7 research outputs found

    Model of cognitive structure from the point of view of the newly enunciated theory of the Assimilation

    Get PDF
    La reformulación de la teoría de la asimilación de Ausubel (TRA) nos ha permitido desarrollar una analogía entre la relacionabilidad y discriminabilidad ideativa de la estructura cognitiva con el sistema físico de un resorte conductor elástico comprimido. A partir de lo cual, se ha elaborado un modelo de estructura cognitiva que permite la explicación de un conjunto de comportamientos psicológicos considerados en la actualidad por la psicología cognitiva y de utilidad en los procesos de aprendizaje. El modelo de estructura cognitiva propuesto está en concordancia con comportamientos cerebrales conocidos y con modelos actuales de su comportamientoThe newly enunciated theory of Ausubel's assimilation (NETA) has allowed us to develop an analogy between the ability of making connections and differentiate ideas within the cognitive structure of the students in relation to the physical system of an elastic conductive spring in a compressed state. Taking this new theory as a starting point, it has been possible to elaborate a model of cognitive structure which allows us to explain a set of psychological behaviours considered at present by the cognitive psychology and usefully profitable in the learning processes. The proposed model of cognitive structure is in conformity with cerebral known behaviours and with current models of its behaviour

    Perceptual abstraction and attention

    Get PDF
    This is a report on the preliminary achievements of WP4 of the IM-CleVeR project on abstraction for cumulative learning, in particular directed to: (1) producing algorithms to develop abstraction features under top-down action influence; (2) algorithms for supporting detection of change in motion pictures; (3) developing attention and vergence control on the basis of locally computed rewards; (4) searching abstract representations suitable for the LCAS framework; (5) developing predictors based on information theory to support novelty detection. The report is organized around these 5 tasks that are part of WP4. We provide a synthetic description of the work done for each task by the partners

    Toward a further understanding of object feature binding: a cognitive neuroscience perspective.

    Get PDF
    The aim of this thesis is to lead to a further understanding of the neural mechanisms underlying object feature binding in the human brain. The focus is on information processing and integration in the visual system and visual shortterm memory. From a review of the literature it is clear that there are three major competing binding theories, however, none of these individually solves the binding problem satisfactorily. Thus the aim of this research is to conduct behavioural experimentation into object feature binding, paying particular attention to visual short-term memory. The behavioural experiment was designed and conducted using a within-subjects delayed responset ask comprising a battery of sixty-four composite objects each with three features and four dimensions in each of three conditions (spatial, temporal and spatio-temporal).Findings from the experiment,which focus on spatial and temporal aspects of object feature binding and feature proximity on binding errors, support the spatial theories on object feature binding, in addition we propose that temporal theories and convergence, through hierarchical feature analysis, are also involved. Because spatial properties have a dedicated processing neural stream, and temporal properties rely on limited capacity memory systems, memories for sequential information would likely be more difficult to accuratelyr ecall. Our study supports other studies which suggest that both spatial and temporal coherence to differing degrees,may be involved in object feature binding. Traditionally, these theories have purported to provide individual solutions, but this thesis proposes a novel unified theory of object feature binding in which hierarchical feature analysis, spatial attention and temporal synchrony each plays a role. It is further proposed that binding takes place in visual short-term memory through concerted and integrated information processing in distributed cortical areas. A cognitive model detailing this integrated proposal is given. Next, the cognitive model is used to inform the design and suggested implementation of a computational model which would be able to test the theory put forward in this thesis. In order to verify the model, future work is needed to implement the computational model.Thus it is argued that this doctoral thesis provides valuable experimental evidence concerning spatio-temporal aspects of the binding problem and as such is an additional building block in the quest for a solution to the object feature binding problem

    Toward a further understanding of object feature binding : a cognitive neuroscience perspective

    Get PDF
    The aim of this thesis is to lead to a further understanding of the neural mechanisms underlying object feature binding in the human brain. The focus is on information processing and integration in the visual system and visual shortterm memory. From a review of the literature it is clear that there are three major competing binding theories, however, none of these individually solves the binding problem satisfactorily. Thus the aim of this research is to conduct behavioural experimentation into object feature binding, paying particular attention to visual short-term memory. The behavioural experiment was designed and conducted using a within-subjects delayed responset ask comprising a battery of sixty-four composite objects each with three features and four dimensions in each of three conditions (spatial, temporal and spatio-temporal).Findings from the experiment,which focus on spatial and temporal aspects of object feature binding and feature proximity on binding errors, support the spatial theories on object feature binding, in addition we propose that temporal theories and convergence, through hierarchical feature analysis, are also involved. Because spatial properties have a dedicated processing neural stream, and temporal properties rely on limited capacity memory systems, memories for sequential information would likely be more difficult to accuratelyr ecall. Our study supports other studies which suggest that both spatial and temporal coherence to differing degrees,may be involved in object feature binding. Traditionally, these theories have purported to provide individual solutions, but this thesis proposes a novel unified theory of object feature binding in which hierarchical feature analysis, spatial attention and temporal synchrony each plays a role. It is further proposed that binding takes place in visual short-term memory through concerted and integrated information processing in distributed cortical areas. A cognitive model detailing this integrated proposal is given. Next, the cognitive model is used to inform the design and suggested implementation of a computational model which would be able to test the theory put forward in this thesis. In order to verify the model, future work is needed to implement the computational model.Thus it is argued that this doctoral thesis provides valuable experimental evidence concerning spatio-temporal aspects of the binding problem and as such is an additional building block in the quest for a solution to the object feature binding problem.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore