1,620 research outputs found

    DESIGNING A MODEL TO ESTIMATE THE SEVOFLURANE DOSE FOR A PATIENT UNDER THE GENERAL ANAESTHESIA BY USING ADAPTIVE-NETWORK-BASED FUZZY INFERENCE SYSTEM

    Get PDF
    The field of Depth of Anaesthesia (DOA) is a very challenging area for neuro-fuzzy control since direct measurements are unavailable. During anaesthesia, the blood pressures (BP), the mean arterial blood pressure (MAP) and the heart rate (HR) are monitored to maintain hemodynamic stability and to assess the level of consciousness. The purpose of this study is to find the best input-output definitions in the Adaptive-Network-based Fuzzy Inference System (ANFIS) to control the Sevoflurane dose to patient under the general anaesthesia with the classical MAP and HR parameters. The best models have been found among many possible input combinations. This study helps to provide an alternate control for the dose of Sevoflurane which is widely used as an anaesthetic agent. The models have been trained and validated by clinical data. The results show that the patients can be modelled by ANFIS if sufficient HR and MAP data are provided. Furthermore, the model performance could be increased if the patients are grouped as adults and children. The performance (up to 0.99) in this study is comparable to recent works in similar subject which detect DOA by Electroencephalograms (EEG)

    Diagnosis and decision-making for awareness during general anaesthesia

    Get PDF
    This is the post-print version of the article. The official published version can be obtained from the link below.We describe the design process of a diagnostic system for monitoring the anaesthetic state of patients during surgical interventions under general anaesthesia. Mid-latency auditory evoked potentials (MLAEPs) obtained during general anaesthesia are used to design a neuro-fuzzy system for the determination of the level of unconsciousness after feature extraction using multiresolution wavelet analysis (MRWA). The neuro-fuzzy system proves to be a useful tool in eliciting knowledge for the fuzzy system: the anaesthetist's expertise is indirectly coded in the knowledge rule-base through the learning process with the training data. The anaesthetic depth of the patient, as deduced by the anaesthetist from the clinical signs and other haemodynamic variables, noted down during surgery, is subsequently used to label the MLAEP data accordingly. This anaesthetist-labelled data, used to train the neuro-fuzzy system, is able to produce a classifier that successfully interprets unseen data recorded from other patients. This system is not limited, however, to the combination of drugs used here. Indeed, the similar effects of inhalational and analgesic anaesthetic drugs on the MLAEPs demonstrate that the system could potentially be used for any anaesthetic and analgesic drug combination. We also suggest the use of a closed-loop architecture that would automatically provide the drug profile necessary to maintain the patient at a safe level of sedation

    Fuzzy logic: A “simple” solution for complexities in neurosciences?

    Get PDF
    Background: Fuzzy logic is a multi-valued logic which is similar to human thinking and interpretation. It has the potential of combining human heuristics into computer-assisted decision making, which is applicable to individual patients as it takes into account all the factors and complexities of individuals. Fuzzy logic has been applied in all disciplines of medicine in some form and recently its applicability in neurosciences has also gained momentum.Methods: This review focuses on the use of this concept in various branches of neurosciences including basic neuroscience, neurology, neurosurgery, psychiatry and psychology.Results: The applicability of fuzzy logic is not limited to research related to neuroanatomy, imaging nerve fibers and understanding neurophysiology, but it is also a sensitive and specific tool for interpretation of EEGs, EMGs and MRIs and an effective controller device in intensive care units. It has been used for risk stratification of stroke, diagnosis of different psychiatric illnesses and even planning neurosurgical procedures.Conclusions: In the future, fuzzy logic has the potential of becoming the basis of all clinical decision making and our understanding of neurosciences

    Performance Evaluation of Smart Decision Support Systems on Healthcare

    Get PDF
    Medical activity requires responsibility not only from clinical knowledge and skill but also on the management of an enormous amount of information related to patient care. It is through proper treatment of information that experts can consistently build a healthy wellness policy. The primary objective for the development of decision support systems (DSSs) is to provide information to specialists when and where they are needed. These systems provide information, models, and data manipulation tools to help experts make better decisions in a variety of situations. Most of the challenges that smart DSSs face come from the great difficulty of dealing with large volumes of information, which is continuously generated by the most diverse types of devices and equipment, requiring high computational resources. This situation makes this type of system susceptible to not recovering information quickly for the decision making. As a result of this adversity, the information quality and the provision of an infrastructure capable of promoting the integration and articulation among different health information systems (HIS) become promising research topics in the field of electronic health (e-health) and that, for this same reason, are addressed in this research. The work described in this thesis is motivated by the need to propose novel approaches to deal with problems inherent to the acquisition, cleaning, integration, and aggregation of data obtained from different sources in e-health environments, as well as their analysis. To ensure the success of data integration and analysis in e-health environments, it is essential that machine-learning (ML) algorithms ensure system reliability. However, in this type of environment, it is not possible to guarantee a reliable scenario. This scenario makes intelligent SAD susceptible to predictive failures, which severely compromise overall system performance. On the other hand, systems can have their performance compromised due to the overload of information they can support. To solve some of these problems, this thesis presents several proposals and studies on the impact of ML algorithms in the monitoring and management of hypertensive disorders related to pregnancy of risk. The primary goals of the proposals presented in this thesis are to improve the overall performance of health information systems. In particular, ML-based methods are exploited to improve the prediction accuracy and optimize the use of monitoring device resources. It was demonstrated that the use of this type of strategy and methodology contributes to a significant increase in the performance of smart DSSs, not only concerning precision but also in the computational cost reduction used in the classification process. The observed results seek to contribute to the advance of state of the art in methods and strategies based on AI that aim to surpass some challenges that emerge from the integration and performance of the smart DSSs. With the use of algorithms based on AI, it is possible to quickly and automatically analyze a larger volume of complex data and focus on more accurate results, providing high-value predictions for a better decision making in real time and without human intervention.A atividade médica requer responsabilidade não apenas com base no conhecimento e na habilidade clínica, mas também na gestão de uma enorme quantidade de informações relacionadas ao atendimento ao paciente. É através do tratamento adequado das informações que os especialistas podem consistentemente construir uma política saudável de bem-estar. O principal objetivo para o desenvolvimento de sistemas de apoio à decisão (SAD) é fornecer informações aos especialistas onde e quando são necessárias. Esses sistemas fornecem informações, modelos e ferramentas de manipulação de dados para ajudar os especialistas a tomar melhores decisões em diversas situações. A maioria dos desafios que os SAD inteligentes enfrentam advêm da grande dificuldade de lidar com grandes volumes de dados, que é gerada constantemente pelos mais diversos tipos de dispositivos e equipamentos, exigindo elevados recursos computacionais. Essa situação torna este tipo de sistemas suscetível a não recuperar a informação rapidamente para a tomada de decisão. Como resultado dessa adversidade, a qualidade da informação e a provisão de uma infraestrutura capaz de promover a integração e a articulação entre diferentes sistemas de informação em saúde (SIS) tornam-se promissores tópicos de pesquisa no campo da saúde eletrônica (e-saúde) e que, por essa mesma razão, são abordadas nesta investigação. O trabalho descrito nesta tese é motivado pela necessidade de propor novas abordagens para lidar com os problemas inerentes à aquisição, limpeza, integração e agregação de dados obtidos de diferentes fontes em ambientes de e-saúde, bem como sua análise. Para garantir o sucesso da integração e análise de dados em ambientes e-saúde é importante que os algoritmos baseados em aprendizagem de máquina (AM) garantam a confiabilidade do sistema. No entanto, neste tipo de ambiente, não é possível garantir um cenário totalmente confiável. Esse cenário torna os SAD inteligentes suscetíveis à presença de falhas de predição que comprometem seriamente o desempenho geral do sistema. Por outro lado, os sistemas podem ter seu desempenho comprometido devido à sobrecarga de informações que podem suportar. Para tentar resolver alguns destes problemas, esta tese apresenta várias propostas e estudos sobre o impacto de algoritmos de AM na monitoria e gestão de transtornos hipertensivos relacionados com a gravidez (gestação) de risco. O objetivo das propostas apresentadas nesta tese é melhorar o desempenho global de sistemas de informação em saúde. Em particular, os métodos baseados em AM são explorados para melhorar a precisão da predição e otimizar o uso dos recursos dos dispositivos de monitorização. Ficou demonstrado que o uso deste tipo de estratégia e metodologia contribui para um aumento significativo do desempenho dos SAD inteligentes, não só em termos de precisão, mas também na diminuição do custo computacional utilizado no processo de classificação. Os resultados observados buscam contribuir para o avanço do estado da arte em métodos e estratégias baseadas em inteligência artificial que visam ultrapassar alguns desafios que advêm da integração e desempenho dos SAD inteligentes. Como o uso de algoritmos baseados em inteligência artificial é possível analisar de forma rápida e automática um volume maior de dados complexos e focar em resultados mais precisos, fornecendo previsões de alto valor para uma melhor tomada de decisão em tempo real e sem intervenção humana

    Techniques Based on Adaptive Neuro-Fuzzy Inference Systems (ANFIS) for Estimating and Evaluating Physical Demands at Work Using Heart Rate

    Get PDF
    RÉSUMÉ : Malgré l'évolution rapide de la mécanisation dans les industries lourdes, les emplois physiquement exigeants qui nécessitent un effort humain excessif représentent encore une part importante dans de nombreuses industries (foresterie, construction, mines, etc.). Des études ont montré que les charges de travail excessives imposées aux travailleurs sont la principale cause de fatigue physique, ce qui a des effets négatifs sur les travailleurs, leur performance et la qualité du travail. Par conséquent, les chercheurs ont souligné l'importance de la conception optimale des tâches (à l'intérieur des compétences des travailleurs) afin de maintenir la sécurité, la santé et la productivité des travailleurs. Toutefois, cela ne peut être atteint sans comprendre (c'est-à-dire mesurer et évaluer) les exigences physiologiques du travail. À cet égard, les trois études comprises dans cette thèse présentent des approches pratiques pour estimer et évaluer la dépense énergétique (DE), exprimée en termes de consommation d'oxygène (VO2), au cours du travail réel. La première étude présente de nouvelles approches basées sur le système d'inférence neuro-flou adaptatif (ANFIS) pour l'estimation de la VO2 à partir des mesures de la fréquence cardiaque (FC). Cette étude comprend deux étapes auxquelles ont participé 35 individus en bonne santé. Dans un premier temps, deux modèles novateurs individuels ont été développés en se basant sur l’ANFIS et les méthodes analytiques. Ces modèles s'attaquent au problème de l'incertitude et de la non-linéarité entre la FC et la VO2. Dans un deuxième temps, un modèle général ANFIS qui ne requiert pas d'étalonnage individuel a été développé. Les trois modèles ont été testés en laboratoire et sur le terrain. La performance de chaque modèle a été évaluée et comparée aux VO2 mesurées et à deux méthodes d'estimation individuelles et traditionnelles de VO2 (étalonnage linéaire et Flex-HR). Les résultats ont indiqué la précision supérieure obtenue avec la modélisation ANFIS individualisée (EMQ = 1,0 à 2,8 ml/kg.min en laboratoire et sur le terrain, respectivement). Le modèle analytique a surpassé l'étalonnage linéaire traditionnel et les méthodes Flex-HR avec des données terrain. Les estimations du modèle général ANFIS de la VO2 ne différaient pas significativement des mesures réelles terrain VO2 (EMQ = 3,5 ml/kg.min). Avec sa facilité d'utilisation et son faible coût de mise en œuvre, le modèle général ANFIS montre du potentiel pour remplacer n'importe laquelle des méthodes traditionnelles individualisées pour l’estimation de la VO2 à partir de données recueillies sur le terrain. La deuxième étude présente un modèle de prédiction de la VO2 basé sur ANFIS qui est inspiré de la méthode Flex-HR. Des études ont montré que la méthode Flex-HR est une des méthodes les plus précises pour l'estimation de la VO2. Toutefois, cette méthode est basée sur quatre paramètres qui sont déterminés individuellement et par conséquent ceci est considéré comme coûteux, chronophage et souvent peu pratique, surtout lorsque le nombre de travailleurs augmente. Le modèle prédictif proposé se compose de trois modules ANFIS pour estimer les paramètres de Flex-HR. Pour chaque module ANFIS, la sélection de variables d'entrée et le modèle d'évaluation ont été simultanément réalisés à l'aide de la combinaison de la technique de division des données en trois parties et la technique de validation croisée. La performance de chaque module ANFIS a été testée et comparée avec les paramètres observés ainsi qu'avec les modèles de Rennie et coll. (2001) à l'aide de données de test indépendant. En outre, les performances du modèle global de prédiction ANFIS dans l'estimation de la VO2 a été testé et comparé avec les valeurs mesurées de la VO2, la méthode de Flex-HR standard ainsi qu'avec les autres modèles généraux (c.-à-d., les modèles de Rennie et coll. (2001) et de Keytel et coll. (2005)). Les résultats n'ont indiqué aucune différence significative entre les paramètres observés et estimés de Flex-HR et entre la VO2 mesurée et estimée dans la plage de fréquence cardiaque globale et séparément dans différentes gammes de FC. Le modèle de prédiction ANFIS (EMA = 3 ml/kg.min) a montré de meilleures performances que les modèles de Rennie et coll. (EMA = 7 ml/kg.min) et les modèles de Keytel et coll. (EMA = 6 ml/kg.min) et des performances comparables avec la méthode standard de Flex-HR (EMA = 2,3 ml/kg.min) tout au long de la plage de fréquence cardiaque. Le modèle ANFIS fournit ainsi aux praticiens une méthode pratique, économique et rapide pour l'estimation de la VO2 sans besoin d'étalonnage individuel. La troisième étude présente une nouvelle approche basée sur l'ANFIS pour classer les travaux en quatre classes d'intensité (c'est-à-dire, très léger, léger, modéré et lourd) à l'aide du monitorage du rythme cardiaque. La variabilité intra-individuelle (différences physiologiques et physiques) a été examinée. Vingt-huit participants ont effectué le test de la montée des marches Meyer et Flenghi (1995) et le test maximal sur le tapis roulant pendant lesquels la fréquence cardiaque et la consommation d'oxygène ont été mesurées. Les résultats ont indiqué que le monitorage du rythme cardiaque (FC, FC max et FC repos) et du poids corporel sont des variables significatives pour classer le rythme de travail. Le classificateur ANFIS a montré une sensibilité, une spécificité et une exactitude supérieures par rapport à la pratique courante à l'aide de catégories de rythme de travail basées sur le pourcentage de fréquence cardiaque de réserve (% FCR), avec une différence globale de 29,6 % dans la précision de classification entre les deux méthodes et un bon équilibre entre la sensibilité (90,7 %, en moyenne) et la spécificité (95,2 %, en moyenne). Avec sa facilité de mise en œuvre et sa mesure variable, le classificateur ANFIS montre un potentiel pour une utilisation généralisée par les praticiens pour évaluation du rythme de travail.----------ABSTRACT : Despite the rapid evolution of mechanization in heavy industries, physically demanding jobs that require excessive human effort still represent a significant part of many industries (e.g., forestry, construction, mining etc.). Studies have shown that excessive workloads placed on workers are the main cause of physical fatigue, which has negative effects on the workers, their performance and quality of work. Therefore, researchers have emphasized on the importance of the optimal job design (within workers’ capacity) in order to maintain workers’ safety, health and productivity. However, this cannot be achieved without understanding (i.e., measuring and evaluating) the physiological demands of work. In this respect, the three studies comprising this dissertation present practical approaches for estimating and evaluating energy expenditure (EE), expressed in terms of oxygen consumption (VO2), during actual work. The first study presents new approaches based on adaptive neuro-fuzzy inference system (ANFIS) for the estimation of VO2 from heart rate (HR) measurements. This study comprises two stages in which 35 healthy individuals participated. In the first stage, two novel individual models were developed based on the ANFIS and the analytical methods. These models tackle the problem of uncertainty and nonlinearity between HR and VO2. In the second stage, a General ANFIS model was developed which does not require individual calibration. The three models were tested under laboratory and field conditions. Performance of each model was evaluated and compared to the measured VO2 and two traditional individual VO2 estimation methods (linear calibration and Flex-HR). Results indicated the superior precision achieved with individualized ANFIS modeling (RMSE= 1.0 and 2.8 ml/kg.min in laboratory and field, respectively). The analytical model outperformed the traditional linear calibration and Flex-HR methods with field data. The General ANFIS model’s estimates of VO2 were not significantly different from actual field VO2 measurements (RMSE= 3.5 ml/kg.min). With its ease of use and low implementation cost, the General ANFIS model shows potential to replace any of the traditional individualized methods for VO2 estimation from HR data collected in the field. The second study presents an ANFIS-based VO2 prediction model that is inspired by the Flex-HR method. Studies have shown that the Flex-HR method is one of the most accurate methods for VO2 estimation. However, this method is based on four parameters that are determined individually and therefore it is considered costly, time consuming and often impractical, especially when the number of workers increases. The proposed prediction model consists of three ANFIS modules for estimating the Flex-HR parameters. For each ANFIS module, input variables selection and model assessment were simultaneously performed using the combination of three-way data split and cross-validation techniques. The performance of each ANFIS module was tested and compared with the observed parameters as well as with Rennie et al.’s (2001) models using independent test data. In addition, the performance of the overall ANFIS prediction model in estimating VO2 was tested and compared with the measured VO2 values, the standard Flex-HR method as well as with other general models (i.e., Rennie et al.’s (2001) and Keytel et al.’s (2005) models). Results indicated no significant difference between observed and estimated Flex-HR parameters and between measured and estimated VO2 in the overall HR range, and separately in different HR ranges. The ANFIS prediction model (MAE = 3 ml/kg.min) demonstrated better performance than Rennie et al.’s (MAE = 7 ml/kg.min) and Keytel et al.’s (MAE = 6 ml/kg.min) models, and comparable performance with the standard Flex-HR method (MAE = 2.3 ml/kg.min) throughout the HR range. The ANFIS model thus provides practitioners with a practical, cost- and time-efficient method for VO2 estimation without the need for individual calibration. The third study presents a new approach based ANFIS for classifying work intensity into four classes (i.e., very light, light, moderate and heavy) by using heart rate monitoring. Intersubject variability (physiological and physical differences) was considered. Twenty-eight participants performed Meyer and Flenghi (1995) step-test and a maximal treadmill test, during which heart rate and oxygen consumption were measured. Results indicated that heart rate monitoring (HR, HRmax, and HRrest) and body weight are significant variables for classifying work rate. The ANFIS classifier showed superior sensitivity, specificity, and accuracy compared to current practice using established work rate categories based on percent heart rate reserve (%HRR), with an overall 29.6% difference in classification accuracy between the two methods, and good balance between sensitivity (90.7%, on average) and specificity (95.2%, on average). With its ease of implementation and variable measurement, the ANFIS classifier shows potential for widespread use by practitioners for work rate assessment

    Predicting complex system behavior using hybrid modeling and computational intelligence

    Get PDF
    “Modeling and prediction of complex systems is a challenging problem due to the sub-system interactions and dependencies. This research examines combining various computational intelligence algorithms and modeling techniques to provide insights into these complex processes and allow for better decision making. This hybrid methodology provided additional capabilities to analyze and predict the overall system behavior where a single model cannot be used to understand the complex problem. The systems analyzed here are flooding events and fetal health care. The impact of floods on road infrastructure is investigated using graph theory, agent-based traffic simulation, and Long Short-Term Memory deep learning to predict water level rise from river gauge height. Combined with existing infrastructure models, these techniques provide a 15-minute interval for making closure decisions rather than the current 6-hour interval. The second system explored is fetal monitoring, which is essential to diagnose severe fetal conditions such as acidosis. Support Vector Machine and Random Forest were compared to identify the best model for classification of fetal state. This model provided a more accurate classification than existing research on the CTG. A deep learning forecasting model was developed to predict the future values for fetal heart rate and uterine contractions. The forecasting and classification algorithms are then integrated to evaluate the future condition of the fetus. The final model can predict the fetal state 4 minutes ahead to help the obstetricians to plan necessary interventions for preventing acidosis and asphyxiation. In both cases, time series predictions using hybrid modeling provided superior results to existing methods to predict complex behaviors”--Abstract, page iv

    Towards automation in anaesthesia: a review

    Get PDF
    Simpósio Internacional MeMeA, realizado em 2014.Surgeries represent a risk for patients and a big cost for the hospital. Anaesthesia represents a complex part of surgery also carries risks for patients. The most known are awareness (with deep psychological consequences); increased risk of morbidity and mortality; adverse reactions and long post-op recovery. The complexity of anaesthesia management can be reduced by studying the patients' responses and developing indicators of the patient state. To assess the level of depth of anaesthesia, the anaesthetist needs to be aware of the patient physiological responses to the drugs and to surgical stimuli. A system that could advise on the patient state considering all clinical signs being measured, the patient individual response and the amount of drugs, will have a big impact on patient overall safety and future health, post-op recovery and hospital resources. This paper does a review of different systems and methods applied to several aspects of the anaesthesia field. All with the goal of working towards automation in this very complex area, that involves high risks for patients. This paper covers advisor systems; signal processing; new monitors and devices; mathematical modelling; and control algorithms; all focused on practical clinical implementation. The objective is to have an overview of the work done so far and the steps taken towards automation in anaesthesia.ISPA - System Integration and Process Automation Unit - Part of the LAETA (Associated Laboratory of Energy, Transports and Aeronautics) a I&D Unit of the Foundation for Science and Technology (FCT), Portugal. FCT support under project PEst-OE/EME/LA0022/2013.info:eu-repo/semantics/publishedVersio

    Nonlinear dynamics and modeling of heart and brain signals

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Theoretical Interpretations and Applications of Radial Basis Function Networks

    Get PDF
    Medical applications usually used Radial Basis Function Networks just as Artificial Neural Networks. However, RBFNs are Knowledge-Based Networks that can be interpreted in several way: Artificial Neural Networks, Regularization Networks, Support Vector Machines, Wavelet Networks, Fuzzy Controllers, Kernel Estimators, Instanced-Based Learners. A survey of their interpretations and of their corresponding learning algorithms is provided as well as a brief survey on dynamic learning algorithms. RBFNs' interpretations can suggest applications that are particularly interesting in medical domains
    corecore