301 research outputs found

    Blind Interference Alignment in General Heterogeneous Networks

    Get PDF
    Heterogeneous networks have a key role in the design of future mobile communication networks, since the employment of small cells around a macrocell enhances the network's efficiency and decreases complexity and power demand. Moreover, research on Blind Interference Alignment (BIA) has shown that optimal Degrees of Freedom (DoF) can be achieved in certain network architectures, with no requirement of Channel State Information (CSI) at the transmitters. Our contribution is a generalised model of BIA in a heterogeneous network with one macrocell with K users and K femtocells each with one user, by using Kronecker (Tensor) Product representation. We introduce a solution on how to vary beamforming vectors under power constraints to maximize the sum rate of the network and how optimal DoF can be achieved over K+1 time slots.Comment: 5 pages, 7 figures, accepted to IEEE PIMRC'1

    On the choice of blind interference alignment strategy for cellular systems with data sharing

    Get PDF
    The proceeding at: IEEE International Conference on Communications (ICC), tool place 2014, June, 10-14 in Sidney (Australia).A cooperative blind interference alignment (BIA) strategy is considered for the downlink of cellular systems. The aim is to reduce intercell interference in order to protect users, especially at the cell edge. The strategy consists of appropriately splitting the available bandwidth and is shown to be well-suited to scenarios where the number of cell-edge users is considerable. For a system comprising two cells each with a base station of Nt antennas, it is shown that, compared to a previous augmented code approach where transmission to all users occurs in the same frequency band, the proposed strategy leads to better rates over a wide range of signal-to-noise ratios when the number of cell-edge users in both cells exceeds 2Nt -1.This work has been partially funded by research projects COMONSENS (CSD2008-00010) and GRE3N (TEC2011-29006-C03-02). This research work was partly carried out at the ESAT Laboratory of KU Leuven in the frame of the Belgian Programme on Interuniversity Attractive Poles Programme initiated by the Belgian Science Policy OfïŹce: IUAP P7/23 ‘Belgian network on stochastic modeling analysis design and optimization of communication systems’(BESTCOM) 2012-2017.Publicad

    Blind Interference Alignment for Private Information Retrieval

    Get PDF
    Blind interference alignment (BIA) refers to interference alignment schemes that are designed only based on channel coherence pattern knowledge at the transmitters (the "blind" transmitters do not know the exact channel values). Private information retrieval (PIR) refers to the problem where a user retrieves one out of K messages from N non-communicating databases (each holds all K messages) without revealing anything about the identity of the desired message index to any individual database. In this paper, we identify an intriguing connection between PIR and BIA. Inspired by this connection, we characterize the information theoretic optimal download cost of PIR, when we have K = 2 messages and the number of databases, N, is arbitrary

    Blind Interference Alignment for Cellular Networks

    Get PDF
    We propose a blind interference alignment scheme for partially connected cellular networks. The scheme cancels both intracell and intercell interference by relying on receivers with one reconfigurable antenna and by allowing users at the cell edge to be served by all the base stations in their proximity. An outer bound for the degrees of freedom is derived for general partially connected networks with single-antenna receivers when knowledge of the channel state information at the transmitter is not available. It is demonstrated that for symmetric scenarios, this outer bound is achieved by the proposed scheme. On the other hand, for asymmetric scenarios, the achievable degrees of freedom are not always equal to the outer bound. However, the penalty is typically small, and the proposed scheme outperforms other blind interference alignment schemes. Moreover, significant reduction of the supersymbol length is achieved compared with a standard blind interference alignment strategy designed for fully connected networks.This work has been partially funded by research projects COMONSENS (CSD2008-00010) and GRE3N (TEC2011-29006-C03-02). This research work was partly carried out at the ESAT Laboratory of KU Leuven in the frame of the Belgian Programme on Interuniversity Attractive Poles Programme initiated by the Belgian Science Policy Office: IUAP P7/23 ‘Belgian network on stochastic modeling analysis design and optimization of communication systems’ (BESTCOM) 2012–2017. The work of D. Toumpakaris was supported by the European Union (European Social Fund—ESF) and Greek national funds through the Operational Program Education and Lifelong Learning of the National Strategic Reference Framework through the Research Funding Program Thales—Investing in knowledge society through the European Social Fund. The work of Syed Jafar was supported in part by NSFgrants CCF-1319104 and CCF-1317351.Publicad

    Experimental Evaluation of Blind Interference Alignment

    Get PDF
    The proceeding at: 2015 Vehicular Technology Conference (VTC Spring) took place 11-14 May in Glasgow, Ireland.An experimental evaluation of Blind Interference Alignment (BIA) over a hardware platform is presented in this work. In contrast to other transmission techniques such as Linear Zero Forcing Beamforming (LZFB) or Interference Alignment (IA), BIA achieves a growth in Degrees of Freedom (DoF) without channel state information at the transmitter (CSIT). A real implementation based on Orthogonal Frequency Division Multiplexing (OFDM) and LTE parameters is implement on a testbed made up of a transmitter equipped with two antennas and two users equipped with a reconfigurable antenna each. Furthermore, a full CSIT technique such as LZFB is also implemented for comparison purposes. First, the theoretic achievable rates are obtained for both techniques. After that, the bit error rate of both schemes is evaluated regarding the achieved sum-thorughput.This work has been partially funded by research projects COMONSENS (CSD2008-00010), and GRE3N (TEC2011-29006-C03-02)

    Data Sharing Coordination and Blind Interference Alignment for Cellular Networks

    No full text
    International audienceWe consider coordination in a multi-user multiple input single output cellular system. In contrast with existing base station cooperation methods that rely on sharing CSI with or without user data to manage interference, we propose to share user data only. We consider a system where blind interference alignment (BIA) is applied to serve multiple users in each cell. We apply interference coordination through data sharing to mitigate other-cell interference at the cell-edge users. While BIA mitigates intra-cell interference in MU-MISO systems, it does not address the problem of inter-cell interference. We apply interference coordination through data sharing to mitigate inter-cell interference at the cell-edge users. We propose a new cooperative BIA scheme that takes into account the users whose data is being shared between adjacent base stations. We derive the achievable sum rate with interference mitigation and we compare it to achievable rates with the original BIA strategy. Numerical results show that the achievable sum rate of the cell-edge users with data sharing decreases with increasing number of served users in each cell and increasing number of antennas at the base stations
    • 

    corecore