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Abstract—Heterogeneous networks have a key role in the
design of future mobile communication networks, since the
employment of small cells around a macrocell enhances the net-
work’s efficiency and decreases complexity and power demand.
Moreover, research on Blind Interference Alignment (BIA) has
shown that optimal Degrees of Freedom (DoF) can be achieved in
certain network architectures, with no requirement of Channel
State Information (CSI) at the transmitters. Our contribution is
a generalised model of BIA in a heterogeneous network with one
macrocell with 𝐾 users and 𝐾 femtocells each with one user, by
using Kronecker (Tensor) Product representation. We introduce
a solution on how to vary beamforming vectors under power
constraints to maximize the sum rate of the network and how
optimal DoF can be achieved over 𝐾 + 1 time slots.

I. INTRODUCTION

Next-generation mobile and cellular networks will require
higher capacity and reliabilty, as well as power-efficiency.
Interference Alignment (IA), first introduced by Maddah-Ali,
Motahari and Khandani in [1] and Cadambe and Jafar in [2],
made a very promising step in this direction by proving that
it is possible that the 𝐾-user interference channel, under the
assumption of global perfect CSI, can have 𝐾/2 DoF, i.e.
“everyone gets half the cake”. The novelty of the IA scheme,
as described in [1]-[3], lies in the fact that it attempts to align,
rather than cancel or reduce, interference along dimensions
different from the dimensions of the actual signal.

Initially, the main drawbacks of IA were the requirement of
global perfect CSI at the transmitter (CSIT), which resulted in
feedback overhead, and its complexity, as only for the 𝐾 = 3
case, as presented in [4], a closed-form solution could be easily
described. In general, in the absence of perfect or partial CSIT,
the DoF of a network collapse, i.e transmissions are no longer
reliable. However, for certain networks, the scheme of Blind
IA (BIA), originally presented by Wang, Gou and Jafar in [5]
and Jafar in [6], can achieve full DoF, even when no CSIT
is available. BIA can be successfully achieved by a) knowing
distinct coherence patterns associated with different receivers,
or b) employing distinct antenna switching patterns at re-
ceivers equipped with reconfigurable antennas. Furthermore,
as suggested by Jafar in [7], BIA can achieve even higher
than 𝐾/2 DoF in certain cellular environments simply by
seeing frequency reuse as a simple form of IA. Moreover, [7]

introduced the feasibility of BIA in heterogenous networks due
to interference diversity, i.e. the observation that every receiver
experiences a different set of interferers, and depending on the
actions of its interferers, the interference-free signal subspace
fluctuates differently from the rest of the receivers. Finally, [8]
and [9] introduced an equal-power allocation BIA scheme that
reduces noise enhancement by constant power transmission.

In this paper, based on [5]-[7], we propose a generalised
model of BIA in a heterogeneous network, where there is one
macrocell with 𝐾 users and 𝐾 femtocells with one user each
(see Figure 1). Our contribution is the generalisation of the
construction given by Jafar, [7, Section 6] in the case 𝐾 = 2,
introducing the application of BIA to heterogeneous networks.
Moreover, this paper introduces a new description of the BIA
model using a Kronecker Product representation. Based on
our findings, the DoF that can be achieved in both tiers of
the network are presented. Finally, we discuss how to vary
parameters of the model to maximize sum rate, extending the
ideas of [8]-[9], and demonstrating optimality in the sum rate
sense.

The rest of the paper is organized as follows. Section II
presents the general description of the BIA model, including
the determination of the beamforming matrices, and the whole
decoding process. Section III presents the DoF that can be
achieved in the macrocell and the 𝐾 femtocells. Section IV
presents the achievable sum rate formula for the heterogenous
network. Finally, Section V gives an overview of our results,
illustrated with the aid of simulations/graphs.

II. SYSTEM MODEL

We generalise Jafar’s model [7, Section 6], under the same
channel assumptions. Consider the Broadcast Channel (BC)
of a heterogeneous network, as shown in Figure 1, with 1
macrocell and 𝐾 femtocells. At the 𝑁 × 𝑁 MIMO BC of
the macrocell, there is one transmitter 𝑇𝑥𝐴 with 𝑁 antennas,
and 𝐾 users equipped with 𝑁 antennas each. Transmitter 𝑇𝑥𝐴

has 𝑁 messages to send to every user, and furthermore, when
it transmits to user 𝑎𝑘, where 𝑘 ∈ {1, 2, ...,𝐾}, it causes
interference to all the other 𝐾−1 users in the macrocell. At the
𝑀𝑟×𝑁 MIMO BC of each femtocell, there is one transmitter
𝑇𝑥𝑘 with 𝑁 antennas, and one user 𝑓𝑘 equipped with 𝑀𝑟



antennas, with 𝑀𝑟 = 𝑁 − 1. Transmitter 𝑇𝑥𝑘 has ℳ = (𝑇 −
1)𝑀𝑟+1 messages to send to the femtocell user 𝑓𝑘, and when
it transmits to 𝑓𝑘, it causes interference to the macrocell user
𝑎𝑘. The operation is performed over 𝑇 = 𝐾 +1 channel uses
(i.e. time slots), which constitute a supersymbol. The channel
is assumed to remain constant over the supersymbol.

The BIA scheme works by using different antenna switching
patterns for each of the 𝐾 femtocells. These switching patterns
are encoded in the indicator vectors as described later in this
section. For the successful application of the BIA scheme, the
following assumptions, as in [7], are made:

∙ Users in the femtocells do not receive any interference
from transmissions in the macrocell

∙ No CSIT is required, only knowledge of the connectivity
of the network is available at the transmitters

A. Beamforming Matrices

1) Macrocell: The ((𝑁𝑇 ) × 1) signal at receiver 𝑎𝑘, for
the supersymbol, is given by:

y[𝑎𝑘] = H[𝑎𝑘]X𝐴 +H[𝑓𝑘𝑎𝑘]X𝑓𝑘 + Z[𝑎𝑘] (1)

Channel transfer matrices are statistically independent due
to users’ different locations, and each one of their entries
follows an i.i.d. Gaussian distribution 𝒞𝒩 (0, 1). H[𝑎𝑘] ∈
𝒞𝑁𝑇×𝑁𝑇 is the channel transfer matrix from 𝑇𝑥𝐴 to 𝑎𝑘,
and is given by H[𝑎𝑘] = I𝑇 ⊗ h[𝑎𝑘] (here and throughout
⊗ represents the Kronecker (Tensor) product), as the channel
is non-varying, where h[𝑎𝑘] ∈ 𝒞𝑁×𝑁 is the channel for one
time slot. H[𝑓𝑘𝑎𝑘] ∈ 𝒞𝑁𝑇×𝑁𝑇 is the inter-cell interference
channel transfer matrix from 𝑇𝑥𝑘

to 𝑎𝑘, and is given by
H[𝑓𝑘𝑎𝑘] = I𝑇 ⊗h[𝑓𝑘𝑎𝑘], where h[𝑓𝑘𝑎𝑘] ∈ 𝒞𝑁×𝑁 is the channel
for one time slot. Finally, Z[𝑎𝑘] ∼ 𝒞𝒩 (0, 𝜎2

𝑛I𝑁𝑇 ) denotes the
independent Additive White Gaussian Noise (AWGN) vector.

The (𝑁 × 1) data stream vector of each user 𝑎𝑘 is given by
U[𝑎𝑘]. The choice of the ((𝑁𝑇 )×𝑁 ) beamforming matrices
V[𝑎𝑘] carrying messages to users in the macrocell is not unique
and should lie in a space that is orthogonal to the channels of
the other 𝐾 − 1 macrocell users.

V[𝑎𝑘] =
𝑎√
𝑁

(v[𝑎𝑘] ⊗ I𝑁 ), (2)

where 𝑎 ∈ ℝ is a constant determined by power considerations
(see (4)), and (𝑇×1) v[𝑎𝑘] should be a unit vector with entries
equal to 𝑐,

√
1− 𝑐2 (for 𝑐 ∈ ℝ and 𝑐 ∕= 0,±1) or 0, with a

different combination for every 𝑎𝑘. For every macrocell user,
there will be one time slot in which only they will be receiving
messages. Also, there will be another time slot (time slot 2
in Figure 2) over which 𝑇𝑥𝐴 will transmit to all users. The
((𝑁𝑇 )× 1) vector X𝐴 transmitted by 𝑇𝑥𝐴, is given by:

X𝐴 =
𝐾∑
𝑖=1

V[𝑎𝑖]U[𝑎𝑖] (3)

The total transmit power is given by the power constraint:

𝑃macrocell = 𝔼[tr(X𝐴X
𝑇
𝐴)] = 𝐾𝑁𝑎2 (4)

Figure 1. BIA in a heterogeneous network: 𝐾 = 3 users in the macrocell
and 𝐾 = 3 femtocells with 1 user each

Figure 2. Beamforming in macrocell and femtocells

Example 1. The same model will be used as an example
in this paper: For 𝐾 = 3 users in the macrocell with 𝑁 = 2
transmit/receive antennas and messages for each user, 𝑀𝑟 = 1
receive and 𝑁 = 2 transmit antennas and ℳ = 4 messages
sent in each one of the 𝐾 = 3 femtocells, and 𝑇 = 4 time
slots, the beamforming matrices, as shown in Figure 2, are
given by:

V[𝑎1] = 𝑎√
𝑁
(v[𝑎1] ⊗ I2) =

𝑎√
2

[
0 𝑐

√
1− 𝑐2 0

]𝑇 ⊗ I2

V[𝑎2] = 𝑎√
𝑁
(v[𝑎2] ⊗ I2) =

𝑎√
2

[ √
1− 𝑐2 𝑐 0 0

]𝑇 ⊗ I2

V[𝑎3] = 𝑎√
𝑁
(v[𝑎3] ⊗ I2) =

𝑎√
2

[
0 𝑐 0

√
1− 𝑐2

]𝑇 ⊗ I2

2) Femtocells: At each femtocell, the ((𝑀𝑟𝑇 ) × 1) signal
at receiver 𝑓𝑘, for the supersymbol, is given by:

y[𝑓𝑘] = H[𝑓𝑘]X𝑓𝑘 + Z[𝑓𝑘], (5)

where H[𝑓𝑘] ∈ 𝒞𝑀𝑟𝑇×𝑁𝑇 is the channel transfer matrix
from 𝑇𝑥𝑓 to𝑓𝑘, and is given by H[𝑓𝑘] = I𝑇 ⊗ h[𝑓𝑘] where
h[𝑓𝑘] ∈ 𝒞𝑀𝑟×𝑁 is the channel for one time slot, and
Z[𝑓𝑘] ∼ (0, 𝜎2

𝑛I𝑀𝑟𝑇 ) denotes the Additive White Gaussian
Noise (AWGN) vector.

In each femtocell, the (ℳ× 1) data stream vector of each
user 𝑓𝑘 is given by U[𝑓𝑘]. The ((𝑁𝑇 ) × ℳ) beamforming
matrix V[𝑓𝑘] is given by:

V[𝑓𝑘] =
𝑏√
𝑁

(
𝑇∑

𝑖=1

𝛾
[𝑓𝑘]

𝑇

𝑖 ⊗ r𝑖q𝑖

)
(6)



Figure 3. Schematic plot of beamforming vectors: w
[𝑎1]
𝑠 is orthogonal to

v[𝑎2] ,v[𝑎3] .

where 𝑏 ∈ ℝ is a constant determined by power considerations
(see (8)), and v

[𝑓𝑘]
1 =

∑𝑇−1
𝑖=1 𝛾

[𝑓𝑘]
𝑖 and v

[𝑓𝑘]
2 = 𝛾

[𝑓𝑘]
𝑇 are

(1× 𝑇 ) unit vectors with entries equal to 1 and 0, with v
[𝑓𝑘]
2

having only its 𝑡th entry (𝑡 denoting the time slot that 𝑎𝑘
receives no interference) equal to 1, such that

∑2
𝑗=1 v

[𝑓𝑘]
𝑗 =[

1 1 ... 1
]
. Also, for 𝑖 = 1, ..., 𝑇 − 1, we set r𝑖 equal

to the first 𝑀𝑟 columns of I𝑁 with e1 equal to the sum of
the columns of r𝑖, and e2 = r𝑇 equal to the last column
of I𝑁 . Furthermore, for 𝑖 = 1, ..., 𝑇 − 1, q𝑖 is equal to the
submatrix of Iℳ consisting of rows (𝑀𝑟(𝑖 − 1) + 1,𝑀𝑟𝑖),
and q𝑇 is equal to the submatrix of Iℳ consisting of row
ℳ. The 𝑡th component of 𝛾[𝑓𝑘]

𝑖 being 1 means that in the 𝑘th
femtocell, the antennas determined by r𝑖 are in use at time 𝑡,
and the messages determined by q𝑖 are transmitted. Finally,
the ((𝑁𝑇 )× 1) vector, transmitted by 𝑇𝑥𝐾 is given by:

X𝑓𝑘 = V[𝑓𝑘]U[𝑓𝑘] (7)

The total transmit power is given by the power constraint:

𝑃femtocell = 𝔼[tr(X𝑓𝑘X
𝑇
𝑓𝑘
)] = ℳ2 𝑏

2

𝑁
(8)

Example 2. For our example-model, the beamforming matrix
for user 𝑓1, as depicted in Figure 2, is given by:

V[𝑓1] = 𝑏√
2

(∑4
𝑖=1 𝛾

[𝑓1]
𝑇

𝑖 ⊗ r𝑖q𝑖

)
with

∑3
𝑖=1 𝛾

[𝑓1]
𝑖 = v

[𝑓1]
1 = [ 1 1 0 1 ] ,

𝛾
[𝑓1]
4 = v

[𝑓1]
2 = [ 0 0 1 0 ]

for 𝑖 = 1, 2, 3 : r𝑖 =
[
1 0

]𝑇
with e1 =

[
1 0

]𝑇
,

r4 = e2 =
[
0 1

]𝑇
,

q𝑖 the ith unit basis vector

B. Projection & Effective Channel Matrix

1) Macrocell: In the macrocell, in order remove inter- and
intra-cell interference, the received signal should be projected
to a subspace orthogonal to the subspace that interference lies
in. The rows of the (𝑁 × 𝑁𝑇 ) projection matrix P[𝑎𝑘] form
an orthonormal basis of this subspace:

P[𝑎𝑘] =

2∑
𝑠=1

(
w[𝑎𝑘]

𝑠 ⊗D[𝑎𝑘]
𝑠 h̃[𝑓𝑘𝑎𝑘]

)
, (9)

where

1) for all s, the (1 × 𝑇 ) w
[𝑎𝑘]
𝑠 is a unit vector orthogonal

to v[𝑎𝑖] for 𝑖 ∕= 𝑘, as shown in Figure 3,

2) w
[𝑎𝑘]
𝑠 has coefficients equal to zero on the non-zero

values of 𝛾[𝑓𝑘]
𝑇

𝑖 for 𝑠 = 1 and 𝑖 = 𝑇 , and for 𝑠 = 2 and
𝑖 = 1...𝑇 − 1,

3) D
[𝑎𝑘]
1 = diag(e2) and D

[𝑎𝑘]
2 = diag(e1),

4) h̃[𝑓𝑘𝑎𝑘] is an (𝑁 × 𝑁) matrix, whose rows are unit
vectors, with the 𝑁 th row orthogonal to all the columns
of
(
h[𝑓𝑘𝑎𝑘]r𝑖

)
for 𝑖 = 1...𝑇 − 1, and the remaining

(𝑁 − 1) rows orthogonal to
(
h[𝑓𝑘𝑎𝑘]r𝑇

)
.

Example 3. For the toy-model, setting 𝐴 =√
(ℎ

[𝑓1𝑎1]2
22 + ℎ

[𝑓1𝑎1]2
12 ) and 𝐵 =

√
(ℎ

[𝑓1𝑎1]2
21 + ℎ

[𝑓1𝑎1]2
11 ),

𝑃 [𝑎1] is given by:

P[𝑎1] =

2∑
𝑠=1

(
w[𝑎1]

𝑠 ⊗D[𝑎1]
𝑠 h̃[𝑓1𝑎1]

)
=

([
𝑐√

1+𝑐2
−√

1−𝑐2√
1+𝑐2

0 𝑐√
1+𝑐2

]
⊗
[

0 0
ℎ
[𝑓1𝑎1]
21

𝐵
−ℎ

[𝑓1𝑎1]
11

𝐵

])

+

([
0 0 1 0

]⊗ [ℎ
[𝑓1𝑎1]
22

𝐴
−ℎ

[𝑓1𝑎1]
12

𝐴
0 0

])
,

where

w
[𝑎1]
1 =

[
𝑐√

1+𝑐2
−√

1−𝑐2√
1+𝑐2

0 𝑐√
1+𝑐2

]
,

w
[𝑎1]
2 =

[
0 0 1 0

]
,

D
[𝑎𝑘]
1 = diag(

[
0 1

]𝑇
), D[𝑎𝑘]

2 = diag(
[
1 0

]𝑇
),

h̃[𝑓1𝑎1] =

[
1
𝐴 0
0 1

𝐵

] [
ℎ
[𝑓1𝑎1]
22 −ℎ

[𝑓1𝑎1]
12

ℎ
[𝑓1𝑎1]
21 −ℎ

[𝑓1𝑎1]
11

]
Theorem 1. Multiplying the received signal by projection

matrix P[𝑎𝑘]:
ỹ[𝑎𝑘] = P[𝑎𝑘]y[𝑎𝑘] (10)

gives an effective channel:

ỹ[𝑎𝑘] = ℋ[𝑎𝑘]U[𝑎𝑘] + Z̃[𝑎𝑘], (11)

where
ℋ[𝑎𝑘] =

𝑎√
𝑁

𝒟[𝑎𝑘]h̃[𝑓𝑘𝑎𝑘]h[𝑎𝑘], (12)

with diagonal matrix

𝒟[𝑎𝑘] =

2∑
𝑠=1

w[𝑎𝑘]
𝑠 v[𝑎𝑘]D[𝑎𝑘]

𝑠 = diag
(
w[𝑎𝑘]

𝑠 v[𝑎𝑘]
)

(13)

and Z̃[𝑎𝑘] = P[𝑎𝑘]Z[𝑎𝑘] remains white noise with the same
variance (since w

[𝑎𝑘]
𝑠 is a unit vector).

Proof: We show that 𝑃 [𝑎𝑘] removes intra- and inter- cell
interference at the kth receiver. Substituting, (1) and (3) in (10),
we can consider the coefficients of U[𝑎𝑖] and U[𝑓𝑘] separately.
For 𝑖 ∕= 𝑘, using (𝐴⊗𝐵) (𝐶 ⊗𝐷) = (𝐴𝐶)⊗(𝐵𝐷), for intra-
cell interference, coefficient of U[𝑎𝑖] becomes:

P[𝑎𝑘]H[𝑎𝑘]V[𝑎𝑖] =
𝑎√
𝑁

2∑
𝑠=1

(
w[𝑎𝑘]

𝑠 ⊗D[𝑎𝑘]
𝑠 h̃[𝑓𝑘𝑎𝑘]

)
× (I𝑇 ⊗ h[𝑎𝑘])(v[𝑎𝑖] ⊗ I𝑁 )



=
𝑎√
𝑁

2∑
𝑠=1

(
w[𝑎𝑘]

𝑠 v[𝑎𝑖]
)
⊗
(
D[𝑎𝑘]

𝑠 h̃[𝑓𝑘𝑎𝑘]h[𝑎𝑘]
)
, (14)

where by definition, for all s, w
[𝑎𝑘]
𝑠 v[𝑎𝑖] = 0, i.e. w

[𝑎𝑘]
𝑠 is

orthogonal to v[𝑎𝑖] if 𝑖 ∕= 𝑘. For 𝑖 = 𝑘 the remaining term is
(13). For inter-cell interference, coefficient of U[𝑓𝑘]:

P[𝑎𝑘]H[𝑓𝑘𝑎𝑘]V[𝑓𝑘] =
𝑏√
𝑀𝑡

2∑
𝑠=1

(
w[𝑎𝑘]

𝑠 ⊗D[𝑎𝑘]
𝑠 h̃[𝑓𝑘𝑎𝑘]

)
×
(
I𝑇 ⊗ h[𝑓𝑘𝑎𝑘]

)( 𝑇∑
𝑖=1

𝛾
[𝑓𝑘]

𝑇

𝑖 ⊗ r𝑖q𝑖

)

=
𝑏√
𝑀𝑡

2∑
𝑠=1

𝑇∑
𝑖=1

w[𝑎𝑘]
𝑠 𝛾

[𝑓𝑘]
𝑇

𝑖 ⊗D[𝑎𝑘]
𝑠 h̃[𝑓𝑘𝑎𝑘]h[𝑓𝑘𝑎𝑘]r𝑖q𝑖, (15)

where for s = 1: if 𝑖 = 𝑇 , the (w
[𝑎𝑘]
𝑠 𝛾

[𝑓𝑘]
𝑇

𝑖 ) = 0 and if 𝑖 =

1, ..., (𝑇 −1), the (D
[𝑎𝑘]
𝑠 h̃[𝑓𝑘𝑎𝑘]h[𝑓𝑘𝑎𝑘]r𝑖) = 0. Premultiplying

by D
[𝑎𝑘]
𝑠 selects a row of h̃[𝑓𝑘𝑎𝑘] and postmultiplying by r𝑖

selects a column of h̃[𝑓𝑘𝑎𝑘], with the resulting row and column
being orthogonal by 4).

For s = 2: if 𝑖 = 1, ..., (𝑇 − 1), the (w
[𝑎𝑘]
𝑠 𝛾

[𝑓𝑘]
𝑇

𝑖 ) = 0 and
if 𝑖 = 𝑇 , the (D

[𝑎𝑘]
𝑠 h̃[𝑓𝑘𝑎𝑘]h[𝑓𝑘𝑎𝑘]r𝑖) = 0.

2) Femtocell: The effective channel matrix ℋ[𝑓𝑘] is given
by:

ℋ[𝑓𝑘] =
𝑏√
𝑁

(
I𝑇 ⊗ h[𝑓𝑘]

)( 𝑇∑
𝑖=1

𝛾
[𝑓𝑘]

𝑇

𝑖 ⊗ r𝑖q𝑖

)
, (16)

and the final post-processed signal at receiver 𝑓𝑘 becomes:

ỹ[𝑓𝑘] = ℋ[𝑓𝑘]U[𝑓𝑘] + Z̃[𝑓𝑘], (17)

where Z̃[𝑓𝑘] remains white noise with the same variance.

III. DEGREES OF FREEDOM

Theorem 2: In the heterogeneous network, counting mes-
sages, 𝐷𝑜𝐹macrocell =

𝐾𝑁
𝐾+1 and 𝐷𝑜𝐹femtocell =

𝐾𝑀𝑟+1
𝐾+1 , and

thus the total DoF that can be achieved are given by:

𝐷𝑜𝐹total =
𝐾(𝑁 +𝐾𝑀𝑟 + 1)

𝐾 + 1
(18)

A. BIA vs. TDMA

In order to further understand the advantage, in DoF, of
the BIA scheme proposed, Table 1 summarizes the DoF that
can be achieved by BIA and TDMA. The total DoF gain
achieved by BIA is given by 𝐷𝑜𝐹𝐵𝐼𝐴 − 𝐷𝑜𝐹𝑇𝐷𝑀𝐴 =
𝐾−𝑁+𝑀𝑟

𝐾+1 =
(𝑀𝑟=𝑁−1)

𝐾−1
𝐾+1 .

Scheme Macrocell K Femtocells Total Network

BIA 𝐾𝑁
𝐾+1

𝐾(𝐾𝑀𝑟+1)
𝐾+1

𝐾(𝑁+𝐾𝑀𝑟+1)
𝐾+1

TDMA 𝑁 𝑀𝑟(𝐾 − 1) 𝑁 +𝑀𝑟(𝐾 − 1)

Table 1: DoF of BIA and TDMA

Moreover, the benefit of the employment of the BIA scheme
in heterogeneous networks is related to the number of re-
ceive antennas in the macrocell and femtocells. Based on

our research, compared to TDMA, as the number of receive
antennas in the macrocell increases, the benefit we get from
BIA decreases. Finally, as the number of receive antennas in
each femtocell increases, the benefit we get from BIA remains
almost the same.

IV. ACHIEVABLE RATE

A. Macrocell

Since there is no CSIT, the total rate for each user in the
macrocell, for ONE time slot and setting 𝒦[𝑎𝑘] = h̃[𝑓𝑘𝑎𝑘]h[𝑎𝑘],
is given by:

𝑅[𝑎𝑘] =
1

𝑇
𝔼

[
log det

(
I𝑁 +

𝑃macrocell

𝐾𝑁2𝜎2
𝑛

𝒟[𝑎𝑘]𝒦[𝑎𝑘]𝒦[𝑎𝑘]
∗𝒟[𝑎𝑘]

∗
)]

(19)
For any channel realisation, in the high SNR limit, the rate

is maximised by maximising the value of

det𝒟[𝑎𝑘] =

2∏
𝑠=1

(
w[𝑎𝑘]

𝑠 v[𝑎𝑘]
)

(20)

For our example, see Figure 3, with 𝐾 = 3 users, (20) is
maximised for 𝑐 = 0.5299, since the values of 𝑁 and channel
transfer matrices are fixed for a given channel realisation.

B. Femtocells

Since there is no CSIT, the rate for each femtocell user, for
ONE time slot, is given by:

𝑅[𝑓𝑘] =
1

𝑇
𝔼

[
log det

(
Iℳ +

𝑃femtocell

𝜎2
𝑛

1

ℳ2
ℋ̃[𝑓𝑘]ℋ̃[𝑓𝑘]

∗
)]

,

(21)
where

ℋ̃[𝑓𝑘] =

√
𝑁

𝑏
ℋ[𝑓𝑘] (22)

V. OVERVIEW OF RESULTS

Most of our simulations were based on the toy-model
already described. The statistical model chosen was i.i.d.
Rayleigh and our input symbols were QPSK modulated.
Finally, Zero-Forcing (ZF) detection was performed in the
decoding stage. Typical values of 𝑎 and 𝑏 used in a real system
are 𝑎 =

√
40 and 𝑏 =

√
5.

A. Bit Error Rate (BER) Performance

In order to investigate the BER performance of our toy-
model, the effect of varying the values of constants 𝑎 and 𝑐
from the beamforming vectors for macrocell users and 𝑏 from
the beamforming vectors for femtocell users, was investigated.
Firstly, the BER performance of the network was investigated
for different values of 𝑎 and 𝑏. As 𝑎 and 𝑏 “control” the power
with which messages are transmitted, when they are varied,
effectively the total transmit power of the network changes as
well. For instance, Figure 4 shows how the BER performances
of the macrocell and femtocells are affected when we vary
coefficients 𝑎 and 𝑏. Finally, as discussed in Section IV an
optimal value for 𝑐 can be found, which for our toy-model is
𝑐 = 0.5299. Figure 5 depicts how the BER performance of
the macrocell is affected as 𝑐 changes.
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Figure 4. BER in macrocell and femtocells for different values of 𝑎 and 𝑏.
As 𝑎 and 𝑏 increase BER performances in macrocell and femtocells improve.
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Figure 5. BER in the macrocell for different values of 𝑐. BER performance
in the macrocell is improved for values of 𝑐 close to 0.5299.

B. Sum Rate Performance

As discussed in section IV, the value of 𝑐 has a key-role
in the sum rate performance of the macrocell. In Figure 6 the
rate of the heterogeneous network is depicted and in Figure 7,
it can be observed how the sum rate in the macrocell changes
with 𝑐, achieving its best performance for values of 𝑐 close to
0.5299.

VI. SUMMARY

Overall, this paper introduces how the BIA scheme can
be applied into heterogeneous networks. Considering the fact
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Figure 6. Rate of heterogeneous network with respect to the noise variance.
The rate in the macrocell is higher than the rate per femtocell.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

SNR (dB)

M
ac

ro
ce

ll 
R

at
e 

(b
it

s/
s)

 p
er

 t
im

e 
sl

o
t

 

 

 c = 0.1
 c = 0.3
 c = 0.5
 c = 0.7
 c = 0.9

a = sqrt(40)
b = sqrt(5)

Figure 7. Rate in the macrocell for different values of 𝑐. The rate in the
macrocell is optimised for values of 𝑐 very close to 0.5299.

that no CSIT is required, the DoF that can be achieved were
discussed, which are the same with the IA scheme requiring
perfect CSIT. Moreover, the BIA model was investigated from
the perspective of equal power allocation, and how that can
affect the optimal performance of the system. In that context,
the important role of 𝑐, in the performance of the network,
suggests that there is ground for further research on optimising
the network performance. Finally, the description of the model
in a Kronecker product representation provides a different
insight on how the BIA scheme works.
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