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Abstract: A pattern recognition system is described for recognizing shipbuilding parts using
artificial neural networks and Fourier descriptors. The system uses shape contour information
that is invariant of size, translation, and rotation. Fourier descriptors provide information, and
the neural networks make decisions about the shapes. A brief review of the current state of the
art is included, and results from testing show that the system distinguished between various
shapes and proved to be a valid approach.
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1 INTRODUCTION

Although some shipyards have used robots for weld-
ing steel for 20 years [1], the integration of robotic
welding presents problems. Low levels of repeatable
welds within some ships means that, although the
quality and speed of robotic welding are acceptable,
the generation of programs capable of applying welds
has proved difficult. Many welding robots work pri-
marily in ‘teach-and-playback’ mode, sometimes
using digital pens to program them [2, 3], but teach-
and-playback limits flexibility.

Although the superstructure of a ship may be
complicated, it can have a complexity of scale. A
ship’s superstructure can be a complicated object
made from a large number of simple objects. Most
are made from either metal bar (of various sizes and
shapes) or metal plate. Additional items are often cut
from metal plate. A small metal cross-beam from a
ship is shown in Fig. 1. It is 1m long, although size is
largely irrelevant within the camera’s field of vision.

A new automated welding system is being created
that uses artificial intelligence (AI) techniques to
determine where to weld these types of part.
The system will use a combination of AI techniques
to suggest weld requirements. Suggestions will be
evaluated and decisions made regarding weld(s).
These parameters will be sent to a program generator
to produce a custom robot program for the shop

floor. The whole system is shown in Fig. 2. To date,
the image capture and program generator systems
are working. A camera mounted above the assembly
line at VT Shipbuilding in Portsmouth captured
images (frames), and this paper concerns the new
image-processing and object recognition subsystems
that operate on the images. The decision module is
now under construction.

New subsystems successfully distinguished be-
tween various ship’s parts as follows:

(a) by processing shape information so that Fourier
descriptors can be extracted;

(b) by extracting descriptors;
(c) by associating sets of descriptors with training

sets and reaching decisions.

Images were broken into equal segments and the
segments represented as complex numbers by refer-
ring coordinate points to a random starting point.
Fourier descriptors were extracted by transforming
object descriptions into the frequency domain.

Since data points around the contour were
expressed as complex number values and not as
complex functions of length, the usual complex form
of Fourier series was of little use. As contours were
sampled, discrete Fourier transforms (DFTs) were
considered but were replaced by more efficient
fast Fourier transforms (FFTs). Once transformed,
then data were in the form An¼ exp (jnt)An

(0),
expressed as phase and magnitude. Here An

(0) is the
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same as |An|. The modulus of this transformed data
was considered in order to discard phase information
and, consequently, to discard operations that affected
the phase. The algorithm was Bn¼Anþ 1An� 1/A

2
1.

Descriptors were now invariant (within a small error)
for rotation, dilation, and translation.

2 BACKGROUND

Much is known about feature recognition, Fourier
descriptors, and artificial neural networks (ANNs).
Much has been completed in laboratories and simple
environments but little has been applied to auto-
mating shipbuilding processes or to practical work in
noisy environments such as shipyards. A brief review
of these areas with respect to shipbuilding is included

here to place the work in this paper into a wider
context.

2.1 Feature recognition

Recording an image of a ship’s part is simple, but
recognizing what that image portrays requires com-
prehension [4]. Feature recognition is a first step in
translating an image of a ship’s part into welding
instructions. Methods in the literature for automated
feature recognition tend to match structures identi-
fied in a part representation with some pattern in a
knowledge base, often using if–then rules [5]. A dis-
advantage is that they cannot easily deal with fea-
tures that cannot be matched with known patterns.

Pattern recognition techniques were originally posed
as statistical problems, derived from work in dis-
criminant analysis and applying Bayes theorem [6].
Studies analysing developed automatic feature recog-
nitionmethodologies are reported in references [5] and
[7] to [10], and pattern recognition based on Bayesian
networks specifically for ships is reported in reference
[11].

2.2 Fourier descriptors

Describing shapes is essential for pattern recogni-
tion. Shape description techniques can be divided
into boundary-based and region-based techniques.
Region-based techniques consider whole objects
while boundary-based techniques concentrate on
boundary lines. Boundary-based methods are more
popular because shape classifications are based on
contour features.

Many integral transforms can be used as feature
extractors, for example the general integral [12],
Mellin [13], cross-correlation [14], Radon [15], and
Fourier–Mellin [16] transforms. Fourier–Mellin de-
scriptors have tended to perform better than others
in noisy conditions (such as shipyards) but are not
translation-invariant. Properties of DFTs are analo-
gous to continuous Fourier transforms. Power spec-
tra of DFTs are invariant under cyclic translation of
the input vector. Fourier-based methods can be
applied efficiently using FFTs. That was the selected
method, and shape information was processed so
that Fourier descriptors could be extracted.

Fourier descriptors characterize object shapes in a
frequency domain. Shape-based objects can be clas-
sified using conventional Fourier descriptors, generic
Fourier descriptors, or wavelet Fourier descriptors.
Duan et al. [17] recently used Fourier descriptors for
automatic object and image alignment, combining
Fourier descriptors and iterative closest-point com-
putation in combination with a distance matrix to
detect pairs of edges and so to align images. Gen-
eralized Fourier descriptors have been described by
Smach et al. [18].

Fig. 1 Photograph of a metal bar part of a ship (1m long)
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2.3 Artificial neural networks

Previous work on active recognition differs in object
representation, information combination, and future
planning. Invariant pattern recognition is compli-
cated [12] and classification processes can be, firstly,
invariant feature extraction or, secondly, feature
classification. Feature classification can be achieved
using ANNs.

ANNs typically have inputs and outputs, with pro-
cessing within hidden layers in between. Inputs are
independent variables and outputs are dependent
variables. ANNs are flexible mathematical functions
with configurable internal parameters. To represent
complicated relationships accurately, these para-
meters are adjusted through a learning algorithm.
In ‘supervised’ learning, examples of inputs and cor-
responding desired outputs are simultaneously pre-
sented to networks, which iteratively self-adjust to
represent accurately as many examples as possible
[19].

Once trained, ANNs can accept new inputs and
attempt to predict accurate outputs [20]. To produce
an output, the network simply performs function
evaluation. The only assumption is that there exists
some continuous functional relationship between
input and output data. A general introduction to
multilayer feedforward networks has been given by
Hinton [21].

Rare uses of ANNs for object recognition in ships
are the algorithms by Pan et al. [22] and Park et al.
[23] that recognize ship noise. Recent ANN applica-
tions to other ship applications are collision force
and avoidance [24], fault prediction [25], roll stabi-
lization [26], manoeuvring and course tracking [27,
28], propeller performance, and ship control [29–31].

3 IMAGE PROCESSING

Information about shape or pattern is held within
contours, and so Fourier descriptors were applied to
the contours of shapes being classified. Figure 3
shows an edge detection image from Fig. 1.

The image was processed to produce closed line
shapes so that no lines were left open and hanging.
Contours were assumed to be closed curves in com-

plex space. An arbitrary point moving around the
contour generated a complex function f. If the point
moved around the contour at a constant velocity v,
then at every time t a complex number c was defined
such that c¼ f(t). t is not necessarily real time; it
represents a section of length around the contour.
Because contours were closed, it implied that there
existed a value T so that f(tþnT)¼ f(t), where nT was
the contour length. Therefore f can be expressed as a
complex Fourier series. This gives

f ðtÞ ¼
X1
�1

An exp
jn2pt

T

� �

and the Fourier coefficients become

An ¼ 1

T

ZT

0

f ðtÞ exp � jn2pt

T

� �
dt

For simplicity, the velocity can be such that T¼ 2p,
and

An ¼
Z2p

0

f ðtÞ expð� jntÞdt

These Fourier coefficients depend on the starting
point and differ with respect to a parameter t along
the contour, so that for each t there is a set of Fourier
coefficients of the function f(t)¼ f(tþ t). If f(t)¼
f (0)(t), then other functions around the contour will
be f(t)¼ f (0)(tþ t). Also

yðtÞ ¼
X2p
0

An expðjntÞ

The index (0) refers to a specific contour function,
and so the resulting Fourier coefficients become

An ¼ 1

2p

Z2p

0

f ð0Þðt þ tÞ expð� jntÞdt

¼ expðjntÞ 1

2p

Z2p

0

f ð0ÞðtÞ expð�jntÞdt

¼ expðjntÞað0Þ
n

Next, translations, rotation, anddilation are considered.

3.1 Translation

If An
(0) is a set of Fourier coefficients from a contour

function, then translation by a complex vector Z
results in a contour function expressed in the inverse
Fourier series

f ðtÞ ¼ f ð0ÞðtÞ þ Z ¼
X1
�1

Að0Þ
n expðjntÞ þ Z

Therefore the Fourier coefficients of the translated
contour are An¼An

(0) for n (where not equal to zero)Fig. 3 Image output from the edge detection algorithm
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and An
(0)þZ for n¼ 0. All coefficients except A0 are

invariant of translation. A0 depicts the complex vec-
tor indicating the position of the centre of gravity.

3.2 Rotation

If the centre of gravity is at the origin, then a rotation
of the contour function f(t) about the origin with
an angle of w produces another function f(t) where
f(t)¼ exp(jw) f (0)(t). With f(t) expressed as the inverse
Fourier transform, coefficients of the rotated contour
will be An¼ exp(jw) An

(0).

3.3 Dilation

Similarly, dilation of the contour by the scale factor R
creates Fourier coefficients of the form An¼RAn

(0).

4 EXTRACTING FOURIER DESCRIPTORS

The general form of Fourier coefficients of a contour
after translation, rotation, and dilation is An¼
exp(jnt) R exp(jw)An

(0), where the coefficients An
(0) are

coefficients of the original contour. They are not
useful in that form because they contain information
on orientation, and shape only is needed.

Consider Bn¼A1þnþ 1A1�n/A
2
1. Applying that

expression after rotation, dilation, etc. results in an
expression that does not contain t, R, or w. If coeffi-
cient A0 is not used, then these Bn coefficients are
invariant under translation, rotation, and dilation.
Thus Bn coefficients represent shape (or form).

5 BACK-PROPAGATION

Back-propagation has been described in references
[32] and [33]. Errors were generated at outputs of
ANNs by comparing actual with desired outputs. The
error was expressed in terms of ANN weights and
weights updated to minimize error. Nets were con-
sidered trained when the error became zero (within
preset ranges). Considering two cascaded nodes, if
errors generated at outputs were expressed as
E ¼ 1

2 ðysj � djÞs, then the error with respect to output
yj
s would be dE/dy¼ yj

s�d
j
. The error in terms of

weights was dE/dWj
s. Expanding the equation gives

dE

dWPs
kj

¼ dE

dXs
j

dXs
j

dW � kjs

¼ dE

dXs
j

js� 1
j

¼ dE

dysj

dysj

Xs
j

ys� 1
j

dE

dWs
kj

¼ dE

dysj
f ðXs

j Þys� 1
j

where f(Xj
s) is the differential of the neuron function

and yj
s� 1 is the output from the node in the next layer

back. If layer weights were not on the output layer,
then the first step was to find the error of the output
of the next layer back. In other words, dE/dyk

s� 1 is the
error.

Once again by expanding the equation, it is found
that

dE

dys� 1
j

¼ dE

dXs
j

dXs
j

dys� 1
j

¼ dE

dXs
j

Ws
kj

¼ dE

dysj

dysj

dXs
j

Ws
kj

so that dyj
s/dxj

s¼ fXj
s. Therefore, if (dE/dyj

s)fXj
s¼ dj

s,
the total error for the layer s� 1 would be

dE

dys�1
j

¼
X

dsjW
s
kj

If this is applied to the general equation for the error
with respect to the weights, then

dE

dWs� 1
kj

¼ dE

dys� 1
j

f ðXs� 1
j Þys� 2

j

These errors were used to update weights within the
ANN. A number of teaching runs were required
before outputs converged. A teaching net was created
to take two sets of inputs and two sets of demand
vectors. The layout was a 5–38–4 pattern. After 150
test runs the network gave the outputs shown in
Table 1.

6 TESTING

Weights were saved. The application net was com-
bined with the description program and set up to
analyse two shapes in different orientations. In 100
tests the program classified 98 shapes correctly after
three frames of video. The two-pattern program
operated with a 98 per cent classification rate within
three frames.

The training net was then modified to take three
sets of inputs and demand vectors. Weights were
frozen after 500 test runs and the outputs are shown
in Table 2.

Table 1 Output from two sets of inputs

Input set Output Demand Input set Output Demand

1 1 1 2 6.05 · 10� 5 0
� 5.99 ·106 0 0.9999 1
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Programs were tested with three different shapes
in different orientations. In 100 tests the program
classified 97 shapes correctly after three frames. The
three-pattern recognizer worked with 97 per cent
classification. Programs were then modified to take
four training sets and demand vectors. This ran for 2h
and after 6219 test runs the observed outputs are
shown in Table 3. Over 50 tests the program classified
44 shapes correctly after three frames. The four-pattern
recognizer worked with 88 per cent classification.

7 CONCLUSION

Different shapes were identified using a simple pat-
tern recognition system that utilized an ANN and
shape contour information that was invariant of size,
translation, and rotation. Systems distinguished
between shapes and proved to be a valid approach to
recognition. Since the acquisition and processing of
new images are expensive, it is desirable to take a
minimum number of additional views [34], and this
method successfully identified parts after three
frames. Potential errors derived from contour sam-
pling resolution, noise, and ANN size and archi-
tecture. These are being considered in ongoing work.
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