2,943 research outputs found

    A LightGBM-Based EEG Analysis Method for Driver Mental States Classification

    Get PDF
    Fatigue driving can easily lead to road traffic accidents and bring great harm to individuals and families. Recently, electroencephalography- (EEG-) based physiological and brain activities for fatigue detection have been increasingly investigated. However, how to find an effective method or model to timely and efficiently detect the mental states of drivers still remains a challenge. In this paper, we combine common spatial pattern (CSP) and propose a light-weighted classifier, LightFD, which is based on gradient boosting framework for EEG mental states identification. ,e comparable results with traditional classifiers, such as support vector machine (SVM), convolutional neural network (CNN), gated recurrent unit (GRU), and large margin nearest neighbor (LMNN), show that the proposed model could achieve better classification performance, as well as the decision efficiency. Furthermore, we also test and validate that LightFD has better transfer learning performance in EEG classification of driver mental states. In summary, our proposed LightFD classifier has better performance in real-time EEG mental state prediction, and it is expected to have broad application prospects in practical brain-computer interaction (BCI)

    EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies on Signal Sensing Technologies and Computational Intelligence Approaches and Their Applications.

    Full text link
    Brain-Computer interfaces (BCIs) enhance the capability of human brain activities to interact with the environment. Recent advancements in technology and machine learning algorithms have increased interest in electroencephalographic (EEG)-based BCI applications. EEG-based intelligent BCI systems can facilitate continuous monitoring of fluctuations in human cognitive states under monotonous tasks, which is both beneficial for people in need of healthcare support and general researchers in different domain areas. In this review, we survey the recent literature on EEG signal sensing technologies and computational intelligence approaches in BCI applications, compensating for the gaps in the systematic summary of the past five years. Specifically, we first review the current status of BCI and signal sensing technologies for collecting reliable EEG signals. Then, we demonstrate state-of-the-art computational intelligence techniques, including fuzzy models and transfer learning in machine learning and deep learning algorithms, to detect, monitor, and maintain human cognitive states and task performance in prevalent applications. Finally, we present a couple of innovative BCI-inspired healthcare applications and discuss future research directions in EEG-based BCI research

    Application of neural networks in spatio-temporal hand gesture recognition

    Get PDF
    [[abstract]]Several successful approaches to spatio-temporal signal processing such as speech recognition and hand gesture recognition have been proposed. Most of them involve time alignment which requires substantial computation and considerable memory storage. In this paper, we present a neural-network-based approach to spatio-temporal pattern recognition. This approach employs a powerful method based on hyperrectangular composite neural networks (HRCNNs) for selecting templates, therefore, considerable memory is alleviated. In addition, it greatly reduces substantial computation in the matching process because it obviates time alignment. Two databases consisted of 51 spatio-temporal hand gestures were utilized for verifying its performance. An encouraging experimental result confirmed the effectiveness of the proposed method.[[conferencetype]]國際[[conferencedate]]19980504~19980509[[booktype]]紙本[[conferencelocation]]Anchorage, AK, US

    Vertical wind profile characterization and identification of patterns based on a shape clustering algorithm

    Get PDF
    Wind power plants are becoming a generally accepted resource in the generation mix of many utilities. At the same time, the size and the power rating of individual wind turbines have increased considerably. Under these circumstances, the sector is increasingly demanding an accurate characterization of vertical wind speed profiles to estimate properly the incoming wind speed at the rotor swept area and, consequently, assess the potential for a wind power plant site. The present paper describes a shape-based clustering characterization and visualization of real vertical wind speed data. The proposed solution allows us to identify the most likely vertical wind speed patterns for a specific location based on real wind speed measurements. Moreover, this clustering approach also provides characterization and classification of such vertical wind profiles. This solution is highly suitable for a large amount of data collected by remote sensing equipment, where wind speed values at different heights within the rotor swept area are available for subsequent analysis. The methodology is based on z-normalization, shape-based distance metric solution and the Ward-hierarchical clustering method. Real vertical wind speed profile data corresponding to a Spanish wind power plant and collected by using a commercialWindcube equipment during several months are used to assess the proposed characterization and clustering process, involving more than 100000 wind speed data values. All analyses have been implemented using open-source R-software. From the results, at least four different vertical wind speed patterns are identified to characterize properly over 90% of the collected wind speed data along the day. Therefore, alternative analytical function criteria should be subsequently proposed for vertical wind speed characterization purposes.The authors are grateful for the financial support from the Spanish Ministry of the Economy and Competitiveness and the European Union —ENE2016-78214-C2-2-R—and the Spanish Education, Culture and Sport Ministry —FPU16/042

    Privacy-Preserving Facial Recognition Using Biometric-Capsules

    Get PDF
    Indiana University-Purdue University Indianapolis (IUPUI)In recent years, developers have used the proliferation of biometric sensors in smart devices, along with recent advances in deep learning, to implement an array of biometrics-based recognition systems. Though these systems demonstrate remarkable performance and have seen wide acceptance, they present unique and pressing security and privacy concerns. One proposed method which addresses these concerns is the elegant, fusion-based Biometric-Capsule (BC) scheme. The BC scheme is provably secure, privacy-preserving, cancellable and interoperable in its secure feature fusion design. In this work, we demonstrate that the BC scheme is uniquely fit to secure state-of-the-art facial verification, authentication and identification systems. We compare the performance of unsecured, underlying biometrics systems to the performance of the BC-embedded systems in order to directly demonstrate the minimal effects of the privacy-preserving BC scheme on underlying system performance. Notably, we demonstrate that, when seamlessly embedded into a state-of-the-art FaceNet and ArcFace verification systems which achieve accuracies of 97.18% and 99.75% on the benchmark LFW dataset, the BC-embedded systems are able to achieve accuracies of 95.13% and 99.13% respectively. Furthermore, we also demonstrate that the BC scheme outperforms or performs as well as several other proposed secure biometric methods

    Relative-fuzzy: a novel approach for handling complex ambiguity for software engineering of data mining models

    Get PDF
    There are two main defined classes of uncertainty namely: fuzziness and ambiguity, where ambiguity is ‘one-to-many’ relationship between syntax and semantic of a proposition. This definition seems that it ignores ‘many-to-many’ relationship ambiguity type of uncertainty. In this thesis, we shall use complex-uncertainty to term many-to-many relationship ambiguity type of uncertainty. This research proposes a new approach for handling the complex ambiguity type of uncertainty that may exist in data, for software engineering of predictive Data Mining (DM) classification models. The proposed approach is based on Relative-Fuzzy Logic (RFL), a novel type of fuzzy logic. RFL defines a new formulation of the problem of ambiguity type of uncertainty in terms of States Of Proposition (SOP). RFL describes its membership (semantic) value by using the new definition of Domain of Proposition (DOP), which is based on the relativity principle as defined by possible-worlds logic. To achieve the goal of proposing RFL, a question is needed to be answered, which is: how these two approaches; i.e. fuzzy logic and possible-world, can be mixed to produce a new membership value set (and later logic) that able to handle fuzziness and multiple viewpoints at the same time? Achieving such goal comes via providing possible world logic the ability to quantifying multiple viewpoints and also model fuzziness in each of these multiple viewpoints and expressing that in a new set of membership value. Furthermore, a new architecture of Hierarchical Neural Network (HNN) called ML/RFL-Based Net has been developed in this research, along with a new learning algorithm and new recalling algorithm. The architecture, learning algorithm and recalling algorithm of ML/RFL-Based Net follow the principles of RFL. This new type of HNN is considered to be a RFL computation machine. The ability of the Relative Fuzzy-based DM prediction model to tackle the problem of complex ambiguity type of uncertainty has been tested. Special-purpose Integrated Development Environment (IDE) software, which generates a DM prediction model for speech recognition, has been developed in this research too, which is called RFL4ASR. This special purpose IDE is an extension of the definition of the traditional IDE. Using multiple sets of TIMIT speech data, the prediction model of type ML/RFL-Based Net has classification accuracy of 69.2308%. This accuracy is higher than the best achievements of WEKA data mining machines given the same speech data

    A survey of kernel and spectral methods for clustering

    Get PDF
    Clustering algorithms are a useful tool to explore data structures and have been employed in many disciplines. The focus of this paper is the partitioning clustering problem with a special interest in two recent approaches: kernel and spectral methods. The aim of this paper is to present a survey of kernel and spectral clustering methods, two approaches able to produce nonlinear separating hypersurfaces between clusters. The presented kernel clustering methods are the kernel version of many classical clustering algorithms, e.g., K-means, SOM and neural gas. Spectral clustering arise from concepts in spectral graph theory and the clustering problem is configured as a graph cut problem where an appropriate objective function has to be optimized. An explicit proof of the fact that these two paradigms have the same objective is reported since it has been proven that these two seemingly different approaches have the same mathematical foundation. Besides, fuzzy kernel clustering methods are presented as extensions of kernel K-means clustering algorithm. (C) 2007 Pattem Recognition Society. Published by Elsevier Ltd. All rights reserved

    Review on Classification Methods used in Image based Sign Language Recognition System

    Get PDF
    Sign language is the way of communication among the Deaf-Dumb people by expressing signs. This paper is present review on Sign language Recognition system that aims to provide communication way for Deaf and Dumb pople. This paper describes review of Image based sign language recognition system. Signs are in the form of hand gestures and these gestures are identified from images as well as videos. Gestures are identified and classified according to features of Gesture image. Features are like shape, rotation, angle, pixels, hand movement etc. Features are finding by various Features Extraction methods and classified by various machine learning methods. Main pupose of this paper is to review on classification methods of similar systems used in Image based hand gesture recognition . This paper also describe comarison of various system on the base of classification methods and accuracy rate

    Fuzzy Layered Convolution Neutral Network for Feature Level Fusion Based On Multimodal Sentiment Classification

    Get PDF
    Multimodal sentiment analysis (MSA) is one of the core research topics of natural language processing (NLP). MSA has become a challenge for scholars and is equally complicated for an appliance to comprehend. One study that supports MS difficulties is the MSA, which is learning opinions, emotions, and attitudes in an audio-visual format. In order words, using such diverse modalities to obtain opinions and identify emotions is necessary. Such utilization can be achieved via modality data fusion, such as feature fusion. In handling the data fusion of such diverse modalities while obtaining high performance, a typical machine learning algorithm is Deep Learning (DL), particularly the Convolutional Neutral Network (CNN), which has the capacity to handle tasks of great intricacy and difficulty. In this paper, we present a CNN architecture with an integrated layer via fuzzy methodologies for MSA, a task yet to be explored in improving the accuracy performance of CNN for diverse inputs. Experiments conducted on a benchmark multimodal dataset, MOSI, obtaining 37.5% and 81% on seven (7) class and binary classification respectively, reveals an improved accuracy performance compared with the typical CNN, which acquired 28.9% and 78%, respectively
    corecore