation error is up to 25 times bigger than ε (for matrices with small
errors, see Figure 9.9).

ε-SFS multisweep algorithm The algorithm does not perform as good as
spectral, but it outperforms LBFS. In all scenarios, for around 20% of instances,
it achieves the minimum value in 2-SUM (9.3), and the rate of success seems to
increase for increasing sizes n of the matrix (see Figure 9.8). The Robinsonian
approximation is not as close as spectral. In fact, in this case the approximation
ratio with respect to ε is at most 5 for 70-80% of instances, while it is at most 2 for
only 20-30% of the instances. However, we can see that the largest approximation
error with respect to ε is only 18 (for matrices with small and frequent error,
see Figure 9.9), while for spectral it was 25. Furthermore, for matrices with
large error, the largest approximation error is 9, while in spectral it is 11 (see
Figure 9.10).
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LBFS-based algorithm For non-Robinsonian matrices, LBFS has the worst
performance among the three algorithms with respect to both criteria. For any
scenario, it achieves the minimum value for in 2-SUM (9.3) most of the time
together with the other two companion algorithms, and rarely alone (see Fig-
ure 9.8). The largest approximation error returned by the algorithm with respect
to ε is equal to 22 (for matrices with small and frequent error, see Figure 9.9),
which is in between the one of spectral (25) and the one of SFS (18).

9.4 Conclusions

In this chapter we have discussed the performance of Algorithm 5.5, Algorithm 6.3
and Algorithm 8.3 with respect to the spectral algorithm introduced by Atkins
et al. [5]. We generated several classes of Robinsonian matrices, and we perturbed
them in order to obtain instances for the seriation problem. We used four dif-
ferent generation methods and five different parameters to vary the structure of
the matrices. Of course, the matrices obtained represent a subclass of Robinso-
nian matrices. Nevertheless, the results can give an indicative idea on how the
algorithms work.

For the recognition of Robinsonian matrices, the SFS multisweep algorithm
presented in Chapter 6 (Algorithm 6.3) is much faster than the Lex-BFS based
algorithm presented in Chapter 5 (Algorithm 5.5) when applied to Robinsonian
matrices. To give an idea, in average the spectral and the SFS multisweep algo-
rithms run in less than a second even for 1000 × 1000 dense matrices, while the
Lex-BFS based algorithm in comparison needs more than 8 seconds. One of the
most time consuming tasks of the Lex-BFS based algorithm is reordering the ma-
trix according to a given linear order, which we have to compute three times per
level graph. If the depth of the recursion tree is large, the multiplication factor
in the complexity (see Theorem 5.4.4) leads to significantly slow computational
time (up to 2 minutes) compared with the other two algorithms, which instead
terminate in few seconds or even milliseconds (see Table 9.2). Also the SFS mul-
tisweep algorithm faces the same issue of reordering the matrix for each sweep.
However, because the number of sweeps is at most 4 for all the instances, the ma-
trix is reordered only at most four times. However, if for some ‘bad’ instances the
number of sweeps would be larger, this would affect the time performance of the
SFS multisweep algorithm as well. This is the case, e.g., when the input matrix
is non-Robinsonian. Here, the SFS multisweep algorithm performs worse com-
pared with the Lex-BFS based algorithm and the spectral algorithm, as in some
instances, n−1 sweeps are required, leading to high computational times. Never-
theless, the SFS multisweep algorithm does not encounter numerical errors as in
the generation of the Fiedler vector for the spectral algorithm, which, as we have
seen, can lead to non-Robinson orderings even if the matrix is Robinsonian. Fur-
thermore, when the input matrix is Robinsonian, the SFS multisweep algorithm
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performance compares well with respect to the spectral algorithm in [5], which is
a numerical method that can be implemented extremely fast due to state-of-the-
art algebraic libraries to compute eigenvalues/eigenvectors of (sparse) matrices
(e.g., Armadillo [104] for C++). From the experiments for large instances given
in Table 9.3, the SFS multisweep algorithm significantly outperforms the spectral
algorithm in all the instances (on average), which makes it suitable for practical
applications.

In addition, for the seriation problem when the similarity matrix is not Robin-
sonian, we compared the algorithms in terms of the quality of their returned
permutation, i.e., the evaluation in the 2-SUM problem (9.3) and the value
of l∞-FITTING-BY-ROBINSONIAN (8.3), which reflects how close is the non-
Robinsonian matrix to a Robinsonian matrix. In both cases, the ε-SFS multisweep
algorithm introduced in Chapter 8 (Algorithm 8.3) outperforms the Lex-BFS
based algorithm. However, this time the ε-SFS multisweep algorithm performs
a bit worse compared with the spectral algorithm, which often leads to a better
permutation. Nevertheless, the work done in Chapter 8 is preliminary and its
theoretical foundation has not yet been investigated as was done for the SFS
multisweep algorithm in Chapter 6.

In summary, among the two main recognition algorithms introduced in this
thesis, the SFS multisweep algorithm (presented in Chapter 6) seems more promis-
ing than the Lex-BFS-based algorithm (presented in Chapter 5). To some extent,
in fact, the SFS multisweep algorithm represents a ‘smarter’ evolution of the Lex-
BFS-based algorithm, in the sense that, with (almost) its same subroutines, it is
able to recognize a Robinsonian matrix without the need to decompose it over its
level graphs. The computational experiments show that, when the input matrix
is Robinsonian, the SFS multisweep algorithm is more efficient than the Lex-
BFS-based algorithm and that, on medium size matrices, it is comparable with
the spectral method of Atkins et al. in [5], which is a common and extremely
fast algorithm used to solve the seriation problem. Furthermore, the SFS mul-
tisweep algorithm outperforms the spectral algorithm for large instances with a
number of rows/columns n ≥ 1000 (tested with n up to 10000). Moreover, it
does not encounter numerical errors as in the computation of the Fiedler vector
for the spectral algorithm. However, when the input matrix is non-Robinsonian,
then the SFS multisweep algorithm is slower (with respect to the other two al-
gorithms), due to the high number of sweeps. Therefore, a possible heuristic to
solve seriation would be to combine the spectral algorithm and the SFS multi-
sweep algorithm as follows. We first run the spectral algorithm as preprocessing
step, and we use its linear order returned as initial ordering for the SFS mul-
tisweep algorithm. The idea behind this heuristic is that, independently of the
fact that the input matrix is Robinsonian or not, the linear order returned by
the spectral algorithm represents a good ‘Robinson ordering candidate’. There-
fore, this approach could potentially lead to a smaller number of SFS sweeps for
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the recognition of Robinsonian matrices, and thus would make SFS potentially
suitable for applications of seriation in real world problems.

To conclude, we believe that the SFS multisweep algorithm can be a powerful
algorithm to solve the seriation problem and that the SFS algorithm can be
used as basic flexible routine to solve other combinatorial problems. In fact,
as already discussed in Chapter 6, one could try to extend some famous graph
classes recognizable using Lex-BFS (e.g., interval and chordal graphs) to the
corresponding ‘weighted version’. Because SFS is the generalization of Lex-BFS
to weighted graphs, it could be potentially used for the recognition of these new
classes of matrices.
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List of symbols and abbreviations

Symbols

[n] This is defined as {1, . . . , n}.
Pn The set of all possible permutations of [n].

Sn The set of symmetric n× n matrices.

A Similarity matrix.

D Dissimilarity matrix.

A[U ] This is the principal submatrix of a matrix A indexed
by the subset U .

Tr(A) The trace of a matrix A.

〈A,B〉 = Tr(ATB) The trace inner product between two symmetric matri-
ces A and B.

e The all-ones vector.

Jn The n× n all-ones matrix.

N The set of nonnegative integers.

Rn The set of real vectors.

Rn×n The set of n× n real matrices.

π Permutation.

Π Permutation matrix.

Aπ = ΠAΠT This is the matrix obtained by symmetrically permuting
the rows and columns of A according to a permutation π.

T PQ-Tree.

Φ = ψ ∧ φ Common Refinement between two compatible weak lin-
ear orders ψ and φ.

L Similarity layer structure.

G(`) The `-th level graph of a (similarity) matrix A.

G(1) The support graph of a (similarity) matrix A.

205



206 List of symbols and abbreviations

α` The `-th distinct value of a (similarity) matrix A.

αL The value of the largest entry in a (similarity) matrix A.

LA The Laplacian matrix of A ∈ Sn.

yF Fiedler vector.

O(·) The big O notation.

‖A‖∞ The l∞-norm of a matrix A.

‖A‖2 The l2-norm of a matrix A.

‖A‖p The lp-norm of a matrix A.

ε∗ The optimal value of l∞-FITTING-BY-ROBINSON (8.4).

εopt The optimal value of l∞-FITTING-BY-ROBINSONIAN (8.3).

Abbreviations

BFS This is the abbreviation for Breadth-First Search.

DFS This is the abbreviation for Depth-First Search.

Lex-BFS This is the abbreviation for Lexicographic Breadth-First Search.

SFS This is the abbreviation for Similarity-First Search.

QAP This is the abbreviation for Quadratic Assignment Problem.

C1P This is the abbreviation for Consecutive Ones Property

PAL This is the abbreviation for ‘Path Avoiding Lemma’
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similarity partition, 158
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2-SUM, 3, 133, 186
3-vertex condition, 26, 91

adjacency
extended matrix, 24, 37, 114
list, 24, 53, 62, 75, 121, 122
matrix, 24, 26, 112, 145

BFS, 46
layers, 110

blocks, 24
end, 63
inner, 63

C1P, 18, 19, 24, 26, 37, 39, 40, 62
classification, 1, 35
clique, 24, 40, 56, 112

condition, 26
maximal, 25, 40

clustering, 1, 4
hierarchical, 34, 35
pyramidal, 35
spectral, 43

common refinement, 21, 63, 64, 70,
72

dendrogram, 34, 35
DFS, 46

Fiedler
value, 41, 133

simple, 42
vector, 41, 42, 172

graph
chordal, 25, 45, 55, 103
indifference, 26
intersection, 40
interval, 25, 40, 55, 93
level, 41, 64, 73, 74
proper interval, 26
support, 30, 40, 75, 161
threshold, 38
unit interval, 26, 37, 56, 57, 114

hierarchy, 33
hypergraph, 27

ball, 38
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incidence matrix, 27, 39
interval, 27, 38

LBFS, 45, 171, 173, 188
Lex-BFS, 6, 46, 47, 54, 55, 57, 66, 97

good, 49, 56
layers, 56
multisweep, 53, 54
ordering, 47, 49, 55
pivot, 47, 51
slice, 48, 49, 51, 55
sweep, 69
ties, 48, 49

Lex-BFS∗, 55, 128
Lex-BFS+, 49, 54, 55, 107
linear order, 20

compatible, 21
concatenation, 20, 62, 91
restriction, 20, 91
reversal, 20, 62, 91

matrix
anti-R, 31
anti-Robinson, 31
dissimilarity, 18
interval-cut, 133
Laplacian, 41, 42
left-down monotonic, 32
monotonically

nondecreasing, 132
nonincreasing, 132

proximity, 17
R, 30
right-up monotonic, 33
similarity, 3, 18
Toeplitz, 134, 144
vertex-clique incidence, 25, 40

neighborhood, 24, 51, 53, 123
(weighted graph), 91, 97, 99, 121,

158
closed, 24
condition, 26, 69

P-node, 24, 77, 79
partition

ordered, 21, 91, 97, 99
refinement, 22, 49, 97, 99, 121
similarity, 98, 99, 121

permutation, 19, 131
identity, 19, 132, 133, 144
matrix, 19, 37, 131

PQ-tree, 23, 26, 40, 43, 70, 77
pyramid, 35

Q-node, 24, 77, 79
QAP, 131, 135, 144, 148

Robinson
condition, 116
dissimilarity, 4, 144
ordering, 4, 30, 31, 40, 43, 63, 70,

77, 92, 94, 110, 115, 120, 159
similarity, 4, 30, 42, 144, 150
violation, 5

Robinsonian
approximation, 147, 152
dissimilarity, 4, 31, 38, 39, 127,

144
strongly, 31

matrix, 5, 31, 167, 170
recognition, 6, 71, 75, 113
similarity, 4, 30, 42, 101, 114,

115, 120, 144, 149
binary, 36
strongly, 30

seriation, 2, 3, 29, 33, 133
criterion, 3, 5
measure, 3

SFS, 97, 99, 106
3-good, 116, 118, 119
good, 106–108, 111, 116, 118, 120
multisweep, 113, 120, 171, 172
ordering, 98, 99, 106, 111, 120
pivot, 98, 121
slice, 99, 106, 111
sweep, 113, 120
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ties, 99, 101, 122
SFS+, 101, 107, 113, 122
similarity

layers, 110, 111, 116
spectral algorithm, 41, 165, 171, 172,

187
straight enumeration, 27, 61–64, 68,

72, 74, 77

vertex
admissible, 55
anchor, 94, 106, 110
good, 49, 56
homogeneous, 92, 100
intercepts a path, 54
miss a path, 54
path avoiding a, 92, 96, 103
path missing a, 92

pivot, 121
simplicial, 25, 54, 55
unvisited, 46
valid, 55, 93
valid (weighted graph), 93, 94

vertices
opposite anchors, 94, 96, 106, 107
undistinguishable, 24, 61, 69
unrelated, 54
unvisited, 46, 50, 98, 121

weak linear order, 21, 91
compatible, 21, 22, 63, 64, 66, 70,

72, 74
concatenation, 21, 73
restriction, 21, 63
reversal, 21, 63, 79
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