62,228 research outputs found

    Human inspired pattern recognition via local invariant features

    Get PDF
    Vision is increasingly becoming a vital element in the manufacturing industry. As complex as it already is, vision is becoming even more difficult to implement in a pattern recognition environment as it converges toward the level of what humans visualize. Relevant brain work technologies are allowing vision systems to add capability and tasks that were long reserved for humans. The ability to recognize patterns like humans do is a good goal in terms of performance metrics for manufacturing activities. To achieve this goal, we created a neural network that achieves pattern recognition analogous to the human visual cortex using high quality keypoints by optimizing the scale space and pairing keypoints with edges as input into the model. This research uses the Taguchi Design of Experiments approach to find optimal values for the SIFT parameters with respect to finding correct matches between images that vary in rotation and scale. The approach used the Taguchi L18 matrix to determine the optimal parameter set. The performance obtained from SIFT using the optimal solution was compared with the performance from the original SIFT algorithm parameters. It is shown that correct matches between an original image and a scaled, rotated, or scaled and rotated version of that image improves by 17% using the optimal values of the SIFT. A human inspired approach was used to create a CMAC based neural network capable of pattern recognition. A comparison of 3 object, 30 object, and 50 object scenes were examined using edge and optimized SIFT based features as inputs and produced extensible results from 3 to 50 objects based on classification performance. The classification results prove that we achieve a high level of pattern recognition that ranged from 96.1% to 100% for objects under consideration. The result is a pattern recognition model capable of locally based classification based on invariant information without the need for sets of information that include input sensory data that is not necessarily invariant (background data, raw pixel data, viewpoint angles) that global models rely on in pattern recognition

    Biologically inspired feature extraction for rotation and scale tolerant pattern analysis

    Get PDF
    Biologically motivated information processing has been an important area of scientific research for decades. The central topic addressed in this dissertation is utilization of lateral inhibition and more generally, linear networks with recurrent connectivity along with complex-log conformal mapping in machine based implementations of information encoding, feature extraction and pattern recognition. The reasoning behind and method for spatially uniform implementation of inhibitory/excitatory network model in the framework of non-uniform log-polar transform is presented. For the space invariant connectivity model characterized by Topelitz-Block-Toeplitz matrix, the overall network response is obtained without matrix inverse operations providing the connection matrix generating function is bound by unity. It was shown that for the network with the inter-neuron connection function expandable in a Fourier series in polar angle, the overall network response is steerable. The decorrelating/whitening characteristics of networks with lateral inhibition are used in order to develop space invariant pre-whitening kernels specialized for specific category of input signals. These filters have extremely small memory footprint and are successfully utilized in order to improve performance of adaptive neural whitening algorithms. Finally, the method for feature extraction based on localized Independent Component Analysis (ICA) transform in log-polar domain and aided by previously developed pre-whitening filters is implemented. Since output codes produced by ICA are very sparse, a small number of non-zero coefficients was sufficient to encode input data and obtain reliable pattern recognition performance

    How Does Our Visual System Achieve Shift and Size Invariance?

    Get PDF
    The question of shift and size invariance in the primate visual system is discussed. After a short review of the relevant neurobiology and psychophysics, a more detailed analysis of computational models is given. The two main types of networks considered are the dynamic routing circuit model and invariant feature networks, such as the neocognitron. Some specific open questions in context of these models are raised and possible solutions discussed

    Working Memory Networks for Learning Temporal Order, with Application to 3-D Visual Object Recognition

    Full text link
    Working memory neural networks are characterized which encode the invariant temporal order of sequential events. Inputs to the networks, called Sustained Temporal Order REcurrent (STORE) models, may be presented at widely differing speeds, durations, and interstimulus intervals. The STORE temporal order code is designed to enable all emergent groupings of sequential events to be stably learned and remembered in real time, even as new events perturb the system. Such a competence is needed in neural architectures which self-organize learned codes for variable-rate speech perception, sensory-motor planning, or 3-D visual object recognition. Using such a working memory, a self-organizing architecture for invariant 3-D visual object recognition is described. The new model is based on the model of Seibert and Waxman (1990a), which builds a 3-D representation of an object from a temporally ordered sequence of its 2-D aspect graphs. The new model, called an ARTSTORE model, consists of the following cascade of processing modules: Invariant Preprocessor --> ART 2 --> STORE Model --> ART 2 --> Outstar Network.Defense Advanced Research Projects Agency (90-0083); British Petroleum (89-A1-1204); National Science Foundation (IRI 90-00530, IRI 87-16960); Air Force Office of Scientific Research (90-128, 90-0175

    Learning viewpoint invariant perceptual representations from cluttered images

    Get PDF
    In order to perform object recognition, it is necessary to form perceptual representations that are sufficiently specific to distinguish between objects, but that are also sufficiently flexible to generalize across changes in location, rotation, and scale. A standard method for learning perceptual representations that are invariant to viewpoint is to form temporal associations across image sequences showing object transformations. However, this method requires that individual stimuli be presented in isolation and is therefore unlikely to succeed in real-world applications where multiple objects can co-occur in the visual input. This paper proposes a simple modification to the learning method that can overcome this limitation and results in more robust learning of invariant representations
    • …
    corecore