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Abstract 
There are two main defined classes of uncertainty namely: fuzziness and ambiguity, 

where ambiguity is ‘one-to-many’ relationship between syntax and semantic of a 

proposition. This definition seems that it ignores ‘many-to-many’ relationship ambiguity 

type of uncertainty. In this thesis, we shall use complex-uncertainty to term many-to-

many relationship ambiguity type of uncertainty. 

This research proposes a new approach for handling the complex ambiguity type of 

uncertainty that may exist in data, for software engineering of predictive Data Mining 

(DM) classification models. The proposed approach is based on Relative-Fuzzy Logic 

(RFL), a novel type of fuzzy logic. RFL defines a new formulation of the problem of 

ambiguity type of uncertainty in terms of States Of Proposition (SOP). RFL describes its 

membership (semantic) value by using the new definition of Domain of Proposition 

(DOP), which is based on the relativity principle as defined by possible-worlds logic.   

To achieve the goal of proposing RFL, a question is needed to be answered, which 

is: how these two approaches; i.e fuzzy logic and possible-world, can be mixed to 

produce a new membership value set (and later logic) that able to handle fuzziness and 

multiple viewpoints at the same time? Achieving such goal comes via providing possible 

world logic the ability to quantifying multiple viewpoints and also model fuzziness in 

each of these multiple viewpoints and expressing that in a new set of membership value. 

Furthermore, a new architecture of Hierarchical Neural Network (HNN) called 

ML/RFL-Based Net has been developed in this research, along with a new learning 

algorithm and new recalling algorithm. The architecture, learning algorithm and 

recalling algorithm of ML/RFL-Based Net follow the principles of RFL. This new type 

of HNN is considered to be a RFL computation machine.  

The ability of the Relative Fuzzy-based DM prediction model to tackle the problem 

of complex ambiguity type of uncertainty has been tested. Special-purpose Integrated 

Development Environment (IDE) software, which generates a DM prediction model for 
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speech recognition, has been developed in this research too, which is called RFL4ASR. 

This special purpose IDE is an extension of the definition of the traditional IDE.  

Using multiple sets of TIMIT speech data, the prediction model of type ML/RFL-

Based Net has classification accuracy of 69.2308%. This accuracy is higher than the best 

achievements of WEKA data mining machines given the same speech data. 
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  2

automatically penetrating huge assets of data and meaningful patterns. Knowledge-

Discovery in Databases (KDD) is another term used occasionally for describing DM as 

well [23, 25, 42, 87]. 

With DM tools, rather than assuming certain relationships between different 

variables in a data set and studying these relationships one at a time, the most significant 

factors that influence the outcome can be determined. DM algorithms need no 

hypotheses about the data available, but they automatically discover both the hidden 

relationships between data and their patterns as well (using inductive approach of AI). 

Data representation plays an important role in DM. As the data they are structurally 

represented in a warehouse, this representation facilitates the process of DM to achieve 

its goal of defining the pattern of these data. DM has found numerous applications in 

banking, finance, marketing, telecommunications, and now in semantic webs [30, 87].  

Practically, prediction and description models are the two types to create or to 

define, then to be used as a process for mining enormous data. Each of these two types 

of models has its own different function. Prediction type of Data Mining Model (DMM) 

involves the usage of some variables or fields in the database to predict mysterious or 

future values of other variables, whereas the description type of DMM concentrates on 

finding different patterns to describe the data that humans can easily interpret.  

A new idea to visual DM had been proposed, which uses certain technology to apply 

some particular principles of the way that humans interpret data. The significance of 

visual data mining had been acknowledged. In visual DM, which is a strong sub-

discipline of DM interfaces would be developed, which make visual presentations helps 

users to interpret the data that they see. The goal of visual DM is to merge traditional 

DM algorithms with techniques of information visualization to employ the advantages of 

both approaches. A number of modified techniques for visualizing the structure of 

certain information have been built. The collection of the information content resulted 

from searching the relationships between several information objects, is an important 

task in visual DM. These relations can be represented either explicitly or implicitly [42, 

118]. 



  3

As the goal of these two model types is to classify different types of data [23, 25, 42, 

113], it is common knowledge that the lack of accurate results that are negatively 

influenced by the problem of uncertainty constitute the major problem of classification 

models [5, 46, 58].  

In DM, the disclosing and handling of uncertainty in DM’s environment are 

considered among the problems outlined by several recent research works in data mining 

applications [5]. This is due to the nature of DM strategy in creating its DMM, which 

seeks to classify huge amount of data into different sets, depending on some 

mathematical calculations. Generally, the classification comes in one of two types: crisp 

and fuzzy. The definite demarcation decision will mainly ensue from the calculation of 

membership strength value, which is either 0 or 1 of an element to a certain set via using 

crisp membership function that offers binary classification (in terms of belong / does not 

belong). This traditional classification has its limitations, mainly in situations where 

some basic information is missing or uncertain. In such situations, traditional inference 

procedures possibly will not be functional. One of the alternatives is fuzzy classification, 

which is able to describe these vague decisions using element’s membership value. The 

membership value is the value used to express the strength of belonging of an element to 

a set, and it plays an important role in solving the problem of uncertainty. Apparently, 

there are different membership functions used to calculate membership value, which is 

in [0, 1] of an element to a set. There has been greatly interest in researching on the 

management of uncertain data in database; examples are uncertainty representation in 

databases and querying uncertain data. Yet, small research work has dealt with the 

problem of mining uncertain data [28, 42, 87, 102].  

1.2 Uncertainty, Vagueness, and Decision-Making  
 One of the common features of the information presented to human experts is its 

indistinctness, which is termed as uncertainty. Berenji [6] believes that "uncertainty 

stems from lack of complete information." and, "Uncertainty may also reflect 

incompleteness, imprecision, missing information, or randomness in data and a process." 

Hubbard [49] defines uncertainty as "The lack of certainty, a state of having limited 
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knowledge where it is impossible to exactly describe existing state or future outcome, 

more than one possible outcome". As it reflects the inadequacy of the precise 

knowledge, uncertainty is a high probable cause of achieving an imperfectly consistent 

conclusion. There are different classifications of uncertainty, which actually involve a 

wider sense of uncertainty. Using mathematical language, uncertainty may range from a 

diminishing little certainty to an approximately entire lack of knowledge (particularly 

about a conclusion or result) [6, 49, 121]. Thus, uncertainty can be described as "the 

characterisation of the relative narrowness or broadness of the distribution function of a 

particular measurement, and it is sometimes referred to as error in the measurement" 

[135].  

The cause of uncertainty involved in any problem solving, in term of these 

definitions, is information shortage. Information could be vague, disconnected, 

undependable, incomplete, conflicting, or lacking in some other way. These various 

scarcities of information, however, may result in different forms of uncertainty [46, 68, 

75]. 

Klir and Wierman [68] elaborated on the description of uncertainty by defining three 

types, namely: 

1. Fuzziness or vagueness, resulting from the imprecise boundaries of fuzzy sets; 

2. Nonspecificity or information-based imprecision, associated with the size 

(cardinalities) of related sets of alternatives ; and 

3. Strife or discord, which describes conflicts among the various sets of alternatives 

Usually, the term 'imprecision' is used to describe the first two types of uncertainty, 

i.e. fuzziness, referring to linguistic imprecision, and nonspecificity, which is referral to 

information-based imprecision. The ambiguity in 'imprecision' term can be passed up by 

individualising between nonspecificity and fuzziness. Therefore, Klir and Wierman [68] 

define two main classes of uncertainty namely: fuzziness and ambiguity, where 

ambiguity (one-to-many relationship) includes nonspecificity and strife. Well, this 

definition seems that it ignores (many-to-many relationship) ambiguity type of 

uncertainty. In this thesis, we shall use complex-ambiguity to term many-to-many 
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relationship ambiguity type of uncertainty. Table 1.1 illustrates the types of uncertainty 

based on the source-forms (can be also syntax-semantic) relationships types. 

Source Form Relationship Ambiguity 
One One One-to-one None 

One Many On-to-many Simple 

Many One Many-to-one None 

Many Many Many-to-many Complex 

Table 1.1 Source-Form relationships-based types of uncertainty 

Anyhow, Uncertainty is usual happening, and it is really hard to keep away from it in 

dealing with real-world problems, where it appears in different forms. These forms are 

[68]: 

1. Both measurement errors and resolution limits of measuring instruments,  

2. Vagueness and ambiguity in natural language, and 

3. The strategic use of uncertainty by people when it is created and maintained for 

different certain reasons (privacy, secrecy, propriety). 

In spite of these appearances of uncertainty, a proficient can cope with them and can 

typically make correct judgments and right decisions.  

1.3 Modelling of Uncertainty  
The basic principle is that most, if not all, modelling of decision-making software 

deals with uncertainty in aspects such as data, knowledge, and rules. Modelling of 

uncertainty is reached mainly by using different types of logic, in which uncertainty is 

considered as challenge to all these types of logic. Luger [75] quoted from Bertrand 

Russell that "All traditional logic habitually assumes that precise symbols are being 

employed. It is therefore not applicable to this terrestrial life but only to an imagined 

celestial existence". This highlights the need for unusual types of logic to deal with 

uncertainty. Broadly speaking, dealing with uncertainty (modelling and managing its 

reasoning) is achieved by using the following types of logic: Multiple-valued logics, 

Modal logics, Temporal logics, High-order logics and Logical formulations of 
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definitions, Prototypes, and Exceptions [75]. It is important to underscore here the 

independence of the handling strategy from the appearance of uncertainty [46, 68, 75].  

Fuzzy logic- a multiple-valued logic type is the dominant methodology used for 

effectively handling the uncertainty problem. It offers a way of taking this uncertainty 

into account to develop better computer systems [135, 69], which are termed as Fuzzy 

Logic Systems (FLS). Indeed, “Fuzzy logic is used heavily in control applications and 

the argument by some has not made as big in impact as expected in modelling human 

decision making” [84].  

In type-1 FLS, uncertainty is to be quantified as a real number between zero and one 

by using fuzzy membership function, (Chapter Three illustrates the quantification of 

membership value of type-1 fuzzy logic, and type-2 fuzzy logic in detail). It has, 

however, been reported by Mendel et al. [83] that there are (at least) four sources of 

uncertainties in type-1 FLSs. They are:  

1. Words mean different things to different people. Naturally, humans show 

dissimilarity in the understanding of words used in antecedents and consequents 

of rules (decision-making). 

2. Dissimilarity may also occur among the decisions of a group of experts who do 

not all agree, as well as in the decisions of a single expert over time. 

3. The noise that may exist in the measurements stimulates a type-1 FLS and hence 

is uncertain. 

4. The possible noise of the data is used to harmonise the parameters of a type-1 

FLS. 

The terms: different meaning (in the first source of uncertainty), decisions of a group 

of experts (in the second), noisy of measurements (in the third), and parameters (of the 

fourth) clearly point to a shared property among these sources, namely multiplicity. 

Accordingly, we can say that whenever multiplicity occurs in data, measurements, or 

decisions, the uncertainty exists also. This multiplicity falls underneath the 'ambiguity' 

class of uncertainty defined by Klier and Folger [69], as shown in Section 1.2 above. 
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Because of the problems listed above, type-2 had been proposed to extend the ability 

of Fuzzy Logic (FL) to handle the uncertainty problem provided by type-1, precisely to 

address directly the three types of uncertainty: fuzziness, strife, and nonspecificity. This 

concurs with the common knowledge among researches that type-2 fuzzy logic is used 

more effectively as a method for handling more complex types of ambiguity and better 

than type-1 [73, 83, 82, 102, 135].  

 Type-2 fuzzy logic quantifies uncertainty as a fuzzy set in [0, 1], using a complex 

membership function (function of function) in which the internal function itself takes a 

type-1 fuzzy number. It maps this element to a set of type-1 fuzzy numbers [85, 84]. Due 

to the nature of type-2 fuzzy logic, Mendel and John [83] addressed number of the 

difficulties around it.  These difficulties were: 

1. The three-dimensional nature of type-2 fuzzy sets makes them very difficult to 

draw. 

2. There is no simple collection of well-defined terms that let us effectively 

communicate about type-2 fuzzy sets, and then be mathematically precise about 

them (terms do exist but have not been precisely defined).  

3. Derivations of the formulas for the union, intersection, and complement of type-2 

fuzzy sets, all rely on using Zadeh’s Extension Principle [139], which is in itself 

a difficult concept (especially for newcomers to FL) and is somewhat ad hoc. 

Hence, using it for derivation may be considered problematic.  

4. Using type-2 fuzzy sets is computationally more complicated than using type-1 

fuzzy sets.  

The paper of Mendel and John [83] along with the research work of Coupland and 

John [22] advanced, indeed, the definition and usage of type-2 fuzzy sets. Both focus on 

overcoming difficulties mentioned above. Mendel and John had established, in their 

research, a small set of terms, namely: Type-2 membership function, Secondary 

membership function, Vertical-slice, Primary membership, Secondary grade, Footprint 

of uncertainty (FOU), Embedded type-2 fuzzy set, Embedded type-1 fuzzy set, and 

wavy-slice. These terms facilitate communication about type-2 fuzzy sets, and make the 
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definition of such sets very precise. In the paper of Mendel and John [83], a new 

‘Representation Theorem for type-2 fuzzy sets’ has been presented and used to derive 

formulas for the union, intersection, and complement of type-2 fuzzy sets devoid of 

employing the extension principle [61, 83].  

The principle behind defining type-2 fuzzy secondary membership function is that 

“Type-2 fuzzy sets are fuzzy sets whose grades of membership are themselves fuzzy” 

[28]. This means that type-2 fuzzy logic translates all uncertainties into uncertainties 

about fuzzy set membership functions. Admitting all these recorded achievements, we 

can easily note: 

1. "The result of type-2 inferencing is a type-2 fuzzy set. Nevertheless, we usually need 

a crisp solution in order to reduce the type-2 fuzzy set to a type-1 fuzzy set and then 

defuzzify. Possibilities to do so are redundant: Centroid Type Reduction, Centre of 

Sums Type Reduction, and Height (various) Type Reduction" [58]. In that, there is a 

shortcoming in type-2 fuzzy logic to provide crisp membership value directly, and the 

apparent need to step further for crisping the type-2 fuzzy membership value.  

2. A drawback in applying the principle of fuzziness to type-1 fuzzy logic to define type-

2 fuzzy membership value set. In that, fuzziness can also be used to describe the 

nature of each element enclosed in the set resulting from type-2 membership function. 

Applying the same approach to each of the resulting membership values further 

complicates the description and evaluation of membership value. This means that the 

resulting values from type-2 fuzzy function can be considered as fuzzy values also! 

3. Type-2 FL aimed to model and handle uncertainty caused by multi sources data or 

multi decision approaches [83 and others]. It means that this set maps multiple 

semantic to multiple judgments, which is shown by the nature of the type-2 semantic 

value (or membership value in set sense) that is a set rather than element. Klir and 

Wierman [68] described this form of uncertainty as ambiguity of type 'one-to-many' 

relationship, see Table 1.1 above. The point that needs to be clarified is: What is 

about ambiguity of type ‘many-to-many’ relationship?  
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These criticisms have encouraged this thesis to develop type-1 fuzzy logic in 

different way that type-2 did, by using another philosophy, namely possible worlds. In 

this thesis, the possible-worlds principle is to be applied to type-1 fuzzy logic to define a 

new type called Relative-Fuzzy logic (RFL). It means that RFL is aimed to model and 

handle the same types of uncertainties modelled by type-2 fuzzy logic and to overcome 

the criticisms defined against type-2 fuzzy logic as illustrated above. 

1.4 Scope of the Thesis  
Over the last decade, dramatic improvements in the quality of DM classification 

systems have been made. With the development and refinement of the Hidden Markov 

Model (HMM) approach, today's classification systems have proven to work effectively 

on various warehouses, noisy data, and various classification tasks. Nevertheless, despite 

the high quality of today's classification systems [26, 41, 74], there still be a significant 

improvement in performance that can be made. As will be shown in Chapter Seven, the 

reduction in a system's error rate and its complexity can handle types of problems that 

DM practitioners wrestle with everyday. 

While developing a DMM, the importance of revealing and handling uncertainty 

should be recognised. A DM classifier (prediction or description model) should account 

for both the variability across syntax and the semantic of the data proposed. Currently, 

typical DM systems seek to achieve strong classification performance. Because 

complex-ambiguity is not defined yet, many systems don’t clearly look the issue of 

complex-ambiguity constraint.  

Classical modelling (but type-2 FL) deals mainly with simple (abstract) uncertainty 

of the data that cannot be further subdivided. Type-2 FL, which is able to deal ‘one-to-

many’ relationship ambiguous data, has some difficulties as shown earlier, so it requires 

some sort of enhancement  to overcome these difficulties without affecting its ability to 

model and handle the complex- ambiguity.  

In this thesis, a new approach of modelling and handling the uncertainty is to be 

carried out and applied to a DM’s classification method. This approach would requires 
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Since speech sounds contain turbulence [53, 62, 78, 79, 105] that makes these 

sounds of complex ambiguity data type, this attribute of speech data  motivated us to use 

the data of speech sounds to develop a case study in terms of DM prediction model to 

demonstrate the conceptual truthfulness of RFL as an approach to modelling and 

handling the uncertainty.  

It is worth noting at this point that the scope and accuracy of classification that can 

reasonably be expected using the RFL essentially gives us a measure of the degree of 

success or achievement of the RFLS. In addition, the number of possible worlds 

(domains) to which data can truly be existed inherently limits the usefulness of RFL as 

an approach for modelling uncertainty.  

In abbreviation, this thesis answers questions: How would the problem of classifying 

different elements, which have multiple meanings (knowledge sets) and multiple 

syntaxes of each element in each meaning modelled? How to build a relative fuzzy 

based computing machine? Also, how complex-ambiguity can be solved for building a 

successful DMM? 

1.5 Approaches and Accomplishments  
The investigation of this thesis proceeds from the position that current logics used in 

modelling and handling of uncertainty play an important role in obtaining more active 

approach of modelling and handling uncertainty in different classification-based 

applications like DM. The proposed approach of modelling and handling uncertainty 

will be useful in enhancing the performance of DM processes in order to create 

successful DMM. Therefore, the research examines the conceptual truthiness of the 

developed Relative-Fuzzy approach by using its membership function for calculating a 

new type of membership value (which is different from crisp and fuzzy values) and uses 

it in developing a new computational model. Hence, this thesis makes four new 

proposals as will be illustrated later. 

The problem of complex ambiguity described earlier could not be solved by using 

the crisp, and type-1 Fuzzy logic, though both deal with data classification. While type-2 
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fuzzy logic can handle a type of the problem of uncertainty, its approach of processing 

involves drawbacks. One of these drawbacks is apparent in the applications of 

implementing type-2 fuzzy logic where new training data are applied to these 

applications with each new task domain, and a new classification model would be made, 

so that each mysterious element (with its set of different syntaxes) would assign its 

appropriate class name (semantic) from these training data. As a new training course is 

to be applied to these applications, a computational classification model, with new 

categorisation sets and functions, will be created. Of course, the new and old models 

would be able to deal with their respective task domains of data, but in no way can be 

combined.  

Creating a computational model that is able to accumulate and handle multiple 

training courses (tasks domains), and using this knowledge sets to address the belonging 

of an unknown element to one of them would add a classification methodology to those 

already existing models. This model would be used for specifying the identity of the 

unknown element, despite its different attributes and its duplication in various previous 

sets of knowledge, i.e. classification of an element with complex ambiguity. 

How does human brain distinguishing new data? [119]. To design a method that can 

handle complex ambiguity of data, our thinking started with the atomic level of the 

classification process, which is the measurement of the belonging of an element to a set 

(task domain). Measuring the belonging of unknown-element to a set is determined by 

using a scoring function, which would give a membership value (either crisp or fuzzy). 

But as this element may belong to multiple subsets of knowledge (tasks domains), which 

form a universal knowledge, such a function and its result would not be so helpful in 

terms of how to distinguish the belonging degrees of an element to each subset of data 

(tasks domain), which form a universal knowledge. Therefore, a further function that 

evaluates the belonging of an element to a certain subset of knowledge is required. One 

membership function would calculate the membership value of an unknown element to a 

set of circumstances that distinguish a task domain among other tasks domain in the 

universal set of knowledge, while a second one would calculate the membership value of 
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an unknown element to that certain task domain (the set of syntax that possibly form that 

unknown element). 

1.6 Contributions 
Four contributions resulted from current research. Figure 1.3 illustrates the 

contributions achieved by this thesis distinguished in gray boxes. 

The first original contribution of this thesis consists of defining and using a new 

membership value set to handle the uncertainty problem. This contribution leads to 

define a new logic, called RFL. A pair real-value is the numeric expression used to 

measure the identity of an element in terms of the strength of belonging to a set of 

circumstances of a task domain, and to the task domain itself, (both sets form the 

relative-fuzzy universal set). This pair valued membership is to be generated by using 

two separated membership functions that may work in parallel in order to calculate each 

part of the Relative-Fuzzy membership value of an element. 

 

Figure 1.3 Contributions Achieved in the Research 

The second contribution is the creation of a computational model that uses the new 

membership value set, proposed by this thesis, to classify elements. The computational 

model is a complex-structure neural network, called ML/RFL-Based Net.  

The third contribution is the use of ML/RFL-Based Net (the proposed computational 

model) for building a new-structured DM predictive model to classify a set of 
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phonemes. The phonemes used in the experiments were different and were generated by 

various speakers, each speaker in his own accent, which represent a good example of 

data with complex ambiguity. To show the achievement of the ML/RFL-Based Net, 

these data were tested with ‘WEKA’, a well-known DM machine. This thesis records the 

highest accuracy performance of any ‘WEKA’ approach. 

The last contribution to be reported here is that a new understanding of Integrated 

Development Environment (IDE) has been used when this thesis uses the principle of 

general-purpose software IDE to build an IDE of specific-purpose software-here 

Automatic Speech Recognition (ASR). 

1.7 Thesis Outline 
The ultimate goal of this thesis is to define a new approach to build a new 

classification model that is able to handle the uncertainty in DM, and as such to face 

some of the challenges of data mining, which will be outlined in Chapter Two. An ASR 

case study of this approach is used to provide a practical demonstration of its 

applicability. Figure 1.4 illustrates the strategy followed by this thesis 

 
Figure 1.4 Methodology Followed by the Research 
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Chapter Two presents survey of literature about the algorithms of Data Mining 

(DM), including definitions, methods, and applications of DM. The role of DM in the 

current development of Information Systems (IS) is also presented, and the challenges of 

DM are reported. Finally, a number of conclusions are given. 

Chapter Three includes literature survey about the uncertainty modelling and 

handling logics, focusing on fuzzy and possible-worlds of modal logic, which both is 

used to develop RFL.  

Chapter Four includes the definition of Relative-Fuzzy logic, by means:  

1) Of defining the States of Proposition (SOP), which allows the easy mapping of 

the type of uncertainty aimed to be handled by Relative-Fuzzy sets, and which 

also enables the precise definition of the sets 

2) Of defining the Domain of Proposition (DOP) that shows the new parameter 

involved in calculating the membership of an element to a set, and 

3) Of defining the membership value set of RFL 

Chapter Five describes ML/RFL-Based Net, a novel architecture of Artificial Neural 

Network (ANN). ML/RFL-Based Net has been designed and built to be RFL's 

computation machine. Description of its levels, layers, learning, and recalling 

approaches is given in this chapter. 

ASR is used as a case study for the proposed DM approach. Chapter Six includes the 

development of an ASR using Relative Fuzzy concept. This DM classification system, 

which is called RFL4ASR, uses Relative-Fuzzy based classification principle- the 

proposed data mining methodology. A description of all constituent parts of RFL4ASR 

is also included. Chapter Six finished with a number of conclusions that have been 

drawn. 

Chapter Seven shows the results of each part of RFL4ASR diagrammatically and 

numerically. The results of different versions of ML/RFL-Based Net are illustrated, 

highlighting the improvement on the proposed net during the course of its development.    
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Conclusions of this thesis, as well as recommendations for future work, are 

presented in Chapter Eight.   

Appendix A illustrates the tools used in developing RFL4ASR. Appendix B presents 

a survey of literature, which includes previous and current methods of developing ASR’s 

two components: front-end and back-end processing, speech signal, digitising, 

segmentation and parameter measurement (spectral analysis, coding, and encoding via 

quantisation).  
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Chapter Two 

Data Mining Approaches 

2.1 Introduction 
The main goal of this thesis is to define a new approach to handle the problem of 

uncertainty, and show the conceptual truthiness of this new approach by using it to 

develop a computer application. The current research selects DM as a type of 

applications where the problem of uncertainty exists and harmfully affected DM’s 

performance. The aim of this chapter is to give literature survey about DM’s goals, main 

algorithms, and approaches to handle uncertainty, results, applications, and problems. 

The mining or finding of implicit information, in terms of model, from vast amount 

of data is actually the goal of DM. The techniques, which are approved of by DM to 

achieve this goal, are to be adopted from such areas as machine learning, statistics, ANN 

and Genetic Algorithms (GA). The output knowledge is in form of various types of 

models [25, 30, 42]. 

The approaches used in DM are actually a result of the extensive development of 

both research and production. Historically, DM resulted from data storage evolving 

techniques. The first method used in storing data in computers was the flat files 

approach. Flat files contain numeric and/or character data, with no inter connection. The 

advancement in defining new methods for saving and retrieving data by using Data Base 

(DB) techniques pushed the methods of DM forward and made a good improvement in 

DM. Nowadays, On-Line Analytical Processing (OLAP) are the latest defined tools used 

to handle data processing (saving and retrieving) in real time. Being historical, a special 

data access called backward-looking gives DM an evolutionary process over these stored 

data. Accompanied with navigation, DM makes use of backward-looking for 

informative and upbeat liberation of required information [23, 25].  
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Figure 2.1 DM Supporting Technologies 

Worth mentioning here is that DM is not engaged only in DB, but with some other 

technologies too, Figure 2.1 shows the technologies that support data mining for 

applications in the business society where they are adequately established now. They are 

[23, 25, 30]:  

• Data mining algorithms 

• Improved data gathering and management 

• Rising of computation strength 

There are many definitions of DM. Among others, DM is defined as the searching to 

find or extract (in terms of mining) hidden predictive patterns or rules which describe 

the information given in enormous quantities of data. In another word, data can be 

defined as a set of facts F, and a pattern can be defined as an expression E in a language 

L that describing the facts in a subset FE of F. Another definition is that DM is a scheme 

that receives an input data in some form and produces knowledge in a model form [30] 

as illustrated by Figure 2.2. 

 

Figure 2.2  Definition of Data Mining 



  19

Recently, DM proved itself as an effective assistant tool for business centres looking 

backward on the most significant information in their data storage(s). DM is now of an 

influential technology with high probability for making this backward-looking. In detail, 

the DM tools are mainly used for predicting upcoming styles and behaviours, hence 

permitting companies to make proactive and knowledge-driven decisions. The 

computerised and potential analysis presented by DM goes beyond the analysis of 

historical events provided by backward-looking tools for participating building Decision 

Support Systems (DSS). Indeed, the tools provided by DM can answer business queries 

that were usually very high time-consuming to decide. These tools search databases for 

hidden patterns and discover predictive information, which experts may miss as it lies 

outside their expectations. The existing software and hardware platforms help quickly 

implement the techniques of DM for enhancing the value of resources of existing 

information. DM technologies can also integrate these resources with new products and 

systems as they are carried on-line. It is important to note that DM tools are able to 

analyse huge database, especially when they are employed at a high performance 

client/server or on parallel processing computers aimed at bringing replies to queries like 

‘Which goods are most likely to be consumed during September?’ [23, 30, 47]. 

DM has been applied in various fields like telecommunications, finance, banking, 

marketing, and nowadays in the semantic web. As a result, a wide range of companies 

has installed successful applications of DM in their every day business. Information-

intensive businesses, like direct mail marketing and financial services, were the early 

adopters of this technology. Today, DM technology is applicable to any business 

looking to influence a hefty data warehouse to obtain superior management over their 

customer relationships. Each of these applications has a clear common ground. They 

influence the knowledge about customers implicit in data storage to decrease costs and 

advance the value of customer relationships [23, 42, 113].  

In broader sense, the goals of DM fall into the following classes: prediction, 

identification, description, and optimisation. DM mainly focuses on prediction and 

description, which they can be achieved by means of an assortment of certain DM 

techniques. Some of these techniques are [23, 25, 30, 42]: 
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• Classification Hierarchies (Regression, ANN, and Genetic Algorithms)  

• Clustering  

• Association Rules  

• Sequential Patterns  

• Patterns within Time Series 

• Summarisation  

• Change and Deviation Detection  

These techniques are integrated in huge data storage as well as with tools of flexible 

interactive business analysis to achieve maximum effect of these complex techniques. 

Worth noting here that the term: ’Knowledge Mining’ is used to describe the process of 

extracting meta information from certain knowledge (upper level of data) in the form of 

IF-THEN rules, which can be modelled using Fuzzy Logic System (FLS)- since this 

knowledge may have uncertainty property [82]. 

Finally, researchers reported that there are four critical factors for success with 

standard DM system, which are [25, 113]:  

• Customer’s viewpoint,  

• A large, well-integrated data warehouse,  

• Preservation and operation management, 

• A well-defined understanding of the business process to which DM is to be 

applied 

2.2 Data Mining Algorithms 
The algorithms of DM involve techniques, which have already been introduced for 

more than a decade, but have lately been implemented as an understandable, dependable, 

and mature tools [42, 47]. DM Methods are essentially based on standard statistical 

techniques as well as Artificial Intelligence (AI) methods. They are applied to huge 

databases for aiming to expose otherwise undiscovered data attributes, styles and 

patterns, thus, DM tools determines the most significant factor that influences the result. 

This determination approach is used as an alternative to assuming certain relationship 
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among different variables in a data set, and for studying these relationships at one time. 

In other words, the DM process has the ability to determine automatically the implicit 

relationships among the available data without need for any assumptions. Actually, as 

the data are represented structurally in a warehouse, the process of DM becomes easier 

[43, 86]. Note that there is a technique used to enhance the activeness of the defined DM 

algorithms by combining two or more of these algorithms to form what is so called 

hybrid data mining procedure [121]. There are so many methods of DM. Following 

paragraphs gives literatures about most known methods.   

2.2.1 Artificial Neural Network 
An Artificial Neural Network (ANN) can be defined as a paradigm of information 

processing which counterfeit the technique followed by biological nervous systems, e.g. 

brain. The new structure of information processing system provided by ANN is 

considered the corner stone of this paradigm. It consists of a big number of greatly 

interconnected neurones (processing elements) that are working in harmony to solve 

specific problems [15, 48, 98].  

In recent years, ANN has emerged as a mature and practical framework with many 

applications in different areas of applications. The goal of developing ANN is to model 

the information processing and learning in the brain. ANN has many synonyms, which 

are: Neurocomputing, Neuroinformatics, Neural Information Processing Systems, 

Connectionist Models, Parallel Distributed Processing (PDP) Models, Self-organising 

Systems, Neuromorphic Systems [92, 106, 122, 128]. 

Figure 2.3 illustrates a typical structure of ANN. Very similar to human beings, 

ANNs learn by using examples. A specific application configures a specific ANN 

compatible to it, such as data classification or pattern recognition, throughout what is 

known learning/training phase. In fact, in biological systems, learning engages tuning 

values to the synaptic links that exist among the neurones, and this is what happens 

exactly in ANNs as well [15, 48, 106, 122]. 
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Figurer 2.3 Neural Network Structure 

ANNs can be used to recognise patterns and perceive styles that are too difficult to 

be observed by either human or other computer skills. This is thanks to the property of 

ANNs, which have an extraordinary ability to get meaning from complicated, inexact, or 

vague data. As such, a trained or learned ANN may be considered as an expert in the 

type of information it has been assigned to analyse during the learning/training phase. 

This very expert ANN can then be used later to provide answers when given a new data 

and to respond to questions of the type what if. Other criteria of ANN include [15, 48, 

92, 128]: 

• Self-Organisation: The ability of an ANN to organise or represent the data it 

receives whilst in its learning / training course.  

• Adaptive Learning or the Inductive Ability: The ability to learn (generalise 

processing) how to perform tasks based on the available data during the 

learning/training experience.  

• Real Time Operation: The computations of ANN can be carried out in parallel. To 

get used to this capability, special hardware devices have been designed and 

manufactured.  

• Fault Tolerance via Redundant Information Coding: Some ANN capabilities 

may be reserved even with major network damage.  
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Because of these criteria, ANNs are mostly applicable wherever it is hard to define 

relationship between patterns that are to be dealt with. Applications and models have 

been developed in areas varied from speech recognition to stock market, time series 

prediction, and other new ones are appearing rapidly. Generally, ANN is good at 

[15,106,128]:  

• Determining relationships and patterns that exist in the data, 

• Pre-processing of data in a FLS, and 

• Refining fuzzy rules to build a fuzzy adaptive system due to the ability of ANN to 

learn new relationships with new input data 

ANN is a non-algorithmic approach of solving problems. This differentiates ANNs 

from those traditional algorithmic approaches applied to computers in solving problems. 

In a traditional algorithmic approach, the computer executes a set of commands, that is 

program, in which the computer cannot solve the problem unless these specific set of 

steps  are earlier defined to be followed by the computer. This fact limits the ability of 

problem solving in traditional algorithmic approach that are already recognised and 

solved by human. Certainly, the value of computers would be increasingly enhanced if 

they could perform tasks (solving problems), whose processes are difficult to work out 

by human [122]. Any how, The problems to be solved using ANNs have two important 

characteristics [15, 48, 106, 128] : 

• The problem required a nonalgorithmic type of solution. Nonalgorithmic solution is 

an opposite of step-by-step algorithm or logical formula. 

• The data given on the problem is complex and may be noisy or incomplete. 

Traditional procedural approach is a cognitive approach for solving problems in 

terms of induction. This algorithmic procedure must be identified and expressed in small 

definite human instructions. These instructions are to be implemented to an executable 

program by using either high-level or low level programming language. Hence, this 

procedural approach is very predictable. Unlikely, ANN's process cannot be predictable 

since the ANN finds out the way to solve the problem by itself without any human 

assistance during learning / training phase. It is agreed among ANN programmers that 
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The input of ANN is in the form of a pattern or vector, which needs to be designed 

while constructing the ANN itself. The two types of input pattern values that are used in 

ANN are either binary {0, 1}or bipolar {-1, 1} inputs [15, 48]. 

A threshold function is used to determine the output value from each processing unit 

(neuron). The value of a threshold may take one of two possible forms. In one, the 

calculated activation value is to be compared to a certain threshold value. Depending on 

that comparison, the neuron gives its reaction in that it fires if the threshold value is 

attained or exceeded, otherwise not. The second is to add a certain value to the activation 

itself (in which case it is called the bias), and then to determine the output of the neuron 

[15, 48, 92, 98, 122, 141]. 

The outputs are result from either a cooperation strategy; which is defined as the 

attempt between neurons that one neuron aids firing another neuron, or a competition 

strategy; which is the attempt between neurons to individually excel with higher output 

[15, 48, 92, 98, 122, 141]. 

The weights of the neuron's input, which are positioned on the connections between 

different layers, have much significance in the working of the neural network and the 

characterisation of a network. Initialising the network structure is part of what is known 

as the encoding phase of a network operation [15, 48, 92, 98, 122, 141]. 

The other essential issue of working with ANN is the learning of it. Learning can be 

defined as the process of changing – or rather refining - the weights. A network in which 

learning is employed is said to be subjected to training. Feedback information may be 

used in training. A network can be given supervised, unsupervised or reinforcement 

learning. The learning would be supervised if external criteria were used to be matched 

by the network output, and unsupervised if such criteria were not used. This is one way 

to classified broadly different ANN approaches. Unsupervised approaches are also 

termed as self-organising. Reinforcement learning is used in the applications of control 

problems, games and other sequential decision making application [34, 88, 106, 122, 

141]. 
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There are various existing algorithms for learning neural network models. Most of 

these algorithms can be viewed as a simple application of statistical estimation and 

optimisation theory. Most of the algorithms used in training of ANN utilise some form 

of gradient descent, which is achieved by simply getting the derivative of the cost 

function in respect to the parameters of the network and then adjusting those parameters 

in a gradient-related direction. Other frequently used methods for training ANN are: 

simulated annealing, evolutionary methods, and Expectation-maximisation and non-

parametric methods [88, 89, 90, 122, 141].  

The type of application imposed two restrictions to be considered when designing 

ANN for it, namely the type of connections in the ANN architecture and the type of 

learning (training) algorithm used with that architecture. ANN with lateral connections 

for example, can perform auto-association, while ANN of a vector matching type 

performs optimisation. Furthermore, the number of layers has an important role in 

selecting an ANN for a specific application. ANN of single-layer is able to perform 

autoassociation, while heteroassociation or other application types such as mappings, 

requires ANN of two layers at least. Last but not least, the reaction of the ANN to the 

existence of noise in data is a significant feature in determining certain ANN usability in 

a specific application, since a set of data used for training (or even testing) an ANN can 

simply have inherent noise [15, 34, 48, 106, 122, 141]. 

To design an ANN for a certain problem, there are three construction aspects that the 

designer should deal with, these are [15, 34, 48, 106, 122, 141]: 

• Architecture: relating to the number of layers (single, two, or multi) and type of 

their connections, the way to make interconnections between neurons in the 

network(lateral, forward, recurrent, feedback), and finally, the type of their 

functions  

• Encoding and Learning: that relates to the algorithms used for the changing of 

weights on the connections between neurons awaiting getting ideal values. The 

learning algorithms are of types: supervised, unsupervised, and reinforcement 
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• Recall: related to reaching expected outputs from trained ANN with given specific 

input. ANNs are characterised as being either autoassociative, when ANN 

performs an association of the input data with itself as the output, or 

heteroassociative, when ANN remembers a related output given an input data. 

Both of autoassociation and hetroassociation are the types of recalling. 

2.2.1.2 Hierarchical Neural Network 
Multi classifier system has been suggested to overcome the limitations of single 

classifier systems. As every single classifier that could be used for a recognition process 

has its own strength and weakness, the purpose of multiclassifier systems is to utilise the 

strength of multiple classifiers while bypassing their weaknesses so that the recognition 

rate can be maximised. This approach is used after realising that the many great attempts 

that have been carried to optimise the performance of each layer in a single classifier 

system may not produced valuable enhancement in recognition by the entire system. 

Therefore, multiclassifier systems, which contain various single classifiers, have been 

developed to improve the recognition performance considerably. These systems organise 

multiple single classifiers in away that their weaknesses can be reciprocally rewarded by 

the strength of each other. The classification of the multiclassifier is to be made based on 

suitable judgement, and the recognition rate can be notably improved [72, 38, 133]. Four 

different types of multiclassifier systems have been acknowledged namely: cascaded, 

vote-to-decide, decision enhancement, and hierarchical recognition systems [19]. 

In the traditional hierarchical multiclassifier system, the classification stage (upper 

level) of the initial classification system generates new feature representations (inner 

pattern) for the original input pattern to be used as input to the further classification 

subsystem (lower level). This is not all, the further classification subsystem can be either 

a single classifier or a multiclassifier system, which takes the new generated feature as 

input for its classification stage to generate the results [19, 38, 71]. Figure 2.5 illustrates 

simple architecture of a HNN. 
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• Robustness: hierarchical organisation has excellent robustness due to the partial 

malfunction of sub net will not lead to serious failure of the entire system.  

• Speed: decomposition of learning task in hierarchical organisation structure can 

be divided to global learning and parallel local learning   

• Complexity: cooperation of function nets allows the network to perform more 

complex task than nonlinear mapping and dynamic evolution. 

2.2.2 Decision Tree  
Decision tree is considered a popular classifier, which does not necessitate any pre- 

knowledge or parameter setting. Decision tree is supervised learning approach. In that, 

by using a training data, we can develop a decision tree. The classification of hidden 

records can be easily predicted using decision tree. The decision tree algorithm 

represents sets of decisions, which are based on conditional probabilities, like Naive 

Bayes. These decisions generate rules for the classification of a dataset. Specific 

decision tree methods include Classification and Regression Trees (CART) and Chi-

square Automatic Interaction Detection (CHAID) [54, 75, 113].  

Actually, Decision tree have a hierarchical tree structure, which is used to classify 

classes by using a series of rules regarding the attributes of the class. While the classes 

are of qualitative type (categorical or binary, or ordinal), quantitative values (binary, 

nominal, ordinal) are possible types of variable that the attributes of the classes can be. 

Thus, the whole idea is that by given a data of attributes together with its classes to a 

decision tree, a sequence of rules (or series of questions) that can be used to recognize 

the class are to be produced [42, 75]. 

 The decision trees are usually built from top to bottom. At each (non-terminal) 

node, a leaf decision is made pending a terminal node, also named leaf, is reached. Each 

leaf should contain a class label and each non-terminal node should contain a decisional 

question [75]. 
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The main problem, however, lies in building the tree classifier by using a training 

set, whose size is obviously limited. The overlapping between class areas, in case of 

noise, may complicate this problem [23, 25]. 

The tree is built by a process called splitting, which transforms a leaf into a decision-

making node and swells the tree further down. In case of noise, the resulting splitting 

tree may be over fitted on the training set, so some pruning could be required [23,75]. 

As the pattern space is divided into decision areas by the decision boundaries, the 

tree-based classifiers may be seen a hierarchical way of describing the partition of input 

space. Usually, there are many possibilities of building a tree-structured classifier for the 

same classification problem, so a definitive search for the best one is not possible [25, 

75]. 

In general, the tree is built with one considered feature (i.e. a component of the input 

vector). As for binary features, the choice is obvious, in continued ones, the problem is 

more difficult, especially if a small subset of features over simplifies the emerging tree 

[23, 25, 75].  

2.2.3 Genetic Algorithms  
Genetic Algorithms (GA) are considered as a class of adaptive stochastic 

optimization algorithms involving search and optimization used for searching 

heterogeneous environment of solution space. Prof. JohnHolland and his students 

developed GAs during the 1960s and 1970s at the University of Michigan. 

Fundamentally, GA can be thought as a method for reproduction computer programs and 

solutions to optimization or search problems by using simulated evolution. GA use 

processes such as genetic combination, mutation, and natural selection in a design based 

on the concepts of evolution. GA is considered as part of high performance evolutionary 

computing, which is a rapid area of interest for AI.  Note that there are a large number of 

different types of GAs. [75, 117, 143]. 

Chromosomes are the representational units of solutions used in GA algorithm. GA 

starts its work with a set of chromosomes called population. Therefore, some solutions 
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from certain populations are to be taken and used in order to generate a new population 

(offspring). This step is an outlook to obtain an offspring that have properties better than 

its parents do (enhancing the chromosomes quality). This offspring would be considered 

as a parent, in the current step, and would be used to select solutions to form new 

solutions (or next offspring). It is important to note that selection is made according to 

solution fitness, which is based upon the principle, that the more suitable they are, the 

more likelihood they have to reproduce. This process is repeated awaiting certain 

conditions, e.g. or enhancement of the best solution fulfilled [39, 75, 117].  

2.2.3.1 Outline of the Basic Genetic Algorithm 
There are many forms for GA, the following one given by [39] is an example for it:  

[Start] Generate random population of n chromosomes for the problem  

[Fitness] Evaluate the fitness f(x) of each chromosome x in the population  

[New Population] Create a new population by repeating the following steps until the 

new population is established  

[Selection] Select two parent chromosomes from a population according to 

their fitness (the better the fitness, the bigger the chance to be 

selected)  

[Crossover] The probability 'crosses over' the parents to form new offspring 

(children). If no crossover is performed, the offspring is the 

exact copy of parents.  

[Mutation] With a mutation probability, mutate new offspring at each locus 

or position in chromosome.  

[Accepting] Place new offspring in the new population.  

[Replace] Use the newly generated population for a further run of the algorithm  

[Test] If end condition is met, stop and return the best solution in the current 

population  

[Loop] Go to step [Fitness]  
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2.2.4 Nearest Neighbour Classifier   
Nearest Neighbour Classifier (NNC) rule gets continually high performance among 

the various methods of supervised statistical pattern recognition. NNC needs no priori 

assumptions regarding the distributions from which the training examples are drawn. 

NNC involves positive and negative cases training set. NNC can be defined as a process 

of classifying items by using the principle of closest training examples in a feature 

space. The training examples are to be addressed into multidimensional feature space, 

which is itself divided into areas by class labels of the training samples. Assignment of a 

point in the space to class c is done on condition that class c being the nearest class label 

among the k nearest training samples to that point, by using Euclidean distance as usual. 

While the training phase of the NNC classifying algorithm consists only of storing the 

feature vectors and class labels of the training samples, the classification phase is 

actually the computation of the test sample whose class is not known and is to be carried 

out by using the same features used in the training phase [25, 75].  

The classification of a new sample is achieved by calculating the distance to the 

nearest training case. The principle of NNC is that the distances from a new vector to all 

stored vectors are computed and, then, the choice of the k closest samples, which belong 

to the new point, to the largely various classes within the set, is predicted (i.e. when the 

vote number k of a class  is 1) [23, 43, 72]. 

 The input data per se would determine the best choice of k. One of the well-known 

problems of data is noise, and usually the effect of noise on the classification process is 

reduced by larger values of k, but on the other hand, larger values of k make margins 

between classes less different. In addition, the use of parameter optimisation, cross-

validation for example, would help in selecting a good k [23, 43, 72].  

Noisy, unrelated features or inconsistent scales of features, though important, cause 

severe degrading of the accuracy of the k-NN algorithm. Many research efforts have 

been placed for selecting or scaling features to enhance classification. A predominantly 

well-liked method for optimising feature scaling uses evolutionary algorithms. Sharing 
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information of the training data with the training classes is another popular method for 

scaling features [25, 113, 117]. 

From the implementation point of view, the algorithm is easy. Yet its main 

disadvantage is that it is computationally intensive, particularly when the size of the 

training set grows. To reduce the number of distances already computed, numerous 

optimisations have been proposed. Some of them apply partitioning to the feature space, 

and then calculate distances within specific nearby volumes. A number of different types 

of Nearest Neighbour finding algorithms, like linear scan and Locality-Sensitive 

Hashing (LSH), make use of the kd_tree, Metric trees, and Balltrees data structures [42].  

Finally, the NNC has a number of sturdy stability results. Since the quantity of data 

ever last, NNC is assured to produce an error rate better than twice of the minimum 

reachable error rate in producing the distribution of the data, which is known as the error 

rate given by Bayes. For a certain value of k, the K-nearest neighbour is assured to 

advance the Bayes error rate, where k increases as a function of the amount of data 

points [25, 42, 113]. 

2.2.5 Rule Induction  

Rule induction is considered as one of the most machine learning significant 

techniques. Rule induction is one of the primary DM tools due to being hidden 

regularities in data are often expressed in terms of rules. Rule induction is the extract “of 

useful if-then rules from data based on statistical significance” [142].  

The ease and transparent interpreting of rules, compared to say, a regression model 

or a trained ANN, make rule induction more attractive than other classification method. 

Usually rules are expressions of the form: 

if (attribute − 1; value − 1) and (attribute − 2; value − 2) and .....and (attribute − n; 

value − n) then (decision; value): 

 As in other classification methods, the learning phase of classification rule can be 

defined as follows [42, 113]:  
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Given: 

Set of training examples (instances in which classification is known)  

Find: 

Set of classification rules that can be used for prediction or classification of new 

unclassified instances, i.e., cases that have not been presented to the learner before.  

Some rule induction based systems have rules that are more complex, in which the 

attributes may have reversal values of some other values or have a value that is a subset 

of the attribute domain. Data used to induce rules are usually presented in a table like 

form where examples are labels for rows and variables are to be labeled as attributes and 

a decision [35, 42].  

The shortcomings of the language used to describe the data (Data Description 

Language-DDL) in addition to the language used to define the induced set of rules 

(Hypothesis Description Language-HDL) should be considered as an essential condition 

when defining a more formal definition of the classification rule-learning job. It should 

be noted here that the language bias refers to the restrictions imposed by the languages 

used for defining the format, and the range of both data and knowledge representation as 

well [35, 42]. 

As an example, consider the problem of binary classification to classify instances 

into two classes, namely positive and negative. The learning phase of a set of rules 

would define the class positive as follows [42, 113]:  

Given: 

- DDL: that imposes a bias on the form of data 

- Training examples: a set of classified instances described in the DDL 

- HDL: that imposes a bias on the form of induced rules 

- A coverage function: defines when an instance is covered by a rule 
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Find: 

 - A hypothesis as a set of rules described in the HDL; that is 

• Consistent, i.e. does not cover any negative example 

• Complete, i.e. covers all positive examples 

The definition, given above, distinguishes between the term examples, which usually 

refer to instances labelled by a class label, on the one hand, and instances, which bear no 

class label, on the other. Also in the definition above, another term appear, i.e. 

hypothesis, which is used to denote the output of learning.  

Due to the hypothetical nature of induction, the output of inductive learning can be 

falsified by new evidence presented to the learner. A rule is an expression of the form 

Head   Body, where Body describes the conditions under which the rule fires, and 

Head is typically a class label. In the simplified learning setting above, we learn rules for 

only one class, so the head of the rule is strictly speaking redundant. An instance is 

covered by such a rule if it satisfies the conditions in Body. An example can be either 

correctly covered (if it is covered and the class label in Head corresponds with the class 

label of the example), incorrectly covered (Head assigns a different class), or not 

covered [35, 42, 113]. 

Consistency and completeness are very strict conditions in this process of definition. 

They are unrealistic in learning from large datasets that may involve noise, (this term 

refers to random errors in the data, due to either incorrect class labels or errors in 

instance descriptions). It is also possible that the HDL is not expressive enough to allow 

a complete and consistent hypothesis, in which case the target class needs to be 

approximated. However, one more problem would develop from un-displaced targeted 

classes. To deal with these cases, the consistency and completeness requirements need to 

be relaxed and replaced by some other evaluation principle, such as sufficient reporting 

of positive examples, the high accuracy of prediction of a hypothesis or its super 

importance of the required, predefined threshold. These measures are to be used for a 

couple of reasons: as heuristics to manage definition of the rule and as measures for 

evaluating the quality of induced hypotheses [35, 43]. 
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Noteworthy is the fact that the above description of the learning procedure assumes 

the learner has no previous knowledge of the problem and only learns from the 

examples. However, complicated learning problems normally need a considerable 

quantity of previous knowledge. The term 'background knowledge' is used to refer to a 

declarative previous knowledge. By using background knowledge, the learner is able to 

show the induced hypotheses in a more brief and accepted way [35, 89, 90, 113]. 

2.3 Data Model  
DM is able to discover important implicit features or predict future evolutions by 

using modelling. The process of modelling can be defined as the act of building a model 

in one situation where the answer is known, and then applying it to another situation 

where it is not. Actually, the building of model as an approach is not modern. It has been 

used as a certain processing method of data long before computer was invented as a 

device, and before DM was invented as an information processing algorithms. As 

reported by many researchers, there is not much difference between the way of building 

models by computers and those followed by man to do so. The first step of building a 

model is known as the training phase. To do so, computers are to be loaded with lots of 

information about variant situations where an answer is known. Next, DM software runs 

through that data and distils the characteristics that should be applied to the model being 

built. Once it is built, the model can then be used in similar situations where the answer 

is not known [42, 43, 117].  

Essentially, a system that is formally described as a model, may take the form of a 

mathematical expression or algorithm that provides a value based on input variables. 

DMM can be either descriptive or predictive. DM is conceived of as a process having 

two components: discovery, where meaningful patterns are detected in data and 

characterised formally as (descriptive models), and exploitations, where meaningful 

patterns are used to create useful applications (predictive models) [25, 86, 113].  

Descriptive models are used for describing patterns in a given data, as well as for 

creating meaningful subgroups, such as a distribution group. On the other hand, 

predictive models are usually used to predict explicit results by making use of those 
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patterns built from known previous results. Taking a database of customers who have 

already acted against a certain offer, for example, a predictive model can be built to 

forecast which prospects are most likely be replied for the same offer in the future [36, 

43, 111]. Predictive models can be so helpful in supporting decision making and solving 

complex planning tasks [121]. 

The ANN, decision tree, Naïve Bayes, or NNC algorithms are used usually to 

implement Classifiers (when a prediction relates to class membership), while ANN or 

decision trees are used to implement Regressors (when, the model predicts a number 

from a wide range of possible values) [36, 42, 43, 111].  

2.3.1 Predictive Models  
DMM is typically used for classifying or predicting, and so are called predictive 

models. Note that the term predictive does not mean that foretelling is implied, and as 

such, predictive models are pattern classifiers. The process of defining predictive 

models by using DM techniques and tools is known as predictive modelling. Since there 

are many ways to approach the problem of exploiting patterns in data, predictive models 

can be created by using different approaches. Patterns can be processed by using many 

techniques, including polynomial regression, Knowledge Base Expert System (KBES), 

and ANN [25, 43]. 

A predictive model seeks to forecast the value of a particular attribute to judge the 

identity or the belonging of an element to a certain set. For example [111], predictive 

models can predict: 

• A long-distance customer’s likelihood of switching to a competitor 

• An insurance claim’s likelihood of being fraudulent 

• A patient’s susceptibility to a certain disease 

• The likelihood someone will place a catalogue order  

• The revenue a customer will generate during the next year 

The first four examples illustrated above demonstrate a particular type of prediction 

models, which are called classification models. These classification models are usually 
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used for predicting class membership; sometimes it is called classifiers. The class 

prediction in the first four examples might as follows be respectively:  

• trusty versus untrustworthy,  

• lawful versus falsified,  

• vulnerable versus imprecise or unsusceptible, and  

• Purchaser versus seller 

Through the first four examples, it is obvious that in each case the prediction classes 

typically contain limited values. Another type of prediction model, which is called 

regression model or regressor in short, is illustrated by the fifth example [25, 26, 75].   

2.3.2 Descriptive Models  
The class of descriptive models encompasses important model types: clustering, 

association, and feature extraction [42, 43, 47, 86, 113].  

 “Clustering (also referred to as segmentation) collects together similar people, 

things, or events into groups called clusters” [111]. The importance of clustering is that 

Clusters help reduce data complexity. For example, it is obviously easier to design a 

different marketing plan for each cluster of few-targeted customers than to design a 

specific marketing plan for each of multi million individual customers [42, 43, 113].  

As an example, the trade sector called Market Basket Analysis uses Association 

models. This type of models involve finding out of likeness, i.e. how often two or more 

things occur together. The result of this testing is in terms of creating rules like: when 

people buy data structure books, they also buy Java programming language books 55 

percent of the time. Dealers usually use these rules to map shelf situation and 

promotional discount [111].  

Researchers reported that data, which is the topic of analysis and processing in DM 

in many applications, is multidimensional, and is presented by a number of features. 

Many learning algorithms show pertinence, (called the curse of dimensionality), and 

denote the drastic rise in computational complexity and classification error. The curse of 

dimensionality usually comes up with data of large numbers of dimensions. Hence, the 
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attempt to reduce the dimensionality of the feature space before classification is 

undertaken. The attempt to face this curse is known as Feature Extraction (FE) which is 

a one-dimension reduction technique. In abbreviation, FE extracts a subset of new 

features from the original feature set by means of some functional mapping and keeping 

as much information in the data as possible [101, 74]. 

Approximately, all predictive models can be used descriptively. The relationship 

between descriptive and predictive models is a one-direction relationship. A descriptive 

model is not predictive. The converse does not hold: predictive models are often 

descriptive. Actually, the ability of predictive model to give descriptive aspect is 

sometimes more important than its ability to predict. For example, suppose a DM model 

has been built to predict the likelihood of a particular disease. The developer of this 

DMM might be more appealing, in exploring that disease- related features or their 

scarcity than using the DM model itself to predict if a new patient got disease. It is 

important to notice that the aim of descriptive models is not the forecast of a target 

value, but focuses more on the discovery of issues such as interconnectedness, relations, 

and the fundamental structure of the data [111, 113].  

2.4 Difficulties in Data Mining 
Traditional DM problems are solved by using classical optimization techniques, 

among which convex optimization has occupied the heart stage. However, new problems 

appear continually in DM community. Several of these newly appeared problems are 

more complex than traditional ones, which are formulated as nonconvex problems [138]. 

Researchers outline some of the current primary research and application challenges 

for DM. This list is by no means exhaustive, but it does give a feel for the types of 

problems that DM practitioners wrestle with everyday [42, 43, 45, 136]: 

• Large Databases: Databases with hundreds of fields and tables, millions of records 

and of a multigigabyte size are common, and terabyte databases are emerging. 

Methods for dealing with large data volumes need algorithms, which are more 
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efficient, sampling, approximating, and perhaps parallel processing with a massive 

capability. 

• High dimensionality: There can be a large number of fields, such as attributes and 

variables, as well as a large number of records in the database, thus elevating the 

dimensionality of the problem. A high-dimensional data set creates problems in 

terms of increasing the size of the search space for model induction, to the extent 

that the combination of the number of fields and records would be unmanageable at 

all. In addition, it increases the chances for a DM algorithm to find spurious patterns 

that are not generally valid. Solutions to this problem need to involve methods of 

reducing the effective dimensionality of the problem, and the use of prior knowledge 

to identify irrelevant variables. 

• Over fitting: While searching for the best parameters for a particular model using 

limited set of data, DM algorithm can model any specific noise of the data set and 

not only general patterns in data. This model may result in poor performance on test 

data. Solutions suggested for solving this problem include cross-validation, 

regularisation, and other sophisticated statistical strategies. 

• Evaluation of statistical importance: This problem (which is related to over fitting) 

usually happens when the system is searching for many possible models. Consider, 

for example, if a system tests models at a significance level of 0.005, then on 

average N/5000 of these models will be accepted as significant with entirely noisy 

data. This point is frequently missed by many initial attempts at DM. One way to 

deal with this problem is to use methods that adjust the test statistics as a function of 

the search. 

• Shifting data and knowledge: Rapidly changing (non-stationary) data can make 

previously discovered patterns invalid. In addition, the variables measured in a given 

application database can be modified, deleted, or augmented with new measurements 

over time. Solutions proposed for this problem comprise incremental methods for 

updating the patterns and treating change as an opportunity for discovery by using it 

to cue the search for patterns of change only. 
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• Omitted and noisy data: This problem is especially acute in business databases. 

Important attributes can be missing if the database was not designed with discovery 

in mind. Solutions suggested for this problem embrace sophisticated statistical 

strategies to classify hidden variables and dependencies. 

• Complex relationships between fields: The hierarchically structured attributes or 

values (relations between attributes) and more sophisticated methods for 

representing knowledge related to the contents of a database require effective 

algorithms that can use such information. Historically, DM algorithms have been 

developed for simple attribute-value records, although new techniques for deriving 

relations between variables are being developed. 

• Comprehensibility of patterns: In many applications, it is important to make 

discoveries more comprehensible by humans. The most likely solutions for this 

problem are graphic representations, rule structuring, natural language generation, 

and techniques for the visualisation of data and knowledge. Strategies for rule-

refinement can be used to address a related problem: The revealed knowledge might 

be implicitly or explicitly redundant. 

• User interface and previous knowledge: Many current DM kits and schemes are not 

actually interactive, and are not able to incorporate conveniently prior knowledge 

about a problem in easy ways. The use of domain knowledge is important in all steps 

of the DM process. Bayesian approaches use prior probabilities over data and 

distribution as one form of encoding prior knowledge. Others employ deductive 

database (knowledge in AI) capabilities to discover knowledge that is then used to 

guide the DM search. 

• Incorporation with other systems: It is not very useful for a discovery system to be 

stand-alone. Classic integration issues take in integration with a database 

management system (DBMS), through a query interface for example, integration 

with spreadsheets and visualisation tools, and accommodation of real-time sensor 

readings. 
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2.5 Uncertainty and Data Mining 
What is the cause of the difficulties listed in Section 2.4 above?  To answer this 

question we will start from the atomic process of DM’s algorithms, i.e. classification.  

Classification is a result of a decision-making process that can be defined as a choice 

among alternatives, like actions, hypotheses, and locations. The classification process 

typically uses either a statistical or a structural approach [75, 109].  

In the statistical approach, each class is defined by weighted sum of values of 

isolated set of features that are relevant to the task domain. Each class is then defined by 

a scoring function, which is used as a mechanism of discovering the identity of the data. 

Scoring function comes in the form c1t1+c2t2+c3t3+ ..., where each ti corresponds to a 

value of a relevant parameter, and each c represents the weight to be attached to the 

corresponding t. In the latter approach, each class is defined as a structure composed of 

isolated set of features that are relevant to the task domain [75, 109]. 

In the structural approach, the task of classification is realised by labelling the 

different sets of data if the existing set maintained a classified pattern known as a 

training set. The learning approach is regarded as a supervised learning as the 

classification process develops its own model linked to an already labelled set of data 

(patterns). Learning may also be unsupervised if the classification system is not supplied 

with a priori labelling of patterns, as an alternative, it sets up by itself, the classes on 

basis of the statistical habitual of the patterns [75, 109]. 

Undoubtedly, each approach has pros and cons. It has been reported that the 

statistical approach is often more efficient, and flexible, than the structural approach [37, 

41]. Nevertheless, it is difficult to construct good class definitions by hand, especially in 

domains that rapidly change or are not well understood. Thus, the idea of producing a 

classification program that can evolve its own class definition is appealing. This idea is 

known as the concept of learning, or induction, which is indeed a type of inference in AI 

literature [75, 109]. 
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The problem of uncertainty is viewed common in the classification process. The 

existence of more than one task domain is possible, in that each domain has its own 

scoring function to define or to assign different mysterious elements. In that case, 

defining of different classes names to the same mysterious element (each task domain 

has a class's name), would ensue and would create the problem of uncertainty of the 

identity (classification) of this element. Things could get worse when a single 

mysterious element comes with multi syntax, and evolves multi-meanings (or multi-

semantics), that producing a whole case of uncertainty, involving misunderstanding in 

terms of computer's interpretation of the data.   

This form of uncertainty is noted as multiplicity, which is found in the DM 

difficulties (all but the first one). Thus, since the multiplicity phenomenon causes the 

problem of vagueness or uncertainty [6] in DM as well as other applications, the way to 

improve the effectiveness of classification in DM is achieved by handling this DM’s 

problem as agreed upon by [5].  

2.6 Approaches of Handling Uncertainty in DM 
Disclose and handling of uncertainty is an essential issue in DM research. The 

common use approaches of classification do not consider this aspect. Generally, fuzzy 

set, ANN, and GA are commonly applied in the DM to handle different challenges in it. 

Each of them contributes a different methodology for addressing problems in its domain, 

which is done in a cooperative, rather than a competitive, manner. Note that fuzzy sets 

give a normal framework for the process in dealing with uncertainty, ANNs are usually 

used for classification and rule generation, and GAs are concerned with various 

optimisation and searching processes [5, 29, 91]. 

Let us first describe the function and importance along with the mixing of each of 

these three approaches used by different systems developed for handling the different 

functional features of DM. It may be mentioned that there is no universally best DM 

method. Indeed, deciding particular computing tool(s) or various combinations with 

conventional methods (like fuzzy decision trees, fuzzy C-Means and fuzzy rules 

approaches that reported in literatures for dealing with uncertainty representation in DM)  
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is completely reliant on the nature of application and necessitates human dealings to 

settle on the aptness of such an approach [5, 54, 91]. 

2.6.1 Fuzzy Sets Approach 
As stated earlier in this thesis, fuzzy sets are used for modelling and handling of 

uncertainty in addition to its use it in the modelling of qualitative knowledge. Fuzzy 

logic is able to support, to a reasonable scope, the natural form of human type reasoning.  

DM is mainly concerned with recognising interesting patterns and describing them in 

a succinct and meaningful style. A careful filtering of data, qualitative opinions, and 

adjusting of commonsensical rules are to be represented using fuzzy models in order to 

set up meaningful and constructive relationships among the variables of a system. Note 

that there is a significant constituent of human collaboration that is normally required to 

knowledge representation, manipulation, and processing activities in spite of of the fact 

that there is an increasing in the adaptively property of knowledge discovery systems [5, 

91].  

Fuzzy sets are naturally tending toward functioning with linguistic domain of 

knowledge and generating more interpretable explanations. There is an indisputable 

increasing in the role of fuzzy set in the area of DM. Fuzzy set theory has been used to 

implement different DM systems. In DM, the analysis of data in real world frequently 

demands dealing with different types of data classes and numeric attributes 

simultaneously. The roles of fuzzy sets in the DM’s techniques are found in [54, 91]: 

• Clustering: As DM aims at pulling out useful information in the form of new 

relationships, patterns, or clusters from huge volumes of data for supporting 

decision-making by a user, fuzzy sets support an accurate searching of data that 

expressed using linguistic terms. Furthermore, fuzzy sets facilitate discovering of 

dependencies among qualitative and semi-qualitative format of the data. This helps 

avoid searching for worthless or insignificant patterns in a database, since there are 

too many attributes to be considered and can ensue complicated errors.  
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• Association Rules: One of important DM’s research techniques is the discovery of 

association rules, which illustrate an interesting relationship among different 

attributes of given data. While Boolean association considers binary attributes, the 

widespread association considers hierarchically related attributes, and a quantitative 

association considers attributes that may exist in either quantitative or categorical 

values. For example, a crisp classification supposes that a kid belongs to its ancestor 

with crisp degree value of support and confidence equals one. In fuzzy 

classification, the partial belonging of an item is taken into account while 

computing this degree.  

• Functional Dependencies: The term functional dependency (FD) means that factor 

X [partially] determines the level of factor Y. FDs allow the intensive expression of 

real world properties, which are valid on a certain database. Regression is utilised to 

analyse the relation between two continuous variables, and it is the most suitable 

method for studying FDs between factors. The inference based on FDs among 

variables in database relations implements fuzzy logic, which generalises both 

imprecise and precise inference. Inference analysis is carried out using a particular 

abstract model, which sustains essential links to classical, imprecise, and fuzzy 

relational models in database. These links enlarge the value of the inference 

formalism in realistic applications like knowledge discovery and database security.  

• Summarisation: Summary discovery gives the user complete information for 

seizing the core representation from a huge amount of information in a database. 

Usually, fuzzy sets are used in an interactive top-down activity of data 

summarisation, which employs fuzzy IS-A hierarchies as domain knowledge. 

Representational structure of a database summary including fuzzy concepts comes 

as generalised combination of attributes in which the discovery process deals with 

more precise database summaries. The summarisation of large sets of data linguistic 

is derived as linguistically quantified propositions and corresponds to the favourite 

criterion coped in DM process. Data summarisation system involves a summariser 

(‘old’ for example), a quantity in agreement (‘most’ for example), and the truth 
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validity (say 0.83). The most interesting linguistic summaries are usually central 

and human-reliable concepts, which consist of compound grouping of attributes. 

Practically, linguistic summaries cannot be created automatically and it needs 

human support.  

2.6.1.1 Fuzzy Logic System 
Essentially, the computer, in its both hardware and software components, is a 

machine that works according to binary logic. Thus, the computer itself is classified as a 

crisp machine. Fuzzy logic, which is depicted in Figure 2.6, and its continual 

improvement are used during the internal process, so that the qualified (or fuzzy) data 

are to be quantified (or pre-processed) so they would be suited for further computation 

by computer-the crisp machine. 

 

Figure 2.6 Architecture of Fuzzy Logic System  

Logical inference is used as one of AI approaches to solve problems, when the data 

of these problems are vague or incomplete that affects defectively the calculations of 

problem’s conclusion. The inference process or approach is performed to obtain 

concluding, which results from a series of principles that each one leads to the next 

depending on its logical crisp value (comes from crisp semantic description of a 

proposition) [75, 94, 109]. For non-crisp proposition (fuzzy proposition), a process of 

calculating fuzzy membership value using membership function, which is called 

fuzzification, should be performed firstly to convert the literals of fuzzy data to 

numerical values, as a required prior step for processing these fuzzy data numerically by 
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computer (i.e. converting the qualification terms into quantification values or 

membership values) [64, 82, 84].  

The traditional FLS uses fuzzy membership value to perform the required inference. 

FLS consists of four interconnected portions [64, 82, 84, 99, 135]: 

• Rules, which are the spirit of FLS, are coupled with membership functions in 

which each rule can be thought of as a subsystem. Rules do nothing unless 

inputs are applied to them. Traditional FLS implements fuzzification rules for 

either type-1 fuzzy set or type-2 fuzzy set. 

• Inference Engine (IE) part, which maps each rule's fuzzy input sets into each 

rule's fuzzy output set. The mathematics of how the inference engine does this 

is very nonlinear.  

• The fuzzifier component, which quantifies qualities, so that they can be treated 

as fuzzy sets.  

• The output processor converts a fuzzy set into a number required in many of 

the applications of an FLS where numerical outputs are required to make 

informed decisions. 

The function of FLS is to map the data from crisp inputs to crisp outputs, and is 

expressed as y=f(x), which can be elaborated as following:  

1. Getting of single, or a multiple, of fuzzy measurement of conditions existing in 

some system aimed to be analysed or controlled. 

2. Processing all these inputs according to human based, fuzzy ‘If-Then’ rules, 

which can be expressed in plain language words, in combination with traditional 

non-fuzzy processing. 

3. Averaging and weighting the resulting outputs from all the individual rules into 

one single output decision or signal that decides what to do or tells a controlled 

system what to do. The output signal eventually arrived is a precise appearing, 

defuzzified, crisp value.    
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This kind of FLS is also identified as a fuzzy system, fuzzy controller, fuzzy model, 

or fuzzy expert system. It is widely used in many engineering applications of fuzzy 

logic, such as fuzzy logic controllers and signal processors [84, 99].  

2.6.2 Neural Networks Approach 
The use of ANN facilitates both integrating parallelism and tackling the problems of 

optimisation exist in DM. ANN models are typically appropriate in the environments 

where data are so heavy. Chapter Five gives technical description of ANN. The main 

contribution of ANN toward DM tasks is found in [91, 70, 106, 122]: 

• Rule Extraction: Usually, the main input to an algorithm of connectionist rule 

extraction is a representation of the trained ANN. This input comes in terms of 

ANN’s neurons and links. The automatically derive of the rules is achieved by 

using one or more hidden and output neurons. Afterwards, combination and 

simplifying of these rules could be applied to get further comprehensible rule set 

(form an ANN model with set of outputs). These rules can give new views into the 

application domain. Pruning algorithm may used to remove the disused connections 

of the network. Typically, a network model is firstly trained to reach the necessary 

accuracy rate, where the weights and activation values of the hidden neurons in the 

network are justified. Researchers define quantitative measures to evaluate the 

achievement of the generated rules relates to the favourite criterion or integrity of fit 

chosen for the rules. These measures are: Accuracy, User’s accuracy, Kappa, 

Fidelity, Confusion, Coverage, Rulebase size, Computational complexity, and 

Confidence. 

• Clustering and Self-Organisation: The organisation and retrieval of documents, 

which haven’t unique structure, from annals are considered among the big 

challenges of DM. There are many examples for the using of self organisation ANN 

for clustering data are: 

 The using of a huge self-organising map (SOM) to partition multiple million 

documents 
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 The involving of SOM with partitioning the data in stepwise methodology 

 The hierarchical clustering of SOMs, based on a widen factor, which is 

independent of the dimensionality of the data. 

 Designing a DM method for clustering a set of pathological data by combining 

SOM with data visualisation 

 Combining SOM and Sammon’s nonlinear mapping to minimise the dimension 

of data representation for visualisation reasons 

2.6.3 Neuro-Fuzzy Computing Approach 
FLS may be developed using ANN, which results neuro-fuzzy approach. Neuro-

fuzzy computation comprises an astute combination of the standard advantages of ANN 

(like enormous parallelism, learning, and robustness) and fuzzy approaches in data-rich 

milieu into one system, thus enabling the construct an intelligent decision-making 

systems. The rule generation feature of ANN is used to pull out rules that are more 

normal from fuzzy ANN. The features of data presented to fuzzy ANN are that the 

possibility of the data being incomplete, as well being in quantitative, linguistic, or a 

mixture of them. The input vector of ANN contains membership values to the linguistic 

properties corresponding to each input feature [8, 20, 54, 70,  91].  

This approach is currently considered as one of the major areas of interest since it 

gets the benefits of both ANN and FLS. The merge of common features of both ANN’s 

and FLS’s leads to remove their individual disadvantages. Thus, while ANNs tolerate 

for noisy data, FLS tolerates the imprecision of data. Furthermore, the learning 

capability of an ANN provides a good technique by which the knowledge of an expert 

system can be automatically fine-tuned and automatically produce both additional fuzzy 

rules and membership functions to meet certain specifications. This learning capability 

reduces both the design time and cost. On the other hand, fuzzy logic approach perhaps 

improves the generalisation capability of an ANN by providing an output that is more 

reliable when extrapolation is required ahead of the restrictions of the training data [48, 

81]. 
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Researchers investigated a number of different architectures of neuro-fuzzy systems 

with a view to fixing an ideal architecture of a neuro-fuzzy system. These architectures 

is used in many applications, especially in the controlling type process. The common 

features of ANN and FLS include [81, 128]: 

• The ability to handle data with ambiguity, 

• Scattered representation of knowledge,  

• Model-free estimation and vagueness  

2.7 Summary  
DM aims at creating data models through methods of research on data, which is 

deemed to store in data warehouses with a view to defining a model of predictive or 

descriptive type. The resulting models are the common attributes among the investigated 

data. The process of defining or building patterns from this data is to be performed by a 

variety of methods, namely classification, clustering and association rules. There are 

many algorithms for these methods, including ANN, GA and NNC. While it is an 

evolving technology, the DM’s promising insights are often too compelling to ignore. 

DM is usually used in applications, such as business performance management, business 

intelligence, loyalty card, discovery science, bioinformatics, cheminformatics, and many 

other applications. 

Although, some of DM’s theoretical aspects need to be developed, DM adds a new 

category of data processing type to classical ones, such as sorting and searching data, 

data compression-decompression, data encryption-decryption. This new data processing 

type can be described as classification-reclassification of data. 

Researches have already highlighted difficulties in DM (listed in Section 2.4 above). 

Careful studying of these problems implies that they fall into three categories: missing & 

changing data, attributes of data (i.e. large size and a high degree of complexity), and the 

accuracy & existence of multiple models of the same type of data. All but the first 

challenge remain to be well answered. It is obvious that some traditional DM 

classification approaches (like decision tree and rule induction) have been applied with 
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fuzzy logic to produce new approaches that are able to handle the uncertainty in DM. 

The rest of DM techniques reported in this chapter, namely ANN, GA, and NNC, are 

already defined as techniques to handle simple uncertainty. According to these 

approaches, each data value can be assigned to one or more categories with an attached 

degree of belief [8, 20, 54, 91].  

The analysing and understanding of uncertainty, as the shared reason among DM 

difficulties, along with the methods and tools used to handle uncertainty in DM have 

lead this thesis to investigate an effective classification tool that is able to handle 

uncertainty wherever and whenever it exists in data.  

Although no type-2 FLS has been defined to deal with the uncertainty in DM, the 

shortcoming of type-2 FL reported in Section 1.3 earlier was the motivation for seeking 

for an enhanced version of FL to be applied to an existing computation methodology for 

developing a new computation methodology that is able to deal with the complex 

ambiguity. This suggestion follows one of the approaches used to handle the uncertainty 

in DM namely neuro-fuzzy approach, which has been reported in this chapter. 

Referring to studies in Cognitive Physiology, cognitive approach defines mental 

structure that describes the relationship between meaning and memory that is 

recognition [119]. This mental structure groups elements to clusters and then 

distinguishes each individual element according to its cluster. What supports this 

assumption is the fact that clustering of data helps reducing the complexity of the data 

(see Section 2.3.1). Actually, what makes recognition more difficult is that the element 

itself may come with different shapes and fall in different clusters. This means that a 

further recognition is required as well as cluster recognition is required.  

Thus, we suggest a new complex classification approach that encompasses clustering 

of elements, as a super stage, and individual recognition of elements inside each cluster 

as a sub stage. Such computation approach of complex classification, would imitate the 

human approach of handling complex ambiguity of the data (which has been explained 

in Section 1.2). The suggested approach requires defining of computation methodology 
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that is based on a theoretical description of handling and modelling the complex 

ambiguity. 

To implement the cognitive approach of recognition (the mental structure), which is 

described by cognitive physiology, we need to map each stage of this approach to an 

existing modelling technique used for handling and modelling the uncertainty. The super 

stage of the mental structure recognition approach can be mapped to possible-world 

modelling theory, and the sub stage can be mapped to fuzzy membership value set. Both 

of these techniques are to be explained in the next chapter. 
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Chapter Three 

Uncertainty Modelling using Logics and 
Possible-world 
3.1 Introduction 

As pointed out in the previous chapter, uncertainty is the problem that negatively 

affects the accuracy of the classification-based processes. Expert, who maintains his own 

knowledge base, usually relies on common sense when coming to solve problems. 

Expert also uses vague and ambiguous terms, such as approximately, almost and partly. 

This type of description gives some degree of believability to a scenario and addresses 

the problem of uncertainty in data or decisions. Effective computerised classification-

based systems must be able to handle uncertainty wherever and whenever it exists in the 

data. Classic two-valued logic, classic multi-valued logic, and fuzzy logic involve and 

cope with such type of uncertainty [75, 94, 109]. 

Sometimes there is a case that multiple knowledge bases are required to capture the 

different viewpoints of multiple actors concerned in solving a single problem. To do 

reasoning in such case, we would need a method for maintaining several parallel 

viewpoints spaces or domains, each of which would correspond to one actor’s 

viewpoint. Upon their current set of viewpoints and understanding of vague and 

ambiguous terms, experts formulate valid conclusions using reasoning with uncertainty. 

Such type of uncertainty is dealt by using modal logic [29, 75, 109, 119].  

Yet as more information becomes available, these viewpoints and understanding, 

along with their consequences, may vary. As experts use their common sense to solve 

problems with uncertain information, it would be difficult to give the computer the same 

level of such ability.  

Thus, among the types of logics used to model and handle the uncertainty, which are 

reported in Section 1.2, this thesis focuses on both fuzzy logic (fuzzy logic is reasoning 
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using fuzzy sets), as a good approach to model certain type of uncertainty, and modal 

logic that provides possible-world as an approach to deal with conception in multiple 

domains. This is because these two approaches are going to be used to define a new 

approach for modelling and handling complex ambiguity (of many-to-many relationship 

type), which encompasses both vagueness and multiple viewpoints at the same time, 

namely Relative Fuzzy approach. 

Generally, logics use an essential element, which is called proposition. A proposition 

is defined as “a statement in which something is affirmed or denied, so that it can 

therefore be significantly characterised as either true or false" [125]. “Propositions are 

the basic building blocks of any theory of logic, and can be described as the essential 

conceptual portion of understanding” [59]. Brain [16] formalised the proposition of 

knowledge representation as implying the supposition that knowledge will be 

propositionally symbolised. To keep away from ontological allusions and arguments, the 

word sentence is usually used instead of the word proposition with a view to denoting 

those strings of symbols of carry truth-value, i.e. being either true or false pending the 

interpretation.  

Luger [75] gives full details about using proposition in mathematical logic. In short, 

propositions are statements that contain atomic formulas, or symbols of proposition, the 

five logical connective (∧,∨,¬,→, and ≡), symbols of grouping (( ), and [ ]), and 

quantifiers (there exist ∃ and for all ∀ quantifiers). Being a statement, a proposition 

comprises two components: syntax, and semantics. For example, the proposition symbol 

P may denote the statement 'the sky is blue'. A proposition may be either true or false. 

The truth-value assignment to propositional sentences is called interpretation, which is 

an assertion about their truth in some possible world. Formally, an interpretation is a 

mapping (or function) from the propositional symbols into the set {True, False}. Thus 

the proposition P, in the given example, may assign the truth-value (semantic value) 

True. 

As it known, Logic is reasoning using membership set. For example, binary logic is 

reasoning using {0,1} membership value set, and fuzzy logic is reasoning using [0, 1]. 
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On the other hand, operations on any membership value sets are alike to those of 

standard logic {AND, OR, NOT} but are defined in different way. Briefly, logic 

encompasses two components, namely semantic values and reasoning operations.  

The mathematical illustration of a logic requires quantification of its qualified- 

semantic values (i.e. the use of numbers to represent logical values), and applying 

logical operations to these numbers. It should be clear that: 

• 'AND' operation of two qualified semantic values means the selection of the 

lowest value between them,  

• 'OR' operation of two qualified semantic values is the selection of the highest 

value between them, and  

• 'NOT ' operation of a quantified semantic value is the absolute difference 

between it and the maximum possible quantified semantic value (which is 1).  

Set theory is usually used to illustrate the operations of logic along its numerical 

representation values. It should be noted that 'AND' logical operation is opposite to 

'intersection' set operation, 'OR' logical operation is opposite to 'union' set operation, and 

'NOT ' is opposite to 'complement' set operation. 

This chapter presents literature notations about fuzzy set along with the possible-

world and its backgrounds of modal logic-the predefined approaches of modelling and 

handling the uncertainty problem. Strained conclusions are to be given in the end of the 

chapter. 

3.2 Fuzzy Sets  
Quantification of qualifications is the key for modelling the human description of 

real world, either crisp or fuzzy. This quantification is achieved by using finite set of 

numbers. The importance of set is due to its ability to organise, summarise, and 

generalise knowledge about elements. Sets are almost used unconsciously when talking 

about, for example, a set of even numbers, positive temperatures, fruits, personal 

computers, and the like [59, 75, 109]. 
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belongs to such a category is a matter of degree expressed, for example, by a real 

number in the unit interval [0, 1]. This is done by assigning judgment of situations a 

value from 0.0 up to 1.0. Consider for example, "how hot the room is" the human might 

rate it at 0.2  if the temperature were underneath freezing, and the human might tempo 

the room at 0.9, or even 1.0, if it is a summer hot day with a switching off air 

conditioner. As it is closer, to number 1, it is a higher grade of the object membership in 

a particular category, and vice-versa. Such fuzzy evaluation, with zero at the bottom of 

the scale and 1.0 at the top, gives a regulation for analysis the fuzzy logic method’s 

rules. The outcome appear to result well for complex systems where the only base from 

which to carry on is the human experience, which is positively better than do nothing, 

where it would be if loath to proceed with fuzzy rules [83, 102]. 

The fuzzy membership values express the degrees to which each object is 

compatible to the properties or features distinctive of the collection. Fuzzy set has been 

defined as a set of elements with membership values between 0 (complete exclusion) 

and 1 (complete membership) [14, 102]. Zadeh defined Fuzzy sets formally as follows 

[70]: 

Definition: A fuzzy set A of the universe of discourse X is characterised by a 

membership function µA: X  [0, 1] mapping each point in X onto the real 

interval [0, 1], with µA(x) representing “grade of membership” of x in A. A 

fuzzy set A can be mathematically represented as A={(x,µA(x)) | 0≤ µA (x) ≤1 

∀ x ∈ X}. 

The previous definition is now referred to as type-1 fuzzy set. Clearly, a fuzzy set is 

a generalisation of the concept of a crisp set whose membership function takes on only 

two values {0, 1} [102, 137]. 
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3.3 Type-2 Fuzzy Membership Value Set  
“Type-1 fuzzy logic is restricting and we need to explore more vigorously other 

avenues to really contribute in a manner that is in more than (very very small) 

increments.” [58]. To illustrate this, consider the perplexity surrounding the usage of 

English words and phrases where many are related to vagueness rather than randomness. 

This perplexity is a vital point for analysing language structures, and can be significant 

in creating a gauge of confidence in production rules. Hence, the interest in type-2 fuzzy 

sets stimulated by Zadeh [139]. Actually, a type-2 fuzzy set is an extension of the type-1 

fuzzy set with an extra third dimension to give higher degree of freedom for better 

representation of uncertainty, compared to type-1 fuzzy sets. 

The membership grade of each element of a type-2 fuzzy set is a fuzzy set in [0, 1]. 

The membership functions of type-2 fuzzy logic have been given different definitions 

from membership functions of type-1 fuzzy logic. In addition, special sets of operators 

have been defined for type-2, which leads to a derivation of the properties of type-2 

fuzzy logic from those of type-1 fuzzy logic [58, 83]:  

Definition: A type-2 fuzzy set, denoted A , is characterised by a type-2 membership 

function μA (x,u), where  x∈X, u∈Jx ⊆ [0,1], i.e.:  

A  = {((x,u), μA (x,u))| ∀x∈X,∀u∈Jx ⊆ [0,1]},   (3.4) 

where 0≤ μA (x,u) ≤ 1 . 

In the definition of type-2 fuzzy set given above, the first restriction that ∀u∈Jx ⊆ 

[0, 1] is consistent with type-1 constraint that 0≤ μA (x,u) ≤ 1, i.e. when uncertainties 

disappear, a type-2 membership function must reduce to a type-1 membership function, 

in which case the variable u equals μA (x) and 0≤ μA (x) ≤ 1. The second restriction that 

0≤ μA  (x,u) ≤ 1 is consistent with the fact that the amplitudes of a membership function 

should lie between or be equal to 0 and 1. Figure 3.7 depicts μA  (x,u) for x and u 

discrete. In particular, X={1,2,3,4,5} and U={0.2,0.4,0.6,0.8} [83]. 
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Figure 3.7 Example of a Type-2 Membership Function [83]  
(the blue area is the FOU)  

In that, u is an additional dimension associated with the membership value μA (x) for 

type-2 fuzzy sets. This u is a type-1 fuzzy set with the membership function Jx in a three 

dimensional space. Jx can be viewed as a vertical slice of μA (x,u). For a particular 

element say x', the membership function of the type-2 fuzzy set would give in multi-

valued μA(x). Jx is denoted by [73, 82, 85, 135] : 

μA (x=x’,u)≡μA (x’)=A(x)= ∫
∈ '

/)('
Jxu

uufx ,   where 0 ≤ fx’(u) ≤ 1,  (3.5) 

where: 

• fx’(u) is called a secondary grade, and it represents the amplitude of a secondary 
membership function. 

• ∫
∈ juu

uufx /)('  means that the type-2 fuzzy set has a membership u associated with grade 

fx’(u) for x=x’.  
• ∫ ∈ 'Jxu  is a symbol that represents the collection of all points of u in Jx’, and it is not 

an integration operator, exactly as in fuzzy logic notation. Likewise, fx’(u)/u means 
that the grade corresponding to the membership value u is fx’(u) and it is not a division 
operator. 



 

Note

dimensi

illustrate

Type

required

defuzzif

• Ce

• Ce

• He

3.3.1 F
Men

adopted

useful v

set [83, 

As i

in a typ

Interval 

the enti

member

Fig

e that while

onal becaus

ed in Figure

e-2 inferenc

d. It is achi

fying it thro

entroid Type

entre of Sum

eight (variou

Footprin
ndel and Jo

d it from oth

verbal and g

58, 115]. 

llustrated in

pe-1 fuzzy s

Valued typ

ire interval 

rship functio

gure 3.8 Typ

e type-1 fuz

se the value

e 3.8. 

ce approach

ieved by re

ough a numb

e Reduction

ms Type Red

us) Type Re

nt of Unc
ohn first pr

her terms to 

graphical de

n Figure 3.9

set. When f

pe-2 Fuzzy 

type-2 fuz

on )(xAμ  a

pe-1 and Ty

zzy logic is

e at each po

h results in 

educing typ

ber of altern

n 

duction 

eduction 

certainty 
roduced the

be used wh

escription o

9, FOU is a

fx(x,u) = 1

Set (IVFS)

zzy set, an

and a lower 

ype-2 Memb

s two dimen

oint is to be

type-2 fuz

pe-2 fuzzy 

natives [58]

  
e term Foot

hen working

of the uncert

a region of u

, ∀u ∈ Jx 

). The unifo

nd it can b

membershi

bership Fun

nsional, typ

e given as a

zy set. How

set to a typ

]: 

tprint of U

g with type-

tainty captu

uncertainty 

⊆[0, 1] we

orm shading

be described

ip function μ

nctions [58] 

pe-2 fuzzy s

a function [

wever, a cri

pe-1 fuzzy 

Uncertainty 

-2 fuzzy set

ured by any

for primary

e have what

g for the FO

d in terms

)(xAμ . Both

sets are thre

83, 58, 18]

isp solution

set, and th

(FOU). Th

ts. FOU offe

y given type

y membersh

t so called 

OU represen

 of an upp

h of the upp

65

 

ee-

as 

n is 

hen 

hey 

fers 

e-2 

hip 

an 

nts 

per 

per 



  66

and lower membership functions are type-1 membership functions that delineate the 

FOU. 

 

Figure 3.9 Interval Type-2 Membership Function [83] 

3.4 Modal Logic and Possible-Worlds 
In computer applications, classification of data necessitates an explanation of the 

data substance, in which information should be considered within the context, and where 

it used to be relevant and encompassed a purpose [100]. Boddy et al. [11] indicate that 

the notion of meaning is subjective; i.e. what someone assumes as valuable information, 

another may see it of no importance. Such cases form uncertainty of multiple-viewpoints 

type. 

To model multiple viewpoints type of uncertainty, we need to move to a logic that 

supports reasoning about propositions (proposition is a primitive element of a sentence) 

of multiple viewpoints, which could be achieved by using modal logic type, which is 

one of approaches used for handling and modelling uncertainty (see 1.3). 

There are two kinds of logical formations namely: absolute and relativist, which are 

used for clarification of the concepts of truth, proof, consequences etc. Of course, these 

two formations are associated, in that the relativist formation may be considered as a 
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way of carrying out the absolute one. Yet, the identifying logic with the absolute 

formation is considered practicable, unlike the relativist type, which is considered not so 

practicable to identify logic. This is why many logicians look to simply identify logic 

using absolute formation. Using the absolutist conception, logic provides the ultimate 

language for spelling out the facts of the world where semantics is beyond words; and 

therefore, any try for going outside of it is impossible. In contrast, in the relativist 

conception, logic provides several calculi, in which these calculi can be studied either 

individually, or as applied to something. Consequently, there exist a meta-language to 

every language, which has its own syntax and its semantics [103]. Relativist conception 

of logic is formally expressed using modal logic via using modalities such as necessarily 

contingent, possibly, and impossible. These modalities are important in the milieu of 

possible worlds or alternate universes. For example, providing ‘possibly’ concept to 

proposition: ‘Y is true’, results new formulation of this proposition that is: ‘Y is possibly 

true’.  

Modal logics take their names from the modalities they have. Our daily natural and 

technical speech has copious broad variety of such modalities. As a matter of fact, our 

communicative aptitudes would be critically poor when excluding expressions like: 

might be, can be, must be, is possible, is necessary, and would be. Although these terms 

are importantly required to articulate the environment we are in, paradoxically, the 

speech involving possibility usually appears to be about something fictitious [75, 94, 

109].  

Modal logics concern themselves with variety of modes in which a statement may be 

true. Modal logics offers a set of powerful methods for understanding natural language 

speech, which habitually entail reference to other times, circumstances, and mental 

states of people. Generally, modal logics allow us to deal with [75, 94, 109]: 

• Producing the truth of a set of propositions regarding their recent, past or future 

states of the real world, this type of logics is called temporal logics 

• The truth of propositions under circumstances that possibly have been, this type of 

modal logics are sometimes called conditional logics 
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• The truth of proposition concerning viewpoint, knowledge, wishes, intentions, and 

obligations of actors, which possibly could be false, unjustified, unsatisfied, 

unsatisfiable, irrational, or mutually contradictory. This type of logic is referred to 

as possible world logic 

The conception of possible worlds, which deals with the truth of propositions 

concerning viewpoint as stated above, is used to articulate modal claims in both 

philosophy and logic and has been already used to express modal assertions. Talk of 

possible worlds is very prevalent in modern philosophical discourse despite the fact that 

much about them is argued [104, 50]. 

There is an individual possible world for each different way the world could have 

been. The using of the principle of possible worlds imposes the consideration of the 

actual world to be one of the many possible worlds. The actual world is the world that 

corresponds to the way a universe in real, and it is one of possible worlds [104, 50]. 

Alternate universe is another term used in the literatures of possible worlds.  

Alternate universe has characteristics varies from our own universe. For example, works 

of imaginary tale usually depict some kind of alternate universe, which varies from our 

own universe to a superior or smaller in scope. Nevertheless, these alternate universes 

are required to be logically steady. For example, there may be alternate universes where 

hypothesise ‘Margaret Thatcher is not UK prime minister’ is true, but it hard to find 

alternate universes where 1 + 1 = 3 is a true hypothesis. One important thing to state 

here is that the scope to which alternate universes actually exist is a deep metaphysical 

subject, which has strongly connected to both theology and physics [103, 104]. 

Last but not least, the interpretation of many-worlds in quantum mechanics and the 

concept of possible worlds cause a slightly confusion and therefore have sometimes 

been compared. Among many difference between these two notions, possible worlds are 

logically, not physically possible, unlike many worlds of quantum-theoretical which are 

all physically possible [104, 55, 9].  
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3.4.1 Possible-Worlds Modalities   
Modality is the major aim of possible world discourse. In a few words, a modality 

can be defined as a word, which may be applied to a certain statement S to develop a 

new statement that formulates an affirmation about the statement’s (S) truthiness mode 

regarding the conditions under which S may be true, as well as about: when, where or 

how the statement (S) is true [50, 55, 9]. 

Philosophers have classically acknowledged four fundamental and consistent cases 

for modality, namely: Possibility, Impossibility, Necessity, and Contingency. As a 

standard, these cases are considered as interrelated in the following ways [56]: 

• Possibility rules exposed impossibility and completely entails contingency or 

necessity. 

• Impossibility rules out each of possibility, necessity and contingency.  

• Necessity rules out both impossibility and contingency, and requires possibility.  

• Contingency rules out impossibility and necessity, and requires possibility. 

 
Yet, some logicians admit Necessarily and Possibly modal operators only, which are 

typically symbolised as  and ◊ respectively, and describing modal logic as the logic of 

necessity and possibility. For example, let x stands for the statement: G. B., and Y stands 

for the property: lost the electoral vote of 2000, then the statement: it is possible that 

G.B lost the electoral vote of 2000, is represented by: ◊xY [50, 55, 9].  

Logical quantifiers can be used with modalities. For example, using the existential 

(∃) logical quantifier, both of: (∃x) ◊Fx and ◊ (∃x)Fx can be read as: there is an x such 

that it is possible that x lost the electoral vote of 2000, and: it is possible that there is an 

x such that x lost the electoral vote of 2000, correspondingly [50, 55, 9]. 

3.4.2 Semantics of Possible Worlds  
A functionality principle of semantics says that the meaning of discourse expressions 

is a function of the meanings of their component expressions. Generally, semantics is a 

component theory within a larger semiotic theory and it is related to meaningful, 
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symbolic, and behaviour. In turn, semiotic, which is wide-ranging science of signs and 

languages, encompasses of pragmatics (where reference is made to the user of the 

language), semantics, and syntax [75, 109, 56].  

Attempt to formalise several pragmatics of natural languages has get significant 

exertion since the 1970s. Earlier logicians, who were principally interested in universal 

truths or mathematics, gave little interesting to the use of indexical expressions to 

include reference to the speaker’s identity, location, or the time of either the speech or 

the mentioned events. The effort to formalise pragmatics has increased with the greater 

interest in linguistics. A formal answer of the problem of meaning has also been 

proposed for other topics [109, 50]. 

Pragmatics highlights the fact that local sense thinking of modality is the foremost 

alternative to thinking of it in a global sense. Therefore to illuminate everyday’s talk of 

possibility, which the usual language is generally engages in, we get in possible worlds. 

Having possible worlds lets us consider relative and absolute conceptions in a uniform 

way. For example, the statement: It is logically possible that UFO exists, could be a 

claim that the proposition of UFO existing is true at certain world, exclusive of any 

constraint on which worlds are relevant with this claim [104, 50].  

It is normally that the expressive of natural objects is habitually helpless to specify 

the type of the object (where it is belonging to) unless talking of circumstances that have 

dispositional properties to be actualised. Semantics in possible world logic can be 

viewed as the challenge to reduce modal notions to observable patterns in an actual 

world. By tradition, both philosophy and logic identified a set of properties of reference 

for a sentence to have a semantic value, (either true or false), which is so called 

referential dimension in the analysis of possible-worlds semantic discourse [104, 57, 9].  

Semantics of possible worlds is the term often used as a synonym for Kripke 

semantics who and his colleagues were the first to introduce systematic theory- a 

consequence from the semantics of possible worlds- in 1950s. However, since that date 

improvements in the development of possible-world semantics have achieved, typically 
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ontological debate relating to whether that semantics provide a literally right explanation 

of modal propositions truth-conditions [104, 80, 57].  

A proposition would have a truth value for being exist in an actual world w if that 

proposition is actually exist, or, equivalently, if w represents the universe containing that 

proposition. Likewise, a proposition is true at an actual world w if w represents the 

universe satisfying that proposition. A world corresponds to a universe by having its 

propositions true of that universe, and vice-versa, a proposition is true at a world if it is 

member of it. In other words, beside it is achievable; the definition of a truth notion by 

using the formal language of a science establishes the necessary and sufficient truth 

condition for each sentence. Thus, the detection of the meaning of a sentence is carried 

out using its truth condition. Logically, the semantic value of any proposition is either 

true or false at a given possible world [103, 104, 57].  

A proposition is said to be logically possible if and only if there is some consistent 

approach for the world to be, where the proposition would be true. For example, ‘the 

grass is green’ proposition (as well as all other actually true propositions) is logically 

possible, based upon the existence of a logically consistent way for the world to be an 

actual world, under which that the mentioned proposition is true [55, 56]. 

The semantics of possible worlds modalities is achieved by logically quantifying 

(assigning either true or false truthiness value) them over all worlds. This means that a 

way to conceptualise the notions of modality is to suppose a possible world that a 

universe could have been (with broadly understood of the word: way, avoiding prejudice 

the ontological issue of the definition of possible worlds). Important recalling here that 

different possible worlds are different forms in which our world could have been. 

Existence, ontological modesty, and modal modesty are the three restrictions required 

for achieving explanation of a possible world notion [57, 9, 40]. 

The rules for achieving semantics of possibility and necessity modalities of possible 

worlds are [103, 104]: 
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(1) A proposition is necessarily true if (and only if) it is true at all possible worlds 

(logician prefer to use at instead of in), including the actual world  

(2) A proposition is possibly true if and only if it is true at one possible world, at 

least probably different from the actual world.  

In other word, p is necessary true at every world, and p is possible true at a world w. 

Note that the set of all actual (of possible) worlds in which the statement is true is the 

logical range of it.  

To illustrate that consider the following assertions that can be made for possibility, 

necessity and other logical modalities, which affect the semantic value of proposition in 

an actual world:  

• True propositions have true semantic value in the actual world. For example: 

Margaret Thatcher became the prime minister of U.K in 1979, where: Margaret 

Thatcher became the prime minister is the proposition, and: U.K in 1979, is the 

actual world  

• False propositions have false semantic value in the actual world. For example: 

Conservative party won the U.K. elections in 2007  

• Possible propositions have true semantic value in at least one possible world. For 

example: James Callaghan became the prime minister of U.K in 1976  

• Necessary propositions have true semantic value in all possible worlds. For 

example: Man is mortal  

• Contingent propositions have true semantic in some possible worlds and false in 

other possible world. For example: Labour party won the U.K. elections in 1999, 

which is contingently true, and: Labour party won the UK prime minister election 

in 2007, which is contingently false.  

• Impossible propositions (or necessarily false propositions) have false semantic 

value in all possible worlds. For example: Labour party and Conservative party 

won UK prime minister election in 2007 
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"Where is the wisdom we have lost in knowledge?" [T.S. Eliot in his 'The Rock', 

1934]. Wisdom is viewed as prophetic in the sense that it considers human 

circumstances and incites a search for new understanding [1, 112]. The success to 

represent the semantic value of a proposition with complex ambiguity will open the door 

towards enabling the computer to deal with the highest level of knowledge that is 

wisdom. The first three elements of DIKW hierarchy, which is illustrated in Figure 3.10 

namely: Data, Information, Knowledge, and Wisdom, had been treated by computer, 

wisdom still not there [60, 112]. Note that AI techniques are aimed to handle knowledge, 

the antecedent level of wisdom.  

 
 

 

•  
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•  

 
 

Figure 3.10 DIKW Hierarchy [60] 

 

3.4.3 Mathematical Modelling of Possible World 
As it has been shown previously, possible-world is a technique used to conceptualise 

modal notions related multiple viewpoints, where a domain of propositions could have 

been (the term domain is used to describe the collection of all propositions). Thus 

different possible worlds are different techniques in which a certain world could have 

been. Among those multiple possible worlds, actual world is the one that contains the 

propositions of true logical value [104, 80].  

Based on fact that the domain of propositions has a close relation to possible worlds, 

one suggestion that has been made for theoretically modelling possible world is that the 
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maximal sets of composed sentences would represent possible worlds. A proposition 

will be included at a certain actual (possible) world if it is involved by the set of 

propositions resulted from the sentences of that world [55, 57].  

Thus, the first approach for mathematically modelling of possible worlds is achieved 

via using of the approach of creating possible worlds as recombinations of multiple 

actual world entities. While modal realism is understood as the principle that an 

enormous collection of worlds is exist, each world in this collection is a closed system 

isolated from all others worlds and encompassing its own distinguishing semantic values 

for the properties set of possible worlds, where these properties are full with all their 

associations to each other [104, 80, 40].  

As illustrated in Figure 3.11, we can mathematically say that a real possible (or 

actual) world (pW) is the set (Dk) of semantic values (ν) for properties representing one 

environment in a set of possible real worlds (pR). The set of all possible worlds is 

denoted by [65, 104, 40]:  

pR = {pW ⊆ pR | pW is an actual world}      (3.6) 

For each possible real world object there is only one environment (set of properties 

value) is contained in pW, denoted by: 

(∀ν∈ Dk⎤ pR) ν (pW) have a semantic value     (3.7) 

Each set of properties value (pT ), representing real world object in pR, is contained in 

pW at least once, denoted by:  

(∀pT ∈ pR) (∃pT′ ∈ pW)  semantic value (pT) = semantic value (pT′) (3.8) 
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Figure 3.11 Venn diagram for Mathematically Modelling of Possible Worlds 

Kripke-style semantics includes a function which maps each member of a set of 

possible worlds to the set of properties existing in that world properties, which need not 

to be exist in other world of this set. Thus, truth-conditions are given in terms of a 

totality of all possible worlds, including non-actual worlds [74, 80]. 

 

Figure 3.12 Euclidean 3D Space for Mathematically Modelling of Possible Worlds 

The second approach for mathematically modelling of possible worlds can be 

achieved by using Democritean model, where a possible world is modelled as a function 

f defined on the product space S × R. As shown in Figure 3.12, S is supposing to be a set 



  76

of objects and R is supposing to be the real line that assigns to each member of this 

space an ordered pair consisting of both a position in Euclidean three-dimensional space 

and an orientation [104, 40].  

In other words, if S is a set of propositions and R is a possible worlds (a family of 

actual worlds), the point of view of this approach is to take the universe to be pairs (s,r) 

in the product S x R, and the membership functions to be maps from S x R into a 

semantic value set. In that, possible worlds are to be assembled as reorganisation of a 

subset of the propositions of the actual world and of arbitrarily many duplicates of these 

propositions as being in the other many possible worlds [57, 40]. 

The importance of possible worlds is that every proposition has a semantic value in 

any given possible world (actual world). This means that a proposition would have 

multiple semantic values depending on the actual world(s) where it exists [65, 75, 104].  

The question here is 'what makes semantic values vary from one actual world to 

another?' The answer is there must be certain parameter(s) that affect the calculation of 

the semantic value in each actual world. This answer coincides with the explanation 

proposed by Beynon-Davies [7], who discerned that the sense of information is crucial 

and open to many explanations. His explanation is based on semiotics or semiology. 

In 'possible worlds' principle, every element will obviously have multiple semantics 

(and hence multiple semantic values). So, unlike 'absolute conception of logic', relativist 

conception of logic provides multiple calculi that can be studied either 'in their own 

right' or 'as applied to something' [103].  

As reported by Ruzhan [74], the semantic value of an element (a syntax of 

proposition) in an actual world of possible worlds is a pair (D,F) where D is the domain, 

non-empty set and F an interpretation function assigning a semantic value to each non-

logical (syntax) of the language, which agrees with the Definition 4.2 of DOP. In other 

words, D is the domain of proposition, in which proposition's semantic value 

(membership value) of its syntax is to be calculated, see Lu Ruzhan [74] for more 

details.  
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Example 3.1:  

Considering set of close similar handwriting shapes (syntaxes), and using the notion of 

relative semantic value given by Lu Ruzhan [74], each element of the syntax set of the 

given proposition has two semantic values. Table 3.2 shows that each semantic value is 

engaged with either O_char or Zero_digit syntax's domains, which is assigned by a 

certain interpretation-function.                   ■ 

Syntax (non-logical) D Semantic (truth) value 
 O_Char 0.7 
 Z_digit 0.64 
 O_Char 0.67 
 Z_digit 0.5 
 O_Char 0.1 
 Z_digit 0.7 

Table 3.2 Possible Semantic Values of Close Similar Handwriting Shapes (Syntaxes) 

In the above description of semantic value given by Ruzhan [74], where actual world 

of possible worlds is used, D is supposed to be identified, whereas calculation is 

required only to determine the semantic value of an unknown element (syntax) using the 

function F.  

Since a proposition may have multiple different syntaxes (with the same semantic) 

[75], hence, proposition's syntax could be represented as a set. In addition, syntax of a 

proposition may have multiple semantics (interpretations) as stated by possible worlds 

logic [74], hence, the semantics of a proposition might be a set too. 

3.5 Summary 
This chapter has presented literature survey for both fuzzy set (including the most 

advance one that is type-2) and possible-world of modal logic, which each one is used to 

model and handle certain type of uncertainty. Although, only somewhat short literatures 

were presented, this chapter hopefully provides an enough succinct description of the 

types of logics which exist and which are not always taken advantage of each other. 

The idea behind fuzzy logic is that most of the processing of information performing 

by human is not based on two-valued (true/false) logic. It is actually based on nebulous 
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perceptions, truths, inferences, etc., all ensuing in a typical, abridged, and normalised 

output, which is assigned a precise decision value by a spoken human. Humans are able 

to work with words like hot, tall, etc., which are fuzzy and can have various 

representations. They are just human judgments, not based on precise quantifications, 

thus called fuzzy variables. The big difference between humans and digital computers is 

the human’s ability to deal with fuzzy sets and the consequent conclusion capability to 

arrive at an output.  Dispute facing attempts to create artificial intelligence based 

computer is how to imitate this human ability; doing this is the goal of FLS. Although 

fuzzy set declare itself as a good approach in dealing with uncertainty, this thesis points 

to the shortcomings of this approach in dealing with uncertainty, as shown in Section 1.3 

earlier.  

Modal logics, which include multiple types of logics rather than possible-worlds 

logic, is considered in turn as an approach to handle certain types of uncertainty 

concerning multiple view points. Yet, there is an argument in quantifying its logical 

semantics. The literatures given in this chapter illustrate the approaches to 

mathematically modelling of possible worlds logic, but nothing is exist about the form 

of the numerical semantic value (quantification form) it should be. Note that crisp set 

quantifies the logical semantics as {0,1}, type-1 fuzzy set quantifies them as [0, 1], and 

type-2 fuzzy set as {[0, 1], [0, 1],…, [0..1]}.  

Type-1 fuzzy set is unable to model multiple viewpoints (a sort of uncertainty) and 

modal logic has its shortcoming of missing a numerical description to quantify fuzziness 

in each viewpoint.  Yet, each one of these two approaches has its pros that can be used 

in the development of new approach for modelling and handling of complex ambiguity 

(mentioned in Section 1.2). It is important recalling here that, the handling and 

modelling of complex type of uncertainty is currently achieved by type-2 fuzzy set.  

As complex type of uncertainty encompasses of both fuzziness and multiple views, 

neither type-1, nor possible world is able to handle this type of uncertainty alone. But (as 

shown in this chapter) fuzzy set has the ability to model and handle fuzziness description 

of data, and possible world has the ability to capture multiple viewpoints to data. These 
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two properties are of great interest to define new membership value set that is able to 

handle and model these two components of complex ambiguity at the same time, thus 

improving the capability of type-1 fuzzy set that can overcome the drawbacks of type-2 

fuzzy set, which have been illustrated in Section 1.3 of this thesis. 

To achieve such goal, a question needs to be answered here, which is: how these two 

approaches can be mixed to produce a new membership value set (and later logic) that 

able to handle fuzziness and multiple viewpoints at the same time. Achieving such goal 

comes via providing possible world logic the ability to quantifying multiple view points 

and also model fuzziness in each of these multiple viewpoints and expressing that in a 

new set of membership value. Next chapter presents the definition Relative Fuzzy set 

resulted from combining these two approaches.  
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Chapter Four 

Relative-Fuzzy Logic 
A new approach for modelling uncertainty 

4.1 Introduction 
Definition of the new RF membership value set is a step goal of this thesis. This 

definition is to be based on a new explanation of the uncertainty problem called Domain 

Of Proposition (DOP), which relies on notes of possible world philosophy. Essentially 

Relative-Fuzzy membership value set targets the same goal of the type-2 fuzzy set, but 

differs in method of calculation and representation of the membership value. Multiplicity 

assumption is used to define this new membership value set rather than fuzziness 

assumption, which is applied to type-1 fuzzy membership value for defining type-2 

fuzzy logic. 

The aim of chapter is to present the definition of RFL. This definition is to be 

achieved via the definition of States Of Proposition (SOP), definition of DOP, definition 

of RF membership value set, and the description of union, intersection, and complement 

of RF sets. The chapter ends up with drawn conclusions. 

Principally, logic, in mathematical language, requires the definition of its semantic 

values and the application of the basic logical operations (AND, OR, and NOT) to these 

semantic values as well. Set theory (including its intersection, union and complement 

operations) is usually used, as an approach to mathematically illustrate any logic in its 

two constituents, i.e. semantic values and logical operations. To clarify this, crisp logic, 

for example, has the {0, 1} as a semantic value set, while fuzzy has the [0, 1] set. 

Therefore, the principal definition of RFL needs to exact its semantic value set first (or 

as it is known the membership value set), and then demonstrate the set operation. 

Definition of the membership value set grew from the definition of the SOP and the 

DOP, which specify the parameters to be used in calculating RF membership value. The 
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name given to the suggested novel membership value is Relative Fuzzy to distinguish it 

from Crisp (which is an integer 0 or 1) or Fuzzy (which is a real number in [0...1]). RF 

semantic value is to be a result of proposed functions that calculate this new membership 

value. The suggested Relative-Fuzzy logic presents a new philosophy of viewing 

ambiguity type of uncertainty, which is based upon the understanding of possible world 

logic. Figure 4.1 illustrates the strategy has been followed to develop RFL, where gray 

boxes are the contributions. 

 
Figure 4.1 The Strategy of Developing RFL 

4.2 The Definition of States of Proposition  
The concept of proposition and set are used here to explain the problem of 

uncertainty of the data. To keep away from ontological allusions and arguments, the 

word sentence is usually used instead of the word proposition with a view to denoting 

those strings of symbols of carry truth-value, i.e. being either true or false pending the 

interpretation.  

Since the two components of a proposition (syntax and semantic) are sets (see 

Chapter Three), it means that a binary relation between syntax set and semantic set of a 

proposition can be easily maintained to illustrate possible types of data uncertainty. This 

relation defines four possible states of a proposition, namely: single syntax/single 
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semantic, multi syntax/single semantic, single syntax/multi semantic, and multi 

syntax/multi-semantic. Thus, we are formally defining the SOP here as follows: 

Definition 4.1:  

As each of the syntax and semantic of a proposition comes as a non-empty set, the 

State of Proposition (SOP) defines a binary relationship between them. SOP can 

be one of the following four states: single syntax/single semantic, multi 

syntax/single semantic, single syntax/multi semantic, and multi syntax/multi-

semantic. ■ 

Example 4.1:  

Let ‘the shape 0 means digit zero' be a proposition. 

− The syntax component of this proposition is a set of single element {0} 

− The semantic component of this proposition is a set of single element 

{zero_digit}. 

− The semantic value for the syntax is an element (since there is no other semantic 

to mapping) to be assigned, which results from a (crisp or fuzzy) membership 

function:   

 f(x)  zero_digit      (4.4a) 

− Such proposition is a single syntax/single semantic proposition. Uncertainty does 

not exist in this proposition since no multiplicity exists in both of its syntax and 

semantic. Using Venn diagram, Figure 4.2 depicts graphically the syntax and 

semantic of this proposition.  ■ 

 
Figure 4.2 Venn diagram of Single Syntax / Single Semantic Proposition 
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Example 4.2:  

Let ' each of shapes means English O character' be a proposition. 

− The syntax of this proposition is indicated by the set of elements   

− The semantic in the proposition is a set of single element {O_Char}. 

− Each syntax element has one semantic value that results from a membership 

function, which maps or interprets a syntax to its {O-Char} semantic. This 

function can be either Crisp or fuzzy: 

f(x)  O_Char      (4.4b) 

− Such proposition is a multi syntax/single semantic proposition. Uncertainty 

exists in this proposition due to the existence of multiplicity in its syntax. Using 

Venn diagram, Figure 4.3 depicts graphically the semantic and syntaxes of this 

proposition.   ■ 

 
Figure 4.3 Venn diagram of Multi Syntax / Single Semantic Proposition 

Example 4.3:  

Let ' the shape 0 means English O character or digit Zero’, be a proposition. 

− The syntax of this proposition is a single element set {0} 

− The semantic of this proposition is a set of element {O_Char, Zero_digit}. 

− Since there are two semantics, the semantic value of the syntax element is a set 

of two elements, each results from a certain membership function: 

f(x)  O_Char      (4.4c) 

f(x)  Zero_digit     (4.4d) 
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Figure 4.5 Venn diagram Of Multi Syntax/Multi Semantic Proposition 

As a conclusion, our definition of the states of proposition along with the examples 

given in this paragraph: 

• Distinguishes 'one to one' relationship (illustrated in Example 4.1), 'one to many' 

relationship (Example 4.2), 'many to one' (Example 4.3), and finally 'many to 

many' relationship (Example 4.4) between source of data (or syntax) and form of 

producing (or semantic).  

• Explains the ambiguity class of uncertainty (reason of uncertainty is the existing 

of multiplicity).  

• Extends the definition of ambiguity to a new dimension that is 'many to many' 

relationship (as illustrated in Example 4.4), in addition to traditional 'one to 

many' relationship.  

Thus, our formalisation of SOP presents itself as a plain explanation of the second 

and third types of uncertainty as well as the four sources of uncertainty described earlier 

(see Chapter One).  

4.3 The Definition of Domain Of Proposition  
Among the four states of proposition illustrated above, the proposition's state of 

multi syntax/multi semantic is the most difficult in terms of ambiguity complexity. As 

'many to many' relationship is a complex relationship, it should be broken into 'one to 

many' or 'one to one' relationship. Therefore, we need to break multi syntax / multi 

semantic SOP into at least 'multi syntax / single semantic' SOP in order to successfully 

handling it. Such an operation would produce multiple 'one to many' (or 'one to one') 

sub-relationships, and would make current methods of modelling uncertainty unable to 
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handle it without loosing any of these many 'one to many' sub-relationships. The present 

research makes use of relativist concept of logic to handle and explain the uncertainty 

problem.  

As illustrated in Chapter Three, in possible world, a proposition is semantically true 

at a world in case it truly describes a state of affairs obtaining in that world. In addition, 

a proposition is true at a world if it is a member of that world. This means that the 

semantic value of a proposition is conditioned by its importance in an actual world. The 

actual world is defined as the set of propositions in which they have a semantic 

value. Existence of a proposition in an actual world is occurring if the proposition meets 

the conditions of that world. 

Based on the above, this thesis views the ambiguity class of uncertainty as a property 

of proposition, which is exist in several actual worlds and its syntax involves different 

semantic values in each actual world. As mentioned in Chapter Three, certain 

parameter(s) affect the calculation of the semantic value in each actual world and  makes 

it vary from one actual world to another. In such that, the information can be glimpsed 

as embodied in signs, and converses how the elements of semiotics, pragmatics, 

semantics, syntactic and empirics enlighten thinking about communication and 

information. In this thesis, we call such set of parameters as Domain of Proposition 

(DOP). Here it should be clear that the domain of element in set theory (semantic of 

element) is different from the DOP (actual world of proposition as termed in ‘possible 

worlds’ logic).  

DOP is the term used in this thesis to describe the actual world of a proposition. In 

other words, domain of proposition is the environment that affects the syntax 

interpretation of a proposition. We define DOP as:  

Definition 4.2: 

For each proposition, there is a Domain Of Proposition (DOP), which is the actual 

world where/when a proposition occurs. DOP is the circumscription parameter that 

affects the interpretation of a proposition's syntax.   ■ 



  87

Example 4.5:  

The proposition, given in Example 4.1, has one domain, which can be denoted as 

'digits' domain. Proposition, given in Example 4.2, has also one domain that is 

'characters' domain. Proposition (set) given in Example 4.3 has two domains: 'digits' 

and 'characters', while the proposition given in Example 4.4,  has two domains: 

'characters' and 'digits', as illustrated in Figure 4.6.  ■ 

        

Figure 4.6 Proposition Representation Considering DOP 

DOP can represent certain time/source of (for example): generating data, decision-

making, or environment (noise) surrounding the data generating operation. Thus, 

instead of describing the proposition by using only its syntax and semantic, as crisp and 

FL do, the proposition using RF concept is going to be described by using its syntax, 

semantic, and domain (actual world of proposition), as modal logic does. Consequently, 

while the depiction of the membership value in both crisp and FL membership values 
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are positioned in a two-dimension plane (the 3rd dimension in type-2 FL is used to 

clarify FOU), the depiction of membership value in RF is positioned in a 3D geometry, 

as illustrated in Figure 4.6. 

4.4 The Definition of the Relative-Fuzzy Membership Value Set 
The shortcoming of relative semantic description of semantic value (which is given 

in Chapter Three) is that it stipulates the existence of the identity of the actual world, 

which is here (DOP). It does not offer an ability to calculate membership strength 

(semantic value) of syntax to DOP as much as the second part of it does that calculates 

the semantic value of syntax in its domain.    

Therefore, while the suggested RF membership (semantic) value follows the same 

approach of describing the semantic value, RF slightly modifies this description to 

overcome its shortcoming. RF semantic value is represented as a pair (Fd,Fe), where: 

1. Both Fd and Fe are interpreting fuzzy membership functions... 

2. Fd is the function responsible for assigning the belonging strength of the syntax 

to DOP, and Fe is a function responsible for assigning the belonging strength of 

the syntax to syntax's actual world.  

Now, we are going to formalise our description of the suggested RF membership 

value by giving the following definition of this novel membership value set, which we 

called it Relative-Fuzzy set: 

Definition 4.3:  

A Relative-Fuzzy (RF) set is characterised by a pair of Relative Fuzzy 

membership functions mapping the elements of a domain, space, or universe of 

discourse X, in a certain environment DOP, to a pair value where each of the 

two parts of the pair is a unit interval [0, 1]. That is RF: X  ([0, 1] × [0, 1]) 

 

Mathematically: 
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RF={(x,(μdRF(x), μeRF(x)) | ∀ x ∈ X},   (4.5)  

where: 0≤μdRF(x) ≤1, 

0≤μeRF(x) ≤1 ■ 

The RF semantic pair value (0.0,0.0) means that the unknown element x (syntax of a 

proposition) is completely outside both the domain of proposition and the element's 

domain of a predefined proposition's domains. On the other hand, the pair (1.0,1.0) 

means that unknown element x (syntax of a proposition) is completely inside the 

domains (of proposition and syntax) of a predefined proposition. Any value between 

(0.0,0.0)<((μdRF(x),μeRF(x))<(1.0,1.0) addresses the partial strength belonging of an 

element x to both domains included in a predefined certain proposition. Therefore, a 

Relative-Fuzzy (RF) set is a set with two type-1 membership functions. 

Example 4.6 

Let the syntaxes of O_char domain have the following RF semantic values:  

A={(0.12,0.7),(0.9,0.67),(0.78,0.1)}  

Using Definition 4.3, A is an RF semantic value set of syntaxes in O_char domain, 

which encompasses the subset of domain membership value (i.e. dA) and the 

semantic membership value subset (i.e. eA), as illustrated in Table 4.1, and can be 

expressed as: 

dA={0.12,0.9,0.78} 
eA={0.7,0.67,0.1} 

Syntax (non-logical) O_Char Domain 
membership value 

(dA) 

Semantic membership 
value (eA) 

 0.12 0.7 
 0.9 0.67 
 0.78 0.1 

Table 4.1 DOP, Syntax and Possible Semantic Values of Example 4.4 
 

While both have identical structure as a pair, RF semantic value differs from relative 
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semantic value in its first part of the pair in that RF semantic value describes a 

strength membership value of the syntax to D as a real number instead of naming D 

as in relative semantic. Figure 4.7 illustrates the positions of these RF membership 

values in syntax, semantic, and DOP geometry.     ■ 

 

Figure 4.7 RF Semantic Value in Syntax, Semantic, And DOP Geometry 

Imitating the way used to describe type-1 fuzzy membership, here are same suggested 

notations for the relative-fuzzy membership set:  

RF = {(μdRF(x
1
),μeRF(x

1
))/x

1
, … (μdRF(x

n
),μeRF(x

n
))/x

n
}  (4.6) 

RF=∫ 
x ∈ X

 (μdRF(x),μeRF(x)) /x 0≤μdRF(x) ≤1,  0≤μeRF(x) ≤1 (4.7) 
 ■ 

Example 4.7: 

The RF in Example 4.6, which is depicted in Figure 4.7 could be rewritten using (4.6), 

as follows:  

RF={(0.0,0.0)/0, (0.12,0.7)/1, (0.9,0.67)/2, (0.78,0.1)/3} ■ 
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The Examples 4.1-4.4 above show that a proposition has more than one RF 

membership value (RF semantic value). The number of membership value depends on 

the number of actual worlds (semantics) where a proposition may exist. In that, the RF 

membership value should be calculated using two functions that produce pair value. This 

thesis suggests the use of two separate functions: the first is to calculate the membership 

value of syntax to DOP, and the second is to calculate the semantic membership value of 

this syntax in that possible world DOP. 

 4.5 Set Attributes and RF Set 
We begin with several concept definitions associated to Relative-Fuzzy sets. These 

definitions are obviously extensions of the corresponding ones for both crisp and fuzzy 

sets but consider DOP. Of course, the RF semantic value given in the following 

examples are for elements in the same DOP with different RF membership value for 

each element (see Figure 4.7 above). This means that no relationship can be established 

between elements located in different DOPs.  

Emptiness: A Relative-Fuzzy set is empty if, and only if, its membership function is 

identically zero on both μdRF(x) and μeRF(x). 

Equality: Two Relative-Fuzzy sets A and B are equal, written as A=B, if and only if 

μdA(x)=μdB(x) and μeA(x)=μeB(x) for all x in X. 

Complement: Given a Relative-Fuzzy set A, its complement ⎤A is defined by its 

membership function for both the universe and discourse.  

⎤(μdRF(x),μeRF(x)) =(1-μdRF(x), 1-μeRF(x))    (4.8) 

Example 4.9: 

Let A= {(0.2,0.0)/0,(0.1,0.25)/1,(0.4,0.75)/2,(0.2,0.0)/3}    

Then 

⎤A={(0.8,1.0)/0,(0.9,0.75)/1,(0.6,0.25)/2,(0.8,1.0)/3}    

and for semantic given by DOP only: 

  ⎤eA={(0.2,1.0)/0,(0.1,0.75)/1,(0.4,0.25)/2,(0.2,1.0)/3} 
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and for DOP only: 

⎤dA={(0.8,0.0)/0,(0.9,0.25)/1,(0.6,0.75)/2,(0.8,0.0)/3} 
 ■ 

Containment: A set can be completely contained as a subset within a larger set [59, 41]. 

Like Fuzzy sets, the membership values of a Relative-Fuzzy subset can have lower or 

equal membership values than their supersets in both DOP's membership value set and 

the semantic membership value set. That is, an item can belong less to a subset than it 

does to its parent superset. To illustrate this, given Relative-Fuzzy sets A and B, then: 

A is completely contained in B if (μdA,μeA) ≤ (μdB,μeB).  (4.9) 

Example 4.10: 

 Let 

X={(0.2,1.0)/0,(0.6,0.25)/1,(0.4,0.75)/2,(0.2,0.55)/3}   

Y={(0.2,1.0)/0,(0.1,0.28)/1,(0.3,0.75)/2,(0.2,0.35)/3}   

Then 

Y ⊂ X= {(0.2,1.0)/0,(0.3,0.75)/2,(0.2,0.35)/3}     
 ■ 

Union: The union of two sets has a membership that is the larger or equal of the two sets 

in both syntax and domain subsets: 

A ∪ B=Max [A (x), B (x)] in any component of A(x), B(x)  (4.10) 

Example 4.11: 

Consider the two Relative-Fuzzy sets 

long= (0.2,1.0)/0,(0.1,0.25)/1,(0.4,0.75)/2,(0.2,0.55)/3}   

 and 

short={(0.5,0.7)/0,(0.51,0.35)/1,(0.42,0.55)/2,(0.62,0.57)/3}  

Then 

long∪short(x)={(0.5,1.0)/0,(0.51,0.35)/1,(0.42,0.75)/2, (0.62,0.57)/3}  
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 ■ 

Intersection: Under classical set theory, the intersection of two sets is that which 

satisfies the conjunction of both concepts represented by those two sets. Under Relative-

Fuzzy set, however, an item may belong to both sets with differing memberships without 

having to be in the intersection. Therefore, the intersection is defined as that the 

memberships are the lower of the two sets within both syntax and domain subsets.  

A ∩ B=Min [A (x), B (x)] for both components of A(x), B(x)  (4.11) 

Example 4.12: 

Consider again the two Relative-Fuzzy sets 

long= (0.2,1.0)/0,(0.1,0.25)/1,(0.4,0.75)/2,(0.2,0.55)/3}    

 and 

short={(0.5,0.7)/0,(0.51,0.35)/1,(0.42,0.55)/2,(0.62,0.57)/3}   

Then 

long∩short(u,x)={(0.2,0.7)/0,(0.51,0.25)/1,(0.4,0.55)/2,(0.2,0.55)/3} ■ 

4.6 Comparison between Relative-Fuzzy and Type-2   
Words represent different conceptions to different people. More precisely, all 

humans, including experts, show dissimilarity in their decision-making. Dissimilarity 

may occur in the decisions of a group of human experts, as well as in the decisions of a 

single expert over time. This dissimilarity forms a type of uncertainty that highlights the 

multiplicity on premises and consequences among people. This type of uncertainty has 

been classified as ambiguity, and in this thesis is described as complex ambiguity.   

Ambiguity (including complex one) is the class of uncertainty aimed to be modelled 

and handled by RFL. Although it has not explicitly shown the class of uncertainty (but 

the sources of uncertainty) to be solved by type-2 FL, it is important to mention here that 

it seems that type-2 FL is the one supposed to handle ambiguity class of uncertainty. 

Thus, both RFL and type-2 FL share the same goal of modelling the ambiguity. RFL can 
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also model the fuzziness class of uncertainty since it uses fuzzy membership functions 

principle. 

Multiple domains of proposition give clearer understanding, and may be a controlled 

approach to model uncertainty. As shown in Figure 4.6, each domain affects the way of 

calculating the semantic value of the proposition. 

Property Type-2 FL RFL 

Class of 
uncertainty 

• Fuzziness, since it uses 'fuzzy' 

membership function type 

• Ambiguity of type 'one to many' 

relationship only 

• Fuzziness, since it uses 'fuzzy' 

membership function type 

• Ambiguity, of all type of 

relationships including 'many to 

many' relationship 

Simplicity of 
understanding  Difficult (see Chapter One)  

Easy since it hasn't the complexity 

approach found in type-2 FL 

Time 
complexity  

Time consuming (see Chapter 

One) due to the complexity nature 

of its membership value function. 

Possibly parallel execution of the 

RF's two membership functions 

makes the computation of RF 

membership value faster than 

type-2 membership value.  

Accuracy 

The ultimate semantic value 

(membership value) of an element 

results from two composed 

functions (type-2 membership 

function). In addition, an extra 

stage to crisp the type-2 

membership value set is required. 

This gives three possible error 

sources (from two membership 

functions and a crisp stage).   

RF has two independent functions 

only to calculate the ultimate 

semantic value of an element, 

which clearly means RF has less 

possible error sources than type-2 

FL. 

Table 4.2 Comparison between Type-2 FL and RFL 
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Modifying the approach of quantifying semantic values used in 'possible worlds', the 

RF membership function results, and consists of two sub- functions that may work 

independently. This independent feature of the RF membership sub-functions is different 

from the complex feature of the membership functions of type-2 FL. This property 

speeds up calculations and may give results that are more accurate. 

Hence, a comparison between RFL and Type-2 FL is necessary to show the 

achievements of RFL and its properties as well. Table 4.2 lists the criteria, which are 

used to make comparison between RFL and type-2 FL. 

4.7 Discussion 
As noted earlier, 'Fuzziness' class of uncertainty has been solved by means of a 

certain type of membership function (understood by us as an inference function). The 

more testing (or learning in adaptive systems) of the membership function, the more 

accurate result could be produced, though to certain limit of course. However, in this 

thesis we have explained 'ambiguity', the second class of uncertainty using proposition 

and set notes. This explanation shows that ambiguity is not 'one to many' relationship 

only (as stated earlier in Chapter One), but can also be many to many relationship. RFL 

results from applying of 'possible worlds' philosophy to type-1 FL and represents a 

solution to both 'fuzziness' and 'ambiguity' classes of uncertainty.  

Being crisp or fuzzy means that the semantic value of an element may come in one 

of the two following alternatives: 

1. An individual number: This number is either an integer, which results from crisp 

membership function, or real number, which results from type-1 fuzzy 

membership function, as in crisp and Type-1 FL. 

2. A set of membership values: in which the size of this set is engaged to the area of 

FOU as in type-2 FL. 

As it has been shown, RF semantic value is neither an individual number nor set, but 

it is a pair of two real numbers quantifying the belonging strength of an element to 

semantic and DOP element of a proposition, both resulted from its own type-1 fuzzy 
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membership function. This pair fuzzy value has resulted from the normalisation of the 

complex ambiguity, i.e. converting it from many-to-many relationship to one-to-many 

relationship. This new membership value set can manage reasoning and uncertainty 

under conditions of multi syntax/multi semantics state of proposition by quantifying pair 

truth judgments for this proposition concerning its own domain and the domain of its 

syntax as well. Thus, we can say that the definition of SOP and DOP raise the level of 

knowledge that could be handled by the computer, which is wisdom (see Chapter 

Three).    

A question may come in mind that: what is the difference between inference and RF 

membership value? The answer is that the former is a ‘process’ or ‘approach’ of a 

function to calculate a conclusion. The latter is a value or attribute that used to quantify a 

quality (which should come in terms of relative principle), so that this value makes the 

process of this quality able to be processed by a numerical machine that is computer. 

Finally, we can report here the achievements of RFL as follows: 

1. Ability to model the two classes of uncertainty namely 'Fuzziness' and 'Ambiguity' 

(including 'many to many' relationship type) simultaneously. As a philosophy, 

type-2 fuzzy logic seeks to reduce fuzziness attribute of semantic value rather than 

quantifying multiple concepts of multiple elements [28, 83]. This attempt limits the 

goals of type-2 to 'Fuzziness' class of uncertainty only. 

2. Simplicity in calculation of membership value: the calculation approach of the 

Relative-Fuzzy membership value can be described as a 'direct approach' that uses 

the element to calculate two membership values. This approach differs from the 

indirect calculation approach of the fuzzy membership value of the type-2 fuzzy 

set, in which the inner membership function uses a fuzzy value resulting from the 

upper membership function to calculate the ultimate fuzzy value of an element.  

3. The simplicity in calculation, as well as independence, of the two RF membership 

functions reduce the time required to calculate the semantic value of an element. 
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This makes RFL more suitable for those applications, where time is a critical 

factor, than type-2 FL. 

4. Because it has less number of stages to calculate semantic value than type-2 FL, 

RFL seems to be more accurate as the accumulated error tolerance is reduced. 

4.8 Conclusions 
In this chapter, four novel definitions have been proposed namely: SOP, DOP, RF 

set, and RFL. RFL is defined to be a solution to model and handle the uncertainty 

problem that negatively affects the classification processing. The multiplicity (a type of 

uncertainty) in information has been studied using the low-level representation of 

information (i.e. proposition) together with the set theory, which helps to mapping the 

types and sources of uncertainty to proposition and leads to the novel definition of the 

four SOPs. Applying 'possible world' philosophy to SOPs addresses the way to 

understand the uncertainty problem, especially its complex type, which has been given 

as a second novel definition, namely the definition of DOPs. Finally, DOP has been used 

along with the concept of fuzzy membership value that yields the third novel definition 

that is the definition of RF membership value set. Successful application of the essential 

operations of the set, which are union, intersection, and complement, to RF membership 

value set converges with the fact that RF is a new logic. Each new definition is sustained 

by example(s) and these definitions are on proven mathematical theories. 
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Chapter Five 

Software Design Description of 

ML/RFL-Based Net  
5.1 Introduction 

Chapter Four produced the description of RF membership value. Due to its novelty, 

no programming tool exists to accommodate the new RF membership value set. It is 

necessary to define a RF based computational tool in order to bring this principle into 

applications. Such computational tool will help investigating the ability of RF principle 

and investigating the ability of RF set for handling and modelling complex ambiguity in 

DM as such investigation is one of this thesis’s aims. 

ANN is one of the computational tools used to handle the uncertainty in DM either 

alone or as a part of neuro-fuzzy systems, as have been shown in Chapter Two. Since 

ANN is a non-algorithmic programming tool, it will be of great interest to automate 

creating the RF membership functions, which are required to calculate RF membership 

value.  

While traditional ANN maps each element in an input data set to an element in the 

output result set, the set of output is not organised as a universal set of subsets (set of 

domains and subset of identifications within each domain as RF approach suggests). 

This means that ANN in its current structure is not suitable to be used directly for 

classification according to RF approach. Therefore, structural modifications are required 

to be applied for traditional ANNs in order to make them work according to the principle 

of RF. This chapter gives logical description for a RF based neural network that is called 

ML/RFL-Based Net, where ML stands for Multi-Level.  

We are going to explain ML/RFL-Based Net Software by using Software Design 

Description (SDD) methodology, which includes the listing of functional requirements, 

system architectural design, and detail description of ML/RFL-Based Net components.  
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Next, the design of ML/RFL-Based Net is to be described considering its functional 

requirements. Details of its components are to be given also. Discussion about the 

relationships between ML/RFL-Based Net and RF membership value set, Hierarchical 

Neural Network (HNN), and Neuro-fuzzy system is given to highlight the dissimilarity 

between ML/RFL-Based Net and each of these three aspects . Finally, the chapter is to 

be concluded. 

5.2 Software Design Descriptions of ML/RFL-Based Net 
Generally, the aim of ML/RFL-Based Net is to use it for classification of data that 

have complex ambiguity. The problems to be solved by ML/RFL based Net have three 

important characteristics: 

• The solution to the problems is nonalgorithmic, exactly as it is in traditional ANNs. 

• There is complex-ambiguity (which is illustrated in Chapters One and Four) in data, 

i.e. an element may have more than one classification result. 

•  The input data to this modified ANN is a pattern just like the input pattern of 

traditional ANNs, so no modification would be applied for the structure of input 

pattern. 

 

Figurer 5.1 Modifications Applied to Traditional ANN to get ML/RFL-Based Net 
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Since, ML/RFL-Based Net is going to be used for RF based classification; the output 

from this modified ANN is a decision to choose an element’s identity from a subset 

(subcategory) among other elements of a universal set. Thus, unlike traditional ANNs, 

ML/RFL-Based Net will use multi-category knowledge rather than uni-category 

knowledge. This means that the structure’s modification is the main one that will be 

applied to the traditional ANN to meet the principle of RF.   

ML/RFL-Based Net can be defined as a hierarchical neural network (tree) of two 

levels that is able to find the identity of a mysterious element from subset in a universal 

set (from subcategory in a universal set of multiple categories). The upper level (root) 

has been called supernet and the second level (leaves) has been called subnets. Supernet 

level is simply a traditional ANN, and it forms the root in tree sense. The subnets level is 

a set of traditional ANN, which form leaves in tree sense. Consequently, the 

modification in the architecture requires modification in both learning and recalling 

algorithms to fit the new architecture. Therefore, a new learning (training) and testing 

(recalling) algorithms should be defined. Figure 5.1 illustrates the modifications required 

to be applied to traditional ANN to design ML/RFL-Based Net.  

5.2.1 Functional Requirements 
1. Should working according to RF approach 

2. Should be able to calculate the RF semantic value 

3. Should maintain the pair functions that use to calculate RF semantic value 

4.  Just one input should be submitted to ML/RFL-Based Net 

5. No internal re-representation of the input data 

6. Able to be learned 

7. Have clear structure 

8. Performing classification job 

9. Able to handle complex-ambiguity data 

10. Simple to be developed 

11. Able to do fuzzification 
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Net able to discover sub-knowledge (subnets) automatically. On the other hand, 

supervised learning aims to specify the number of sub-knowledge (subnets) prior 

to building the net, thus simplifying and speeding up learning process. The size of 

the input layer is the same as the size of the input data vector. The size of the 

output layer depends on the number of sub-knowledge or classes (which are 

represented as subnets) that may exist in the universal knowledge. The aim of the 

supernet is to find out the subnet (or knowledge subcategory) of the input pattern 

without specifying its identity, i.e. partial recognition.  

• Subnets: they are the 2nd level of ML/RFL-Based Net. They are actually a set of 

ANNs. Only one net among these nets is to be activated (fired for recognition) by 

the upper level supernet. They can be trained by using either supervised or 

unsupervised learning approach. The size of the input layer of each net at this 

level is the same as that of the input data vector; this is because it takes the same 

input vector to be passed to the upper supernet. Each network in this set is 

responsible for specifying (identifying) the input pattern regarding subnet’s set of 

elements.  

Flexibility is applied to the procedure of creating ML/RFL_Based Net, in that no 

pre-specified number of subnets is required, but it has been left to be discovered while 

developing. Following is the procedure for creating ML/RFL-Based Net. 

Procedure Create_MLRFLNet ( ) 

While Creating New Subnet 

Create new SubNet and give it an index 

Get training data and parameter 

Train the new SubNet   

Create Supernet 

Train the supernet 

Saving MS Network 

 The forward interconnection between the two levels of ML/RFL-Based Net 

performs link job, i.e. supernet is going to select one subnet from the 2nd level set of 
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subnets. Actually, the output of the supernet has nothing to be processed in the subnet(s) 

but to enable or fire one of the subnets for recognition.  

5.2.3 Activation Function 
The activation function behaves like hushing-up function. In that the neuron’s output 

in a neural network is to be in certain set of values (either 0 and 1 combination, or -1 and 

1 combination). Usually, three types of activation functions are defined to be used for 

developing ANN, which are Threshold Function, Piecewise‐Linear function, and sigmoid 

function. Any of these three types can be used to create ML/RFL-Based. Of course, the 

choice is going to be made based on the nature of the data and problem to be solved.  

5.2.4 Encoding (Complex Learning Paradigm) 
The upper level (supernet) of ML/RFL-Based Net can be trained by using any 

ANN's learning algorithms or learning paradigm. The selection of the learning algorithm 

depends on the nature of the data of the problem being solved, same as the traditional 

ANN. 

Due to the hierarchical structure of ML/RFL-Based Net, and the difference in 

function of supernet from subnets, the learning algorithm of ML/RFL-Based Net should 

be consisting of two portions. The first portion would responsible for training the 

supernet to find out the subnet (domain or pragmatics in the theory of semantic) of the 

input data, while the second portion would train the subnets to find out the identity of the 

input data (recognition regarding domain). It is important to recall here that the same 

input data pattern is used for both supernet and subnets, which clearly have been shown 

in Figure 5.2 above. Thus, the input pattern is going to be used for two different 

functions: identifying its domain and recognising the input pattern within this identified 

domain. Hence, a new learning paradigm for ML/RFL-Based Net can be defined, which 

is called: the complex supervised learning paradigm, as illustrated below: 

Procedure Complex_Supervised_Learning (element )  

Train supernet to be able to map an input element to a sub group (Finding 

the domain or pragmatics of the input element), 
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For each subnet do 

 Train each subnet to be able to map the input element to one of its 

output (recognition regarding element’s domain/pragmatics), 

Being supervised means that the number of subnets is going to be specified while 

designing. This property makes the design of ML/RFL_Based Net under controlled. 

Furthermore, it is expected to get an enhancement in the quality of learning phase in 

that, the hierarchical structure of ML/RFL-Based Net would help maximising 

classification accuracy and minimising the risk of reaching over learning problem (that 

makes ANN fans out its input). Another expected benefit is that once a subnet is trained, 

it could be amassed to a set of subnets belonging to a same supernet. When a new sub-

knowledge is going to be included in future application, the previous subnets need no re-

training, but the new one, and of course the supernet of ML/RFL-Based Net. This 

property could lead to define a Neural Net-Base Management System (NNBMS), which 

will be responsible for storing trained ANNs (i.e. NN with the same-architecture, but 

with different recognitions), and retrieve the most suitable subnet according to 

supernet’s result.  

One may think that a drawback of this learning paradigm is time consuming. This is 

not true as parallel learning for both supernet and subnets can be performed instead of 

using sequential one. 

5.2.5 Recalling (Deductive Autoassociative Recalling) 
 To decide which subnet is to be selected for the next step of recognition, ML/RFL-

Based Net first discovers the attributes of the input testing pattern (attributes of the 

input's domain or pragmatics), which is the factor of selecting a subnet among multiple 

subnets. Thus, the testing algorithm of ML/RFL-Based Net, which is called Deductive 

autoassociative recalling should be composed of two portions as illustrated below: 

Procedure Deductive_Autoassociative_Recalling (element)  

Submit an unknown input element to the supernet,  
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According to the highest output value from supernet, activate the opposite 

subnet to supernet’s decision. 

Submit an unknown input element to the activated subnet, so the element 

would be classified. 

Principally, while it is expected to be slightly slower than testing algorithm of the 

traditional ANN, due to its multi-level, the recognition result of ML/RFL based Net is 

expected to be more accurate since the ultimate goal results would be formed by double 

classifications.  

5.2.6 The Interface of ML/RFL-Based  
ML/RFL-Based Net is designed to be an embedded component in a DM system (or 

any other classification-based system). Therefore, its interface is in term of function 

header to be invoked for creating, training, or testing it along with suitable passing of 

parameters for each type of invocation.  

5.3 Discussion 
Important clarifications should be made to highlight the novelty of ML/RFL-Based 

Net among certain techniques that may share some features with ML/RFL-Based Net. 

First clarification is the relationship between ML/RFL-Based Net and the RF 

membership value set, which should be showed since it is assumed that ML/RFL-Based 

Net is implementing this novel membership value set. Regardless that ML/RFL-Based 

Net is a new design of ANN, it is somehow close to other known structure of ANN 

systems called Hierarchical Neural Network (HNN). Therefore, the second clarification 

is to show the difference between HNN and ML/RFL-Based Net. Finally, the 

relationship between ML/RFL-Based Net and Fuzzy Logic System (FLS) is to be 

revealed since ML/RFL-Based Net computational tool aims to develop fuzzy 

computerised systems. Figure 5.3 shows the relationship between ML/RFL-Based Net 

and those techniques close to its concepts. 
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5.3.2 ML/RFL and Hierarchical Neural Network 

Based on HNN literatures given in Chapter Three earlier, and from structure point 

of view, ML/RFL-Based Net can be classified as a hierarchical recognition system or 

HNN - a type of multiclassifier system mentioned above- but with new features. 

ML/RFL-Based Net has two important differences. The first one is that no new (inner) 

pattern is generated, but instead the same input pattern is used. This reduces the possible 

error that may be generated from the re-representation of the input vector (the approach 

followed by HNN). Secondly, the number of the subnets (further classification 

subsystem- as it is termed in the literatures of multiclassifier system) in ML/RFL-Based 

Net is tied to the number of domains involved in the classification, not to try and error 

principle as in the traditional hierarchical multiclassifier system.  

HNN Feature ML/RFL-Based Net Benefit 

Generate an inner 
pattern to be 
processed by sub net 

No generation of 
inner pattern 

• Reduces the time required for 
producing the new representation. 

• Reduces the error that could be 
generated by numerical calculations 
required to produce the new 
representation  

Number of subnets is 
engaged to try and 
error principle 

Number of subnets 
is known prior to 
construct the net 

• Facilitates the designing  

• Reduces the designing time  

Table 5.1 Comparison between Classical HNN and ML/RFL-Based Net 

This difference facilitates the design of ML/RFL-Based Net and it makes it more 

controlled than traditional HNN. As a conclusion, these two features of ML/RFL-Based 

make it of less complex in designing (no try and error principle), and more accurate in 

classification results (no sub results or inner pattern is produced) as well. Table 5.1 

abbreviates the differences between classical HNN and ML/RFL-Based Net and benefits 

resulted from these two differences. 
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5.3.3 ML/RFL and Neuro-Fuzzy Systems 
Can ML/RFL-Based Net be considered as a Relative FLS (RFLS)? To answer this 

question we need to map the standard architecture of FLS to ML/RFL-Based Net, as 

Table 5.2 shows. 

Standard FLS’s 
Component Implementation ML/RFL-Based Net  

Rules 

IF-THEN rules that make 
the core of the IE, 
coupled with 
membership values  

The threshold function located in 
each neuron in ML/RFL-Based Net 

IE 

The set of rules + the 
very nonlinear 
mathematics of how the 
inference engine does the 
decision  

ML/RFL-Based Net, can be 
considered as a non-linear IE 
machine that used for building 
Expert System, since it contains 
both the threshold functions (stand 
for rules) and the nonlinear 
mapping of input to the output  

The fuzzifier 

Determination the level 
of membership of a 
measured input, which is 
required by IE (converts 
qualities to quantities) 

No need for such unit, since ANN-
the seed of ML/RFL- Based Net is 
getting its data as a vector 
representation of the fuzzy input 
data, without needing for explicit 
determination of the input pattern’s 
fuzzification     

The output processor 

Converts a fuzzy set into 
a crisp number required 
in many decisions 
making applications 

The ultimate identification 
achieved by ML/RFL-Based Net 
fit this description, which means 
that the output processor is 
embedded in ML/RFL-Based Net 
as a feature of ANN.  

Table 5.2 Mapping standard FLS’s features to ML/RFL-Based Net 

Although ML/RFL-Based Net, as an ANN’s type, is not used as a component in a 

FLS, but the mapping given in Table 5.2 shows that ML/RFL-Based Net can be 

considered as RFLS since it has the functions that the components of the standard FLS 

has. This shows that ANN can be used to build FLS, which could be easiest approach 

than defining IF-THEN approach that needs an explicit declaration of fuzzy membership 

values to each possible input, and explicit declaration of IE (set of IF-THEN rules 
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accompanied with fuzzy values). Of course, such conclusion needs more investigations 

to make a consistent comparison between the achievements of IF-THEN based FLS and 

ANN based FLS. 

5.4 Conclusion 
This chapter gave a description of a programming tool that follows RF approach and 

uses RF membership value defined in Chapter Four. This programming tool has been 

given a name ML/RFL-Based Net. The choice of ANN to be an approach to design a RF 

based computation model is made due to the non-algorithmic feature of ANN, which 

facilitates the building of such classification computation machine. 

Actually, ML/RFL-Based Net imitates human brains in the way of distinguishing 

new data. Thus, ML/RFL-Based Net is a hierarchical structure of ANNs consisting of 

two levels, where typically the super level of ML/RFL-Based Net makes independent 

computations and its result is used to pick up one subnet from its sub level. 

ML/RFL-Based Net has been presented it in this chapter in such a way that the 

description becomes a comparison. It is believed that this description approach clarifies 

the modifications applied to the traditional ANN, which are structure, learning, and 

recalling and leads to better understanding of the properties of ML/RFL-Based Net.  

While ML/RFL-Based Net encompasses two levels (supernet level and subnet level), 

the size of each layer of both supernet and subnets is changeable depending on the 

nature of the data of problem being solved.  

New terms consequently appeared in this chapter while modifying the traditional 

ANN. These terms are multi-level, complex learning paradigm, and deductive 

associative recalling. In addition, a suggestion for building a NNBMS has been 

introduced to improve the performance of the suggested ML/RFL-Based Net. 

Descriptions of both learning and testing algorithms have been given, along with the 

expected benefits and criticisms.  

The discussion given in this chapter highlights the way to calculate RF membership 

value by ML/RFL-Based Net. The discussion also highlights the difference between 
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HNN and ML/RFL-Based Net. Furthermore, through this discussion a comparison 

between ML/RFL-Based Net and the traditional FLS is maintained. Through these two 

comparisons, a conclusion that ML/RFL-Based Net can be considered as a novel HNN’s 

design and it is also an RFLS has been achieved. 

One thing to mention here is that while it is important to ANN, the implementation 

of ML/RFL-Based Net has not been covered in this chapter. The implementation of 

ML/RFL-Based Net could be carried out either by using 4th generation packages (like 

Matlab) or a 3rd generation languages (like C++ or Java). Implementation using 4th  

generation languages is much easier and takes less time, but needs to take into 

consideration the properties of the object units used in the implementation. Third 

generation language is the opposite as the programmer feels more free to code the design 

of ML/RFL-Based Net following the algorithms he is given. In Chapter Six, the 

description of the implementation of ML/RFL-Based Net is given, in which this design 

has been tested to create speech recognition model as part of a shell system called 

RFL4ASR. Implementation in this design is carried out by using Matlab development 

environment.  
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Chapter Six 

‘RFL4ASR’ IDE for Creating RFL-Based Speech 

Recognition Predicting Model (Case Study)  

6.1 Introduction 
The definition of RFL and the ML/RFL-Based Net computation tool have been 

presented in the previous chapters. This chapter presents a description of an IDE or shell 

system that is able to create a DM prediction model for classifying speaker-independent 

phonemes (aiming recognition) on basis of the RF principle. It uses ML/RFL-Based Net 

as a classification model. RFL4ASR is the name given to this IDE system for 

developing, and testing a RF based classification model. The architecture of RFL4ASR 

system, the data, and the output results are to be explained in this chapter.   

The goal of developing RFL4ASR system is to create a case study that shows the 

successful use of the novel RF as a methodology, and the novel ML/RFL-Based Net as a 

computational model, for classifying data having complex ambiguity. 

The choice of speech recognition (SR) application to test the ability of RF 

membership value is made up because ASR system deals with speech data, which is 

very changeable locally by the speaker and globally by the circumstances surrounding 

the speech itself. Actually, speaker independent ASR is considered as one of many 

challenges aspects that Speech Recognition (SR) by computer faces because of the huge 

number of speech patterns that several people may produce for one speech term further 

to many different patterns for the same speech term that one person can produce. Thus, 

the speech data is considered as a good example of data having complex ambiguity. 

Generally, to design and implement a successful ASR system, different types of 

problems have to be solved. These assorted problems are practically associated with a 

wide variety of disciplines, such as linguistics, psychology, phonetics, acoustics, signal 
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processing, pattern recognition, neuroscience, as well as computer science. Thus, speech 

recognition by computer is actually a very difficult task. In fact, important advances 

have been applied to ASR through many research works. Yet in comparison with human 

ability, ASR’s current performance, at its best, maintains larger error rate than human's. 

Reddy [108] classified the problems, which have to be taken care of by the ASR's 

designer, and described them in terms of functions or attributes that certain ASR should 

have, as follows:  

1. Number of speakers: More speakers means more difficulty; it creates a problem of 

speech variation (due to the variability among speakers), which ASR should be 

able to recognise. The enhancement of recognition ability of ASR is usually 

achieved by using large speech database as training data.  

2. Mode of the speech: Generally, a speech mode is either isolated or continuous. 

Isolated speech recognition requires that a speaker should place an artificial break 

after each word in utterance. Nevertheless, in continuous mode of speech 

recognition, ASR can handle natural speech utterances in which words may be 

collectively joined, and probably be strongly affected by coarticulation. An ASR 

of natural speech permits the chance of break and wrong starts in a speech, the use 

of new words that do not exist in its lexicon, and other features.  

3. Size of vocabulary: Usually, an increase in the size of the vocabulary would cause 

a decrease in the recognition achievement.  

4. Complexity of the language: Decreasing the complexity of the language that is 

supposed to be handled by ASR is made by limiting the probable spoken 

statements, and imposing syntax and semantic of these statements.  

5. Circumstances: The locations of real applications usually present difficult 

circumstances, such as interference signals, noised signals, and transmission 

media variability, which can severely corrupt ASR system performance.  

From the challenges listed above, it is easily to note that the challenges posed by 

ASR application occur as they shared a property problem, which is the huge variety of 
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patterns that may be produced for the same speech term. This note agrees the fact that 

speech data is a good example of complex-ambiguity data. 

The automatically generated ASR model from RFL4ASR IDE system is aiming to 

recognise multiple phonemes of different speakers in different accents and environments 

that is a data of complex ambiguity, thus, this model is supposed to treat challenges 1 

and 5 listed above. Furthermore, its ability to handle some challenges of DM stated in 

Section 2.4, are to be studied as will shown in the next chapter.  

Finally yet importantly, RFL4ASR has been implemented by using Matlab 

Ver7/Release14, and has been tested by using TIMIT data. 

6.1.1 The Standard Architecture of ASR 
As shown in Figure 6.1, existing ASR systems are made up of two stages. The first 

stage is called feature-extraction or front-end processing stage that seeks to extract the 

linguistic message and hold back non-linguistic sources of variability. The second stage 

is called the classification or back-end processing stage, which encompasses language 

modelling, and it aims at identifying the feature vectors with linguistic classes [62, 79, 

105, 134].  

 
Figure 6.1 ASR Components 

The processing approach of ASR system begins with the extraction level, which 

converts the input speech signal into a series of low-dimensional vectors, with each 

vector summarising the essential sequential and spectral performance of a short segment 

of the acoustical speech input. The generated feature from front-end processing stage is 

a vector of numbers that represents identification of the input speech wave. There are 

different techniques to calculate this vector, in which each of them has its pros and cons. 

The ultimate goal of ASR system is accomplished by the second stage by approximate 
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satisfactory statistics that are necessary for distinction among various phonetic units, 

while minimising the computational requirements of the classifier [53, 105]. Appendix B 

gives more details about each component of ASR. 

6.2 RFL4ASR System 
As stated earlier, RFL4ASR system, developed in this thesis work, is an IDE or 

shell, which aims to create and test a RFL-Based speech recognition model. IDE is 

defined as "a set of tools that aids application development. Among many other SW 

development tools, most IDEs usually have an editor for writing source code, a compiler 

(or interpreter), debugger, and currently GUI” [96].  

Essentially, the suggested RFL4ASR IDE, which is intended to be used for 

developing and testing a special-purpose SW that is ASR here, is of a scope different 

from the traditional IDE software, which is currently used for developing general-

purpose software. Of course, such major difference imposes important changes to the 

components of the usual IDE, in which these changes should support the developing and 

testing of the special-purpose SW targeted by this special-purpose IDE. Thus, instead of 

having compiler, debugger ...etc, which serve developing general-purpose SW, the 

special-purpose IDE should contain different components for create and test such 

special-purpose SW, which are in our case the tools for developing and testing each of 

front-end and back-end processing units of ASR, as well as some other supporting tools. 

The resulting ASR from RFL4ASR has the same components as the traditional ASR, but 

with the new implementation of back-end component, in that 'ML/RFL-Based Net' is to 

be used to develop this component. The Front-End (speech signal representation) of the 

resulting ASR, is to be implemented by using the traditional technique of Mel-

Frequency Cepstral Coefficients (MFCC) with 13 features. Pre-processing is required in 

the form of phonemes data collection, which are to be gathered from different speakers 

in different dialects in various circumstances. 

Thus, RFL4ASR can be considered as an example for using IDE principle as a 

framework for developing special-purpose types of software not limited to programming 
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languages environment, in which such conclusion can lead to an important enhancement 

of programming techniques.  

RFL4ASR IDE system has two main jobs: the first is the construction (including 

training) of the recognition model while the second is the testing of this model. Input 

test-data (patterns) of different phonemes, which are produced by different speakers in 

different environments and different delegates, are to be prepared earlier and stored in 

files (file for each phoneme) in a certain folder. RFL4ASR shell provides the ability to 

select a certain phoneme file to be tested by an active ML/RFL-Based Net classification 

model.  

The Data Flow Diagram (DFD) approach, which graphically characterise data 

processes (represented by rounded rectangles), data flows (represented by arrows), 

entities that communicate with the system (represented by rectangles), and data stores 

(represented by numbered open-end rectangle) in information systems [66], is used here 

to sketch the architecture of RFL4ASR. Figure 6.2 illustrates the logical design of 

RFL4ASR system using DFD (level 0 diagram). This system consists of the following 

eight main modules:  

1. User Interface  

2. Phoneme Extractor (get-phoneme) 

3. Phoneme Selector 

4. Phoneme's Features Extractor 

5. Create ML/RFL-Based 

6. ML/RFL-Based Loader 

7. Phoneme Recogniser 

8. Assess performance 
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Figure 6.2 Logical Design of RFL4ASR System 
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RFL4ASR system also consists of three data stores, which are implemented as 

folders, the first folder is for collecting the testing phonemes, and the second is for 

collecting training phonemes, which are both to be extracted from spoken statements. 

The third folder is for the created ML/RFL-Based Nets, which have been called 

MLNets. The entities that communicate with RFL4ASR system are TIMIT files (the 

source of spoken statements) and a user. Following paragraphs illustrates each of these 

components. Following paragraphs illustrate each part of RFL4ASR system. 

6.2.1 Speech File (Data)  
It is an acoustic-phonetic speech corpus created by Texas Instrument (TI) and 

Massachusetts Institute of Technology (MIT), from whose acronyms this corpus gets its 

name TIMIT. The design of the corpus text was a cooperative work among the MIT, 

Stanford Research Institute (SRI), and TI. In fact, speech recording was done at TI, 

while transcribing was made at MIT. The National Institute of Standards and 

Technology (NIST) with sponsorship from the Defence Advanced Research Projects 

Agency’s Information Science and Technology Office (DARPA-ISTO) maintained, 

verified, and prepared TIMIT CD-ROM [126].  

TIMIT database contains three types of files for each utterance (each sentence’s 

directory contains 3 sentence-related files).  The file types are as follows: 

• .adc – waveform with Carnegie-Mellon University (CMU) designed header, a 

binary file with sampled data 

• .phn - an ASCII file containing a time-aligned broad acoustic-phonetic 

transcription  

• .txt – an ASCII file containing an orthographic transcription (prompt form) 

TIMIT database consists of the utterances of 630 speakers representing the major 

dialects of American English. Table 6.1 illustrates the codes of dialect region identifier.     
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Characters Meaning 

dr1 New England 
dr2 Northern 
dr3 North Midland 
dr4 South Midland 
dr5 Southern 
dr6 New York City 
dr7 Western 
dr8 Army Brat (moved around) 

Table 6.1 Dialect Region Identifier Codes 

The speaker identifier is decoded by using a three-part code: the first character 

denotes the speaker’s sex, the next two the speaker’s initials, and a number differentiates 

speakers with identical initials (the first of more than one speaker with the same initials 

has an appended 0; the second has an appended 1, etc.) 

Each speaker directory contains 10 sentence directories coded by two characters, 

which indicate the sentence type, and a number indicates the sentence number. The 

sentence types are coded as follows:  

• ‘sa’ stands for Stanford Research Institute (SRI) dialect calibration-shibboleth 

sentence (2 per speaker). (A shibboleth sound is one that gives away the 

nonnativeness of a speaker. This second criterion, then, measures how well a 

speaker's ability to pronounce a certain phoneme predicts the overall nativeness of 

that speaker.)  

• ’si’ stands for Texas Instrument (TI) random contextual variant sentence (3 per 

speaker). 

• ‘sx’ stands for Massachusetts Institute of Technology (MIT) phonetically compact 

sentence (5 per speaker). 

Two internal sets of data are to be developed using TIMIT data source in RFL4ASR 

system. The first one is the set of training phonemes, which are stored in 

TriningPhoneme folder that acts as a data store in RFL4ASR system. This set of 
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6.2.3 Phoneme Extractor (Get_Phoneme Module) 
The data used by RFL4ASR are phonemes not sentences as TIMIT data source of 

this system supplies; this imposed a stage for extracting phonemes from TIMIT’s files of 

spoken sentences, which is achieved via Get_Phoneme module. The input data to this 

module is a TIMIT file of spoken sentence, which belongs to either training or testing 

sets. The output of this module is a number of phoneme files in text format, which 

contain the frequencies of each phoneme. Each file of data phoneme is given a 

phoneme's name of these data. Get_Phoneme module plots the signal's representation of 

these phonemes on the screen along with the playing of the input spoken statement. 

Technically, the (.adc) file of a waveform is organised to have a CMU-designed 

header followed by the digitised speech data. A binary representation methodology, 

called VAX, is used to represent each saved field. The data type of these fields is short, 

(or two bytes) size. On the other hand, the field's size of int data type is four bytes. This 

makes the size of the header twelve bytes (note that the sample frequency is 16 kHz or 

16-bit samples). These fields should be clearly defined so various processing programs 

can use them effectively [126]. 

The header has been coded as a structure (or record) that contains number of fields, 

each to hold certain information related to the waveform itself. The header of the 

waveform file (of extension .adc), as defined by CMU, is coded in C language as 

following [126]: 

struct ad_head  

{ 
short ad_hdrsize;     /* size of header in 2-byte words. */ 

short ad_version;     /* version number. */ 

short ad_channels;   /* number of channels recorded. */ 

short ad_rate;          /* sampling rate. */ 

int   ad_samples;     / * no. of samples of type short in the remainder of the file. */ 

} 
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The transcription files (.phn) are phonetically based, and saved as ASCII text files. 

These transcription files include a list of descriptors of phonetic label, and are separated 

by carriage returns character. CMU / ARPABET defines standard IPA phonetic symbol. 

Each phonetic symbol label encompasses two integer numbers (start and end sample-

numbers for the phone), followed by an ASCII representation, e.g. 2200 4280 sh. Note 

that the ARPABET is a selection of symbols, used in the Advanced Research Projects 

Agency Speech Understanding Research (ARPASUR) project [126].  

The orthographic transcription files, which have (.txt) extension, are ASCII text 

files containing the start and end sample-numbers of the complete utterance and 

sentence prompt type. These are sample-numbers, not milliseconds or other units of time 

[126].  

The information reported above has been used to maintain the following algorithm 

that has been implemented as a Matlab function: 

Function  phon_extract( ) 
 
Select, and open (for read) a file of spoken statement;  

Initialise number of phonemes in the selected file & eof marker; 

Read the start-sampling integer & finish sampling integer for each phoneme 

& phoneme name up to the last phoneme in the file (marked with h#); 

Read the wave file format of the selected file for playing purposes;  

Read the text file format of the selected file to get the actual length of the wave 

file format (number of wave values), which is the second string in the file 

capture the sampling integers for each phoneme in the spoken sentence;  

Plot each phoneme in the sentence; 

Play the sentence; 

Save Features of Phoneme by: 

Get the current phoneme name to create a file holding phoneme name; 
Open an output file or create it for each phoneme; 
Save the wave sample for each phoneme; 

  End 
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A TIMIT file of spoken statement is to be selected prior activation of this module. 

While it tokenises phonemes from an input spoken statement, the module plots the 

signal wave of this spoken statement (in time domain), plays the spoken statement, and 

displays its phonemes ID. Each extracted phoneme will be saved in a separated file in 

phoneme folder that acts as a simple phoneme store, and each file holds the phoneme 

name and contains its time domain representation. Figure 6.4 shows the results of 

running Get_Phoneme module: extracting individual phonemes, and plots their sign 

waves.  

 
Figure 6.4 Output of Get_phoneme module 

The playing of the phoneme files shows the good quality and intelligibility of the 

tokenising process. However, the phonemes extraction was reasonably well accepted in 

all the experiments when the phoneme’s representation was forwarded to the next phase; 

i.e. recognition.  

The phoneme identification is used as a name of the file of the representation 

values of that phoneme. This naming approach helps measure the accuracy of different 

ML/RFL-Based classification (recognition) models, which are generated by RFL4ASR 

IDE system. 
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6.2.4 Select a Phoneme 
The aim of this module is to select or pick a phoneme from Testingdata folder,. 

The importance of this module is to feed certain phoneme data file to the feature 

extraction module to prepare it for recognition, as will be shown in Section 6.2.5. As it is 

shown by Figure 6.5, the selecting of a phoneme data file is achieved via a pulldown 

window that displays all phonemes files available in the Testingdata folder. 

 

Figure 6.5 Pulldown window of select phoneme module 

6.2.5 Extraction of Phoneme Features  
Among multiple approaches for defining speech signal’s feature set, RFL4ASR 

implements the Mel-scale Frequency Cepstral Coefficients (MFCC) technique to 

produce a feature set of the phoneme speech signal that will be used for recognition 

purposes. Generally, the selecting of certain feature set of the speech signal over another 

depends on some factors, such as the system’s cost, speed, and accuracy of recognition. 

Researchers reported that in the mel-frequency scale, the log-magnitude Discrete 

Fourier Transform (DFT) magnitude spectrum is frequency-warped to follow a critical 
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band scale (mel-scale) and amplitude-warped (logarithmic scale) before computing the 

inverse DFT parameters. Therefore, Q band pass filters are used to cover the required 

frequency range. Figure 6.6 illustrates the flow diagram of MFCC computation 

procedure [24, 131]. Get_MFCC[Cep] function has been built by using Matlab, which 

extracts MFCCs array of that phoneme, and stores this array in a file. This module has 

no window as other modules, but it internally serves both creating ML/RFL-Based 

module and testing ML/RFL-Based module as the DFD of RFL4ASR shows. 

 

Figure 6.6 MFCC Computation Flow Diagram 

6.2.6 Create ML/RFL-Based Net 
This module gives RFL4ASR IDE system the ability to produce many 

classification models (as a predicting DM model) of type ML/RFL-Based Net for speech 

recognition, and saving each one in an external file in MLNets folder, thus maintaining a 

simple ML/RFL-Based Nets store.  

The architecture of the ML/RFL-Based Net, which consists of two hierarchical 

levels, namely supernet and subnet, makes ML/RFL-Based Net different from traditional 

single level structure ANN. This results that ANN’s developing platform provided by 

Matlab is not suitable to be directly used for handling creating, training, or even testing 

of the classification model of type ML/RFL-Based Net. Therefore, the programming 

environment of Matlab has been used for developing the ML/RFL-Based Net developer 

instead.  

As the DM predicting model of type ML/RFL-Based Net has been built using the 

programming functions provided by Matlab, the traditional backpropagation ANN 

programming structure is used to build the supernet portion of ML/RFL-Based Net, and 
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strategy. These initial data are the number of hidden layers, the size of each layer, and 

the training parameters also as Figure 6.7 illustrates. 

Technically, Matlab supports multiple versions of ANN's creating command: new. 

The choice of the most suitable one among these sets of ‘new’ commands depends on 

the type of ANN that is intended to be created. The Matlab’s ‘new’ command of type 

backpropagation is selected to construct ML/RFL-Based Net since the types of both 

supernet and subnet of ML/RFL-Based Net is a backpropagation ANN.  

Construction of a new classification model involves also the training of ML/RFL-

Based Net. Complex_Learning procedure, which is defined in Chapter Five, is used to 

train ML/RFL-Based Net. The training of subnets of ML/RFL-Based Net type 

classification model is carried first, and that of the supernet is to be followed. This is 

because of the possibility of the unknown number of subnets to be included in the 

ML/RFL-Based Net type classification model under construction.  

 

Figure 6.8 Training of ML/RFL-Based Net Neural Network 

The training of ML/RFL-Based Net has been implemented by using the Matlab’s 

command: ‘train’, which takes the training data and the accuracy level of matching, 
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contents of MLNets folder, from where the user can simply select any of the displayed 

names to activate it. The name of the selected or activated instance of ML/RFL-Based 

Net is displayed on a label of the main interface. MLLoading module can be described 

by the following procedure:  

Procedure MLLoading( ) 

Get the file name of ML/RFL-Based Net from MLNet folder 

Read the contents of the file to a variable in memory 

End 

6.2.8 Testing of the Recognition Module 
Many classification models of type ML/RFL-Based Net have been constructed and 

saved in an external file for each one. Therefore, loading a pre-trained model of type 

ML/RFL-Based Net from its external file is essential before carrying any testing. Also, 

the testing requires loading certain phoneme data by the user, which is to be read, and its 

contents (time domain representation of the phoneme signal) are to be converted to a 13 

MFCC as it has been illustrated in Section 6.2.5. Figure 6.10 shows the window of 

testing a phoneme using ML/RFL-Based Net. 

 

Figure 6.10 Testing of ML/RFL-Based Net Neural Network 
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The testing phase of ML/RFL-Based Net is performed according to deductive 

autoassociative recalling procedure defined in Section 5.3.3 earlier. The implementation 

of this recalling procedure has been achieved by using Matlab's library programming 

function namely: sim as a core one in this implementation. Of course, Matlab’s sim 

recalling command for testing the uni-level traditional ANN alone is not suitable to be 

directly used for testing the classification model of type ML/RFL-Based Net due to the 

dissimilar structure of traditional ANN from the recognition model of type ML/RFL-

Based Net.  

6.2.9 Assessing performance 
This module aims to give simple statistics that helps assessing the performance of 

the recognition module under test. It performs such job by producing counters for those 

successfully recognised phonemes and those are not, as well as the error percentage of 

each one. This statistics is important to make evaluation and rank each ML/RFL-Based 

Net instance. The results of testing an ML/RFL-Based Net classification (or recognition) 

model are to be displayed in the result labels of the main interface in terms of Match, 

Mismatch, and Error percentage, as shown in Figure 6.10. The way that, RFL4ASR shell 

judges whether ML/RFL-Based Net classification (recognition) model recognises the 

input test-data correctly or not is achieved by comparing the output of ML/RFL-Based 

Net classification model to the phoneme identification name provided by the input 

phoneme file name (which has been supplied during phoneme-extraction module). Thus, 

if the result calculated by ML/RFL-Based Net classification model is similar to that 

given by the file name of the input test pattern, the counter Match is increased by 1, 

otherwise the counter Mismatch is increased by 1. Accumulating results of multiple 

input test patterns would give a simple statistical measurement of the performance of the 

recognition model of type ML/RFL-Based Net generated by RFL4ASR system, which is 

expressed by Error percentage. This module can be described as follows: 

Procedure  Assess( ) 

if the result of recognition == the name of phoneme file under test 
       Then correct=correct+1 
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else  
   incorrect=uncorrect+1; 
end  
 
error = incorrect/(correct + incorrect)*100 

Display correct, incorrect, and error counters 

End 

 
Chapter Seven illustrates evaluation of the ML/RFL-Based Net performance using 

these statistics. 

6.3 Experiments 
RFL4ASR has been tested using different data set and different ML/RFL-Based 

Net classification instances, in which Table 6.2 shows the results of testing these cases 

of ML/RFL-Based Net. 

Net Name Testing Data Training  
Data 

Correct. % 

Group2 80 80 92 

Group3 80 80 91 

MS 80 80 87.5 

MS3 80 80 100 

MS23 10 70 25 

MSAyad3 36 36 100 

MSAyad3 13 36 54 

MSAyad4 13 36 62 

MSAyad5 13 36 69.2308 

Table 6.2 Results of Multiple Experiments on ML/RFL-Based Net 

Each of Group2 and Group3 models has been constructed to identify one phoneme 

of the same speaker with different pronunciation. They account for 92 per cent and 91 

per cent correctness respectively. 
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Each of the 4 subnets consists of one input layer of size 13 nodes, two hidden 

layers each of size 8 nodes, and one output layer of size 1 node. Their learning function 

has been selected to be ‘traingd’ backpropagation training algorithm. Subnets of Group2 

and Group3 models of type ML/RFL-Based Net has been assigned the following 

training parameters: 

•  Training Parameter. lr : Group2= 0.0455, Group3= 0.04, 

•  Training Parameter. epochs : Group2= 150000 , Group3= 160000 

•  Training Parameter error level:  1e-6 in both  

On the other hand, the supernet level of Group2 and Group3 models of type 

ML/RFL-Based Net is composed of four layers. The input layer is of 13 nodes size (that 

is the MFCC input vector) with tansig sigmoid transfer function. The 2nd layer is of 9 

nodes size with tansig sigmoid transfer functions. The 3rd layer is of 5 nodes size with 

tansig sigmoid transfer functions. Finally, the output layer is of 4 nodes size (the number 

of different pronunciations to be recognised), with purelin sigmoid transfer functions. 

The training algorithm (via traingd function) is used to train the supernet level of 

Group2 and Group3 models of type ML/RFL-Based Net with the following parameters:  

•  Training Parameter lr    = 0.05 

•  Training Parameter .epochs = 300000 

•  Training Parameter error level   = 1e-6 

Using data of a phoneme spoken by multiple speakers with different pronunciation 

style, ‘MS’ net has a correctness percentage of 87.5 % and ‘MS3’ net 100% – i.e. it is 

error-free. 

MS and MS3 models have been constructed to identify one phoneme of different 

speakers with different pronunciation. MS accounts for 87.5 per cent and MS3 accounts 

100 per cent correctness. 

Each of the 6 subnets (the number of different speakers with different 

pronunciations) consists of one input layer of size 13 nodes, two hidden layers each of 

size 9 nodes, and one output layer of size 1 node. Their learning function has been 
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selected to be ‘traingd’ backpropagation training algorithm. The following training 

parameters have been assigned to train the subnets of MS and MS3 models of type 

ML/RFL-Based Net: 

•  Training Parameter. lr : MS= 0.05, MS3= 0.055, 

•  Training Parameter. epochs : MS= 150000 , MS3= 180000 

•  Training Parameter error level:  1e-6 in both  

The supernet level of MS and MS3 models of type ML/RFL-Based Net is 

composed of four layers. The input layer is of 13 nodes size (that is the MFCC input 

vector) with tansig sigmoid transfer function. The 2nd layer is of 9 nodes size with tansig 

sigmoid transfer functions. The 3rd layer is of 6 nodes size with tansig sigmoid transfer 

functions. Finally, the output layer is of 6 nodes size (the number of different 

pronunciations to be recognised), with purelin sigmoid transfer functions. The supernet 

level of MS and MS3 models of type ML/RFL-Based Net had been trained using traingd 

function with the following parameters:  

•  Training Parameter lr = 0.055 

•  Training Parameter .epochs = 350000 

•  Training Parameter error level   = 1e-6 

The real advanced started with using the data of multiple phonemes for multiple 

speakers with multiple pronunciation of each phoneme for each speaker was tested using 

MSAyad3 net, and again gave a correctness percentage of 100 %. The supernet of this 

model consists of one input layer (of size 13 nodes), 3 hidden layers of size 8, 7,8 nodes 

respectively, and one output layer of size 3 (the number of speakers).  This supernet 

level had been trained using traingd function with the following training parameters:  

•  Training Parameter lr :  0.055 

•  Training Parameter . epochs : 450000 

•  Training Parameter error level : 1e-6 
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Each of the 3 subnets (the number of different speakers with different 

pronunciations) consists of one input layer of size 13 nodes, two hidden layers of size 9, 

8 nodes respectively, and one output layer of size 1 node. Their learning function has 

been selected to be ‘traingd’ backpropagation training algorithm. The subnets of 

MSAyad3 model of type ML/RFL-Based Net had benn trained using the following 

parameters: 

•  Training Parameter. lr : 0.055, 

•  Training Parameter. epochs : 160000 

•  Training Parameter error level:  1e-6 in both 

 

Testing data that have never been used in the training set (multiple phonemes for 

multiple speakers of multiple pronunciation of each phoneme in each speaker data) was 

performed on nets MSAyad3, MSAyad4, and MSAyad5. Actually, the complex 

ambiguity is quite clear in this set of data.  

Training Set Testing Set 
DR2 DR5 DR7 dclM51 

ixM12.txt tclM32.txt dclM52.txt dclM58 
ixM13.txt tclM33.txt dclM53.txt ixlF21 
ixM14.txt tclM34.txt dclM54.txt ixlF28 
ixM15.txt tclM35.txt dclM55.txt ixlF29 
ixM16.txt tclM36.txt dclM56.txt ixlF61 
ixM17.txt tclM37.txt dclM57.txt ixlF68 
ixlF22.txt tclF42.txt ixlF62.txt ixM11 
ixlF23.txt tclF43.txt ixlF63.txt ixM18 
ixlF24.txt tclF44.txt ixlF64.txt tclF41 
ixlF25.txt tclF45.txt ixlF65.txt tclF48 
ixlF26.txt tclF46.txt ixlF66.txt tclM31 
ixlF27.txt tclF47.txt ixlF67.txt tclM38 

Table 6.3 Phoneme Training Set and Testing Set Used in MSAyad5 

The best achievement is drawn from MSAyad5, which produced 69.2308% error-

free results (or 30.7692%-contained errors). As shown in Table 6.3, 36 training 

phonemes and 13 testing phonemes have been created to test the achievement of this 

ML/RFL-Based Net instance. It is important to note here that the 13 testing phonemes 
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are excluded from the training set. Note that the name of the phoneme file is coded here 

as following: 

• The first two characters are the name of the phoneme. 

• The next character denotes the gender of the speaker (M for male and F for 

female) 

• The next numeric digits are used for distinguishing sentence, which this phoneme 

comes from, much like identification number.  

The number of speakers of the phonemes involved in this experiment is 3 (coded 

as DR2, DR5, and DR7 respectively), thus the number of subnets in this experiment is 3 

backpropagation nets of three layers for each one. The size of input layer is 13 that is the 

MFCC representation of a phoneme, with tansig sigmoid transfer function. The size of 

the hidden layer is 10 with tansig sigmoid transfer function. The size of output layer is 

12 different phonemes with purelin sigmoid transfer function. 

The supernet level of ML/RFL-Based Net is trained to find out the speaker's 

identity via selecting a subnet represents that speaker for each input phoneme, and each 

subnet is trained with the same set of phonemes to find out the identity of the phoneme 

itself by using speaker's subnet. Each subnet in this array has been trained individually.  

The tansig, was selected to be the transfer sigmoid function of both input and 

hidden layers in both supernet and subnets of ML/RFL-Based Net. Among Matlab's 

library learning functions traingd backpropagation training algorithm has been used to 

train ML/RFL-Based Net. For subnets of MSAyad5 case of ML/RFL-Based Net, these 

training parameters are set to the following values: 

•  Training Parameter. lr = 0.0455, 

•  Training Parameter. epochs = 150000  

•  Training Parameter error level   = 1e-6, 

On the other hand, the supernet level of ML/RFL-Based Net is composed of four 

layers. The input layer is of 13 nodes size (that is the MFCC input vector) with tansig 

sigmoid transfer function. The 2nd layer is of 9 nodes size with tansig sigmoid transfer 
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functions. The 3rd layer is of 5 nodes size with tansig sigmoid transfer functions. Finally, 

the output layer is of 12 nodes size (the number of different phonemes to be recognised), 

with purelin sigmoid transfer functions. The training algorithm (via traingd function) is 

used to train the supernet level of ML/RFL-Based Net with the following parameters.  

•  Training Parameter lr    = 0.0455 

•  Training Parameter .epochs = 400000 

•  Training Parameter error level   = 1e-6 

It is important to report here that the above parameters of ML/RFL-Based Net have 

been selected by using the try and error principle that is used in developing ordinary 

ANN. In addition, each of these models have been created using the function of Creating 

ML/RFL-Based Net, which its code is given in Section C.4. 

6.4 Conclusion 
Speech signals are highly changeable owing to their generating mechanism, which 

depends on the power of air that incites the vocal cords. The nature of the vocal cords is 

affected by many physical or psychological reasons such as tiredness, sickness, or anger. 

Thus, the speech as data is a good example of fuzzy and vague data type. 

In ASR, classification is performed by either logical or statistical deduction or 

abduction. ASR also needs to be capable of knowledge acquisition or induction. Hence, 

these three types of inferences; i.e. deduction, abduction, and induction make ASR one 

of the AI’s applications [3]. 

According to ASR's literature, which is given in Appendix B, speech sound 

features (data) are random and continuous that make 'statistics using probability' become 

the most suitable classification technique for building ASR. Moreover, because of the 

sequential nature of the speech events, parallel classification is limited. HMM is a 

statistically insensitive approach, and ANN is a knowledge insensitive approach. 

Therefore, HMM proves itself as a leading technique among classification techniques 

since it is a Statistical Finite State Automata (SFSA), and uses statistical deduction in 

search for a best solution, although ANN shows promising results in some cases.  A 
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number of researchers tried to solve the problem of each of HMM and ANN by 

proposing a hybrid system that involves each of them, known as HMM/ANN hybrid 

system, which seems to be the most suitable ASR architecture defined as of yet. This 

hybrid system proves that it is the most accurate ASR resulted from mixing more than 

one classification technique [3, 127]. 

This chapter describes a speaker-independent ASR system using ML/RFL-Based 

Net, which is created by RFL4ASR IDE software system. RFL4ASR represents a new 

understanding of IDE targeted for developing specific purpose software modules as an 

extension of the traditional IDE, which is usually used for developing general-purpose 

programs.  

 Although the ASR resulting from RFL4ASR shell utilizes the standard 

architecture of ASR, it is actually based on the new recognition approach defined by a 

new ANN architecture namely ML/RFL-Based Net, which follows the novel RF set of 

membership principle. The design of RFL4ASR and its implementation have been 

described, with the latter being carried out using Matlab version 7/ Release 14. 

The data used by RFL4ASR system, namely phonemes, has been extracted from 

TIMIT speech data, which come in form of spoken statements with different dialects by 

different speakers. This extraction is achieved by using the codes accompanying the files 

of TIMIT data to select certain phonemes to be produced to the RFL4ASR system. 

These phonemes were multiple, and each phoneme has multiple dialects as pronounced 

by either a single or multiple speakers in different circumstances. Thus, they meet the 

criteria of the problem to be solved by RFL4ASR IDE system.  

Developing the Front-End portion of the ASR, which is generated by RFL4ASR 

IDE system, imposes the pre-processing of phonemes in order to calculate their MFCC 

features. The development of this stage has been carried out as a function to be called in 

each time a new input pattern is to be processed either for learning or for testing. High-

level mathematical functions in Matlab, such as Matlab’s FFT, facilitate the 

implementation of this function.  
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Recognition models of type ML/RFL-Based Net, which forms the Back-End 

portion of the ASR resulting from RFL4ASR IDE, has been implemented by using those 

ready-made programming functions of Matlab, which support the handling of ANN. 

Although it is possible to implement recognition models of type ML/RFL-Based Net 

using the object-oriented programming capabilities of Matlab, we believes that instead 

of re-inventing the wheel, it is better to use the already existing ANN functions provided 

by Matlab. 

 The interface of RFL4ASR IDE has been implemented using GUI methodology. 

GUI is presently the dominant interface technique. Matlab supports the creation of GUIs 

in spite of the limitations found in Matlab, which is quite understandable since Matlab is 

a simulation of 4th generation language more than being software developer like visual 

programming languages. 

The results obtained from testing different cases of ML/RFL-Based Net and 

different phonemes sets show the ability of ML/RFL-Based Net as a recognition model 

to successfully adapt the increasing in the complexity of data uncertainty. 

Finally, we can report here that Matlab proves its ability to implement various 

algorithms, since it supports many different processing schemes, such as file processing, 

mathematical functions, the arithmetic of arrays and metrics, as well as many other 

complicated schemes such as ANN or GUI.  
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Chapter Seven 

Results and Discussion  

7.1 Introduction 
The RFL4ASR IDE system has been implemented by using Matlab simulation 

software and has been tested by using a selected set of phonemes. While the 

implementation of RFL4ASR IDE software system shows the flexibility and capability 

of Matlab, the test has revealed one of its most successful features: i.e. the ability to 

recognise phonemes excluded from the set of training data. It is important to mention 

here that the tested data consist of various phonemes belonging to various speakers in 

various environments and various pronunciations, thus underlying the complex property 

of these phonemes (multi-syntax and multi-semantic from a proposition point of view). 

The results show the ability of the speech recognition model generated by RFL4ASR 

IDE to deal with such data, as well as highlighting the role of both RF principle and 

ML/RFL-Based Net computation model, both of which have been defined by this thesis 

to solve such a complex ambiguity problem. 

DM is the theme of this thesis, which embarks on defining RF membership value 

set, and ML/RFL-Based Net computation model. The results of RFL4ASR have been 

compared to results produced by other DM machines using the well-known software 

'WEKA', which gave the same data used by the recognition model generated by 

RFL4ASR IDE software system. 

As mentioned earlier, the recognition model generated by RFL4ASR shell has 

been tested by using selected sets of phonemes. These phonemes are the data used to 

create and test a model of speech recognition. The data have been selected to reflect the 

difficulties of DM as reported in Section 2.4 of this thesis, i.e. it has certain properties as 

illustrated in Table 7.1. The results of this testing reveal the successes of both the 

defined RF membership value set and the computation tool ML/RFL-Based Net in 
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classifying complex and ambiguous data. They also prove that speech recognition 

models, in general, can be considered as one of the systems generated via DM.  

DM Problem 
Property of data used for testing the classification model  

produced by RFL4ASR 

Dimensionality size 13 attributes for each variable 

Over fitting Different sources of speech phonemes* 

Evaluation of statistical importance Multiple sub-models 

Shifting data and knowledge Different source speech phonemes 

Omitted and noisy data 13 omitted data, Different sources of speech phonemes* 

Complex relationships between 

fields
Speech data 

Comprehensibility of patterns Automatic Comprehensibility using ANN 

Previous knowledge Multiple knowledge 

Incorporation with other systems RFL4ASR speech recognition system 

* Different speakers, Different accents, Different circumstances  

Table 7.1 Properties of the Speech Data Used To Test the Classification Model Produced By 

RFL4ASR 

Early experiments on ML/RFL-Based Net (reported in a published paper [4]) were 

carried out to investigate DM principle on phoneme recognition task, which showed 

promising results. At that paper, confusion matrix is the method used to show the 

accuracy performance of ML/RFL base Net. This method is used because the set of the 

data phonemes is small and simple compared with the data used later, as the new method 

has been extended to be more sophisticated and involves more complexity. 

In this chapter, the description and discussion of the results obtained from 

RFL4ASR system are given. An evaluation and analysis of the results are also presented. 

The evaluation has been conducted by making comparison between RFL4ASR’s results 

and WEKA’s results.  

7.2 Error Analysis  
The handling of complex ambiguity in DM (or by classification models in general) 

is the goal of this thesis, so accuracy is the most important factor in focus. Since 
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ML/RFL-Based Net has been essentially developed to test the ability of the RF principle 

for making classifications as a DM methodology, comparing the results of ML/RFL-

Based Net classification model is made with the existing DM approaches rather than 

with ASR systems. (Actually, ASR involves complex of model that increases its 

accuracy)   

The ability to recognise complex-ambiguity data (phonemes) of different speakers 

by using recognition models of ML/RFL-Based Net type is demonstrated in terms of 

error percentage appearing in the interface of the RFL4ASR IDE system. As shown in 

table 6.3, the data set used for training and testing was complicated from one experiment 

to another, but led to improvement in the classification construction (recognition) model 

of ML/RFL-Based Net type in terms of the structure of both supernet and subnets. The 

best achievement of ML/RFL-Based Net classification model was 69.2308 % of 

correctness (30.7692% as error percentage) via MSAyad5 instance. Hence, it is easy to 

conclude that this accuracy can be further improved, not only by improving mainly the 

supernet, but also by improving the subnets. 

Although it is somehow difficult to evaluate this achievement, in as much as it is 

hard to find identical machines, WEKA DM package of Waikato university-New 

Zealand (see Appendix A) has been used as a benchmark to evaluate the achievement of 

this RFL4ASR. The following section will show WEKA's classification performance 

using the same testing data used to test the best achievement recognition model 

generated by RFL4ASR namely MSAyad5.  

7.2.1 WEKA’s Results  
WEKA contains the following classification collections of machine learning 

algorithms for DM tasks [67]: 

1.  Bayes:  contains bayesian classifiers, e.g. NaiveBayes  

2. Functions: e.g., Support Vector Machines, regression algorithms, neural nets  

3. Lazy: no offline learning, that is done during runtime, e.g., k-NN  
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The descending sorted list in Table 7.2 shows that NaïveBayes was the best 

achievement of the classification approach of WEKA package. Although the accuracy of 

classification obtained from other classification schemes of WEKA was close to the 

accuracy of the results obtained from the ML/RFL-Based Net classification model, the 

comparison between the best achievement of WEKA's scheme and ML/RFL-Based Net 

shows a clear difference. The correctness percentage of NaïveBayes was 63.2653%, 

while it was 69.2308% using MSAyad5 model of ML/RFL-Based Net, see Table 7.2, 

which is graphically illustrated in Figure 7.2. Obviously, this fact highlights the success 

of RF as a principle, the success of ML/RFL-Based Net as a computation model, and the 

success of DM as a strategy for creating predictive models for ASR (although, there is 

need to make some further improvement to reach the same accuracy attained by the 

current state of other ASR systems). 

Scheme Correctly Classified 
Instances (out of 49) Correctness % Error % 

NaiveBayes 31 63.2653% 36.7347% 

NaiveBayesSimple 31 63.2653% 36.7347% 

NaiveBayesUpdateable 31 63.2653% 36.7347% 

RBFNetwork 31 63.2653% 36.7347% 

SMO 31 63.2653% 36.7347% 

FLR 30 61.2245% 38.7755% 

LWL 30 61.2245% 38.7755% 

RandomForest 30 61.2245% 38.7755% 

AdaBoostM2 29 59.1837% 40.8163% 

DecisionStump 29 59.1837% 40.8163% 

END 29 59.1837% 40.8163% 

EnsembleSelection 29 59.1837% 40.8163% 

AttributeSelectedClassifier 28 57.1429% 42.8571% 

ClassificationViaRegression 28 57.1429% 42.8571% 

LogitBoost 28 57.1429% 42.8571% 

MultiBoostAB 28 57.1429% 42.8571% 

RandomCommittee 28 57.1429% 42.8571% 

ConjunctiveRule 27 55.1020% 44.8980% 

FilteredClassifier 27 55.1020% 44.8980% 

MultilayerPerceptron 27 55.1020% 44.8980% 

NNge 27 55.1020% 44.8980% 

ClassBalancedND 26 53.0612% 46.9388% 

Table 7.2 Summary List of WEKA's Successful Classification Schemes  
(to be continued) 
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Scheme Correctly Classified 
Instances (out of 49) Correctness % Error % 

DataNearBalancedND 26 53.0612% 46.9388% 

NBTree 26 53.0612% 46.9388% 

PART 26 53.0612% 46.9388% 

IB1 25 51.0204% 48.9796% 

IBk 25 51.0204% 48.9796% 

J48 25 51.0204% 48.9796% 

KStar 25 51.0204% 48.9796% 

Logistic 25 51.0204% 48.9796% 

nestedDichotomies.ND 25 51.0204% 48.9796% 

REPTree 25 51.0204% 48.9796% 

SimpleLogistic 25 51.0204% 48.9796% 

BFTree 24 48.9796% 51.0204% 

Decorate 24 48.9796% 51.0204% 

LMT 24 48.9796% 51.0204% 

Bagging 23 46.9388% 53.0612% 

HyperPipes 23 46.9388% 53.0612% 

RandomSubSpace 23 46.9388% 53.0612% 

MultiClassClassifier 22 44.8980% 55.1020% 

OneR 22 44.8980% 55.1020% 

Ridor 22 44.8980% 55.1020% 

SimpleCart 22 44.8980% 55.1020% 

BayesNet 21 42.8571% 57.1429% 

Dagging 20 40.8163% 59.1837% 

Grading 20 40.8163% 59.1837% 

JRip 20 40.8163% 59.1837% 

MultiScheme 20 40.8163% 59.1837% 

RacedIncrementalLogitBoost 20 40.8163% 59.1837% 

Stacking 20 40.8163% 59.1837% 

StackingC 20 40.8163% 59.1837% 

UserClassifier 20 40.8163% 59.1837% 

VFI 20 40.8163% 59.1837% 

Vote 20 40.8163% 59.1837% 

ZeroR 20 40.8163% 59.1837% 

RandomTree 18 36.7347% 63.2653% 

OrdinalClassClassifier 17 34.6939% 65.3061% 

Table 7.2 Summary List of WEKA's Successful Classification Schemes 

For speech as data, the results prove the success of MFCC as an approach to 

representing speech items - phonemes in the case of this thesis. Storage of speech using 

this methodology may result in the reduction of the size required to store speech, since 

speech has intensive data that should be recorded. MFCC reduced the size of the data 
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The comparison between the training times required by WEKA and ML/RFL-

Based Net recognition models generated by RFL4ASR shows that the time required for 

training recognition model of type ML/RFL-Based Net was obviously longer than that 

of WEKA's.  

7.4 Discussion 
DM methods provide good tools for the classification of huge data. The ability to 

deal with huge data with a view to extracting classification models in terms of prediction 

or description have led to their widespread use. This confirmed record of achievements 

with applications speaks for itself. The DM classification methods, which usually lack 

the ability to deal with true uncertainty, frequently produce a set of shortcomings (listed 

in Section 2.4). Note that current classification methods are mainly based on either crisp 

or fuzzy logic.  

In fact, Type-1 fuzzy methods have proven useful in employing behaviours and in 

judging them as well. Classification models of DM are discrimination systems that have 

to deal with uncertain understanding of these data given by imprecise description. In 

other words, DM classification methods should be able to tackle the drawbacks caused 

by imprecise description. Type-2 methods are more effective in dealing with uncertain 

data. However, they currently entail coping flexibility and simplicity to the computation 

required by classification models since these models are intended to process huge data. 

Developing a fuzzy approach that implements this new flexible and simple computation 

method represents a significant, non-trivial challenge. The prize from such effort would 

be noteworthy for sure. Thus, this thesis comes up with the definition of RFL. The field 

of DM based on RFL will open the door for the application of RFL in the commercial 

and industrial sectors. Developing, implementing, and evaluating RFL classification 

approach was the central objective of this thesis.  

The investigation of the practical results reported in this thesis clearly shows that 

providing RFL to a DM system can help improve the performance of a classification 

system. This is confirmed by the performance enhancement obtained by the computation 

model introduced in this thesis. In addition to accuracy, the other factor that determines 
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the effectiveness of the RF approach is the ability of the RF-based classification 

approach to capture new explanation of the data whenever information is available about 

this new explanation. However, the comparative achievements evolved should be 

addressed. 

It is good to understand, in particular, why ML/RFL-Based Net is time consuming. 

One would wish less training time of ML/RFL-Based Net. However, there are two 

aspects of this question. The first, ANN itself is a time consuming computational model. 

This is a principal shortcoming that has been recorded in this concern. Due to the nature 

of ML/RFL-Based Net as a complex ANN, composed of hierarchically organised 

backpropagation ANN, the time required for training recognition model of ML/RFL-

Based Net type was obviously longer than that of WEKA. The second is that the 

implementation of ML/RFL-Based Net has been carried out using Matlab, which is a 4th 

generation language as compared to WEKA algorithms, which have been implemented 

using Java. This fact highlights the need to develop a new computation model that works 

according to RFL approach by using a lower level programming language than Matlab. 

Part of this development is the defining of new algorithms for training ML/RFL-Based 

Net. Another drawback of ANN, which appears also in ML/RFL-Based Net, is the 

designing of ANN. As it has been shown in Table 7.2 many architectures of ML/RFL-

Based Net have been investigated until the best (namely MSAyad5) is reached. 

However, it is still difficult to achieve a perfect architecture for each ANN in ML/RFL-

Based Net (To be precise, hidden layers pose a problem). It is important to consider the 

effects of the size of the training data on the results.  

The choice of the complex-ambiguity data, for the experiments presented in this 

thesis, reflects the challenges of DM stated in Section 2.4 earlier (Table 7.1 illustrates 

those certain properties exist in the used speech data). Furthermore, the data involve 

phonemes produced by males and females of different accents and different 

circumstances of a speech. This means that the phoneme recognition performance of the 

classification model of type ML/RFL-Based Net would be largely determined by its 

ability to recognise phonemes. Despite these advantages, the testing data also have one 

major shortcoming, which may have adversely affected the results obtained from the 
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ML/RFL-Based Net classification model. The amount of training data is relatively small 

in comparison to the data that might be produced to WEKA. The data were minor in size 

to allow for faster turn-around time during stages of training and development of the 

testing of ML/RFL-Based Net. In particular, WEKA classification machines are able to 

handle bigger size data in lesser time. In retrospect, it is clear that the experiments 

conducted on 49 data items in this thesis would have required more effort to construct, 

and more time to run had they been performed on these TIMIT source phonemes. On the 

other hand, it is entirely possible that the relative performance gains, observed by the 

various different instances of ML/RFL-Based Net, would have been greater if the system 

had had the benefit of additional training data. Unfortunately, this belief cannot be 

confirmed unless ML/RFL-Based Net is to be tested with a larger data size of those 

properties listed in Table 7.1.   

 In this thesis, the ML/RFL-Based Net classification model utilised techniques, 

which were developed and refined for the task of multi-classification of input phonetic 

data. While the techniques of the standard classification model have been under 

development for years, these same techniques may not be the most effective techniques 

for complex-ambiguity data. Any classification model aims to differentiate between 

different items. Based on that differentiation, either a descriptive or a predictive model is 

to be built. The purpose of the RFL based classification model, presented in this thesis, 

is mainly designed to build up a predictive model that is able to classify complex-

ambiguity data. This difference between the traditional DM models and the proposed 

ML/RF based model is propelling our expectation towards new improvements of the 

capabilities of the DM classification approach. 

The choice for using the technique of phoneme error rate (correctness term in 

RFL4ASR IDE) as the decision metric in this thesis should be discussed. The technique 

of calculating phoneme error rate is the standard evaluation metric for many phoneme-

level recognition tasks as a method of evaluation. Because the RFL based techniques 

introduced in this thesis are designed around the classification (recognition of 

phonemes) model, the phoneme error rate metric could be more useful for error analysis.  
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It is sensible to question whether an analysis of the RFL approach presented in this 

thesis on the task of phoneme recognition would have been profitable on other data type 

or not. Actually, this thesis started with the aim of using DM technique for speech 

recognition. However, this aim was slightly shifted because the preliminary 

investigation of DM problems leads to define RFL as a method to encounter the 

classification of complex-ambiguity data (like speech data).  

Finally, it is worth discussing the choice of selecting IDE technique to develop the 

case study of this thesis, which is RFL4ASR. Actually, traditional software architectures 

have fallen by the wayside, replaced by object oriented (class-based) architecture 

consisting of data acquisition portion and processes developer. With Matlab’s IDE, 

implementation becomes easier than traditional ones since it provides many library 

functions, which are able to define the structure, train and simulate or test an ANN. 
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Chapter Eight 

Conclusions and Future Work 

8.1 Introduction 
A careful study of data mining and analysis of classification approaches towards 

creating data models underscores a number of shortcomings. This thesis has found out 

that these shortcomings share one reason that is complex ambiguity. While type-2 fuzzy 

logic is already defined to handle such problems, this thesis gives a clearer definition for 

complex ambiguity hence found a case that is not considered by type-2 FL. This thesis 

provides also a new method to quantify the membership of an element to a set under 

condition of complex ambiguity. Thus, the research has worked on an atomic level of 

classification, which is novel membership value set, rather than crisp and fuzzy ones. 

This novel membership value set is called Relative-Fuzzy, along with  functions to 

calculate this new membership value. A comparison between type-2 FL and the defined 

RFL is presented to show the progression made in handling the uncertainty using RFL. 

In addition, a novel computational model for classification has been developed, which 

works according to the defined RFL. This computational model is called ‘ML/RFL-

Based Net’. A comparison between traditional HNN and the proposed ML/RFL-Based 

Net is given. Last but not least, a case study on the new membership value and new 

computational model has been presented by this thesis, which is a prediction 

(classification) model for speech recognition. Due to its properties, speech is used as the 

data by which the novel computational model, as proposed in this thesis, would be 

tested.  Thus, a novel automatic speech recognition model, based on the relative-fuzzy 

principle of DM, has been defined.  

In this thesis, the need for a new RF membership value is underlined, which is the 

quantification of description of belonging of an element to more than one set at the same 

time. The suggested RF membership value set presents a new view and new approach to 

handle ambiguity (a type of uncertainty) belonging of an element to a multiple set. RFL 
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is based on the understanding of 'possible worlds' logic. Principally, each set of numbers 

is generated via a function. Therefore, this set of membership values are to be generated 

via two separated functions as shown in Chapter Four.  

Since RFL is new, no previous RFL based computational model or system is 

defined. Actually, the definition of the relative-fuzzy membership function makes the 

definition of computation model easy. Chapter Five suggests the novel ‘ML/RFL-Based 

Net’ computation model that uses Relative-Fuzzy principle in its work. 

The proposed ‘ML/RFL-Based Net’ computational model is used to create a 

speech recognition model. The selection of speech as a data for testing this thesis work 

is due to the nature of the speech itself, which could be affected by many physiological 

and psychological causes. The property of speech signals as data is that no speech item 

(phoneme, word ….etc) comes with the same values (representation) all the time. This is 

what makes the number of the forms for each speech item unlimited (huge data). Hence, 

complex-ambiguity property of speech data provides the challenge of DM defined in 

Section 2.4 of this thesis. It is clear from this property of speech that it is impossible to 

define a unique value (as a threshold) for each speech item in order to be used for 

classification (recognition) purposes. So, it is impossible to make a classification by 

using comparison in the sense of identical matching (crisp principle). On the other hand, 

the use of fuzzy comparison would be more suitable, even though a need for other 

techniques to enhance the performance of fuzzy system is essential.  

A novel Automatic speech recognition system based on new Relative-Fuzzy 

approach has been developed using the code generation strategy (a 4th generation 

technique of programming) as described in Chapter Six. RFL4ASR IDE system presents 

a side novelty of this thesis, which is the extension of the IDE principle. In that, it 

illustrates the ability to develop IDE tool for specific purpose programs rather than 

general-purpose programs as in its usual definition. Such a property can be useful 

toward improving current programming development tools, like visual programming 

tools that gets use of object oriented paradigm (OOP).   
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8.2 Conclusions 
1. As data becomes more meaningful and increase in complexity, variety and amount, 

there is a great need for developing new processing techniques that can deal with 

such a revolution in data property. The development of RFL will provide the 

capability of handling better linguistic uncertainties. This thesis successfully defines 

a new processing approach for the classification of multi-meaning, multi syntax data 

rather than using traditional techniques, most of which have been created some time 

ago when data and information technology were both simpler than they are now. 

This classification technique could be described as multi-semantic classification. 

2. Applying the ‘point of view’ principle of possible worlds as a modal logic to type-1 

fuzzy set produces one of the most interesting results of this thesis, which appears as 

Relative-Fuzzy Logic. Since it is fuzzy, RFL may answer the well-known 

contradictory phrase paradox of Pythagoras, as well as Bertrand Russell's paradox, 

both of which highlighted the limitation of classical logic. Relative-Fuzzy also 

improves Type-2 fuzzy logic by producing a new explanation of the uncertainty by 

using the notion of both propositions and sets further to other improvements as 

shown by the comparison made between Type-2 FL and RFL. 

3. The Relative-Fuzzy concept can be used for the quantification of concepts in the 

shadow of point of view. This gives adaptability feature to software. There are a 

number of applications where the adaptive property is required, in which this logic 

may play an important role, such as Robotics, Natural Language Processing (NLP), 

and control systems of machines under changeable environments. 

4. The definition of RFL raises the level of knowledge that the computer can deal with, 

current inference algorithms of crisp and fuzzy logic are both used to handle 

knowledge, while RFL brings the computation model along with wisdom.  

5. Traditional computation is based on crisp logic, and neurocompution uses fuzzy 

logic. Relative-Fuzzy principle may open the way to a new type of computation, 

which is an extension of neural computation, that may be called multi-level 
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neurocomputing. Its aim is mainly to deal with the problem of many-to-many 

ambiguity and multi-meaning of data in the DM field. Hence ML/RFL-Based Net is 

a programming tool that has been designed and implemented in this thesis to 

support multi-level neurocomputing. A comparison between ML/RFL net and the 

traditional HNN shows the sort of improvements that could be made to enhance the 

design and the computation approach of HNN.  

6. Extending the principle of IDE to include development of specific-purpose 

programs have been used to develop RFL4ASR. As it is defined, standard IDE 

contains those components used for developing general-purpose programs, which 

are not suitable for a specific purpose programs (like ASR). Of course, such use 

requires redefinition of IDE software in terms of its contents such that it fits to 

specific programs. 

7. The feature presented by data mining, which is the ability to create a processing 

model (either descriptive or predictive), could be used in the constitution of a new 

paradigm in programming. The researcher suggests 'Computer Aided Programming 

– CAP' as a name for it. Actually, this ability opens the door for developing a new 

programming approach that the computer itself will at least help create programs. 

8. The ability to add knowledge to the already existing one leads to enhance and 

strengthen the ability of the already running system. In that, it will make the next 

generation of programs automatically adaptive software to new environment 

without loosing the ability of utilising its previous knowledge. In other words, it will 

lead to the creation of mechanisms to allow the system to adapt to individual experts 

decision-making. Such a system would truly be a smart adaptive fuzzy expert 

system. This ability also provides the non-algorithmic solutions, i.e. ANN, a new 

property, namely 'inheritance'.   

9.  Since the principle followed in creating RFL4ASR speech recognition system in 

this thesis is based on multi knowledge, it is possible to develop one speech 

recognition system that is able to deal with multiple languages. Such a system gives 
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a new type of ASR, which is 'Multi-Language ASR', to the already defined types of 

ASR. 

10. Speech data is very variable for various reasons. This makes the computation of 

speech recognition highly difficult when using one computation approach, 

especially in terms of accuracy. The currently working ASR systems have been 

constructed by using hybrid techniques that are a mix of more than one computation 

technique to produce a successful ASR.  

8.3 Future Work 
There are many difficulties in processing algorithms, especially classification 

algorithms, which traditional techniques have failed to address satisfactorily. It is a 

generally held belief, however, that these problems may have solutions in the growing 

field of Data Mining. RFL and ML/RFL-Based Net, both resulting from the present 

research, are largely inspired by this promise. In addition, the past decade has seen a 

remarkable growth in the theory of fuzzy logic systems in Data Mining. One reason of 

this interest has been the realisation that deterministic mathematical models with little 

scope for freedom can generate extremely complex behaviour. Thus, data with 

complicated uncertainty may be well processed by the relative approach of computation, 

which is presented here as Relative Fuzzy.  

The research handled by this thesis can be enhanced by further investigation and 

practical implementation if the following factors are taken into consideration: 

1. Apply further study to RFL with a view of establishing new axiomisation and 

inferencing approaches that integrated with the mathematics of RFL.  

2. Although three comparisons were made in this thesis (between RFL and type-2 FL 

in Chapter Four, between ML/RFL-Based Net and HNN and RFL in Chapter Five, 

and between WEKA and RFL4ASR DMM in Chapter Seven), additional evaluation 

study of all these approaches is suggested as a future work. Furthermore, RFL 

needs detailed evaluation study to rank it among the other approaches of handling 

the uncertainty in DM.  
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3. Multi-layer Neurocomputing: Traditional computation theory, based on crisp logic, 

and Neurocomputing, which follows fuzzy logic, have inspired studies bridging the 

gap between mathematical theory and computation techniques, making these 

computing approaches applicable to various areas. Likewise, there is need to study 

a new type of computation based on Relative Fuzzy. Multi-layer Neurocomputing 

aims to define techniques for building computation models to solve problems with 

a certain type of data (i.e. multi-meaning data in particular). Such studies will 

extend the ability of current computational approaches to be able to handle the 

revolutionary ‘data’ itself.  

4. Using Relative Fuzzy approach in new applications: This study uses Relative Fuzzy 

approach and the programming tool based on it in the ASR system. Actually, there 

are many areas of application that the Relative Fuzzy approach could be applied to, 

especially those having several meanings in their data. Examples include 

Information Security, NLP, Programming Languages processors (compilers, 

interpreters etc.) and databases. Defining programming tools that operate according 

to relative fuzzy approach are very important to some computing areas including 

Data Mining. 

5. Speech unit used in recognition: Speech recognition based only on phoneme units 

will not be enough. Phonemes will however be good essential units for the 

enhancement of larger speech units - for example, spoken words that are more 

interested in application, or even spoken statements. This could extract new types 

of application that specifically distinguish different languages and improve 

recognition. Relative fuzzy techniques will allow the merging of different types of 

data and classification problems, as well as the inclusion of the dynamics of the 

speech signal in the model. This is likely to lead to significant improvements over 

current methods, which are inherently static. 

6. Other speech processing techniques: Speech processing (e.g., characterisation, 

compression, recognition, and analysis) could be carried out using Relative fuzzy 

approach, which is capable of being used in important speech processing aspects 
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(decomposition, representation, and characterisation). By multilayer analysis, 

speech can be decomposed into various segments, which are used in speech 

characterisation through its features. This approach could be used to develop more 

accurate speech recognition schemes. 

7. Developing IDE definition: IDE is traditionally used in developing programs. So, 

its components are the editor, compiler, linker, and nowadays GUI maker. Specific 

purpose software (like ASR) can have their own IDE, which will actually speed up 

and facilitate the development of such specific purpose programs.  

8. Computer Aided Programming: The ability of current techniques in data mining to 

create models for processing data automatically can lead simply to a new approach 

in programming that the computer itself will be a tool in program creating. Of 

course, a detailed study is required to make such paradigm mature and include all 

programming techniques and problems. 
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Appendix A 

Tools Used to Develop RF4ASR 

A.1 Matlab 
The implementation of RFL4ASR uses Matlab Ver7 / Release 14. This is because 

Matlab supports many programming schemes from simple array and metrics calculations 

up to more complicated ones such as handling ANN, and creating Graphical User 

Interface (GUI). Matlab consists of many components, such as [95, 98]: 

• Interactive environment: This feature is given through a set of graphical 

interfaces (GUI principle), which supports the fast solution of both mathematical 

and engineering problems. Such interfaces permit finding files, performing 

functions given in Matlab, viewing earlier executed commands (known as 

history), viewing data structures, and plotting. 

• The programming environment: This environment of Matlab provides two 

programming facilities, namely an interpreted scripting language and a set of 

programming support tools. Other tools used for programs development in this 

environment include an editor, debugger, and code profiler. Furthermore, 

supporting for access to source-code management system from Matlab is 

available. 

• Built-In functions: This set of functions is considered as core of the Matlab 

engine. Built-In functions provide a large number of optimised, high-level 

functions, which allow the fast prototyping of scientific and engineering 

programs. The essential engine of Matlab consists of functions for input-output 

operations, matrix manipulation, plotting, interpolation, data analysis, linear and 

non-linear methods, sound processing, and numerical solutions. 

• Toolboxes: A big number of add-on toolboxes and other components are 

available, in addition to the primary Matlab engine stated above. The importance 
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of these special purpose applications is to supply sets of different functions for 

specific purposes, such as the control system, data acquisition, symbolic 

mathematics, fuzzy logic, signal processing, neural networks, and statistics.  

• Supported platforms: Matlab can work under a variety of operating systems, like 

Microsoft Windows (with its different versions), Mac, Linux, and a variety of 

UNIX systems including Sun Solaris, Silicon, Graphics, and Compaq Alpha. 

Matlab is considered as one of the best SW tools for developing ANN based 

applications. This developing may be achieved either by its NN interactive mode, or as 

Matlab code via calling its library NN functions. Creating, learning, and testing are the 

most important among Matlab’s functions for dealing with ANN. 

 For developing an ANN, Matlab gives a number of transfer sigmoid functions like 

tansig, logsig, or purelin. The tansig, which was selected to be the transfer sigmoid 

function of both input and hidden layers in both supernet and subnets of ML/RFL-Based 

Net, is a hyperbolic tangent sigmoid transfer function that calculates a layer's output 

from its net input. Purelin is a linear transfer function.  

The library learning functions of Matlab include trainlm, trainbfg, trainrp, and 

traingd. The traingd learning function, which is backpropagation training algorithm, has 

been used to train ML/RFL-Based Net. Traingd is used to calculate derivatives of 

performance (perf) of both weight and bias variables (Xs) respectively. Each bias 

variable (X) is adjusted according to gradient descent given by: dX = lr * dperf/dX, 

where (lr) variable is the learning rate. Training stops when any of the following 

conditions occurs, the maximum number of repetitions (epochs) is reached, the 

maximum amount of time has been exceeded, or the performance has been minimised to 

the goal [95, 98]. Traingd is a network training function that updates weight and bias 

values according to gradient descent. Traingd can train any network as long as its 

weight, net input, and transfer functions have derivative functions [95, 98].  
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Appendix B 

Automatic Speech Recognition  
 

B.1 Speech Recognition by Computer 

Speech recognition model is considered part of the ASR, which can be defined as the 

independent, computer-driven dictation of spoken language into readable text in real 

time. ASR can also be defined as the computer application software which aims at the 

processing of extracting meaningful words of speech signal by using a number of 

different approaches. Speech recognition is one category of speech processing; other 

categories are [53, 79]: 

• Speaker recognition, where the aim is to recognise the identity of the speaker 

• Enhancement of speech signals, e.g. noise reduction 

• Speech coding for the compression and transmission of speech  

• Voice analysis for medical purposes, such as analysis of vocal loading and 

dysfunction of the vocal cords 

• Speech synthesis: the artificial synthesis of speech, which usually means 

computer generated speech  

• Speech compression, which is important in the telecommunications area for 

increasing the amount of info that can be transferred, stored, or heard, for a given 

set of time and space constraints 

The applications of a tool that helps people with hard hearing, to read in both modes 

of interaction (interactive and text mode), have also increased in interest long time ago. 

Historically, In 1883, the editor of the (American Annals of the Deaf) reported that 

“while the mechanical device used to automatically transcribe human speech was 

inappropriate, it is not unreasonable to hope that some instrument will yet be contrived 

that will record ordinary human utterance without annoyance or discomfort to the 

speaker" [31]. In addition, the overcoming of limitations in using technology imposed 
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greater focus on human-to-computer interaction to facilitate the use of these machines in 

various daily applications. The challenging goal was mainly the identification of how to 

improve speech recognition technology so that it could be employed to support 

enhancing human interaction with machines. These machines, which need an ASR 

system as an interface, are [44, 76, 79]: 

1. Voice Dialling 

2. Voice-Controlled Answering Machine  

3. Call Routing  

4. Airline Information System  

5. Data Entry, Form Filling  

6. Network Agent  

7. Keyboard Replacement  

8. Internet Access 

Research on speech recognition spanned in more than 40 years. It has been reported 

that SR began in 1952 by the achievement of isolated digits recognition for a single 

speaker at Bell Laboratories. SR research encompasses many other research areas like 

physics, mathematics, computer science, electrical engineering, linguistics, biology, and 

psychology. Within these research fields, related work is being carried out in different 

areas, like information theory, artificial intelligence, computer algorithms, linear 

algebra, linear system theory, pattern recognition, syntactic theory, phonetics, 

physiology, probability theory, acoustics, and signal processing [79, 87, 123, 124] 

Usually, ASR systems (which compose speech recognition model) are classified, 

according to the nature of the input data (the speech), as discrete or continuous systems, 

and as being speaker dependent, independent, or adaptive systems as follows [62, 79, 

105, 134]: 

• Isolated Speech Recognition (ISR): This class of ASR deals with developing models 

that handle split acoustic unit of speech. The speech unit here can be at word level, 

combination of words, or even phrase. This kind of ASR is sometimes known as 

discrete system 
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• Continuous Speech Recognition (CSR): deals with speech units as if they were 

linked together, i.e. deal with speech rather than speech unit. 

• A speaker-dependent system: this mode of ASR is able to recognise the speech of a 

certain person. The SR model is usually trained by recording examples of a certain 

person's spoken word, sentences, or phrases. So this type of ASR could be used for 

recognising people via their speech (although this technique for identifying people is 

not dependent due to the possibility of speech falsification).   

• A speaker-independent system: this type of ASR does not require certain person 

speech as training data; instead, the training data could be the speech of different 

people. It is obvious that this mode of SR is used for speech (rather than speaker) 

recognition.  

• A speaker adaptive system: in which ASR is developed to respond to the 

characteristics of new speakers.  

CSR provides a more difficult task than that of ISR system for too many technical 

reasons. Comparing Speaker-independent and Speaker-dependent systems, the latter is 

considered simpler than the former from development point of view and from its highest 

recognition accuracy also. This property has resulted in focusing on speaker-dependent 

isolated word of limited vocabulary by early ASR systems [10, 21, 44, 105, 123, 134]. 

Towards the end of 1950s and the early 1960s, speech and language processing had 

been obviously separated into two paradigms namely, symbolic and stochastic. The 

symbolic concept took off from two types of research work. The first was the formal 

language theory and generative syntax of Chomsky and others. The second was the work 

of many linguists and computer scientists on parsing algorithms, initially top-down and 

bottom-up, and then via dynamic programming. The stochastic paradigm took hold 

mainly in departments of statistics and electrical engineering. It should be noted here 

that the term stochastic refers to the process of creation a sequence of non-deterministic 

selection from among sets of alternatives. They are non-deterministic for that the picking 

during the recognition process is governed by the characteristics of the input, and are not 

specified in advance [62, 105, 124]. 



  164

Currently, probabilistic and data-driven models become quite standard throughout 

Natural Language Processing (NLP) and its related ASR. Therefore, the algorithms for 

part-of-speech-tagging, resolution, parsing, reference and discourse processing are all 

starting to use probabilities and to utilise evaluation methodologies, which are rented 

from SR, and information retrieval fields. Hence, the current ASR system uses mainly 

probabilistic models to represent a series of sounds. The current probabilistic model used 

in ASR is Hidden Markov Models (HMM), especially for words. Aiming at achieving a 

more accurate ASR system, a new type of models is used, i.e. language model, to get the 

attribute of combined certain words, and to eventually achieve the improvement of 

context-based recognition [3, 62, 105, 124].  

B.2 Front-End (Feature Extraction Module) 
Continuous speech can be defined as a set of complicated audio signals. It is difficult 

to reproduce them artificially. Not all speech signals are voiced. Actually, they are 

generally considered as voiced, unvoiced, and some times a combination of the two. 

Talking about the voiced sounds, they consist of an essential frequency called 

fundamental frequency (F0), and many harmonic components that are produced by the 

vocal cords. These voiced sounds are to be modified by a vocal tract which creates a 

formant (pole), and occasionally antiformant (zero), frequencies. As a property, each 

formant frequency has its own amplitude and bandwidth. Sometimes it is difficult to 

define some of F0's parameters correctly. Generally speaking, the fundamental 

frequency and formant frequencies are probably the most important concepts, which are 

defined in speech processing [51, 52, 92, 105, 107, 132]. 

A discrete time model that simulates the process of generating and modifying speech 

signal is depicted in Figure B.1. The unit of impulse train generator is used to simulate 

vibrations resulting from the vocal cords. This generator creates pulses p at a pitch 

period. The airflow of unvoiced speech can be seen as a white noise created by an 

appropriate random noise generator. The discrete series, produced by impulse train 

generator is multiplied by an amplitude value of the signal. This amplitude value stands 

for the loudness of human speech. The human vocal tract is artificially simulated by 
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energy output concerned to be from each individual filter. The importance of the set 

of energy values at each time interval (frame) is that it represents an N-dimensional 

feature vector. The prototype of a speech utterance is to be defined by time variation 

of these N-dimensional feature vectors. Broadly speaking, there are two approaches 

to space the band pass filters that are either linearly approached at low frequencies 

(below 1000 Hz), or logarithmically at high frequencies. Finally, ASR research 

works reported that 13 filters spaced along a critical-band frequency scale (or bark 

scale), are enough for high recognition accuracy, and that using 15 filters spaced 

uniformly in frequency give the same result as critical-band filters in a template 

matching method of ASR [27, 97, 107, 130]. 

• Linear Prediction Coding (LPC): The coefficients of linear prediction coding (LPC) 

are capable of modelling the spectral envelope well, and are broadly used. The 

principle of using LPC for modelling speech wave is that a given speech sample 

(stationary) can be approximated as a linear combination of past speech samples. For 

a short gap, (say M samples of speech), the coefficients of LPC are to be computed 

to yield an N-dimensional feature vector, where N equals p (which is the degree of 

the model). This vector is usually taken to be (8 to 14). Finally, the time variation of 

these feature vectors defines a pattern for the speech sound. The frequencies of 

Formant and their bandwidths can be extracted from the transfer function of the 

vocal tract by using peak picking procedure. Computing the Fast Fourier 

Transformation (FFT) over the set of LPC parameters and taking the inverse of the 

result yield the transfer function of the vocal tract [2, 77, 78].  

• Cepstral Parameters (homomorphic model): There are three defined types of 

cepstral parameters, which are used in the homomorphic model of speech 

recognition systems. These types are Linear Frequency Cepstral Coefficient (LFCC), 

Mel-Frequency Cepstral Coefficients (MFCC), and LPC-derived Cepstral 

Coefficients (LPCC). Following is an abbreviation of each [2, 77]: 

 The LFCCs are computed from the log-magnitude Discrete Fourier Transform 

(DFT) directly. 
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 In mel-frequency scale, the DFT magnitude spectrum is frequency-warped to 

follow a critical band scale (mel-scale) and amplitude-warped (logarithmic 

scale) before computing the inverse DFT parameters. Therefore, Q band pass 

filters are used to cover the required frequency range. For more, see [24, 131]. 

 The LPCCs are obtained from the LPC parameters directly  

The set of N parameters (LFCCs, MFCCs, or LPCCs) constitute an N-dimensional 

feature vector. The time variation of these feature vectors defines a pattern of a 

speech utterance. 

• Articulatory Parameters: The position of the tongue, lips, jaws, and the velum can 

be used to define another set of features for describing speech sounds. These features 

come in terms of parameters giving the position of each of the above organs as 

functions of time. These parameters can be estimated from the speech signal. The 

theory of speech production, based on distinctive areas along the vocal tract, has 

been advanced to introduce a new concept in relation to acoustic-articulatory-

phonetics. By getting the inversion of acoustic-articulatory, the function of area can 

be used as an articulatory parameter for speech recognition [17, 51, 116] . 

• Auditory Model: One more approach for measuring a feature of speech waveform is 

the model of auditory utilisation. The auditory model concerns those psychophysical 

aspects of critical bandwidth, loudness, timbre, and subjective duration. Another 

design, which tries to detain the time-varying nature of the auditory model by 

combining the psychophysical critical-band and loudness estimation with a ring-rate 

model, has enhanced the accuracy of the speech recognition model compared to 

earlier method of filter-bank of calculating the speech feature measures [10, 21, 

130]. 

• Fractal Dimension of Speech Signal: In this approach of speech wave representation, 

a spectral representation of speech unit based on fractals is to be defined. The fractal 

principle is used to measure the degree of irregularity or roughness of complicated-

structure objects, which is called fractal dimension D. This dimension is used to 
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three steps. They are feature-extraction, segmentation & labelling, and word-

level recognition. The Acoustic-phonetic recognition system scans the input of 

spectral patterns (such as the formant frequencies) required to distinguish 

phonemes from each other. There are acoustic-phonetic interpretation rules that 

are used for interpreting those groups of extracted features. These rules 

categorise label phonemes and establish positions of phoneme end and the start 

of the next phoneme (segmentation). An uncertainty regarding to potential 

phoneme labels results from high level of acoustic similarity among phonemes 

collective with phoneme variability resultant from coarticulation property and 

other sources. Thus, the segmentation and labelling phase gives a set of 

hypotheses. These hypotheses can be organised into a type of structure like 

phoneme lattice, decision tree, or any other structure. As soon as the process of 

segmentation and labelling is completed, the system looking through the 

vocabulary of application for words similar to the phoneme hypotheses. The term 

best matching a sequence of hypotheses is identified as the input item [105, 120]. 

• Template Matching: This form of pattern recognition is based on a processing 

unit called template. The template is actually a set of feature/parameter vectors of 

the speech data. Each template contains speech waveform of a word or phrase, 

thus it stores these speech units separately. These spoken inputs of end users are 

organised and structured into templates prior to performing the recognition 

process. Comparison of unrecognised input with the stored template is to be 

applied, and the most closely stored template matches to the incoming speech 

pattern is identified as the input word or phrase. The recognition task, using 

template matching, is performed at word level, and it includes no reference to the 

phonemes of the word at all. Template matching process requires a frame-by-

frame comparison of spectra patterns to generate an overall similarity judgment 

(usually called distance metric) of each template. Note that due to the nature of 

the speech signal itself (individual utterances of the same word, even by the same 

person, often differs in length), comparison between templates of speech units is 

expected to produce an approximate (not identical) match. Regardless of the 



  170

cause, it should be a way to decrease temporal differences between templates so 

that both fast and slow state of utterances of the same word will not be 

recognised as different words. This process of decreasing the length of temporal 

/word is called temporal alignment. Dynamic Time Warping (DTW) is pattern-

matching technique, which is considered the most commonly used approach for 

performing temporal alignment in template matching. Most ASR systems, which 

use template-matching approach, should have a predetermined threshold of 

acceptability. The function of this threshold is to avoid including noise and 

words in vocabulary application, thus making sure of their correct identification 

as acceptable speech inputs. Template matching approach of speech recognition 

has been reported as a very good approach with small vocabularies of 

phonetically distinct items. Unfortunately, this is not true with applications of 

large vocabulary. This approach has difficulty in making fine distinctions 

necessary for recognition in such larger vocabulary, as well as recognition in 

vocabularies containing similar-sounding words called confusable words. Of 

course, it is not expected to have small vocabulary since one stored template, at 

least, is required for each word in the application vocabulary. One more problem 

is that the linear expansion of storage requirements increases as the size of 

vocabulary grows. This, in turn, results in a comparable increase in 

computational complexity [13, 52, 105].  

• The Stochastic Processing (HMMl): Stochastic processing demands the creation 

and storage of models of each of the items to be recognised, as much as in the 

template matching technique. This is the only similarity that exists between these 

two approaches. Beyond this point, the two approaches diverge. Unlike template 

matching approach, stochastic processing has no direct matching between stored 

models and input models. Alternatively, it uses complex statistical and 

probabilistic analysis. The statistical and probabilistic analysis is best understood 

by investigating the network-like structure in which those statistics are stored, 

namely the HMM, which is a Probabilistic Finite State Automata (PFSA) [120, 

127]. 
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• ANN: ANN used for ASR applications can be classified in terms of ANN's 

ability to handle data of time-dimension and their inclusion of non-network 

structures. The ANN of static classification focuses on the frequency domain of 

speech waveform, but rarely attempts to handle temporal information. ANNs 

usually use stationary unit of speech (pre-segmented). The segmentation of 

speech is often performed manually, and the speech input would be in terms of 

speech items (units) rather than as time sequences. Researchers reported that the 

biggest problem of using ANN in ASR system is time alignment, due to the static 

nature of the patterns (input data structure of ANN) [105]. They also showed that 

there is an ability to use ANN with dynamic pattern of speech via certain type of 

ANN called current networks. These current networks analyse slices or streams 

of data of a real speech and are usually referred to as dynamic classification 

networks. Current networks got such name because they deal with processing 

components of time dimension speech, and are concerned with creating systems 

related to operational speech understanding. Time alignment unit is attached to 

some dynamic classification networks as part of the network architecture. An 

example of these networks is the Time Delay Neural Network (TDNN) 

developed at Carnegie Mellon University (CMU), which is one of the most 

popular of these networks. The feed forward network structure, with a sigmoid 

transfer function, was used to build TDNN, while backpropagation approach is 

used to train it. The TDNN was trained and tested to recognise phonemes b, d, 

and g. The TDNN was constructed by using module methodology to enhance 

extensibility, where a full TDNN is to be constructed from many modules. A few 

researchers to capture the overlapping temporal information in speech have used 

Recurrent Neural Networks. Recurrent networks add information to the analysis 

of the current slice about prior time slices. Recurrent Neural Networks are able to 

process shifts of time without requiring the creation of multiple copies of speech 

slices, like time delay networks. This ability makes recurrent networks natural 

candidates for real-time analysis of speech. Recurrent networks have shown 

reasonably good performance on small, well-defined tasks [12, 13, 33, 105]. 
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Reference to Section 2.2.1 and Section 4.2 of this work for more information 

about ANN itself might be useful. 

• Artificial Intelligence (AI) using Expert System (ES): Many researchers have 

investigated and used ES approach of AI for developing ASR systems. As a 

principle, ES approach requires knowledge gathering (in ASR application, 

knowledge is related to speech, speaker, and other topics). Knowledge could be 

complex and have multi-resources, which should be abided by the problem at 

hand. As an example, the AI approach to segmentation and labelling would be to 

augment these different knowledge sources [105]:  

 Acoustic knowledge – facts concerning the identity of sounds (predefined 

phonetic units) on basis of spectral measurements and presence or absence 

of sound features 

 Lexical knowledge – that is combining acoustic proof to suggest words, as 

specified by a dictionary, which maps sounds into words, or equivalently 

decomposes words into sounds 

 Syntactic knowledge – the grouping of words with a view to forming strings 

that are grammatically correct in accordance to a language model, such as 

phrases or sentences  

 Semantic knowledge – is the job of understanding the task area to be able to 

validate sentences or phrases, which are consistent with the task being 

performed or consistent with previously decoded sentences. 

 Pragmatic knowledge – inference ability necessary in resolving ambiguity of 

meaning based on ways where words are generally used. 

• Hybrid Systems: Several authors have shown that the output of ANNs used in a 

classification mode can be interpreted as estimates of posterior probabilities of 

output classes dependent on the input to HMM. A combination of ANNs and 

HMMs into what is now referred to as hybrid HMM/ANN speech recognition 

systems has thus been proposed. To derive probability, ANN has several 

potential advantages over conventional techniques [13, 37, 110]: 
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 Enhanced model accuracy: The estimation of probabilities as calculated by 

ANN does not involve elaborated assumptions related to the structure of the 

statistical distribution that is going to be modelled. Yet, ANN's acoustic 

models are more accurate. 

 Availability of contextual information: For an ANN estimator, multiple 

inputs can be used from a range of speech frames in which the ANN will 

learn something about the correlation linking the acoustic input data. This is 

not similar to ordinary approaches, which suppose that consecutive acoustic 

vectors are not correlated. No doubt, that such assumption is wrong. 

 Increased Discrimination: ANNs can easily hold discriminated training. In 

the training phase, the speech frames that characterise a given acoustic item 

are going to be used for training the related HMM to recognise these speech 

frames, and for training the other HMMs to reject them. 
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Appendix C 

The Matlab Code of RFL4ASR 
 

C.1 Introduction 
RFL4ASR consists of functions and data files. In order to work with it, its folder and 

files should be created first according to the structure illustrated by Figure C.1. Then 

from Matlab interactive screen, simply by using matlab’s command cd, change the 

active directory to RFL4ASR and then issue the command project1. 

 

Figure C.1 RFL4ASR Files and Folders 
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C.2 The GUI 
function varargout = project1(varargin) 
 
% PROJECT1 M-file for project1.fig 
% PROJECT1, by itself, creates a new PROJECT1 or raises the existing 
% singleton*. 
% 
% H = PROJECT1 returns the handle to a new PROJECT1 or the handle to 
%     the existing singleton*. 
% 
% PROJECT1('CALLBACK',hObject,eventData,handles,...) calls the local 
%           function named CALLBACK in PROJECT1.M with the given input 
%           arguments. 
% 
% PROJECT1('Property','Value',...) creates a new PROJECT1 or raises the 
%           existing singleton*.  Starting from the left, property 
%           value pairs are applied to the GUI before  
%           project1_OpeningFunction gets called.  An 
%           unrecognized property name or invalid value makes  
%           property application stop.  All inputs are passed to 
%           project1_OpeningFcn via varargin. 
% 
%  *See GUI Options on GUIDE's Tools menu.  Choose "GUI allows only one 
%   instance to run (singleton)". 
% 
 
% See also: GUIDE, GUIDATA, GUIHANDLES 
% Edit the above text to modify the response to help project1 
 
% Last Modified by GUIDE v2.5 02-Oct-2006 14:08:09 
 
% Begin initialization code - DO NOT EDIT 
%--------------------------------------------------------------------- 
cd C:\MATLAB7\work1\RFL4ASR; 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
                   'gui_Singleton',  gui_Singleton, ... 
                   'gui_OpeningFcn', @project1_OpeningFcn, ... 
                   'gui_OutputFcn',  @project1_OutputFcn, ... 
                   'gui_LayoutFcn',  [] , ... 
                   'gui_Callback',   []); 
 
if nargin & isstr(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 
 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 
 
% End initialization code - DO NOT EDIT 
 
% -------------------  Executes just before project1 is made visible. 
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function project1_OpeningFcn(hObject, eventdata, handles, varargin) 
 
% This function has no output args, see OutputFcn. 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% varargin   command line arguments to project1 (see VARARGIN) 
 
% Choose default command line output for project1 
handles.output = hObject; 
 
% Update handles structure 
guidata(hObject, handles); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                  U S E R   D E F I N E D   D A T A                           
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
% SETUP THE RLN 
 
SetRlnRef(handles); 
 
% SETUP THE CONTENTS OF THE PULLDOWN MENUE (TEST FILES).... 
SetPullDnMenu(handles); 
 
% UIWAIT makes project1 wait for user response (see UIRESUME) 
% uiwait(handles.figure1); 
 
%---------------------------------------------------------------------- 
% --- Outputs from this function are returned to the command line. 
function varargout = project1_OutputFcn(hObject, eventdata, handles) 
% varargout  cell array for returning output args (see VARARGOUT); 
% hObject    handle to figure 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Get default command line output from handles structure 
varargout{1} = handles.output; 
 
%---------------------------------------------------------------------- 
% -------------------- Executes on button press in pushbutton1. 
function pushbutton1_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%             T E S T I N G   A   P H O N E M E                            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
load('MLAyad'); 
load('C:\MATLAB7\work1\RFL4ASR\MLname'); 
set(handles.text4,'String',filename); 
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load('temp'); 
 
set(handles.text16,'String',correct); 
set(handles.text17,'String',uncorrect); 
% default='C:\MATLAB7\work1\MSData\Testing'; 
default='C:\MATLAB7\work1\RFL4ASR\MLData\TestingData'; 
 
files = dir(default); 
index=3; % skip the first two files of the folder(. and ..) 
 
element=0; 
 
fone{1,1}='ix' ; fone{1,2}='ixl'; 
fone{2,1}='tcl'; fone{2,2}='tcl'; 
fone{3,1}='dcl'; fone{3,2}='ixl'; 
 
x=get(handles.figure1,'UserData'); 
 
popup_sel_index = get(handles.popupmenu1, 'Value'); 
files=get(handles.popupmenu1, 'UserData'); 
TV=files(popup_sel_index+2).name; 
fn=strtok(TV,'.'); 
fl=length(fn); 
 
[vector,phnm1]=cepsMfcc(TV,default); 
 x=''; 
 for tt=1:(fl-3) 
    x=strcat(x,phnm1(tt)); 
 end; 
an = sim(Mnet,vector); 
[val1,grp]=min(abs([1]-an)); 
a= sim(net{grp},vector); 
[val2,ele]=min(abs([1]-a)); 
    
x1=fone{grp,ele}; 
    
m=strcmp(x,x1); 
if (m)correct=correct+1; 
else  
   uncorrect=uncorrect+1; 
end  
 
Err=num2str((uncorrect)/(correct+uncorrect)*100); 
Err=strcat(Err,' %'); 
 
set(handles.text18,'String',Err); 
set(handles.text16,'String',correct); 
set(handles.text17,'String',uncorrect); 
 
save('temp','correct','uncorrect'); 
 
%---------------------------------------------------------------------- 
% -------------------- Executes on button press in pushbutton2. 
function pushbutton2_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
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% handles    structure with handles and user data (see GUIDATA) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                Creating Refrence Data                                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
axes(handles.axes1); 
cla; 
spch2phon('Ref'); 
SetRlnRef(handles); 
 
%---------------------------------------------------------------------- 
% --- Executes on button press in pushbutton3. 
function pushbutton3_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                Creating Test Data                                     
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
axes(handles.axes1); 
cla; 
spch2phon('Test'); 
SetPullDnMenu(handles); 
 
% -------------------------------------------------------------------- 
function FileMenu_Callback(hObject, eventdata, handles) 
% hObject    handle to FileMenu (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% -------------------------------------------------------------------- 
 
function OpenMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to OpenMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
file = uigetfile('*.fig'); 
if ~isequal(file, 0) 
    open(file); 
end 
 
% -------------------------------------------------------------------- 
function PrintMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to PrintMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
printdlg(handles.figure1) 
 
% -------------------------------------------------------------------- 
function CloseMenuItem_Callback(hObject, eventdata, handles) 
% hObject    handle to CloseMenuItem (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          Loading ML/Ayad Net                       % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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MLLoading(handles); 
 
%----------------------------------------------------------------------
---- 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                         Selecting Test Phoneme                     % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% --- Executes during object creation, after setting all properties. 
function popupmenu1_CreateFcn(hObject, eventdata, handles) 
% hObject  handle to popupmenu2 (see GCBO) 
% eventdata reserved - to be defined in a future version of MATLAB 
% handles empty - handles not created until after all CreateFcns called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
; 
end 
 
% --- Executes on selection change in popupmenu2. 
function popupmenu1_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns popupmenu2 contents 
% as cell array 
%  contents{get(hObject,'Value')} returns selected item from popupmenu2 
 
% -------------------------------------------------------------------- 
function Untitled_2_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                          Creating ML/Ayad Net                      % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
MLCreatting(); 
 
% -------------------------------------------------------------------- 
function Untitled_3_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                    Creating Data for ML/Ayad Net                   % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
axes(handles.axes1); 
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cla; 
spch2phon('Ref'); 
SetRlnRef(handles); 
 
% -------------------------------------------------------------------- 
function Untitled_4_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_4 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_7_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_8_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_9_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_9 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_10_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_10 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_11_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_11 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_12_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_12 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_13_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_13 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_14_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_14 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_15_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_15 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_16_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_16 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_17_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_17 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_18_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_18 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_19_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_19 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_21_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_21 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_22_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_22 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_23_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_23 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% -------------------------------------------------------------------- 
function Untitled_24_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_24 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%---------------------------------------------------------------------- 
% --- Executes during object creation, after setting all properties. 
function listbox1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
 
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
; 
end 
 
%---------------------------------------------------------------------- 
% --- Executes on selection change in listbox1. 
 
function listbox1_Callback(hObject, eventdata, handles) 
 
% hObject    handle to listbox1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% Hints: contents = get(hObject,'String') returns listbox1 contents as 
% cell array 
% contents{get(hObject,'Value')} returns selected item from listbox1 
 
%---------------------------------------------------------------------- 
% --- Executes during object creation, after setting all properties. 
function listbox2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
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% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
; 
end 
 
%---------------------------------------------------------------------- 
% --- Executes on selection change in listbox2. 
function listbox2_Callback(hObject, eventdata, handles) 
% hObject    handle to listbox2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns listbox2 contents as 
cell array 
%        contents{get(hObject,'Value')} returns selected item from 
listbox2 
 
%---------------------------------------------------------------------- 
% --- Executes during object creation, after setting all properties. 
function popupmenu2_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
; 
end 
 
%---------------------------------------------------------------------- 
% --- Executes on selection change in popupmenu1. 
function popupmenu2_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns popupmenu1 contents 
% as cell array 
%  contents{get(hObject,'Value')} returns selected item from popupmenu1 
 
%---------------------------------------------------------------------- 
% --- Executes on mouse press over figure background. 
function figure1_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
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% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- If Enable == 'on', executes on mouse press in 5 pixel border. 
% --- Otherwise, executes on mouse press in 5 pixel border or over 
pushbutton1. 
 
% -------------------------------------------------------------------- 
function pushbutton1_ButtonDownFcn(hObject, eventdata, handles) 
% hObject    handle to pushbutton1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --------------------- Executes during object creation, after setting 
all properties. 
function figure1_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
called 
 
% -------------------------------------------------------------------- 
% --- Executes during object creation, after setting all properties. 
function listbox3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to listbox3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
% called 
 
% Hint: listbox controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
; 
end 
 
%---------------------------------------------------------------------- 
% --- Executes on selection change in listbox3. 
function listbox3_Callback(hObject, eventdata, handles) 
% hObject    handle to listbox3 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns listbox3 contents as 
cell array 
%        contents{get(hObject,'Value')} returns selected item from 
listbox3 
 
 
%---------------------------------------------------------------------- 
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% --- Executes during object creation, after setting all properties. 
function popupmenu3_CreateFcn(hObject, eventdata, handles) 
% hObject    handle to popupmenu2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    empty - handles not created until after all CreateFcns 
% called 
 
% Hint: popupmenu controls usually have a white background on Windows. 
%       See ISPC and COMPUTER. 
if ispc 
    set(hObject,'BackgroundColor','white'); 
else 
    
set(hObject,'BackgroundColor',get(0,'defaultUicontrolBackgroundColor'))
; 
end 
 
%----------------------------------------------------------------------
% --- Executes on selection change in popupmenu2. 
function popupmenu3_Callback(hObject, eventdata, handles) 
% hObject    handle to popupmenu2 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% Hints: contents = get(hObject,'String') returns popupmenu2 contents  
% as cell array 
% contents{get(hObject,'Value')} returns selected item from popupmenu2 
 
% -------------------------------------------------------------------- 
function Untitled_25_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_25 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% -------------------------------------------------------------------- 
function Untitled_26_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_26 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% -------------------------------------------------------------------- 
 
function Untitled_27_Callback(hObject, eventdata, handles) 
 
% hObject    handle to Untitled_27 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
% -------------------------------------------------------------------- 
function Untitled_28_Callback(hObject, eventdata, handles) 
 
% hObject    handle to Untitled_28 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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%          Exiting the simulator                                           
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
selection = questdlg(['Close ' get(handles.figure1,'Name') '?'],... 
                     ['Close ' get(handles.figure1,'Name') '...'],... 
                     'Yes','No','Yes'); 
if strcmp(selection,'No') 
    return; 
end 
correct=0; 
uncorrect=0; 
save('temp','correct','uncorrect'); 
delete(handles.figure1); 
 
%---------------------------------------------------------------------- 
% --- Executes when figure1 is resized. 
function figure1_ResizeFcn(hObject, eventdata, handles) 
% hObject    handle to figure1 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
%---------------------------------------------------------------------- 
% --- Executes on button press in pushbutton5. 
function pushbutton5_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton5 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
MLCreatting(); 
%---------------------------------------------------------------------- 
% --- Executes on button press in pushbutton6. 
function pushbutton6_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton6 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
 
% --- Executes on button press in pushbutton7. 
function pushbutton7_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton7 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
phon_extract(); 
 
%---------------------------------------------------------------------- 
% --- Executes on button press in pushbutton8. 
function pushbutton8_Callback(hObject, eventdata, handles) 
% hObject    handle to pushbutton8 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                         MLLoading();                                   
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
MLLoading(handles); 
 
function SetRlnRef(handles) 
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load('MLAyad'); 
load('C:\MATLAB7\work1\RFL4ASR\MLname'); 
set(handles.text4,'String',filename); 
x=0; 
set(handles.text16,'UserData',x) ; % Correct counter 
set(handles.text17,'UserData',x);  % uncorrect counter 
 
 
% -------------------------------------------------------------------- 
 
function SetPullDnMenu(handles) 
% hObject    handle to NewTestData (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
default='C:\MATLAB7\work1\RFL4ASR\MLData\TestingData'; 
files = dir(default); 
index=3; 
if length(files)>2 
    more=files(index).name; 
    while (index<length(files)) 
      index=index+1; 
      more=strvcat(more,files(index).name); 
    end 
    set(handles.popupmenu1,'UserData',files); 
    set(handles.popupmenu1,'String', more); 
end 
 
 
% -------------------------------------------------------------------- 
function NewTestData_Callback(hObject, eventdata, handles) 
% hObject    handle to NewTestData (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
MLCreatting(); 
 
% -------------------------------------------------------------------- 
function Untitled_29_Callback(hObject, eventdata, handles) 
% hObject    handle to Untitled_29 (see GCBO) 
% eventdata  reserved - to be defined in a future version of MATLAB 
% handles    structure with handles and user data (see GUIDATA) 
 
phon_extract(); 
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C.3 The Function of Calculating the MFCC 
function [cepstral,phonm]= cepsMfcc(FileName,PathName) 
 
global CCArray FilterParameters 
 
FileID = fopen([PathName '\' FileName],'rt'); 
if FileID==-1 
    errordlg('OOPS! Cannot open the specified file name...'); 
end 
 
InputPhoneme = fscanf(FileID,'%5d');  
Index=1; 
while (~ feof(FileID)) 
   InputPhoneme (Index,1) = str2num(fscanf(FileID,'%s',1)); 
   Index = Index +1; 
end 
fclose(FileID); 
 
[Row Column] = size(InputPhoneme); 
if (Row > Column)  
 InputPhoneme=InputPhoneme'; 
end 
 
% Recommonded initialization of the filter bank 
FrameRate=31.25; 
SampleRate=16000; 
SizeOfWindow = 400;          % Function of the SampleRate and FrameRate 
CCSize = 13;                 % No. of Cepestral Coefficients   
NoFilters = 13;              % Linear Filters No. = No. of CC 
FilterLog = 27;              % Logarithmic Filters No. 
AllFilters = 40;             % that is the sum of NoFilters + FilterLog 
SpacingLog = 1.0711703;        
Spacing = 66.66666666;        
LowerFreq =133.3333; 
FFTvolume = 512; 
 
Frequency =(0:NoFilters-1)*Spacing+LowerFreq; 
Frequency(NoFilters+1:AllFilters+2)= Frequency(NoFilters) * 
SpacingLog.^(1:FilterLog+2); 
 
FilterParameters = zeros(AllFilters,FFTvolume); 
FrequicesOfFFT = (0:FFTvolume-1)/FFTvolume*SampleRate; 
LowerFrequencies = Frequency(1:AllFilters); 
CenterFrequencies= Frequency(2:AllFilters+1); 
UpperFrequencies = Frequency(3:AllFilters+2); 
TrngleHight = 2./(UpperFrequencies-LowerFrequencies); 
 
for Channel=1:AllFilters          % Find Filter parameter of all 
channels in the all filters 
   FilterParameters(Channel,:) = (FrequicesOfFFT > 
LowerFrequencies(Channel) & FrequicesOfFFT <= 
CenterFrequencies(Channel)).* ... 
TrngleHight(Channel).*(FrequicesOfFFT-LowerFrequencies(Channel))/... 
(CenterFrequencies(Channel)-LowerFrequencies(Channel)) + ... 
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(FrequicesOfFFT > CenterFrequencies(Channel) & FrequicesOfFFT < 
UpperFrequencies(Channel)).* TrngleHight(Channel).* ... 
(UpperFrequencies(Channel)-FrequicesOfFFT)/(UpperFrequencies(Channel)-
CenterFrequencies(Channel)); 
end 
 
HammingWindow = 0.54 - cos(2*pi*(0:SizeOfWindow-1)/SizeOfWindow)* 0.46; 
 
if 0  
   x = .54; 
   y = -.46; 
   z = pi/SizeOfWindow; 
   windowStep = SampleRate/FrameRate; 
   HammingWindow = 2*(sqrt(windowStep/SizeOfWindow))/sqrt(4*x*x+2*y*y)* 
   (x + y*cos(2*pi*(0:SizeOfWindow-1)/SizeOfWindow + z)); 
end 
 
CCArray = 1/sqrt(AllFilters/2)*cos((0:(CCSize-1))' * (2*(0:(AllFilters-
1))+1) * pi/2/AllFilters); 
CCArray(1,:) = CCArray(1,:) * sqrt(2)/2; 
 
if 1 
  % The filter is a "Direct Form II Transposed" 
  % implementation of the standard difference equation: 
  % a(1)*y(n) = b(1)*x(n) + b(2)*x(n-1) + ... + b(nb+1)*x(n-nb) 
  % - a(2)*y(n-1) - ... - a(na+1)*y(n-na) 
 
  BeforeCalculation = filter([1 -.97], 1, InputPhoneme); 
else 
 BeforeCalculation = InputPhoneme; 
end 
SteppingWindow = SampleRate/FrameRate; 
Column = 1; 
CepsCofficients = zeros(CCSize, Column); 
 
freqresp = zeros(FFTvolume/2, Column);  
 
% Start Caculating: 
 
for i=0:Column-1 
% 1. Windowing the data using hamming window technique 
    left = 1+i*SteppingWindow ; 
    right = SizeOfWindow-1 + left; 
     
% 2. Move the windowing data into FFT order 
   FFTParameter = zeros(1,FFTvolume); 
     
% 3. Calculate the filter bank outputs from FFT parametrs 
  FFTParameter(1:SizeOfWindow)= 
            BeforeCalculation(left:right).*HammingWindow;  
  
% NOTE: Window size is 256 which may bigger than InputPhoneme data!!! 
 
% 4. Calculate the magnitude of the fft, 
    MagOfFFT = abs(fft(FFTParameter)); 
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% 5. Calculate base_10 logarithm of the product of filter parameters  
%    by FFT magnitude   , 
     
    Reduced = log10(FilterParameters * MagOfFFT'); 
 
% 6. For reducing dimensionality, calculate the cosine transform 
    CepsCofficients(:,i+1) = CCArray * Reduced; 
   end 
 
cepstral= CepsCofficients; 
phonm1 = strtok(FileName,'.'); 
phonm = strtok(phonm1,'_'); 
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C.4 The Function of Creating ML/RFL-Based Net 
% This function creats ML/RFL-Based Net of one supernet and 3 subnets 
 
function [] = MLCreatting() 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                            Initialization                               
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
clear all 
echo off 
 
InputSize=13; 
OutputSize=2; 
MOutputSize=0; 
 
Mdata=[]; 
 
 
for k=1:12  % 12 elements(phoneme)/group 
    MTarget(1,k)=1; 
    MTarget(1,k+12)=0; 
    MTarget(1,k+24)=0; 
end; 
 
for k=1:12  % 12 elements(phoneme)/group 
        MTarget(2,k)=0; 
        MTarget(2,k+12)=1; 
        MTarget(2,k+24)=0; 
end; 
for k=1:12  % 12 elements(phoneme)/group 
     MTarget(3,k)=0; 
     MTarget(3,k+12)=0; 
     MTarget(3,k+24)=1; 
end; 
T1=[]; 
for i=1:6 
    T1=[T1;1 0]; 
end; 
for i=1:6 
    T1=[T1;0 1]; 
end; 
 
  T1=[1 1 1 1 1 1 0 0 0 0 0 0;... 
      0 0 0 0 0 0 1 1 1 1 1 1]; 
   
DR2={'ixM12.txt','ixM13.txt','ixM14.txt','ixM15.txt','ixM16.txt','ixM17
.txt',... 
     
'ixlF22.txt','ixlF23.txt','ixlF24.txt','ixlF25.txt','ixlF26.txt','ixlF2
7.txt'}; 
DR5={'tclM32.txt','tclM33.txt','tclM34.txt','tclM35.txt','tclM36.txt','
tclM37.txt',... 
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'tclF42.txt','tclF43.txt','tclF44.txt','tclF45.txt','tclF46.txt','tclF4
7.txt',}; 
DR7={'dclM52.txt','dclM53.txt','dclM54.txt','dclM55.txt','dclM56.txt','
dclM57.txt',... 
     
'ixlF62.txt','ixlF63.txt','ixlF64.txt','ixlF65.txt','ixlF66.txt','ixlF6
7.txt',}; 
 
button='Yes'; 
while (strcmp(button,'Yes')) 
button = questdlg('New Sub Group?'); 
if (strcmp(button,'Yes')) 
    MOutputSize=MOutputSize+1; 
    DataFolder=uigetdir('C:\MATLAB7\work\RFL4ASR\MLData\TrainingData'); 
    files = dir(DataFolder); 
   
    % Create and Train Neural Net for a group... 
    Cindex=0; 
    Indata = [];  
    index=3; % skip the first two files of the folder(. and ..) 
 
    while (index<=length(files)) 
        more=files(index).name; 
        fn=strtok(more,'.'); 
        fl=length(fn); 
        d=fn(fl%1); 
        [vector,phnm]=cepsMfcc(more,DataFolder); 
        Indata=[Indata,vector];     
        index=index+1; 
    end; 
 
    Mdata=[Mdata,Indata]; 
 
 
    net{MOutputSize} = newff(minmax(Indata),[InputSize 10 
OutputSize],{'tansig','tansig','purelin'},'traingd'); 
     
    net{MOutputSize}.trainParam.show   = 50; 
    net{MOutputSize}.trainParam.lr     = 0.0455; 
    net{MOutputSize}.trainParam.epochs = 150000; %times 
    net{MOutputSize}.trainParam.goal   = 1e%6; 
    [net{MOutputSize},tr]=train(net{1},Indata, T1); 
 
    end ; % of Big If 
end; % of while 
 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                                    Mnet                                
% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
OutputSize=3; 
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Mnet= newff(minmax(Mdata),[InputSize 9 5 
MOutputSize],{'tansig','tansig','tansig','tansig','tansig','purelin'},'
traingd'); 
   
  Mnet.trainParam.show   = 50; 
  Mnet.trainParam.lr     = 0.0455; 
  Mnet.trainParam.epochs = 400000; %times 
  Mnet.trainParam.goal   = 1e%6; 
   
  [Mnet,tr]=train(Mnet,Mdata, MTarget); 
         
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                             Saving MS Network                          
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   
  NetName=inputdlg('Name of the Net:'); 
  save(NetName,'Mnet','net','default'); 
  msgbox('End of Training...'); 
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C.5 The Function of Loading a ML/RFL-Based Net 
function MLLoading(handles) 
cd MLNets; 
[filename,pathname,filterindex]=uigetfile({'*.mat','MAT-files'},'Pick 
an ML/Ayad Net','MultiSelect', 'off'); 
loadednet=strcat(pathname,filename); 
load(loadednet); 
save('C:\MATLAB7\work1\RFL4ASR\MLAyad','Mnet','net','default'); 
save('C:\MATLAB7\work1\RFL4ASR\MLname','filename'); 
cd '..'; 
set(handles.text4,'String',filename); 
correct=0; 
uncorrect=0; 
set(handles.text16,'String',correct); 
set(handles.text17,'String',uncorrect); 
save('temp','correct','uncorrect'); 
 
 
 

C.6 The Function of Extracting Phonemes from Spoken 
Statement 

function [] = phon_extract() 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Select, and open (for read) a spoken statement File %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
[fname pname] = uigetfile('C:\MATLAB7\work\TIMIT Data\*.phn','Choose 
file'); 
fid_phn = fopen([pname fname],'rt'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Initilize number of phonems in the selected file & eof marker %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
Phonem_Count = 1; 
EOF = 0; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Read the start sampling integer & finish sampling integer for each  
% phoneme & phoneme % 
% name up to last phoneme in the file (marked with h#)                            
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
while ~ EOF 
   start(Phonem_Count,:) = str2num(fscanf(fid_phn,'%s',1)); 
   finish(Phonem_Count,:) = str2num(fscanf(fid_phn,'%s',1)); 
   pho = fscanf(fid_phn,'%s',1); 
   phoneme(Phonem_Count,1:length(pho)) = pho; 
   if strcmpi(pho,'h#') & Phonem_Count > 1; EOF = 1; end; 
   Phonem_Count = Phonem_Count + 1; 
end 
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Read COMPLETELY the wave file fromat opposit the phoname file format 
for playing purposes % 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
  
fid_wav = fopen([pname fname(1:length(fname)-3) 'wav'],'r'); 
wav = fread(fid_wav,inf,'int16'); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Read the text file fromat opposit the phoname file format to get the 
% actual ength of the %% 
% wave file format (number of wave values) which is the second string 
% in the file          
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
fid_txt = fopen([pname fname(1:length(fname)-3) 'txt'],'rt'); 
fscanf(fid_txt,'%s',1); 
len_wav = str2num(fscanf(fid_txt,'%s',1)); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% capture the sampling integers for each phoneme in the sentence  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
start = start + length(wav) + 1 - len_wav; 
finish = finish + length(wav) + 1 - len_wav; 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Plot each phoneme in the sentence  %% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
for i=2:length(start)-1 
   plot(wav(start(i):finish(i))); 
   title(phoneme(i,:)) 
   pause(.1) 
end 
 
%%%%%%%%%%%%%%%%%%%%%% 
% Play the sentence %% 
%%%%%%%%%%%%%%%%%%%%%% 
 
soundsc(wav(start(2):finish(length(finish)-1)),16000,16); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           Phoneme Features Saving ....                          
%% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
ph_name1 = ['C:\MATLAB7\work\RFL4ASR\MLData\']; 
delete(strcat(ph_name1,'*.*')); 
for i=2:length(start)-1 
   clear pho; 
    
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% get the current phoneme name to creat a file holding phoneme name  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
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     for n=1:size(phoneme,2)  
       pho(n)=phoneme(i,n);  
     end 
    
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
   % open an output file or creat it for each phoneme  %% 
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
   ph_name = [ph_name1 pho]; 
   ph_name = strcat(ph_name,'.txt'); 
   fid = fopen(ph_name,'wt'); 
    
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
   % Save the wave sample for each phoneme %% 
   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
 
   for n = start(i):finish(i) 
      fprintf(fid,'%g\n',wav(n)); 
   end 
   fclose(fid); 
   clear ph_name; 
end 
 
 

C.7 The Function of Extracting Features of Phonemes  
function [] = spch2phon(where) 
 
% Select, and open (for read) a voiced statement File  
[fname pname] = uigetfile('C:\MATLAB7\work\TIMIT 
Data\TRAIN\DR1\FCJF0\*.phn','Choose file'); 
fid_phn = fopen([pname fname],'rt'); 
 
% Initilize number of phonems in the selected file & eof marker 
count = 1; 
eof = 0; 
 
% Read the start sampling integer & finish sampling integer for each 
phoneme & phoneme  
% name up to last phoneme in the file (marked with h#) 
while ~ eof 
   start(count,:) = str2num(fscanf(fid_phn,'%s',1)); 
   finish(count,:) = str2num(fscanf(fid_phn,'%s',1)); 
   pho = fscanf(fid_phn,'%s',1); 
   phoneme(count,1:length(pho)) = pho; 
   if strcmpi(pho,'h#') & count > 1; eof = 1; end; 
%   length(pho) == 2 & 
   count = count + 1; 
end 
 
 
% Read COMPLETELY the wave file fromat opposit the phoname file format 
for playing 
% purposes  
fid_wav = fopen([pname fname(1:length(fname)-3) 'wav'],'r'); 
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wav = fread(fid_wav,inf,'int16'); 
 
% Read the text file fromat opposit the phoname file format to get the 
actual  
% length of the wave file format (number of wave values) which is the 
second string  
% in the file  
fid_txt = fopen([pname fname(1:length(fname)-3) 'txt'],'rt'); 
fscanf(fid_txt,'%s',1); 
len_wav = str2num(fscanf(fid_txt,'%s',1)); 
 
% capture the sampling integers for each phoneme in the sentence 
start = start + length(wav) + 1 - len_wav; 
finish = finish + length(wav) + 1 - len_wav; 
 
% Plot each phoneme in the sentence 
for i=2:length(start)-1 
   plot(wav(start(i):finish(i))); 
   title(phoneme(i,:)) 
   pause(.1) 
end 
 
% Play the sentence 
soundsc(wav(start(2):finish(length(finish)-1)),16000,16); 
 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%                           Phoneme Features Saving .... 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
ph_name1 = ['C:\MATLAB7\work\' where '\']; 
delete(strcat(ph_name1,'*.*')); 
for i=2:length(start)-1 
   clear pho; 
   % get the current phoneme name to creat a file holding phoneme name 
     for n=1:size(phoneme,2)  
       pho(n)=phoneme(i,n);  
     end 
   
   % open an output file or creat it for each phoneme 
   ph_name = [ph_name1 pho]; 
   ph_name = strcat(ph_name,'.txt'); 
   fid = fopen(ph_name,'wt'); 
    
   % Save the wave sample for each phoneme 
   for n = start(i):finish(i) 
      fprintf(fid,'%g\n',wav(n)); 
   end 
   fclose(fid); 
   clear ph_name; 
end 
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