839 research outputs found

    A Wideband CMOS Linear Digital Phase Rotator

    Get PDF
    This paper presents a 10-bit wideband Cartesian phase rotator with a novel linear digital VGA implemented in a 0.13um CMOS process. The VGA topology is robust to device modeling uncertainties and PVT variations. The system provides 7.8dB voltage gain with -3dB bandwidth of 7.6GHz. A maximum phase error of 2Âș has been achieved for a phase shifting range of 360Âș with 32 phase steps of 11.25Âș. The capability to compensate for mismatched quadrature inputs is also demonstrated

    Millimeter-Wave Concurrent Dual-Band Sige Bicmos Rfic Phased-Array Transmitter and Components

    Get PDF
    A concurrent dual-band phased-array transmitter (TX) and its constituent components are studied in this dissertation. The TX and components are designed for the unlicensed bands, 22–29 and 57–64 GHz, using a 0.18-ÎŒm BiCMOS technology. Various studies have been done to design the components, which are suitable for the concurrent dual-band phased-array TX. The designed and developed components in this study are an attenuator, switch, phase shifter, power amplifier and power divider. Attenuators play a key role in tailoring main beam and side-lobe patterns in a phased-array TX. To perform the function in the concurrent dual-band phased-array TX, a 22–29 and 57–64 GHz concurrent dual-band attenuator with low phase variations is designed. Signal detection paths are employed at the output of the phased-array TX to monitor the phase and amplitude deviations/errors, which are larger in the high-frequency design. The detected information enables the TX to have an accurate beam tailoring and steering. A 10–67 GHz wide-band attenuator, covering the dual bands, is designed to manipulate the amplitude of the detected signal. New design techniques for an attenuator with a wide attenuation range and improved flatness are proposed. Also, a topology of dual-function circuit, attenuation and switching, is proposed. The switching turns on and off the detection path to minimize the leakages while the path is not used. Switches are used to minimize the number of components in the phased-array transceiver. With the switches, some of the bi-directional components in the transceiver such as an attenuator, phase shifter, filter, and antenna can be shared by the TX and receiver (RX) parts. In this dissertation, a high-isolation switch with a band-pass filtering response is proposed. The band-pass filtering response suppresses the undesired harmonics and intermodulation products of the TX. Phase shifters are used in phased-array TXs to steer the direction of the beam. A 24-GHz phase shifter with low insertion loss variation is designed using a transistor-body-floating technique for our phased-array TX. The low insertion loss variation minimizes the interference in the amplitude control operation (by attenuator or variable gain amplifier) in phased-array systems. BJTs in a BiCMOS process are characterized across dc to 67 GHz. A novel characterization technique, using on-wafer calibration and EM-based de-embedding both, is proposed and its accuracy at high frequencies is verified. The characterized BJT is used in designing the amplifiers in the phased-array TX. A concurrent dual-band power amplifier (PA) centered at 24 and 60 GHz is proposed and designed for the dual-band phased-array TX. Since the PA is operating in the dual frequency bands simultaneously, significant linearity issues occur. To resolve the problems, a study to find significant intermodulation (IM) products, which increase the third intermodulation (IM3) products most, has been done. Also, an advanced simulation and measurement methodology using three fundamental tones is proposed. An 8-way power divider with dual-band frequency response of 22–29 and 57–64 GHz is designed as a constituent component of the phased-array TX

    Design methods for 60GHz beamformers in CMOS

    Get PDF
    The 60GHz band is promising for applications such as high-speed short-range wireless personal-area network (WPAN), real-time video streaming at rates of several-Gbps, automotive radar, and mm-Wave imaging, since it provides a large amount of bandwidth that can freely (i.e. without a license) be used worldwide. However, transceivers at 60GHz pose several additional challenges over microwave transceivers. In addition to the circuit design challenges of implementing high performance 60GHz RF circuits in mainstream CMOS technology, the path loss at 60GHz is significantly higher than at microwave frequencies because of the smaller size of isotropic antennas. This can be overcome by using phased array technology. This thesis studies the new concepts and design techniques that can be used for 60GHz phased array systems. It starts with an overview of various applications at mm-wave frequencies, such as multi-Gbps radio at 60GHz, automotive radar and millimeter-wave imaging. System considerations of mm-wave receivers and transmitters are discussed, followed by the selection of a CMOS technology to implement millimeter-wave (60GHz) systems. The link budget of a 60GHz WPAN is analyzed, which leads to the introduction of phased array techniques to improve system performance. Different phased array architectures are studied and compared. The system requirements of phase shifters are discussed. Several types of conventional RF phase shifters are reviewed. A 60GHz 4-bit passive phase shifter is designed and implemented in a 65nm CMOS technology. Measurement results are presented and compared to published prior art. A 60GHz 4-bit active phase shifter is designed and integrated with low noise amplifier and combiner for a phased array receiver. This is implemented in a 65nm CMOS technology, and the measurement results are presented. The design of a 60GHz 4-bit active phase shifter and its integration with power amplifier is also presented for a phased array transmitter. This is implemented in a 65nm CMOS technology. The measurement results are also presented and compared to reported prior art. The integration of a 60GHz CMOS amplifier and an antenna in a printed circuit-board (PCB) package is investigated. Experimental results are presented and discussed

    Hybrid MIMO Architectures for Millimeter Wave Communications: Phase Shifters or Switches?

    Full text link
    Hybrid analog/digital MIMO architectures were recently proposed as an alternative for fully-digitalprecoding in millimeter wave (mmWave) wireless communication systems. This is motivated by the possible reduction in the number of RF chains and analog-to-digital converters. In these architectures, the analog processing network is usually based on variable phase shifters. In this paper, we propose hybrid architectures based on switching networks to reduce the complexity and the power consumption of the structures based on phase shifters. We define a power consumption model and use it to evaluate the energy efficiency of both structures. To estimate the complete MIMO channel, we propose an open loop compressive channel estimation technique which is independent of the hardware used in the analog processing stage. We analyze the performance of the new estimation algorithm for hybrid architectures based on phase shifters and switches. Using the estimated, we develop two algorithms for the design of the hybrid combiner based on switches and analyze the achieved spectral efficiency. Finally, we study the trade-offs between power consumption, hardware complexity, and spectral efficiency for hybrid architectures based on phase shifting networks and switching networks. Numerical results show that architectures based on switches obtain equal or better channel estimation performance to that obtained using phase shifters, while reducing hardware complexity and power consumption. For equal power consumption, all the hybrid architectures provide similar spectral efficiencies.Comment: Submitted to IEEE Acces

    10 GHz Low Loss Liquid Metal SIW Phase Shifter for Phased Array Antenna

    Get PDF
    This paper presents a proof of concept demonstrator for a pair of novel phase shifters based on substrate integrated waveguide (SIW) technology. Gallium-based liquid metal (LM) is used to reconfigure each phase shifter. The paper presents LM phase shifters that, for the first time, have a phase shifting range of 360⁰. The phase shifters have a small electrical size, and they are intended for use within phased array antenna applications. The paper also presents a design procedure for the phase shifters. The procedure has been used to design two phase shifters operating at 10 GHz. The design process can be readily scaled for operation at other frequencies. The proposed phase shifters are reciprocal and bidirectional and they have very low insertion loss. A series of reconfigurable LM vias are used to achieve the phase shift. Each of LM via is activated once a drill hole is filled with LM and it is deactivated once LM is removed. Using this method; it is possible to achieve a phase shift step ranging from 1° to 100° using a single LM via. Moreover, the overall phase shift can be extended to 360° by employing several LM vias in series inside the SIW. The proposed phase shifters have an insertion loss lower than 3 dB and provide a total phase shifting range of approximately 360° in eight steps of approximately 45° each. This enables the proposed two phase shifters to have an extraordinary Figure of Merit (FoM) of 131.3 ⁰/dB and 122.4 ⁰/dB

    Phased Array Antenna System Enabled by Liquid Metal Phase Shifters

    Get PDF

    Four-element phased-array beamformers and a self-interference canceling full-duplex transciver in 130-nm SiGe for 5G applications at 26 GHz

    Get PDF
    This thesis is on the design of radio-frequency (RF) integrated front-end circuits for next generation 5G communication systems. The demand for higher data rates and lower latency in 5G networks can only be met using several new technologies including, but not limited to, mm-waves, massive-MIMO, and full-duplex. Use of mm-waves provides more bandwidth that is necessary for high data rates at the cost of increased attenuation in air. Massive-MIMO arrays are required to compensate for this increased path loss by providing beam steering and array gain. Furthermore, full duplex operation is desirable for improved spectrum efficiency and reduced latency. The difficulty of full duplex operation is the self-interference (SI) between transmit (TX) and receive (RX) paths. Conventional methods to suppress this interference utilize either bulky circulators, isolators, couplers or two separate antennas. These methods are not suitable for fully-integrated full-duplex massive-MIMO arrays. This thesis presents circuit and system level solutions to the issues summarized above, in the form of SiGe integrated circuits for 5G applications at 26 GHz. First, a full-duplex RF front-end architecture is proposed that is scalable to massive-MIMO arrays. It is based on blind, RF self-interference cancellation that is applicable to single/shared antenna front-ends. A high resolution RF vector modulator is developed, which is the key building block that empowers the full-duplex frontend architecture by achieving better than state-of-the-art 10-b monotonic phase control. This vector modulator is combined with linear-in-dB variable gain amplifiers and attenuators to realize a precision self-interference cancellation circuitry. Further, adaptive control of this SI canceler is made possible by including an on-chip low-power IQ downconverter. It correlates copies of transmitted and received signals and provides baseband/dc outputs that can be used to adaptively control the SI canceler. The solution comes at the cost of minimal additional circuitry, yet significantly eases linearity requirements of critical receiver blocks at RF/IF such as mixers and ADCs. Second, to complement the proposed full-duplex front-end architecture and to provide a more complete solution, high-performance beamformer ICs with 5-/6- b phase and 3-/4-b amplitude control capabilities are designed. Single-channel, separate transmitter and receiver beamformers are implemented targeting massive- MIMO mode of operation, and their four-channel versions are developed for phasedarray communication systems. Better than state-of-the-art noise performance is obtained in the RX beamformer channel, with a full-channel noise figure of 3.3 d

    Digitally-Assisted RF IC Design Techniques for Reliable Performance

    Get PDF
    Semiconductor industries have competitively scaled down CMOS devices to attain benefits of low cost, high performance, and high integration density in digital integrated circuits. On the other hand, deep scaled technologies inextricably accompany a large process variation, supply voltage scaling, and reduction in breakdown voltages of transistors. When it comes to RF/analog IC design, CMOS scaling adversely affects its reliability due to large performance variation and limited linearity. For addressing the issues related to variations and linearity, this research proposes the following digitally-assisted RF circuit design techniques: self-calibration system for RF phase shifters and wide dynamic range LNAs. Due to PVT variations in scaled technologies, RF phase shifter design becomes more challenging with device scaling. In the proposed self-calibration topology, we devised a novel phase sensing method and a pulsewidth-to-digital converter. The feedback controller is also designed in digital domain, which is robust to PVT variations. These unique techniques enable a sensing/control loop tolerant to PVT variations. The self-calibration loop was applied to a 7 to 13GHz phase shifter. With the calibration, the estimated phase error is less than 2 degrees. To overcome the linearity issue in scaled technologies, a digitally-controlled dual-mode LNA design is presented. A narrowband (5.1GHz) and a wideband (0.8 to 6GHz) LNA can be toggled between high-gain and high-linearity modes by digital control bits according to the input signal power. A compact design, which provides negligible performance degradation by additional circuitry, is achieved by sharing most of the components between the two operation modes. The narrowband and the wideband LNA achieves an input-referred P1dB of -1.8dBm and +4.2dBm, respectively
    • 

    corecore